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ABSTRACT
Multimodal recommender systems have acquired applications in
broad web scenarios such as e-commerce businesses and short-
video platforms. Existing multimodal recommendation methods
generally boost performance by introducing item-side multimodal
content as supplement information. However, the common training
paradigm, i.e., encoding unimodal content respectively and fusing
them to fit user preference scores, makes the model biased towards
items with prevailing modality content under non-uniform training
data. This results in a serious item-side unfairness issue, i.e., some
items with prevailing modality content are over-recommended
while a large number of items don’t receive adequate recommen-
dation opportunities, leaving corresponding content providers at
great disadvantage. Aiming to eliminate such modality bias and
promote item-side fairness, we propose a fairness-aware modality
debiasing framework based on counterfactual inference. In the train-
ing stage, we additionally introduce unimodal prediction branches
to capture the modality bias. In the inference stage, we conduct
a fairness-aware counterfactual inference to adaptively eliminate
the modality bias. The proposed framework is model-agnostic and
flexible to be implemented in various multimodal recommendation
models. Extensive experiments on two datasets demonstrate that
the proposed method can significantly enhance item-side fairness
while providing competitive recommendation accuracy. Our pro-
posed framework is expected to help mitigate the unfair treatment
experienced by vulnerable content providers on multimedia web
platforms. Codes are available in https://github.com/tsinghua-fib-
lab/WWW2024-Modality-Debiasing.

∗The corresponding authors.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

WWW ’24, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0171-9/24/05.
https://doi.org/10.1145/3589334.3648156

CCS CONCEPTS
• Information systems → Recommender systems.

KEYWORDS
Item-side Fairness, Multimodal Recommendation, Modality Debias-
ing

ACM Reference Format:
Yu Shang, Chen Gao, Jiansheng Chen, Depeng Jin, and Yong Li. 2024. Im-
proving Item-side Fairness of Multimodal Recommendation via Modality
Debiasing. In Proceedings of the ACM Web Conference 2024 (WWW ’24),
May 13–17, 2024, Singapore, Singapore. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3589334.3648156

1 INTRODUCTION
Multimodal recommendation has been widely used in many online
services such as e-commerce [38, 41] and micro-video platforms
[14, 15]. Distinct from the traditional recommendation largely rely-
ing on historical interactions to model user preference [3, 9, 11, 27],
multimodal recommendation incorporates item-side multimodal
content (e.g., visual and textual features) to acquire more compre-
hensive user and item representations [26, 33]. Currently, plenty
of effective multimodal recommendation methods have been pro-
posed, including supervised-learning methods [2, 26, 32, 33] and
self-supervised learning methods [23, 36, 41]. Despite the vary-
ing design details, these models share a generic recommendation
pipeline, i.e., first encoding unimodal content respectively and then
fusing them to fit the training data.

However, considering that the modality content distribution in
training data is usually uneven, the above-mentioned paradigm
will inevitably introduce modality bias into model learning. Specifi-
cally, if there’s some prevailing modality content in the historical
interactions for training, the model will learn a spurious shortcut
between such modality content and the final preference prediction.
Taking clothing recommendation as an example, if the T-shirt in
white frequently occurs in users’ historical interactions, the trained
model will rely on such visual clues to make predictions and tend
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Figure 1: Illustration of item-side unfairness w.r.t. textual
content in multimodal recommendation models (results
from SLMRec on Baby dataset). Items are classified into 100
groups by clustering the textual features with K-means.

to blindly consider that clothes with such visual content are more
likely to be preferred by users. This leads to a severe item-side
fairness issue, i.e., some items are more frequently recommended
while a large proportion of items don’t obtain enough attention.
Figure 1 illustrates a real case of items-side unfairness w.r.t. textual
content feature categories. It can be seen that some categories with
few items (e.g., Category 72) obtain very high recommendation
frequency, while some categories with many more items receive
scarce recommendations (e.g., Category 8), exhibiting severe bias to-
wards modality content. In the long run, such item-side unfairness
will harm both user experience and the rights of content providers,
hindering the development of businesses and platforms. Therefore,
it’s urgently expected to improve the item-side fairness of multi-
modal recommendation models, making the item distribution in
the recommendation list more fair and even.

Currently, there have been many works to promote the item-
side fairness of recommender systems, mainly including ranking
methods [1, 28] and re-ranking methods [16, 17]. Ranking methods
usually inject the fairness constraint into the objective function
of recommendation algorithms. Re-ranking methods work after
the training phase, taking the biased recommendation list as input
and re-ranking items according to the fairness requirement, e.g.,
enforcing the minimum item coverage. Besides, some debiasing
methods can also facilitate item-side fairness [22, 30]. However, all
the above methods lack consideration of the unique paradigm of
multimodal recommendation and overlook the special unfairness
cause in these models, resulting in poor recommendation fairness.

To tackle this issue, we propose a counterfactual inference-based
debiasing framework tailored for general multimodal recommen-
dation models to promote item-side fairness. Specifically, we first
formulate the causal graph of the generic multimodal recommenda-
tion pipeline. From the causal view, the final preference prediction
indeed includes two parts: multimodal feature-based prediction and
unimodal feature-based prediction. Existing works are generally
aware of the former part while overlooking the latter one, which
represents the cause-effect pathway of modality bias. To remove

the influence of such modality bias, during the training phase, we
add extra unimodal prediction branches in the original training
paradigm to better estimate the effect of modality bias. During the
inference phase, for each modality (e.g., vision, text), we imagine
a counterfactual world where the unimodal feature only directly
influences the final prediction and has no impact on the fused item
representation. Then we conduct a counterfactual inference, de-
ducting the preference score obtained in the counterfactual world
from the overall preference score. Besides, to achieve more precise
debiasing, we incorporate a fairness-aware debiasing strength de-
sign into the debiasing process based on the relation between item
preference score ranking and modality content frequency ranking.
Based on the above designs, we establish an adaptive modality debi-
asing framework driven by the item-side fairness objective. Notably,
our whole framework is model-agnostic and can be conveniently
implemented on existing mainstream multimodal recommendation
models. We believe that the proposed framework can help mitigate
the unfair treatment experienced by vulnerable content providers
on multimedia web platforms.

The contributions of this work are summarized as follows:
• We point out that a critical cause of the unfairness issue in multi-
modal recommendation models is modality bias, and formulate
the causal graph to analyze its cause-effect pathway.

• Wepropose a novel fairness-awaremodality debiasing framework
to improve the item-side fairness of multimodal recommendation
models. The method is model-agnostic and can be implemented
in various multimodal recommendation models.

• We conduct extensive experiments on two datasets, which con-
firm the effectiveness of our framework in enhancing item-side
fairness while providing competitive recommendation accuracy.

2 RELATEDWORK
2.1 Multimodal Recommendation
Multimodal recommendation methods generally incorporate item-
side multimodal content with traditional collaborative filtering
signals in model learning, aiming to enrich the semantics of user
and item representations. Some early works like VBPR [8] adopt
matrix factorization to encode the combination of multimodal in-
formation and ID embeddings. With the blooming of deep learning,
more advanced techniques have been utilized to build multimodal
recommendation models, e.g., variational autoencoder [24, 37] and
graph neural networks [5, 10, 31, 33]. MMGCN [33] is the first to
utilize the graph convolutional network to learn modality represen-
tations separately and then conduct multimodal fusion to obtain
the final representation. Besides, self-supervised learning methods
have also been utilized to model the relation between different
modalities [23, 36]. However, existing multimodal recommendation
methods commonly focus on modality representation learning for
better accuracy while overlooking the potential fairness issue.

2.2 Fairness of Recommender Systems
The fairness issue of recommender systems has received great at-
tention from academia and industry for a long period, including
both user-side [12, 13, 19] and item-side fairness [25, 28, 43] (the
focus of this work). According to the working phase, there are three
approaches to improve recommendation fairness: data-oriented
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Figure 2: Distribution of interaction frequency and average
recommended frequency of different textual content groups
(results from SLMRec on Baby dataset).

methods, ranking methods and re-ranking methods [29]. Data-
oriented methods usually aim at making the training data unbiased
to alleviate the biased model [4, 20]. Ranking methods try to modify
the model design or optimization goal to generate more fair results
[34, 42]. For instance, Zhu et al. [42] design a regularization term to
force user (or item) representations and fairness-related attribute
vectors to be orthogonal. Re-ranking methods work after model
training and adjust the item ranking according to fairness-related
metrics [17, 35]. For example, Patro et al. [17] design a two-stage re-
ranking method ensuring the minimum item exposure to promote
recommendation fairness. Apart from the three ways mentioned
above, some debiasing methods [30, 39] also help improve item-side
fairness, e.g., popularity debiasing [30]. However, all these meth-
ods are developed under traditional recommendation scenarios,
achieving limited performance in the multimodal recommendation
scenario which has a unique recommendation pipeline.

3 METHODOLOGY
In this section, we first analyze the cause of modality bias in the
multimodal recommendation scenario (Section 3.1), then we detail
how modality bias affects the multimodal recommendation pipeline
from a causal view (Section 3.2), based onwhichwe finally detail our
proposed fairness-aware modality debiasing framework to enhance
item-side fairness (Section 3.3).

3.1 Cause of modality bias
In this part, we elaborate on the reason why modality bias exists
in the multimodal recommendation scenario. Existing multimodal
recommendation models are commonly optimized to fit the training
data in an end-to-end manner. When the modality content distribu-
tion shows clear unevenness (e.g., long-tail distribution), models
will naturally overfit to the prevailing modality content, resulting in
a significant bias towards items with such modality content in the
preference prediction. We verify this through an empirical analysis
(taking the result from SLMRec on Baby dataset as an example).

(a) Generic multimodal recommendation 

𝑰

𝑼

𝑽

𝒀𝑴

(b) Incorporating visual modality bias

U: user representation I: item representation

V: visual feature

M: multimodal feature (except for visual feature)

Y: preference score

𝑰

𝑼

𝑽

𝒀𝑴

Figure 3: Causal graph for (a) the generic multimodal recom-
mendation pipeline and (b) the version incorporating modal-
ity bias (taking visual modality bias as an example).

As shown in Figure 2, it can be found that the distribution of in-
teraction frequency and average recommended frequency across
textual content groups have very similar patterns, e.g., the textual
content group with more interactions also tends to have a higher
recommended frequency. Through the above analysis, we conclude
that the cause of modality bias is learning from biased training data
with uneven modality content distribution.

3.2 Effect of modality bias from a causal view
For a better understanding of how the modality bias affects pref-
erence prediction and recommendation fairness, in this part, we
resort to causal graphs, which are directed acyclic graphs describ-
ing casual relationships between variables. We construct the causal
graph of the generic multimodal recommendation pipeline and the
version incorporating modality bias, which is shown in Figure 3.
Here we analyze visual modality bias as the example, and there
are five variables in this scenario: user representation (𝑈 ), item
representation (𝐼 ), visual feature (𝑉 ), multimodal feature except
for visual feature (𝑀), and preference score (𝑌 ). In the traditional
generic multimodal recommendation pipeline shown in Figure 3(a),
there are two important causal relations:
• 𝑈&𝐼 → 𝑌 : The fundamental user-item matching, i.e., the prefer-
ence score is calculated from user and item representations.

• 𝑀&𝑉 → 𝐼 → 𝑌 : Unimodal features are fused to get the item
representation and then affect the final preference score.

However, when considering modality bias (e.g., visual modality
bias), there will be a direct effect from the visual feature (𝑉 ) to the
predicted preference score (𝑌 ) as shown in Figure 3(b):
• 𝑉 → 𝑌 : The mentioned visual modality bias results in the prefer-
ence prediction to be directly affected by the visual feature, not
only based on fused item representation. This relation represents
the cause-effect pathway of visual modality bias, which is indeed
a learned spurious shortcut to be removed.

As for the effect of modality bias for the multimodal recommenda-
tion, we elaborate it through an intuitive clothing recommendation
example: if the white T-shirt occurs very frequently in historical in-
teractions for training, the trainedmodel will simply assume clothes
with such visual characteristics are highly likely to be preferred
by users while neglecting the textual information (e.g., clothing
material). As a result, the final recommendation list will be filled
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Figure 4: The training pipeline of modality debiasing frame-
work. The first line shows the generic multimodal recom-
mendation pipeline. The second line shows the unimodal
and multimodal prediction branches for multi-task learning.

with homogeneous white T-shirts without other diverse clothes.
This issue not only hides the actual preference signal but also leads
to unfair item distribution in recommendation results.

3.3 Fairness-aware modality debiasing
Aiming to remove the effect of modality bias and promote item-side
fairness, we design a fairness-aware modality debiasing framework
based on counterfactual inference techniques. Next, we first intro-
duce counterfactual analysis and then detail the framework design.

3.3.1 Counterfactual analysis. Still taking visual modality bias as
an example, counterfactual analysis [18] tries to answer such a
question: how the visual feature will affect the preference score
when the item representation is fixed. As shown in Figure 3(b), the
causal effect (i.e., Total Effect, 𝑇𝐸) of 𝑉 on 𝑌 includes two parts:
Total Indirect Effect (𝑇 𝐼𝐸) through 𝑉 → 𝐼 → 𝑌 and Natural Direct
Effect (𝑁𝐷𝐸) through 𝑉 → 𝑌 , which is formulated as follows:

𝑇𝐸 = 𝑇 𝐼𝐸 + 𝑁𝐷𝐸. (1)

𝑇𝐸 represents the difference between two situations 𝑉 = 𝑣 and
𝑉 = 𝑣∗ (typically set as null):

𝑇𝐸 = 𝑌𝑢,𝑖,𝑣 − 𝑌𝑢,𝑖∗,𝑣∗ , (2)

where 𝑖∗ is a constant value of 𝐼 when 𝑉 = 𝑣∗.
𝑁𝐷𝐸 means the value change of 𝑌 with 𝑉 changing from 𝑣∗ to

𝑣 through the direct path 𝑉 → 𝑌 , while the mediator 𝐼 is set to the
value when 𝑉 = 𝑣∗:

𝑁𝐷𝐸 = 𝑌𝑢,𝑖∗,𝑣 − 𝑌𝑢,𝑖∗,𝑣∗ . (3)

Finally, 𝑇 𝐼𝐸 can be calculated by subtracting 𝑁𝐷𝐸 from 𝑇𝐸:

𝑇 𝐼𝐸 = 𝑇𝐸 − 𝑁𝐷𝐸 = 𝑌𝑢,𝑖,𝑣 − 𝑌𝑢,𝑖∗,𝑣, (4)

which eliminates the negative effect (i.e., 𝑁𝐷𝐸) caused by the path
𝑉 → 𝑌 . Using 𝑇 𝐼𝐸 as the final preference score is expected to
mitigate the modality bias.

3.3.2 Multi-task learning training scheme. According to the causal
graph in Figure 3, the final preference prediction includes two parts:
multimodal feature-based prediction and unimodal feature-based

Visual content frequency ranking 

2 1
3

2 1
3
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Textual content frequency ranking

2 1
3

𝒖

Visual modality 

debiasing strength 
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Figure 5: Illustration of fairness-oriented modality debiasing
strength calculation.

prediction. Taking the scenario with visual and textual modality as
an example, the preference score is formulated as:

𝑦𝑢,𝑖,𝑣,𝑡 = 𝑦𝑢𝑖 ∗ 𝜎 (𝑦𝑣𝑢𝑖 ) ∗ 𝜎 (𝑦
𝑡
𝑢𝑖 ), (5)

where 𝜎 (·) is the sigmoid function used for scaling unimodal pre-
diction scores to probabilities and adjusting the relying extent upon
user-item matching score𝑦𝑢𝑖 , following the design of some existing
works [15, 30].

To better capture the direct effect of unimodal features on the
preference score, we introduce unimodal prediction branches in
the generic multimodal recommendation pipeline and adopt a
multi-task learning scheme for model training. The whole training
pipeline is shown in Figure 4. The traditional multimodal feature-
based prediction branch is supervised by the BPR loss [21], which
is formulated as:

L𝑚𝑢𝑙𝑡𝑖 = − 1
𝑁

∑︁
𝑖, 𝑗

(𝑦𝑢𝑖 − 𝑦𝑢 𝑗 ) . (6)

Similarly, visual and textual feature-based prediction branches are
learned with the following objectives:

L𝑣 = − 1
𝑁

∑︁
𝑖, 𝑗

(𝑦𝑣𝑢𝑖 − 𝑦𝑣𝑢 𝑗 ),L𝑡 = − 1
𝑁

∑︁
𝑖, 𝑗

(𝑦𝑡𝑢𝑖 − 𝑦𝑡𝑢 𝑗 ). (7)

We aggregate the above objectives and get the final loss function
L as follows:

L = L𝑚𝑢𝑙𝑡𝑖 + L𝑣 + L𝑡 . (8)
Here we grant each prediction task identical weights for simplicity,
avoiding intensive hyper-parameter tuning.

3.3.3 Fairness-aware counterfactual inference. According to the
analysis in Section 3.3.1, we conclude that the modality bias can be
mitigated by taking 𝑇 𝐼𝐸 as the final preference score. Considering
that different modalities might contain different levels of bias, we
choose to conduct separate modality debiasing for each modality.
Taking visual modality debiasing as an example, according to Eq.
(4), the debiased preference score is as follows:

𝑦𝑢𝑖 ∗ 𝜎 (𝑦𝑣𝑢𝑖 ) ∗ 𝜎 (𝑦
𝑡
𝑢𝑖 ) − 𝑦𝑢𝑖∗ ∗ 𝜎 (𝑦𝑣𝑢𝑖 ) ∗ 𝜎 (𝑦

𝑡∗
𝑢𝑖 ), (9)

where 𝑖∗ and 𝑡∗ mean the fused item representation and textual
feature are set as constant values. Similarly, for the textual modality,
we can get the debiased preference score as follows:

𝑦𝑢𝑖 ∗ 𝜎 (𝑦𝑣𝑢𝑖 ) ∗ 𝜎 (𝑦
𝑡
𝑢𝑖 ) − 𝑦𝑢𝑖∗ ∗ 𝜎 (𝑦𝑣

∗
𝑢𝑖 ) ∗ 𝜎 (𝑦

𝑡
𝑢𝑖 ), (10)
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Figure 6: Illustration of the fairness-aware counterfactual
inference-based modality debiasing framework.

where 𝑖∗ and 𝑣∗ mean the fused item representation and visual
feature are set as constant values.

Based on the above standard counterfactual inference process, we
propose to introduce fairness-oriented modality debiasing strength
for more precise score adjustment. We scrutinize the relationship
between two factors: item preference score ranking and modality
content frequency ranking. Intuitively, when an item with prevail-
ing modality content ranks high, it indicates that the modality bias
produces a clear effect on worsening the unfairness issue, making
such items more likely to be recommended. In this situation, the
modality bias should be strongly eliminated. On the contrary, if an
item with prevailing modality content has a low ranking, it means
that the modality bias shows no significant impact on fairness, in
which case a weak debiasing strength is enough.

Following this idea, we design an effective method to generate
the fairness-oriented modality debiasing strength as shown in Fig-
ure 5. Taking visual modality debiasing as an example, given an
instance (𝑢, 𝑖, 𝑣) related to user 𝑢, item 𝑖 and item visual feature
𝑣 , we first extract the visual content frequency ranking 𝑟𝑎𝑛𝑘 (𝑓𝑐𝑣 ),
where 𝑓𝑐𝑣 is the interaction frequency of the visual content group
𝑐𝑣 which visual feature 𝑣 belongs to. Next, we extract the visual
preference score ranking of item 𝑖 , denoted as 𝑟𝑎𝑛𝑘 (𝑦𝑣

𝑢𝑖
). Finally

we define the debiasing strength 𝑠𝑣
𝑢𝑖

as follows:

𝑠𝑣𝑢𝑖 = 𝑒−𝛼 |𝑟𝑎𝑛𝑘 (�̂�
𝑣
𝑢𝑖
)−𝑟𝑎𝑛𝑘 (𝑓𝑐𝑣 ) | , (11)

where 𝛼 is a hyper-parameter adjusting the strength distribution.
In this way, the larger gap between the two rankings produces
smaller debaising strength. Here we try various decaying functions
and find that the exponential function works slightly better so we
finally adopt it. Similarly for the textual modality, the debiasing
strength 𝑠𝑡

𝑢𝑖
is defined as:

𝑠𝑡𝑢𝑖 = 𝑒−𝛼 |𝑟𝑎𝑛𝑘 (�̂�
𝑡
𝑢𝑖
)−𝑟𝑎𝑛𝑘 (𝑓𝑐𝑡 ) | . (12)

Up to now, we can derive the final modality debiasing framework,
as shown in Figure 6. The fairness-aware visual debiasing is formu-
lated as follows:

𝑇 𝐼𝐸 (𝑣𝑖𝑠𝑢𝑎𝑙) = 𝑦𝑢𝑖 ∗ 𝜎 (𝑦𝑣𝑢𝑖 ) ∗ 𝜎 (𝑦
𝑡
𝑢𝑖 ) − 𝑠𝑣𝑢𝑖 ∗ 𝑦𝑢𝑖∗ ∗ 𝜎 (𝑦

𝑣
𝑢𝑖 ) ∗ 𝜎 (𝑦

𝑡∗
𝑢𝑖 ) .
(13)

Table 1: Statistics of two datasets for experiments.

Dataset #Users #Items #Interactions Sparsity
Baby 19,445 7,050 160,792 99.88%

Clothing 39,387 23,033 278,677 99.97%

Similarly, for the textual modality, we can get the fairness-aware
debiased preference score as follows:

𝑇 𝐼𝐸 (𝑡𝑒𝑥𝑡) = 𝑦𝑢𝑖 ∗ 𝜎 (𝑦𝑣𝑢𝑖 ) ∗ 𝜎 (𝑦
𝑡
𝑢𝑖 ) − 𝑠𝑡𝑢𝑖 ∗ 𝑦𝑢𝑖∗ ∗ 𝜎 (𝑦

𝑣∗
𝑢𝑖 ) ∗ 𝜎 (𝑦

𝑡
𝑢𝑖 ) .
(14)

We take the average of the above two terms as the final prediction
score, which eliminates both the visual and textual modality bias:

𝑇 𝐼𝐸 (𝑓 𝑖𝑛𝑎𝑙) = 𝑇 𝐼𝐸 (𝑣𝑖𝑠𝑢𝑎𝑙) +𝑇 𝐼𝐸 (𝑡𝑒𝑥𝑡)
2

(15)

4 EXPERIMENTS
To validate the effectiveness of our proposed modality debiasing
framework, in this section, we conduct experiments to answer the
following research questions:
• RQ1: Does the proposed modality debiasing bring greater fair-
ness improvement than other methods for multimodal recom-
mendation models?

• RQ2:How do different designs impact the performance of modal-
ity debiasing?

• RQ3: Does modality debiasing effectively mitigate the unfairness
issue caused by modality bias?

4.1 Experiment Settings
4.1.1 Datasets. We utilize Amazon product review dataset [7] to
conduct experiments, containing visual and textual modality con-
tent features of products. We select two subcategories, i.e., Baby
and Clothing datasets for experiments, which have been widely
used in previous works [8, 38, 41]. The statistics of the two datasets
are shown in Table 1. The interactions of each user are randomly
split into training, validation and testing sets with the ratio 8:1:1
following previous works [8, 38, 41].

4.1.2 Baselines. We mainly consider three kinds of methods help-
ful to item-side fairness for comparison, including ranking methods,
re-ranking methods and debiasing methods. The three specific base-
lines are as follows:
• FairRec [17]: This is a re-ranking method adjusting the recom-
mended item distribution to ensure the minimum item coverage
in final recommendation lists.

• MACR [30]: This is a debiasing method to eliminate the popu-
larity bias, which also helps for item-side fairness.

• Embedding re-ranking [28]: This method introduces a fairness-
related constraint called (𝛼, 𝛽)-fairness in the training objective
to improve item-side fairness.

4.1.3 Evaluation metrics. We evaluate both the recommendation
accuracy and item-side fairness on our method and baselines. All
metrics are calculated with the top K (set as 10 and 20) items follow-
ing [38, 40]. For the accuracy metrics, we use top-K Recall (R@K)
and Normalized Discounted Cumulative Gain (N@K). For the item-
side fairness metrics, we use Gini index, Entropy and Coverage
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Table 2: Performance of different fairness-improving methods on five base models on Baby dataset. For each base model, the
best and second-best results in each column are highlighted in bold and underline, respectively.

Baby Dataset Accuracy-related metrics Fairness-related metrics
Model Method R@10 (↑) R@20 (↑) N@10 (↑) N@20 (↑) G@10 (↓) G@20 (↓) E@10 (↑) E@20 (↑) C@10 (↑) C@20 (↑)

MMGCN

Standard 0.0354 0.0584 0.0189 0.0248 0.888 0.876 4.392 4.964 37.0% 52.1%
FairRec 0.0328 0.0539 0.0172 0.0224 0.866 0.858 4.995 5.364 40.7% 59.2%
MACR 0.0363 0.0589 0.0195 0.0251 0.847 0.848 5.268 5.685 42.6% 59.5%

Embedding Re-ranking 0.0348 0.0556 0.0179 0.0232 0.845 0.844 5.545 5.876 46.1% 61.6%
Modality Debiasing 0.0339 0.0568 0.0178 0.0238 0.835 0.832 6.330 6.771 53.7% 67.8%

VBPR

Standard 0.0414 0.0650 0.0220 0.0281 0.897 0.899 5.807 6.095 60.4% 76.3%
FairRec 0.0357 0.0622 0.0201 0.0258 0.865 0.863 5.921 6.233 65.6% 79.8%
MACR 0.0426 0.0656 0.0229 0.0288 0.867 0.864 5.984 6.188 64.1% 77.4%

Embedding Re-ranking 0.0384 0.0632 0.0204 0.0265 0.852 0.859 6.203 6.375 72.2% 83.5%
Modality Debiasing 0.0437 0.0683 0.0242 0.0305 0.825 0.821 6.701 6.952 80.3% 87.5%

GRCN

Standard 0.0476 0.0754 0.0262 0.0326 0.822 0.817 6.564 6.621 83.6% 85.9%
FairRec 0.0432 0.0735 0.0234 0.0310 0.803 0.796 6.961 7.026 87.5% 90.4%
MACR 0.0464 0.0752 0.0249 0.0323 0.812 0.809 6.885 6.903 85.8% 87.6%

Embedding Re-ranking 0.0445 0.0741 0.0237 0.0317 0.808 0.803 6.922 7.061 88.7% 90.9%
Modality Debiasing 0.0489 0.0765 0.0273 0.0348 0.795 0.787 7.061 7.158 90.8% 96.8%

SLMRec

Standard 0.0483 0.0727 0.0272 0.0330 0.833 0.816 6.546 7.011 48.2% 68.2%
FairRec 0.0466 0.0705 0.0260 0.0318 0.805 0.794 6.785 7.148 55.6% 73.5%
MACR 0.0485 0.0720 0.0270 0.0329 0.808 0.802 6.723 7.167 54.2% 73.8%

Embedding Re-ranking 0.0469 0.0711 0.0265 0.0323 0.803 0.799 6.846 7.215 58.6% 76.2%
Modality Debiasing 0.0493 0.0729 0.0274 0.0333 0.782 0.753 7.084 7.506 64.5% 82.1%

MMGCL

Standard 0.0484 0.0754 0.0262 0.0331 0.835 0.831 5.854 6.319 24.2% 36.8%
FairRec 0.0471 0.0738 0.0252 0.0320 0.805 0.804 5.968 6.487 28.8% 43.5%
MACR 0.0486 0.0753 0.0264 0.0338 0.825 0.819 5.926 6.397 29.6% 45.6%

Embedding Re-ranking 0.0473 0.0741 0.0253 0.0324 0.801 0.798 6.034 6.465 32.5% 47.5%
Modality Debiasing 0.0482 0.0743 0.0265 0.0334 0.795 0.781 6.176 6.638 37.2% 54.9%

to measure the uniformity of item distribution in all users’ recom-
mendation lists widely used in previous works [6, 16]. Here we
specifically detail fairness-related metrics as follows:
• Gini index@K (G@K): Themeasure of how uniformly items are
distributed in the whole recommendation list, ranging between
0 and 1. The lower value means more uniform and fair. Given
all users’ recommendation lists 𝐿 and the proportion of the k-th
least recommended item 𝑝 (𝑖𝑘 |𝐿), Gini index is formulated as:

𝐺𝑖𝑛𝑖 𝑖𝑛𝑑𝑒𝑥 (𝐿) = 1
|𝐼 | − 1

|𝐼 |∑︁
𝑘=1

(2𝑘 − |𝐼 | − 1)𝑝 (𝑖𝑘 |𝐿), (16)

where |𝐼 | is the total number of items.
• Entropy@K (E@K): Another measure of how uniformly items
are distributed in the whole recommendation list. A larger value
means a more uniform item distribution, which is formulated as:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐿) = −
∑︁
𝑖∈𝐼

𝑝 (𝑖 |𝐿)log𝑝 (𝑖 |𝐿), (17)

where 𝑝 (𝑖 |𝐿) is the occurring proportion of item 𝑖 in the recom-
mendation list 𝐿.

• Coverage@K (C@K): The proportion of the items that occur
at least once in the recommendation lists to all items.

4.1.4 Implementation Details. We test our method and baselines
on five mainstream multimodal recommendation models, including
MMGCN [33], VBPR [8], GRCN [32], SLMRec [23] and MMGCL
[36], covering supervised and self-supervised methods. We set the
embedding size as 64 for all models following previous works
[38, 41]. We set other parameters following the original papers.

For the modality debiasing, we search the hyper-parameter 𝛼 in
{0.001, 0.01, 0.1, 1, 10}, wide enough to find the optimal value.

4.2 Performance Comparison (RQ1)
We incorporate our modality debiasing framework and baseline
methods into the five aforementioned multimodal recommendation
models, then compare both accuracy-related and fairness-related
metrics. The overall results on two datasets are summarized in
Table 2 and 3, from which we have the following observations:

• In terms of item-side fairness, our modality debiasing
method stably outperforms other fairness-improving base-
lines in all cases. It can be found that in the multimodal recom-
mendation scenario, the modality debiasing gets a higher fairness
gain than various types of baselines. Statistically, on Baby dataset,
our method achieves a 2.36% improvement in Gini index, 6.18%
improvement in Entropy and 9.93% improvement in Coverage.
On Clothing dataset, our method achieves a 3.22% improvement
on Gini index, 4.00% improvement in Entropy and 10.97% im-
provement in Coverage. This demonstrates the superiority of our
method in improving item-side fairness.

• Modality debiasing achieves the most competitive recom-
mendation accuracy in general. For example, on Baby dataset,
compared with the standard model, our framework can still have
a positive accuracy gain, improving 1.87% on Recall and 3.76%
on NDCG. On the contrary, other methods are harmful to the
accuracy in general, e.g., Embedding Re-ranking leads to a 3.38%
decrease in Recall and a 4.48% decrease in NDCG compared with
the standard model. Therefore, our method achieves the best
trade-off between recommendation accuracy and fairness.
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Table 3: Performance of different fairness-improving methods on five base models on Clothing dataset. For each base model,
the best and second-best results in each column are highlighted in bold and underline, respectively.

Clothing Dataset Accuracy-related metrics Fairness-related metrics
Model Method R@10 (↑) R@20 (↑) N@10 (↑) N@20 (↑) G@10 (↓) G@20 (↓) E@10 (↑) E@20 (↑) C@10 (↑) C@20 (↑)

MMGCN

Standard 0.0245 0.0384 0.0122 0.0158 0.860 0.858 6.597 7.042 19.8% 29.2%
FairRec 0.0187 0.0306 0.0101 0.0122 0.838 0.836 7.045 7.387 27.8% 39.6%
MACR 0.0217 0.0358 0.0116 0.0143 0.849 0.845 6.789 7.146 26.6% 37.5%

Embedding Re-ranking 0.0213 0.0345 0.0109 0.0138 0.831 0.828 7.215 7.476 33.4% 45.8%
Modality Debiasing 0.0201 0.0323 0.0104 0.0135 0.795 0.789 7.699 8.037 42.1% 55.5%

VBPR

Standard 0.0246 0.0363 0.0135 0.0163 0.845 0.841 7.403 7.784 51.1% 67.2%
FairRec 0.0231 0.0352 0.0122 0.0154 0.822 0.818 7.785 7.969 60.1% 74.5%
MACR 0.0250 0.0364 0.0132 0.0161 0.809 0.802 7.938 8.146 63.7% 77.9%

Embedding Re-ranking 0.0236 0.0354 0.0125 0.0155 0.786 0.782 8.067 8.301 68.1% 80.6%
Modality Debiasing 0.0256 0.0395 0.0137 0.0170 0.750 0.741 8.424 8.688 71.6% 84.5%

GRCN

Standard 0.0385 0.0605 0.0201 0.0257 0.664 0.663 9.018 9.112 87.1% 93.5%
FairRec 0.0376 0.0596 0.0194 0.0244 0.652 0.650 9.037 9.125 87.6% 93.9%
MACR 0.0390 0.0603 0.0203 0.0254 0.650 0.648 9.065 9.139 87.9% 94.4%

Embedding Re-ranking 0.0376 0.0593 0.0189 0.0238 0.660 0.658 9.026 9.136 87.4% 93.8%
Modality Debiasing 0.0395 0.0613 0.0207 0.0262 0.645 0.646 9.105 9.185 89.7% 95.7%

SLMRec

Standard 0.0440 0.0661 0.0236 0.0293 0.863 0.861 6.794 7.309 24.5% 40.0%
FairRec 0.0422 0.0643 0.0228 0.0286 0.845 0.840 6.987 7.568 32.6% 49.5%
MACR 0.0420 0.0639 0.0223 0.0281 0.859 0.852 6.936 7.425 34.6% 48.8%

Embedding Re-ranking 0.0413 0.0630 0.0218 0.0276 0.840 0.838 7.054 7.592 37.6% 52.8%
Modality Debiasing 0.0427 0.0654 0.0231 0.0291 0.825 0.814 7.448 7.965 43.2% 60.1%

MMGCL

Standard 0.0430 0.0643 0.0231 0.0281 0.870 0.869 6.324 6.880 15.3% 25.1%
FairRec 0.0415 0.0618 0.0215 0.0262 0.853 0.847 6.430 6.969 16.2% 27.3%
MACR 0.0420 0.0621 0.0221 0.0268 0.857 0.852 6.419 6.934 17.1% 27.8%

Embedding Re-ranking 0.0411 0.0614 0.0212 0.0256 0.843 0.841 6.467 6.951 17.8% 28.8%
Modality Debiasing 0.0422 0.0634 0.0225 0.0274 0.829 0.825 6.621 7.152 19.7% 31.6%

Table 4: Ablation study on the effect of fairness-oriented
debiasing strengthwithGini index@20 as the fairnessmetric.

Dataset Method MMGCN VBPR GRCN SLMRec MMGCL

Baby
Standard 0.876 0.899 0.817 0.816 0.831

Full debiasing 0.832 0.821 0.787 0.753 0.781
w/o debiasing strength 0.853 0.859 0.803 0.787 0.804

Clothing
Standard 0.858 0.841 0.663 0.861 0.869

Full debiasing 0.789 0.741 0.646 0.814 0.825
w/o debiasing strength 0.795 0.816 0.650 0.844 0.839

• Modality bias has a more significant impact on the fair-
ness issue than popularity bias.We compare our method with
MACR, a popularity debiasing framework, and find that modal-
ity debiasing is more effective in enhancing item-side fairness.
Considering that multimodal recommendation models regard
modality content as the most important information, the bias con-
tained in the modality content will be more significant than the
popularity bias. To sum up, in the multimodal recommendation
scenario, the modality bias is more to blame for the unfairness.

4.3 In-depth Analysis (RQ2)
In this section, we study how some designs impact the performance
of modality debiasing, including the effect of introducing fairness-
oriented modality debiasing strength and a hyper-parameter 𝛼
for adjusting debiasing strength. Besides, we explore the effect of
debiasing for different modalities.

4.3.1 Effect of fairness-oriented modality debiasing strength. In or-
der to verify the effectiveness of the proposed fairness-oriented
modality debiasing strength, we conduct an ablation study and

Table 5: Results of debiasing for each modality with Gini
index@20 as the fairness metric.

Dataset Method MMGCN VBPR GRCN SLMRec MMGCL

Baby
Full debiasing 0.832 0.821 0.787 0.753 0.781

Visual debiasing only 0.848 0.839 0.795 0.768 0.801
Textual debiasing only 0.863 0.867 0.814 0.796 0.812

Clothing
Full debiasing 0.789 0.741 0.646 0.814 0.825

Visual debiasing only 0.802 0.765 0.658 0.830 0.837
Textual debiasing only 0.818 0.791 0.672 0.849 0.845

compare the fairness-related metric (focusing on Gini index@20)
obtained by standard models, models equipped with the full debias-
ing framework, and models equipped with the debiasing framework
without debiasing strength. The results are shown in Table 4, from
which it can be seen that the fairness gain shrinks when discarding
the debiasing strength design from the full framework, verifying
its contribution to the whole performance.

4.3.2 Effect of the selection of hyper-parameter 𝛼 . In our frame-
work, we introduce a hyper-parameter 𝛼 as a coefficient on the
exponential term to adjust the debiasing strength distribution. For
a better understanding of its effect, we conduct a hyper-parameter
study and search it in {0.001, 0.01, 0.1, 1, 10}, which is wide enough
to find the optimal value. Here we take Gini index@20 and En-
tropy@20 as the fairness metrics and conduct experiments on two
datasets. The results are presented in Figure 7, from which it can be
found that VBPR, SLMRec and MMGCL achieve the best fairness
when 𝛼 is 0.01 at most times, MMGCN and GRCN get the best result
when 𝛼 is 0.1. Therefore, we follow this finding to set the value of
𝛼 for different models.
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Figure 7: Study of the impact of 𝛼 on the recommendation
fairness on two datasets.

4.3.3 Effect of debiasing for different modalities. In this part, we
try to answer the following question: how much modality bias or
how much unfairness is introduced by each modality? To this end,
we separate the whole modality debiasing process into two parts:
visual debiasing only and textual debiasing only, and compare the
fairness of obtained recommendation results. The comparison result
is presented in Table 5, from which we can see that the visual
modality debiasing contributes more to the whole improvement
of fairness than the textual modality debiasing. What’s more, this
phenomenon is consistent in the two datasets. From this view, we
conclude that the unfairness issue brought by visual modality bias
is more critical than textual modality bias.

4.4 Capability of Modality Debiasing (RQ3)
In this section, we investigate whether our proposed modality de-
biasing framework effectively eliminates the modality bias and
mitigates the unfairness issue. We compare the recommended item
distribution across different modality content groups before and
after modality debiasing, taking the results from SLMRec on Baby
dataset as an example. As shown in Figure 8 and 9, it can be seen
that the recommended frequency distribution of different visual
or textual content groups becomes more uniform after modality
debiasing. Remarkably, the average recommendation frequency
of items with prevailing modality content is reduced because we
conduct a stronger score deduction towards these items in the
fairness-aware debiasing process. In this way, many previously
disadvantaged items can obtain more recommended opportunities.
This study demonstrates that the modality bias can be effectively
eliminated with our method and the item distribution in the final
recommendation list can be much more fair.

5 CONCLUSION
In this paper, we present a systematic study of the modality bias
ubiquitous in the multimodal recommendation scenario and figure
out its negative impact on item-side fairness. To tackle this prob-
lem, we first analyze the cause of such modality bias and point

Figure 8: Distribution of the average recommended frequency
of different visual content groups before and after modality
debiasing (results from SLMRec on Baby dataset).

Figure 9: Distribution of the average recommended frequency
of different textual content groups before and after modality
debiasing (results from SLMRec on Baby dataset).

out that it is attributed to the overfitting of training data with
uneven modality content distribution, making items with prevail-
ing modality content over-recommended. Following this finding
we propose a model-agnostic fairness-aware modality debiasing
framework based on counterfactual inference techniques. Exten-
sive experiments demonstrate the effectiveness of our proposed
framework in improving item-side fairness with very competitive
recommendation accuracy. We believe our framework can help alle-
viate the unfair treatment suffered by vulnerable content providers
on multimedia web platforms.
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