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ABSTRACT
In the information-overloaded era of the Web, recommender sys-
tems that provide personalized content filtering are now the main-
stream portal for users to access Web information. Recommender
systems deploy machine learning models to learn users’ preferences
from collected historical data, leading to more centralized recom-
mendation results due to the feedback loop. As a result, it will harm
the ranking of content outside the narrowed scope and limit the
options seen by users. In this work, we first conduct data analysis
from a graph view to observe that the users’ feedback is restricted
to limited items, verifying the phenomenon of centralized recom-
mendation. We further develop a general simulation framework to
derive the procedure of the recommender system, including data
collection, model learning, and item exposure, which forms a loop.
To address the filter bubble issue under the feedback loop, we then
propose a general and easy-to-use reinforcement learning-based
method, which can adaptively select few but effective connections
between nodes from different communities as the exposure list. We
conduct extensive experiments in the simulation framework based
on large-scale real-world datasets. The results demonstrate that our
proposed reinforcement learning-based control method can serve as
an effective solution to alleviate the filter bubble and the separated
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communities induced by it. We believe the proposed framework of
controllable recommendation in this work can inspire not only the
researchers of recommender systems, but also a broader commu-
nity concerned with artificial intelligence algorithms’ impact on
humanity, especially for those vulnerable populations on the Web.
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1 INTRODUCTION
Recommender systems (RS) are currently one of the most popular
Web applications in the information-overloaded era [10, 33, 36].
The recommendation algorithms infer user preferences from the
collected behavioral log and generate personalized lists of content.
Almost all recommender systems pursue the objective of high ac-
curacy to improve user experience and platform profit. Due to the
existence of the feedback loop [21, 28], the information that users
can access is largely determined by the exposure list of recom-
mendation algorithms, in turn narrowing the feedback that the
recommender system can collect. As a result, the users’ behaviors
are more and more likely to be constrained by a small fraction
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of homogeneous content, which is known as the filter bubble ef-
fect [2, 8, 11, 24]. For example, in short-video platforms such as
TikTok, users may be exposed to only a specific group of short-
videos, so they will not have the opportunity to interact with the
videos outside the bubble, bringing concerns including fairness, dis-
crimination, etc., especially for the underrepresented communities
on the Web such as users from less-developed areas, elderly people,
and so on. Therefore, it is essential to prevent the recommendation
algorithms from dominating the system savagely, motivating our
solution of a controllable recommender system.

Some existing works have used the concept of controllable rec-
ommendation [25, 26, 30], but it always refers to the user who can
control the system. Parra et al. [25] investigated a new scenario
under which users can control how different recommendation algo-
rithms or recommendation strategies are fused. Rahdari et al. [26]
developed an interactive recommender system where users can se-
lect keywords to filter and control recommendation results. Wang et
al. [30] consider a scenario that the user aims to explore diverse
items and can provide such feedback to the recommender systems.
Another recent work [5] also used the term “controllable recom-
mendation”; however, the definition of “control” refers to using
a hyper-parameter to balance two recommendation algorithms.
In short, the existing works for controllable recommendation pay
more attention to let users have the right to control the recommen-
dation list. In contrast, in this work we focus on the filter bubble
issue caused by the feedback-loop, and study how to control the
recommender system to alleviate this issue.

In this paper, we first analyze the issue of filter bubbles in exist-
ing recommenders when there is no control. To address the issue,
we propose a general framework of controllable recommendation,
under which we design a simulator following the standard pipeline
of real-world recommender systems. Further experiments on the
simulator also verify the filter bubble caused by feedback-loop of
recommender systems. We then develop a reinforcement learn-
ing (RL) pipeline based on graph neural networks. Specifically, the
graph neural network can learn node representations, which can
be coupled to the recommendation model, and the RL method can
adaptively select the possible interaction across communities with
different interests and control the system to make auxiliary ex-
posures. We conduct experiments on two large-scale benchmark
datasets, and the results show that our exposure strategy based on
RL can reduce the number or size of isolated communities, while
keeping similar or even better recommendation accuracy. That
is, the negative impact of recommender systems can be partly ad-
dressed. In short, the contribution of this paper is claimed as follows.

• We take the first step to approach the problem of addressing the
filter bubble with a controllable recommender system, motivated
by the analysis from real-world datasets and in a different manner
compared with existing works of controllable recommendation.

• We propose a general framework supported by a simulator and a
RL method based on graph neural networks, which can control
the additional exposure to help break the filter bubble in existing
recommenders.

• Extensive experiments on two real-world datasets verify the
effectiveness of our method, having good accuracy and better
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Figure 1: Community detection visualization of Gowalla.
There are few connections between communities.

community characteristics. The further studies of the proposed
method explain its rationality.

2 MOTIVATION
In this section, we perform analysis on existing recommenders
to confirm the issues (mentioned in the introduction). We aim to
understand the filter bubble, i.e., the extent to which certain users
are stuck in a “bubble” of specific recommended content from the
real-world datasets.

Specifically, the user-item interaction data in recommender sys-
tem can be viewed as a bipartite graph, in which users and items are
treated as nodes and interactions are treated as edges. We utilize the
widely-used community detection algorithm [4] on the bipartite
graph to obtain communities refer to the user-item clusters with
dense interactions. A community with few interactions with other
user/item nodes means that the users in this community mainly
interacts with the items inside, with constrained user accessibility,
the detected communities can be regarded as bubbles.

We illustrate the communities in Figure 1 of Gowalla dataset.
Here different colors refer to users or items belonging to different
communities, where we do not distinguish user or item. As we can
observe, the whole user-item graph is separated into multiple sub-
graphs i.e., communities. For example, the largest and the second-
largest community are marked with green and purple, in which
the connections (user-item interactions) are very dense and the
cross-community interactions are far sparser. We also present the
distribution of the community size of Gowalla dataset and Yelp2018
dataset in Figure 2. We can observe that the quantitative results also
show that users and items can be divided into multiple communities.

To alleviate the effect of the filter bubble, it is essential to in-
troduce a control strategy into the system. Imagine we can con-
trol the recommender system to add an exposure edge connecting
Community-1 and Community-2, as shown in Figure 1, the users
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(a) Community size distribution of Gowalla
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(b) Community user-size distribution of Gowalla
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(c) Community item-size distribution of Gowalla
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(d) Community size distribution of Yelp2018
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(e) Community user-size distribution of Yelp2018
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(f) Community item-size distribution of Yelp2018

Figure 2: Community size distribution of Gowalla dataset and Yelp2018 dataset.

in a community can access the content from another one, which
provides users opportunities to break the bubble.

3 PROBLEM DEFINITION
In this section, based on the motivation supported by the analysis
of real-world data, we define the studied problem. We provide the
lists of all used symbols along with their definitions in Table 1.
Traditional recommender system Based on the above notations
and definitions, the traditional recommender system’s goal can
be described as follows. The given input 𝐷𝑡𝑟𝑎𝑖𝑛 is the historically-
collected user-item interaction data. The output is a model that can
estimate the probability that a user will interact with a given item,
and the recommendation list is generated by ranking the items in
candidate pools based on the probability.
Controllable recommender system Different from the tradi-
tional recommendation, the controllable recommendation’s goal
in our studied problem has another output: the controlled expo-
sure i.e. the auxiliary recommendation list that tries to 1) satisfy
user interests, 2) collect useful feedback data for the further model
learning and 3) alleviate the filter bubble.

4 METHODOLOGY
In this section, we first introduce the overall framework of control-
lable recommender system with the proposed simulation environ-
ment, andwe then elaborate on the carefully-developed controllable
exposure strategy based on reinforcement learning.

Table 1: Frequently used notations in this paper.

Notations Descriptions
U, I The user set and the item set
I𝑡
𝑖

The item set recommended to user 𝑢𝑖 at time step 𝑡
𝐷𝑡
𝑡𝑟𝑎𝑖𝑛

The training set at the time step 𝑡
𝐷𝑡𝑒𝑠𝑡 The testing set at all time steps
𝑓𝑠𝑖𝑚 The simulator that models user-item interactions
E𝑡 The additional exposure edges set at time step 𝑡
N𝑖 Neighbors of node 𝑖
x(𝑙 )
𝑖

The embedding of node 𝑖 at layer 𝑙
z𝑖 ∈ R𝑝×1 The encoded 𝑝-dimension representation of node 𝑖
W(𝑙 ) , b(𝑙 ) The parameters of the 𝑙 th convolution layer
W0,W1 The parameters of linear layer
𝐺𝑘 The graph structure after executing 𝑘 action
| B | = 𝑀 The memory replay buffer of size𝑀
𝑠𝑖 ∈ S A state and the state space
𝐴𝑠𝑖 = {𝑎𝑖 } An action and the action space for state 𝑠𝑖
𝑟𝑖 , 𝑟𝑖,𝑖+𝑛 A reward and the summed reward of 𝑛 step.
Θ The parameters of evaluation Q-network
Θ̂ The parameters of target Q-network
𝛾 The reward factor
𝑇 The maximum number of game episodes
𝐾 The maximum steps in one game
𝐾𝑖𝑛𝑖𝑡 The heuristic initialization steps

4.1 Simulator environment and framework
As the problem proposed in Section 3, how to simulate the cen-
tralized recommendation phenomenon and evaluate the effective-
ness of control strategies remains a challenge. Here we provide a
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framework for discussing this scenario, namely the user interaction
modeling and RS policy evolution.

To collect the user feedback on the recommendation, we utilize a
simulator 𝑓𝑠𝑖𝑚 tomodel the interaction between the user and RS.We
leverage the historical interaction data to train the simulator, cap-
turing the user’s preference and interest. Given the recommended
items set I𝑡

𝑖
to user𝑢𝑖 at time step 𝑡 , the simulator acts as a real user

and outputs the selected item set as 𝑓𝑠𝑖𝑚 (I𝑡
𝑖
, 𝑢𝑖 ), which contains

user behavior and explicit interests of goods. In reality, the recom-
mendation system is always updated and evolved based on user
feedback. Considering the accumulation of real-time feedback from
users into historical training data, we construct trainset 𝐷𝑡

𝑡𝑟𝑎𝑖𝑛
at

time step 𝑡 .
After detailedly describing the two components, the entire simu-

lating flow as:
• Step1: At the beginning of RS, there is no historical data in the
database and thus the parameters of RS are randomly initialized.
The exposure items I0

𝑖
to user 𝑢𝑖 at time step 𝑡 = 0 is randomly

chosen, and the training dataset 𝐷0
𝑡𝑟𝑎𝑖𝑛

= ∅.
• Step2: At the current time step 𝑡 , we use the RS to expose 𝐿 items
for every user 𝑢𝑖 time step 𝑡 , denoting I𝑡

𝑖
as the recommended

item set. Then we make use of the simulator to get the user
feedback as 𝑓𝑠𝑖𝑚 (I𝑡

𝑖
, 𝑢𝑖 ). The RS perceives the user’s interaction

with the exposed items, and generates the accumulated training
dataset as 𝐷𝑡+1

𝑡𝑟𝑎𝑖𝑛
= 𝐷𝑡

𝑡𝑟𝑎𝑖𝑛
∪ {(𝑢𝑠𝑒𝑟 𝑗 , 𝑖𝑡𝑒𝑚 𝑗 ) |𝑢𝑠𝑒𝑟 𝑗 ∈ U, 𝑖𝑡𝑒𝑚 𝑗 ∈

𝑓𝑠𝑖𝑚 (I𝑡
𝑗
, 𝑢𝑠𝑒𝑟 𝑗 )}. If we introduce the exposure strategy, then the

additional exposure edges set E𝑡 is also added to the 𝐷𝑡+1
𝑡𝑟𝑎𝑖𝑛

.
• Step3: We evaluate the performance of RS and the community-
aware metrics, which will have a further discussion next.

• Step4: We train the RS model with the new interactions 𝐷𝑡+1
𝑡𝑟𝑎𝑖𝑛

,
and update the parameters to get the state-of-art RS model. Then,
we repeat Step2 to Step4.
Furthermore, to more accurately evaluate the performance of

different methods in Step3, we randomly select an independent test
set 𝐷𝑡𝑒𝑠𝑡 , where the user-item pairs in 𝐷𝑡𝑒𝑠𝑡 remain unchanged
for evaluating the precision or recall metrics at a different time
step. In this way, we can make a fair comparison between time
steps. Note that our simulation system is different from the existing
recommendation simulators such as Virtual-Taobao [27], since our
work mainly focuses on the user-item feedback.

4.2 Exposure strategy
Next, we introduce the controlling component into the simulation
process. According to motivation in Sec.2, we design the controlled
exposure strategy to consider the intervention, aiming at control-
ling the RS towards a direction of decentralized recommendation.

There are various communities in the user-item graph, which
indicates the shared interests and strong connections among the
user and item groups. Without the loss of generality, we use Lou-
vain [4], an unsupervised approach that has been widely used for
community detection.

In order to break the closeness of different communities, we
introduce our heuristic exposure method to increase the connec-
tivity of the entire graph by exposing items in one community to
users in another community. Specifically, we consider users with
the most diverse set of interacted items as the representatives of

their community. These users have a wide range of interests, and
are more likely to be interested in items from other communities.
What’s more, the item set interacted by these users is more diverse
and probably includes unpopular products on the fringes of the
community.

Here we use the intra-list similarity (ILS) as the diversity score of
one user’s item set. If a recommendation system is recommending
lists of very similar items, the ILS score will be high.

ILS(I) = 2
𝑘 (𝑘 − 1)

∑︁
𝑖∈I

∑︁
𝑗≠𝑖∈I

Sim(𝑖, 𝑗) (1)

where the similarity between two items is calculated by the
inner product of the two item embedding. Therefore, the exposure
strategy first chooses several communities to get their most diverse
users. For each selected user, we randomly choose their historical
items to get user-item pairs in different communities. These pairs
are heuristically generated by exposure strategy and added to the
training set for the next time step as described in Step 2.

4.3 Our reinforcement learning-based
methodology

We further design an RL based exposure method to mine the promis-
ing edges between communities. The edges can be regarded as the
environment defined in RL. Moreover, RL follows a Markov Deci-
sion Process while interactions can construct a user-item graph.
In this case, our RL approach can learn from the sequential edges
exposure to produce more effective recommendations.

Note that graph neural network-based methods have become the
state-of-the-art approaches in multiple recommendation tasks [9,
34, 35]. We leveraged GCN [16] to encode the graph structural
information into the 𝑝-dimensional embedding space.

Initialized by RS user and item embedding, the message passing
between nodes and their neighbors as:

x(𝑙+1)
𝑖

= ReLU ©­«
∑︁

𝑗∈N𝑖∪{𝑖 }

1√︁
deg(𝑖) ·

√︁
deg( 𝑗)

(
x(𝑙 )
𝑗

W(𝑙 ) + b(𝑙 )
)ª®¬
(2)

where 𝑥 (𝑙 )
𝑖

is the embedding of the node 𝑖 at layer 𝑙 , N𝑖 is the
neighbors of the node 𝑖 , deg(𝑖) is the degree number of the node
𝑖 , and W(𝑙 ) and b(𝑙 ) are the parameters of convolution layer 𝑙 .
Instead of simply average pooling all nodes’ embeddings, we add a
virtual node 𝑠 that connects all the nodes to capture the complex
information of the entire graph. After updating several iterations,
the GCN aggregates the embedding of multi-hop neighbors and we
get the representation z𝑖 for each node 𝑖 .

Since we have already represented every node in the graph
with their representations, we can formalize the RL method with
quadruple (S,A,P,R) as follows:

• State The state 𝑠𝑖 is defined as the current user-item graph at
step 𝑖 . After propagation on the graph, the representation of
the virtual node z𝑠 can be utilized as the state representation.

• Action The action 𝑎𝑖 = (𝑢, 𝑣) exposes an edge between user
𝑢 and item 𝑣 , and corresponding action space 𝐴𝑠𝑖 for a state
𝑠𝑖 is the set of candidate exposure edges in the graph. Due to
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the large action space of all user-item pairs, we select top 𝑁
similar items for every user as the candidate exposure edges.

• Transition The transition P is the probability that the state
changes from 𝑠𝑖 to 𝑠𝑖+1. The policy network encodes the
state to output a probability distributionP(𝑠𝑖+1 |𝑠𝑖 , 𝑎𝑖 ), where
𝑎𝑖 ∈ 𝐴𝑠𝑖 .

• Reward The reward 𝑟𝑖 = 𝑅(𝑠𝑖 , 𝑎𝑖 ) is defined as the increase
of the community-aware metric. Given the exposure edge
(𝑢, 𝑣), we calculate the community number before and after
adding the edge. Then the reward is the difference between
the reciprocal of the number of communities.

We use the Q-network to estimate the cumulative rewards from
the current state-action pair (𝑠, 𝑎). It takes state 𝑠 and action 𝑎 as
input and outputs the Q-value 𝑄 (𝑠, 𝑎). Each action is an exposure
edge (𝑢, 𝑣) between user node 𝑢 and item node 𝑣 . Our Q-network
has two parts: the encoding part and the estimation part. The en-
coding part is parameterized by the GCN as W(𝑙 ) and b(𝑙 ) . And
the estimation part is the mapping from state-action pair (𝑠, 𝑎) to a
scalar value 𝑄 (𝑠, 𝑎) by using MLP.

𝑄 (𝑠, 𝑎) = W𝑇
0 ReLU(CONCAT(z𝑢 , z𝑣, z𝑠 ) ·W1) (3)

whereW0 ∈ R𝑝×1,W1 ∈ R3𝑝×1 are weight parameters of MLPs,
z𝑢 , z𝑣, z𝑠 ∈ R𝑝×1 are the representations of user node, item node
and virtual node respectively.

For every time step 𝑡 in Step2, we build the game environment
with the initial user-item graph 𝐺0, where every edge is in 𝐷𝑡

𝑡𝑟𝑎𝑖𝑛
.

Beginning with the initial graph, the agent uses 𝜖-greedy strategy
to take the highest Q-value action with probability 1 − 𝜖 or take
a random action. Each action 𝑎𝑘 will add an edge to the current
graph 𝐺𝑘−1 and retrieve the next graph 𝐺𝑘 . For better mining the
exposure edges, we initialize the action by the heuristic method at
the beginning of the game. Along with the game processing, we
gradually increase the exposure edge set step by step until the game
ends, which means whether the game exceeds the max step or the
rewards continue to decline in consecutive steps.

Because adding few edges has little effect on the community
detection, we adopt the 𝑛-step DQN [29] for better approxima-
tion. When the game step exceeds the 𝑛, we get the transitions
(𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖,𝑖+𝑛, 𝑠𝑖+𝑛,𝐺𝑖 ,𝐺𝑖+𝑛), where 𝑟𝑖,𝑖+𝑛 =

∑𝑛−1
𝑘=0 𝑅 (𝑠𝑖+𝑘 , 𝑎𝑖+𝑘 ) is

the truncated 𝑛-step reward from given state 𝑠𝑖 . These collected
transitions are stored in the experience replay buffer B.

What’s more, the DQN [22] use two Q-network as the target
network 𝑄̂ (𝑠, 𝑎; Θ̂) and evaluation network 𝑄 (𝑠, 𝑎;Θ). And the Θ̂,
the parameters of target network, is periodically copied from the
evaluate network parameters Θ. It will enable a stable learning
Q-value for better performance.

Hence the loss function is Eq. 4 and we perform stochastic gra-
dient descents (SGD) over it to update the model parameters.

𝐿(Θ) = 𝐸𝑈 (B)

[((
𝑟𝑖,𝑖+𝑛 + 𝛾 max

𝑎
𝑄̂

(
𝑠𝑖+𝑛, 𝑎; Θ̂

))
−𝑄 (𝑠𝑖 , 𝑎𝑖 ;Θ)

)2]
(4)

where 𝛾 denotes the reward factor.
The overall framework of our proposed method is shown in

Algorithm 1, for a better understanding.

Algorithm 1 RL-based exposure strategy
1: Initialize experience replay buffer B with𝑀
2: Initialize the evaluate Q-network with random weights Θ
3: Initialize the target Q-network with Θ̂ = Θ
4: while Given the exposure time step 𝑡 ∈ {1, 2, . . . } do
5: Build the game env with initial graph 𝐺0 using 𝐷𝑡𝑡𝑟𝑎𝑖𝑛
6: for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ∈ {1, 2, . . . ,𝑇 } do
7: Reset the game environment and get the initial state 𝑠0
8: for every step 𝑘 ∈ {1, 2, . . . , 𝐾} do
9: if 𝑘 ≤ 𝐾𝑖𝑛𝑖𝑡 then
10: Choose action 𝑎𝑘 by heuristic method
11: else
12: Select action 𝑎𝑘 by 𝜖-greedy w.r.t Q-value
13: Exposure corresponding user-item pair of 𝑎𝑘 and

get graph 𝐺𝑘
14: Receive the reward 𝑟𝑘
15: Get 𝑠𝑡+1 by GCN Eq. 2 on new graph 𝐺𝐾
16: if 𝑘 ≥ 𝑛 then
17: Store (𝑠𝑘−𝑛, 𝑎𝑘−𝑛, 𝑟𝑘−𝑛,𝑘 , 𝑠𝑘 ,𝐺𝑘−𝑛,𝐺𝑘 ) into B
18: if |B| ≥ 𝑀 then
19: Uniformly sample mini-batch of transitions

from (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖,𝑖+𝑛, 𝑠𝑖+𝑛,𝐺𝑖 ,𝐺𝑖+𝑛) ∼ 𝑈 (B)
20: Update Θ via SGD w.r.t the loss function Eq.4
21: Every 𝐶 step update Θ̂ = Θ

22: Use the target network 𝑄̂ to run the game and get the
exposure edges set E𝑡 as the sequence of action

5 EXPERIMENTS
5.1 Experimental settings
In order to reduce the workload of implementation and adjura-
tion in experiments’ parameters, we use LightGCN [13] with the
model that was retrained by ourselves according to the settings in
LightGCN as the simulator of our exposure initialization. We utilize
the officially released datasets (train and test lists) from LightGCN,
and the quantity details are shown in Table 2. The Gowalla and
Yelp2018 are the same as those used in LightGCN 1, so we take
the advantage of the statistical results in the paper. To compare
the effevtiveness with related works, we introduce precision and
connectivity-aware metric to evaluate the model performances and
the extent our method can control the RS.

5.1.1 Datasets. We employ two widely used datasets, Gowalla [7]
and Yelp2018, in our experiments. Gowalla is a US friend relation-
ship dataset, containing 950,327 friend relationships among 196591
users, and each record represents a pairwise friend relationship.
Yelp, the largest review website in US, published its internal dataset
Yelp2018, including 4.7 million user reviews, more than 150,000
merchant profiles, 200,000 images, and 12 metropolitan areas. In
addition, there are 1 million tips from 1.1 million users and over 1.2
million merchant properties. To accurately compare with LightGCN
in our study, we completely adhere to its settings.

1https://github.com/gusye1234/LightGCN-PyTorch

https://github.com/gusye1234/LightGCN-PyTorch
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Figure 3: Accuracy performance on the Gowalla dataset.
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(a) Precision of Yelp2018

1 2 3 4 5 6 7 8 9 10
Time steps

0.00040

0.00060

0.00080

0.00100

0.00120

0.00140

0.00160

R
ec

al
l

RL-based
Random
Heuristic

(b) Recall of Yelp2018
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(c) NDCG of Yelp2018

Figure 4: Accuracy performance on the Yelp2018 dataset.
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(b) 1/N𝑐𝑜𝑚𝑚 of Gowalla
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Yelp2018
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(d) 1/N𝑐𝑜𝑚𝑚 of Yelp2018

Figure 5: Community-aware measures on Gowalla and Yelp2018 datasets.

Table 2: Statistics of the two datasets used in experiments.

Dataset Users Items Interaction Density

Gowalla 29,858 40,981 1,027,370 0.00084
Yelp2018 31,668 38,048 1,561,406 0.00130

5.1.2 Evaluation Metrics. We evaluate the overall performance
in terms of commonly used precision metrics in addition to our
proposed connectivity-aware and diversity metrics.

• Precision. To evaluate the model’s predict items for several cer-
tain users, we adopt top-N metrics, including Precision, Normal-
ized Discounted Cumulative Gain (NDCG) and Recall, following
existing works [14, 18]. We set 𝑁 = 20 in our experiments. To be
more specific, we produce predictions on the full test dataset [37]
and rank the candidate items for each user, thereby enhancing
the solidity of our experimental results.

• Connectivity-aware Metric and Diversity. To describe the
connectivity of the whole user-item graph, we assumed that the
number of communities that are involved in the graph is a direct
way to demonstrate it. The phenomenon of users’ centralized
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recommendation can be referred to as the compacting of the items
around specific users. Consequently, the complete graph is tend to
be divided into several sub-graphs, that raising up the number of
communities 𝑁𝑐𝑜𝑚𝑚 and decline the connectivity. Furthermore,
we define the diversity metric on the community numbers. For
the reason that the growth of centralization can aggregate the
top-k similar items around one user, and that can block the user
from getting in touch with other types of items, reducing the
diversity of items for each user. We simply propose 1/𝑁𝑐𝑜𝑚𝑚
as the diversity metric. To fairly compare the performance, we
calculate the average community number of last three time steps.

• Aggregate degree connectivity. Another proper dimension to
measure the connectivity is the degree of nodes from the whole
graph. The degree connectivity can be regarded as a more accu-
rate version of the diversity, that can only illustrate the feature
of the micro aspect of the graph. However, we formulate the cen-
tralization problem as directly related to the connectivity of each
node, which refers to the calculation of degree. By increasing the
nodes’ degree via our methods, more edges will be established
between the communities, resulting the boost of connectivity in
the whole graph. In detail, we define the degree of 𝑖𝑡ℎ node is 𝑘𝑖
with its neighbor nodes set N𝑖 , the aggregate degree 𝑑𝑖 can be
described as follows,

𝑑𝑖 =
1
𝑠𝑖

∑︁
𝑗∈N𝑖

𝑤𝑖 𝑗𝑠 𝑗 (5)

where 𝑠𝑖 represents the degree of 𝑖𝑡ℎ node, and𝑤𝑖 𝑗 refer to the
edge weight between 𝑖𝑡ℎ and 𝑗𝑡ℎ nodes. Lastly, 𝑑𝑖 of the whole
graph 𝐷𝑡 (𝐺) at time step 𝑡 can be defined as

𝐷𝑡 (𝐺) =
∑︁

𝑘∈𝐷𝑡
𝑡𝑟𝑎𝑖𝑛

𝑑𝑘 (6)

5.1.3 Simulator. The basic assumption of collaborative filtering
is that similar users will show similar preferences for items [17,
31]. Since the entry of deep learning into the field, it is generally
important to first learn the embedding of users and items in the
hidden space, and then reconstruct the interaction between them.
LightGCN [13] followed the definition above, and it is known as
a highly efficient and simple algorithm. In light of the features of
LightGCN and their effectiveness in evaluating the effectiveness of
our framework, we choose it as our simulator to model users and
items for better explicit representations.

5.1.4 Hyper-parameters Settings. The agent we have set to choose
edges has similar structures with DQN [23], which is stacked by
several MLPs. The size of embedding-use MLPs is fixed to 64 for
evaluation and target net in DQN. All the user and item embed-
dings are obtained from the parameters in the pretrained LightGCN
simulator weights file. We optimize DQN parameters with Adam
[15] and use the default initial learning rate 0.001 with a batch size
of 8 for all datasets. The reward coefficient 𝛾 is set to 0.9. The agent
chooses 𝑁 = 100 items for each user while the maximum capacity
of memory buffer is𝑀 = 100. The optimization steps of the target
net and accumulated rewards for back propagation are 𝐶 = 5 and
𝑛 = 15, respectively.

5.1.5 Baselines. We implement basic models as baselines to make
comparisons and to better emphasize the performance of our pro-
posed methods.

At first, the baselines are mainly constructed into train and test
parts. Beginning with an empty training graph, the test starts to
generate new user-item edges, which will be added to the training
graph after every 20 epochs of the train process. In the training
stage, we randomly sample a set of edges uniformly to train our
recommender model. As for testing, the purpose is to generate new
edges and add them to the train graph.

Overall, the baselines include the framework without extra ex-
posed edges, random and heuristic exposure methods. The strate-
gies of test process depend on different methods that we have
produced; for instance, the baselines only contain the selection of
top-k items for each user while the additional edges are exposed
in our heuristic and RL frameworks. Random and heuristic expo-
sure methods both supply more edges to the above top-k items.
As for the the rest of methods, we constantly choose two from all
the communities which are derived from the Louvain community
detection algorithm [4]. After the selection of communities, we
separately utilize random and heuristic method to choose users in
one community and items in another, which refer to the random
selection and top-k ILS diversity-based selection, respectively.

5.2 Overall performance comparison
We compare the proposed method on two large-scale benchmark
datasets, based on the above simulator framework. We first present
the performance of recommendation precision on the Gowalla
dataset and the Yelp2018 dataset in Figure 3 and Figure 4, respec-
tively. We also present the community-aware measures and degree
connectivity on two datasets in Figure 5, in which we evaluate the
user-item graph with the community detection algorithms men-
tioned in Section 2. Based on the experimental results, we make
the following observations and conclusions.
• Our method achieves the best recommendation accuracy. As
time evolves, the proposed method outperforms the other two
baselines on all five metrics (Precision, Recall, NDCG, 1/𝑁𝑐𝑜𝑚𝑚 ,
Aggregate degree connectivity) and two utilized datasets. For a
detailed comparison, we further present the performance at the
last hop on the two datasets in Table 3 and Table 4, respectively.

• Our methods achieve good performance on community-aware
measures. With the controlled exposure strategies based on the
proposed reinforcement learning algorithms, the results of com-
munity detection find that the user-item interaction graph (trig-
gered and induced by user-item exposure and users’ decision
process) is less centralized. In other words, the filter bubble issue
is partly alleviated. Note that in this paper, our exposure strategy
only takes into account a few parts of exposure traffic compared
with the original recommendation algorithms, and thus the per-
formance improvement will be more significant if we increase
the traffic of controlled recommendation.

5.3 Ablation study of our proposed method
To further evaluate the rationality of the designed components in
our method, we conduct ablation studies for a deeper analysis as
follows.
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Table 3: The overall performance among baseline and our
methods on the Gowalla dataset.

Method Precision Recall NDCG Avg N𝑐𝑜𝑚𝑚 1/N𝑐𝑜𝑚𝑚 Degree

w/o expo. 0.0477 0.00160 0.0620 203 0.00492 634.45
Random expo. 0.0411 0.00138 0.0511 180 0.00556 619.42
Heuristic expo. 0.0415 0.00140 0.0520 165 0.00606 621.63
RL expo. 0.0420 0.00142 0.0531 167 0.00599 641.36

Table 4: The overall performance among baseline and our
methods on the Yelp2018 dataset.

Method Precision Recall NDCG Avg N𝑐𝑜𝑚𝑚 1/N𝑐𝑜𝑚𝑚 Degree

w/o expo. 0.0586 0.00159 0.0680 132 0.00757 1158.56
Random expo. 0.0586 0.00159 0.0679 173 0.00578 1136.35
Heuristic expo. 0.0591 0.00160 0.0671 120 0.00833 1127.34
RL expo. 0.0593 0.00161 0.0687 104 0.00962 1166.73

Table 5: Ablation study of only heuristic exposure, heuris-
tic and random initialized DQN on Gowalla and Yelp2018
datasets.

Dataset only heur heur init. rand init. Precision Recall NDCG Avg N𝑐𝑜𝑚𝑚 1/N𝑐𝑜𝑚𝑚 Degree

Gowalla
✓ ✗ ✗ 0.0415 0.00140 0.0520 165 0.00606 621.63
✗ ✗ ✓ 0.0418 0.00141 0.0528 240 0.00416 613.80
✗ ✓ ✗ 0.0420 0.00142 0.0531 167 0.00599 641.36

Yelp2018
✓ ✗ ✗ 0.0591 0.00160 0.0671 120 0.00833 1127.34
✗ ✗ ✓ 0.0591 0.00161 0.0683 145 0.00689 1161.26
✗ ✓ ✗ 0.0593 0.00161 0.0687 104 0.00962 1166.73

Specifically, we compare our full framework with a degenerated
model in which the main RL module or the edges initialization are
removed, which refers to the first line of each dataset, showing that
only the heuristic exposure method is in use. The experimental
settings keep the same as above and the results shown in Tab.5,
illustrating various prior methods to initial RL actions. We can
observe from the results that heuristic action initially outperforms
others. The third row performs better than the first row indicate that
the effectiveness of the RL decision model. Comparing the second
and third row, we can see that heuristic initial a more accurate
action space to RL, which promotes its outcomes.

6 RELATEDWORK
We would like to discuss the related work from the following three
aspects, the diversity issue in recommender system, controllable
recommender system, and reinforcement learning-based recom-
mender system.

6.1 Low-diversity Issue and Filter Bubble in
Recommendation

The recommender systems largely determine the exposure, i.e.,
what the users can access is the ranking list generated by the rec-
ommendation algorithms, and in turn the user provides feedback
on the recommended items, also known as a feedback loop in recom-
mender system. Most recommender systems are optimized towards
higher accuracy, and due to feedback loop, the recommended items
always only cover a small fraction of item categories, which leads to
a low-diversity recommendation [3, 19, 29]. The low-diversity and
centralized recommendation will narrow the horizons of users, and

users are trapped in the so-called filter bubble [8, 24]. Nguyen et
al. [24] quantify the filter bubble using the diversity of user ratings,
and the results show that the item sets become more and more nar-
row as time proceeds. Cinelli et al. [8] further found the filter bubble
caused by recommendation algorithms to have a long-term negative
impact on the Web platform of social media, leading to homophilic
opinion clusters about several controversial topics. In short, the
existing works on low-diversity issue or filter bubble in recommen-
dation aims to improve the accuracy-oriented algorithm, while our
work approaches the problem from a more general perspective by
controlling and guiding the recommendation algorithms.

6.2 Controllable Recommender System
Existing works of controllable recommendation [25, 26, 30] typi-
cally refer to mechanisms in which the user can control the sys-
tem. Parra et al. [25] investigated the role of user controllability
in recommender systems by letting the user control how differ-
ent recommendation algorithms or strategies are fused. Rahdari et
al. [26] developed an interactive recommender system in which
the users can select some keywords to filter and control the recom-
mendation results. Wang et al. [30] considers a scenario wherein
users aim to explore diverse items and can provide such feedback
to the recommender system. A recent work [5] also used the term
“controllable recommendation”, but the definition of “control” refers
only to using a hyper-parameter to balance two recommendation
algorithms. Different from these existing works, in this paper, we
aim to consider a more general platform-side framework to control
the algorithms in recommender systems and to avoid the creation
of isolated communities and the filter bubble effect.

6.3 Reinforcement Learning-based
Recommendation

RL methods have been exploited in recommendation based on
two aspects as follows [1, 6, 12, 20, 32]. The first category of RL
research considers the sequential modeling of user behaviors in rec-
ommendation, and then designs sequential-decision models based
on reinforcement learning. The second category of RL research
for recommendation considers the multiple objectives, especially
for those long-term optimization goals, and then develops rein-
forcement learning methods to maximize rewards that cannot be
used in traditional supervision-learning methods. In this paper,
we approach a different problem of controlling recommendation
algorithms from a third-party view, and design a reinforcement
learning-based framework based on graph neural networks. We
aim to achieve the long-term controlling goal of alleviating the
filter bubble in the user-item graph, while preserving similar or
even better performance in terms of recommendation accuracy.

7 CONCLUSION AND FUTUREWORK
In this paper, we consider the filter bubble issue that arises due to
the feedback loop in a traditional recommender systems, and we
illustrate its existence via empirical analysis of real-world datasets.
To address this issue, we propose a general and easy-to-use frame-
work for controllable recommendation, under which the simulator
based on offline datasets explains how the filter bubble is formed.
We develop a reinforcement learning-based method combined with
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a graph neural network. The graph neural network module can
learn from user-item interaction, well coupled with recommenda-
tion models. The reinforcement learning method can determine
which kind of auxiliary exposure should be made to alleviate the
isolated and large-sized communities. Results on two datasets show
that our method can break the bubble while keeping or even boost-
ing the recommendation performance.

As for the future plan, the first follow-up work we plan to do is
to test the proposed approach’s performance via online A/B test
on real-world Web service providers. Finally, we plan to conduct
experiments on more datasets, especially for those in which users
are more active but the interactions are more centralized, such
as user-video interaction datasets in short-video platforms where
users spend plenty of time every day.
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