Yong Li (李勇)  

Assistant Professor, Dept. of Electronic Engineering, Tsinghua University

 [Google Scholar]  [Curriculum Vitae] [LinkedIn] [WeiBo] 

Future Communication & Internet Lab

+86-10-62772387-201
liyong07@tsinghua.edu.cn
Rohm Building 10-202, Tsinghua University, Beijing, 100084, China.

Dr. Yong Li (M'12-SM'16) received the B.S. degree from Huazhong University of Science and Technology in 2007, and the M. S. and the Ph. D. degrees in Electrical Engineering from Tsinghua University, in 2009 and 2012, respectively. During 2012 and 2013, he was a Visiting Research Associate with Telekom Innovation Laboratories and Hong Kong University of Science and Technology respectively. During 2013 to 2014, he was a Visiting Scientist with the University of Miami. Currently, he is a Faculty Member of the Department of Electronic Engineering, Tsinghua University. His research interests are in the areas of big data, mobile computing, wireless communications and networking.
Dr. Li has served as General Chair, TPC Chair, TPC Member for several international workshops and conferences, and he is on the editorial board of three international journals. His papers have total citations more than 2000 (five papers exceed 100 citations, Google Scholar). Among them, eight are ESI Highly Cited Papers in Computer Science, and four receive conference Best Paper (run-up) Awards.

We are hiring TWO Postdoc researchers working in the area of mobile big data, data-driven communications and networking.

We are looking talented BS/MS/Ph. D. students, and visiting scholars who are interested in working in our lab.


News

  • Dr. Li received 2016-2018 Young Talent Program of China Association for Science and Technology.
  • Dr. Li received the IEEE 2016 ComSoc Asia-Pacific Outstanding Young Researchers [Award Information].
  • "Trajectory Recovery From Ash: User Privacy Is NOT Preserved in Aggregated Mobility Data" was accepted by WWW 2017. Con. to Fengli and Zhen [Project HomePage].
  • "Context-aware Real-time Population Estimation for Metropolis" was accepted by UbiComp 2016, which won Honorable Mention Award. Con. to Fengli and Jie [Project HomePage].
  • Paper "Oblivious Neighbor Discovery for Wireless Devices with Directional Antennas" was accepted by IEEE Infocom 2016.
  • Our "Big Data" project got one work about large scale cellular traffic analysis accepted in ACM IMC 2015 as a long paper!
  • Our paper "Virtual Machine Migration Planning in Software-Defined Networks" was accepted by IEEE Infocom 2015.
  • FIB's homepage was launched.

Publications

  • [SIGIR] C. Yang, H. Yan, D. Yu, Yong Li, D. Chiu, Multi-site User Behavior Modeling and Its Application in Video Recommendation, in ACM SIGIR 2017.
  • [WWW] F. Xu, Z. Tu, Yong Li, P. Zhang, X. Fu, D. Jin. Trajectory Recovery From Ash: User Privacy Is NOT Preserved in Aggregated Mobility Data, in WWW 2017.
  • [ICWSM] H. Yan, Z. Lin, G. Wang Yong Li, H. Zheng, B. Zhao, D. Jin. On Migratory Behavior in Video Consumption, in ICWSM 2017.
  • [SECON] Z. Tu, K. Zhao, Yong Li, F. Xu, L. Su, D. Jin. Beyond k-anonymity: Protect Your Trajectory From Semantic Attack, in IEEE SECON 2017.
  • [UbiComp] F. Xu, J. Feng, P. Zhang Yong Li. Context-aware Real-time Population Estimation for Metropolis, in ACM UbiComp 2016, Honorable Mention Award
  • [ASONAM] H. Wang, Yong Li, Y. Chen, D. Jin. Co-Location Social Networks: Linking the Physical World and Cyberspace, to appear in IEEE/ACM ASONAM 2016.
  • [IMC] H. Wang, F. Xu, Yong Li, P. Zhang, D. Jin. Understanding Mobile Traffic Patterns of Large Scale Cellular Towers in Urban Environment, to appear in ACM IMC 2015.
  • [TON] F. Xu, Yong Li, H. Wang, P. Zhang, D. Jin. Understanding Mobile Traffic Patterns of Large Scale Cellular Towers in Urban Environment, IEEE/ACM Transactions on Networking, to appear.
  • [TON] L. Chen, Yong Li, et al. On Oblivious Neighbor Discovery in Distributed Wireless Networks with Directional Antennas: Theoretical Foundation and Algorithm Design, IEEE/ACM Transactions on Networking, to appear.
  • [TON] D. Wu, Q. Liu, Yong Li, J. A. McCann, A. C. Regan, N. Venkatasubramanian. Adaptive Lookup of Open WiFi using Crowdsensing, IEEE/ACM Transactions on Networking, 2016.
  • [TMC] C. Gao, Yong Li, S. Chen. A Two-Level Game Theory Approach for Joint Relay Selection and Resource Allocation in Network Coding Assisted D2D Communications, IEEE Transactions on Mobile Computing, to appear.
  • [TMC] Y. Zhao, Yong Li, N. Ge. Overlapping Coalition Formation Game for Resource Allocation in Network Coding Aided D2D Communications, IEEE Transactions on Mobile Computing, to appear.
  • [TMC] Yong Li, D. Jin, P. Hui, S. Chen. Contact-Aware Data Replication in Roadside Unit Aided Vehicular Delay Tolerant Networks, IEEE Transactions on Mobile Computing, 15(2): 306-321 (2016).
  • [TMC] Yong Li, D. Jin, Z. Wang, P. Hui, L. Zeng, S. Chen. Multiple Mobile Data Offloading Through Disruption Tolerant Networks, IEEE Transactions on Mobile Computing, Vol. 13, No. 7, June 2014.
  • [TMC] Yong Li, D. Jin, Z. Wang, P. Hui, S. Chen. A Markov Jump Process Model for Urban Vehicular Mobility: Modeling and Applications, IEEE Transactions on Mobile Computing, 13(9):1911-1926 (2014).
  • [TMC] Yong Li, P. Hui, D. Jin, L. Su, L. Zeng. Optimal Distributed Malware Defense in Mobile Networks with Heterogeneous Devices, IEEE Transactions on Mobile Computing, 13(2): 377-391 (2014).
  • [JSAC] Yong Li, D. Jin, P. Hui, H. Zhu. Optimal Base Station Scheduling for Device-to-Device Communication Underlaying Cellular Networks, IEEE Journal on Selected Areas in Communications 34(1): 27-40 (2016).
  • [JSAC] Y. Zhao, Yong Li, H. Zhang, N. Ge, J. Lu. Fundamental Tradeoffs on Energy-Aware D2D Communication Underlaying Cellular Networks: A Dynamic Graph Approach, IEEE Journal on Selected Areas in Communications 34(4): 864-882 (2016).
  • [JSAC] Y. Niu, C. Gao, Yong Li, D. Jin, L. Su, et al. Exploiting Device-to-Device Communications in Joint Scheduling of Access and Backhaul for mmWave Small Cells, IEEE Journal on Selected Areas in Communications 33(10): 2052-2069 (2015).
  • [TC] H. Wang, Yong Li, P. Hui, D. Jin, J. Wu. Saving Energy in Partially Deployed Software Defined Networks, IEEE Transactions on Computers 65(5): 1578-1592 (2016).
  • Full list is here.

  • Professional Activities

    • IEEE Senior Member, ACM Member;
    • Guest Editor: IEEE Access Special Issue on Socially Enabled Networking and Computing.
    • Associate Editor: Journal of Communications and Networking;
    • Associate Editor: EURASIP Journal on Wireless Communications and Networking;
    • Area Editor: EAI-Endorsed Transactions on Industrial Networks and Intelligent Systems;
    • Guest Editor: ACM/Springer MONET, Special Issue on Software-Defined and Virtualized Future Wireless Networks.
    • General Chair:International Conference on Software-Defined and Virtualized Future Wireless Networks 2014;
    • TPC Chair/Co-Chair: ICC 2018 Symposum of Wireless Networks, ChinaCom 2015, Simplex 2013 (WWW workshop);
    • TPC Member: ICWSM 2017, INFOCOM 2017, PAM 2017, Netsys 2017, ICC 2017, ICWSM 2016, WWW 2016, WCNC 2016, ICC 2016, ICCCN 2015, GLOBECOM 2015-2014, CHANTS 2015, GSCIT 2014, EECSI 2014, IWCMC 2014, CSNT 2014, WSSW 2013, ExtermeCom 2012-2013, IEEE/IFIP EUC 2012;
    • Publicity Co-Chair: ACM CHANTS 2014;
    • Conference Paper Reviewer of INFOCOM 2010-2013, GLOBECOM 2013, IWCMC 2012, SECON 2012, ICC 2012, ANSS 2012, GLOBECOM 2011, MASS 2011, ICC 2011, MCS 2010 CCNC 2011, GLOBECOM 2010, ICC 2010, ICOIN 2010, VTC 2010 Spring, PIMRC 2009, APCC 2009
    • Journal Paper Reviewer of IEEE/ACM Transactions on Networking, IEEE Transactions on Mobile Computing, IEEE Transactions on Wireless Communications, IEEE Communications Letter, Electronics Letters, Journal of Computer Engineering Research, International Journal of Communication Systems, International Journal of Automation and Computing, Ad Hoc Networks, European Transactions on Telecommunications

    Projects

    Mobile Big Data Managing, Mining and Modeling (MBD-M3)

    By focusing on characterizing the mobile traffic, web accessing, and information usage traces based on large-scale and long-time mobile big data, which is collected from the commercial mobile operator with 380 thousand base stations and 15 million users spanning over a year from 15 major cities of China, we qualitatively visualize and quantitatively characterize the spatio-temporal human behaviors in the physical-cyber system including mobility regularity, traffic consumption patterns, social friendship activity, online information and commodity consumption, etc. Based on these fundamental findings and credible models, we further investigate how to utilize these important insights on how to deal with the problems encountered with the current mobile networks including traffic congestion offloading, green communications, solidified architecture, etc. Specific techniques include Hadoop/spark programming, machine learning, big data mining and processing algorithms of clustering, classification, graphing, etc.


    Social-Aware Next Generation Mobile Networks (SAN-5G)

    Aiming to establish a new paradigm to solve the problem of universal resource allocations for next generation mobile networks (5G), this project investigates a social behavior aware optimization framework that couples the social layer of human behaviors with physical layer of wireless communications. First, we model the mobility pattern and social behavior for users through mining the big data, which contains the location information, traffic consumption, service access, etc. Then, we establish social behavior aware optimization theory framework for mobile cellular networks based on the profound understanding of the interplay between social behavior and universal resource allocations. Finally, for typical social service scenarios, we evaluate the system performances through quantitative analysis and quantitative gains, which demonstrates the effectiveness of social behavior aware for network optimization framework and corresponding mechanisms and methods. Specific techniques involving this project include networking system modeling, social big data analysis, optimization and game theory, etc.


    Software-Defined Next Generation Networks (SDN-5G)

    Software defined network (SDN), an innovative paradigm for future networks, advocates separating the control plane and data plane, and abstracting the control functions of the network into a logically centralized control plane. Aiming to establish a new paradigm for 5G mobile networks, software-defined 5G mobile networks extend the concept of SDN controller to take the control functions of the physical layer into consideration as well, not just those of the network layer. By abstracting the control functions of access and core networks jointly, a logically centralized programmable control plane achieves the fine-grained controlling and flexible programmability, which is capable of achieving the design goals of convergence of heterogeneous networks, fine-grained controllability, efficient programmability for network evolution, and network and service customizability. We investigate this project by both system and theoretical approach. Specific techniques include cloud computing system (OpenStack, Neutron), SDN components (Floodlight, ODL, OVS), mobile core network elements, practical network optimization and system prototype.


    Students

      Current Students: I am fortunate and enjoying working together with these exceptional students.
    • Yong Niu, mmWave and D2D Communications and Networking, Ph. D (co-advised with Prof. Depeng Jin)
    • Yujie Liu, Network Update for Software-Defined Networks and NFV, Ph. D (co-advised with Prof. Jian Yuan)
    • Jiaqiang Liu, Software-Defined Networks for Mobile and IoT, Ph. D (co-advised with Prof. Depeng Jin)
    • Wei Feng, mmWave Communications and Networks, Ph. D (co-advised with Prof. Depeng Jin)
    • Yulei Zhao, D2D Communications for 5G, Ph. D (co-advised with Prof. Ning Ge)
    • Huandong Wang, Software-Defined Networks and Mobile Big Data, Ph. D (co-advised with Prof. Depeng Jin)
    • Huan Yan, Software-Defined Networks and North Bound API, Ph. D (co-advised with Prof. Depeng Jin)
    • Fengli Xu, Mobile Big Data Mining and User Behavior Modelling, Ph. D.
    • Jingtao Ding, Mobile Data Traffic Analysis and Modelling, Ph. D (co-advised with Prof. Depeng Jin)
    • Jie Feng, Mobile Big Data, Ph. D.
    • Chen Gao, Mobile Data Analysis, Ph. D (co-advised with Prof. Depeng Jin)
    • Fan Xie, Software-Defined Networks for WAN, Master (co-advised with Prof. Depeng Jin)
    • Shaoran Xiao, Software-Defined Networks for Cloud, Master.
    • Hangyu Fan, Software-Defined Networks for Cloud, Master.
    • Chuhan Gao, D2D & mmWave Communications, Undergraduate (will graduate in 2016)
    • Tianyi Geng, Mobile Big Data Mining, Undergraduate (will graduate in 2016)
    • Ran Xu, Vehicular Networks and Mobile Cloud Computing, Undergraduate (will graduate in 2016)
    • Wenxin Wang, Software-Defined Networks, Undergraduate (will graduate in 2016)
    • Mingyang Zhang, Mobile Traffic Mining and Modelling, Undergraduate (will graduate in 2016)
    • Hongzhi Shi, Mobile Big Data Mining and Modeling, Undergraduate (will graduate in 2017)
    • Chenghao Liu, Vehicular Cloud Computing, Undergraduate (will graduate in 2017)
    • Xihui Liu, Mobile Data Traffic Mining and Modeling, Undergraduate (will graduate in 2017)
    • Former Students & Alumni: Thanks for their contributions and I really enjoy working with them.
    • Bo Cui, (graduated in 2015, join B4 group of Google Sydney.)
    • Haoming Zhang, Undergraduate student (graduated in 2015, join CMU for Master study)
    • Xueshi Hou, Undergraduate student (graduated in 2015, will join UCSD for PhD study)
    • Chuanmeizi Wang, Undergraduate student (graduated in 2015, join USC for PhD study)
    • Bentao Zhang, Undergraduate student (graduated in 2014, will join UCSD for PhD study)
    • Mengjiong Qian, Master student (graduated in 2013, join USC for PhD study )
    • Xinlei Chen, Master student (graduated in 2012, join CMU for PhD study)
    • Siyu Chen, Undergraduate student (graduated in 2013, join CMU for Master study)
    • Wenyu Ren, Undergraduate student (graduated in 2013, join UIUC for PhD study)
    • Jingwei Zhang, Undergraduate student (graduated in 2013, join Columbia University for PhD study)
    • Hang Qu, Undergraduate student (graduated in 2012, join Stanford for PhD study)
    • Xu Zhang, Undergraduate student (graduated in 2012, join Duck for PhD study)
    • Yichong Wang, Undergraduate student (graduated in 2012, join UIUC for PhD study)
    • Li Qiu, Undergraduate student (graduated in 2012, join PSU for PhD study)
    • Guolong Su, Undergraduate student (graduated in 2011, join MIT for PhD study)
    • Huasha Zhao, Undergraduate student (graduated in 2011, join Berckly for PhD study)
    • Yurong Jiang, Undergraduate student (graduated in 2010, join USC for PhD study)