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ABSTRACT
Inmodern recommender systems, sequential recommendation lever-
ages chronological user behaviors to make effective next-item sug-
gestions, which suffers from data sparsity issues, especially for new
users. One promising line of work is the cross-domain recommen-
dation, which trains models with data across multiple domains to
improve the performance in data-scarce domains. Recent proposed
cross-domain sequential recommendation models such as PiNet
and DASL have a common drawback relying heavily on overlapped
users in different domains, which limits their usage in practical rec-
ommender systems. In this paper, we propose aMixed Attention
Network (MAN) with local and global attention modules to ex-
tract the domain-specific and cross-domain information. Firstly,
we propose a local/global encoding layer to capture the domain-
specific/cross-domain sequential pattern. Then we propose a mixed
attention layer with item similarity attention, sequence-fusion at-
tention, and group-prototype attention to capture the local/global
item similarity, fuse the local/global item sequence, and extract
the user groups across different domains, respectively. Finally, we
propose a local/global prediction layer to further evolve and com-
bine the domain-specific and cross-domain interests. Experimental
results on two real-world datasets (each with two domains) demon-
strate the superiority of our proposed model. Further study also
illustrates that our proposed method and components are model-
agnostic and effective, respectively. The code and data are available
at https://github.com/tsinghua-fib-lab/WSDM24-MAN.

†Chen Gao is the corresponding author (chgao96@gmail.com).

This work is licensed under a Creative Commons Attribution
International 4.0 License.

WSDM ’24, March 4–8, 2024, Merida, Mexico
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0371-3/24/03.
https://doi.org/10.1145/3616855.3635801

CCS CONCEPTS
• Information systems → Personalization.

KEYWORDS
Cross-domain Sequential Recommendation, Mixed Attention Net-
work, Recommender Systems
ACM Reference Format:
Guanyu Lin, Chen Gao†, Yu Zheng, Jianxin Chang, Yanan Niu, Yang Song,
Kun Gai, Zhiheng Li, Depeng Jin, Yong Li, and Meng Wang. 2024. Mixed
Attention Network for Cross-domain Sequential Recommendation. In Pro-
ceedings of the 17th ACM International Conference on Web Search and Data
Mining (WSDM ’24), March 4–8, 2024, Merida, Mexico. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3616855.3635801

1 INTRODUCTION
Widespread in online platforms such as news, video, e-commerce,
etc., recommender systems that vastly improve the efficiency of
information distribution and diffusion are of great importance in
today’s Web. Sequential recommendation [38] is one of the most
important research problems in recommender systems, which aims
at predicting a user’s next interacted item based on their histori-
cal interaction sequence. Though recent representative models of
sequential recommendation such as GRU4REC [11], SASRec [15]
and SURGE [2] etc. have achieved decent performance, they suffer
from the issue of data sparsity [7, 40, 43], limiting the performance.

To address the data sparsity issue, cross-domain recommenda-
tion [6, 32, 44] is a widely adopted approach, which leverages the
data from multiple domains to boost the performance of the data-
scarce domain by parameter-sharing [6] or multi-task learning [27].
Particularly, a few early attempts [3, 19, 29] were proposed to
achieve cross-domain sequential recommendation, which leverages
cross-domain technique to address the data sparsity of sequential
modeling. However, as illustrated in Figure 1(a), these methods rely
heavily on the overlapped users and require pairwise inputs from
two domains of the same bridge users, which is hardly satisfied
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(a) User Transfer (b) Group Transfer

Domain A

Domain B

Bridge User Bridge Group

Figure 1: Illustration of (a) user transfer learning relies on
overlapped users and (b) group transfer learning without
previous assumptions on user overlap.

in practical scenarios. For example, in our experimental bench-
mark datasets (Micro Video and Amazon), there is only a small part
(at most 8.37%) of overlapped users, as Table 1, which violates the
assumption of existing approaches. In fact, inmany real-world appli-
cations, users are not overlapping across different domains [21, 24].
Thus, it is challenging for the existing cross-domain sequential rec-
ommendation to work in real-world scenarios. Actually, there are
three key challenges for cross-domain sequential recommendation:
• Different item characteristics across domains. There are
not always overlapped items across different domains. Even if
items are shared across domains, items reflect different charac-
teristics. For example, for a higher-end e-commerce website, the
price aspect takes less effect when users purchase items, while it
plays an important role in a lower-end website. Such difference
brings difficulty in learning accurate item representations across
different domains.

• Various sequential patterns across domains. Similar to the
item, the sequential behaviors vary in different domains. For ex-
ample, users may be more decisive in a higher-end E-commerce
website, leading to very short sequences with very brief sequen-
tial patterns. Therefore sequential patterns are various, and the
modeling is challenging.

• User preference transferring without overlapped user. We
focus on the general cross-domain recommendation task, where
users may not fully overlap. Therefore, it is challenging to cap-
ture the common preference shared by users across domains,
especially when there is even no overlapped user.

To address these challenges, we develop a novel group-basedmethod
with the group transfer to avoid dependence on the overlap of users
and global space to capture the item characteristics and sequen-
tial patterns across different domains as Figure 1(b). Note that the
group-prototype attention here can capture group information in
an unsupervised manner, without further requiring additional input
information compared with Figure 1(a). Specifically, we propose a
novel solution named MAN (short forMixed Attention Network
for Cross-domain Sequential Recommendation), consisting of lo-
cal and global modules, mixing three types of designed attention
network from item level, sequence level, and group level. First, we
generate separate representations for each item, including the lo-
cal representation capturing domain-specific characteristics and
the global representation shared by different domains. We then
design an item similarity attention module to capture the similarity
between local/global item representation and the target item repre-
sentation. Second, we propose a sequence-fusion attention module

to fuse the local and global item sequential representations. Most
importantly, although user information cannot be directly shared,
the group information can be shared across domains. Therefore,
we propose a group-prototype attention module, which utilizes
multiple group prototypes to transfer the information at the group
level. Finally, the obtained local and global embeddings are fed into
the corresponding prediction layers to evolve the domain-specific
and cross-domain interests.

The contributions of this paper can be summarized as follows.
• We approach the problem of cross-domain sequential recommen-
dation from a more practical perspective that there is no prior
assumption of overlapped users across domains, which is far
more challenging.

• We propose a solution named MAN and address the key chal-
lenges by mixing three attention modules: item similarity atten-
tion, sequence-fusion attention, and group-prototype attention.
Besides, local and global designs are proposed to capture the
domain-specific and cross-domain patterns.

• We conduct extensive experiments on a collected large-scale
industrial dataset and a public benchmark dataset, where the
results show significant performance improvements compared
with the state-of-the-artmodels. Further studies illustrate that our
proposed method is model-agnostic, and group prototypes can
capture the group patterns across domains without overlapping
users.

2 PROBLEM FORMULATION
In our problem of cross-domain sequential recommendation, we
first use A and B to denote the two domains. Let I𝐴 and I𝐵 denote
the sets of items in domain A and B, respectively. More specifically,
supposing 𝑖𝐴𝑡 ∈ I𝐴 or 𝑖𝐵𝑡 ∈ I𝐵 is the 𝑡-th item that a given user has
interacted with in the A or B domain, the 𝑡-length sequence of his-
torical items can be represented as (𝑖𝐴1 , 𝑖

𝐴
2 , . . . , 𝑖

𝐴
𝑡 ) or (𝑖𝐵1 , 𝑖

𝐵
2 , . . . , 𝑖

𝐵
𝑡 ).

The goal of our problem is to improve the recommendation accu-
racy of the following item i.e., 𝑖𝐴

𝑡+1 or 𝑖
𝐵
𝑡+1, of all users across all

domains simultaneously. The problem can be formulated as follows.
Input: Item sequence (𝑖𝐴1 , 𝑖

𝐴
2 , . . . , 𝑖

𝐴
𝑡 ) and (𝑖𝐵1 , 𝑖

𝐵
2 , . . . , 𝑖

𝐵
𝑡 ) for users

in domain A and B, respectively.
Output: The cross-domain recommendation model estimating the
probability that target item 𝑖𝐴

𝑡+1 and 𝑖
𝐵
𝑡+1 will be interacted by the

given users with item sequence (𝑖𝐴1 , 𝑖
𝐴
2 , . . . , 𝑖

𝐴
𝑡 ) and (𝑖𝐵1 , 𝑖

𝐵
2 , . . . , 𝑖

𝐵
𝑡 )

in the domain A and B, respectively.

3 METHODOLOGY
Figure 2 illustrates our proposed MAN model, encoding the item
sequence with local/global encoding layer, mixing three attention
modules, and evolving the interests by local/global prediction layer.
• Local/Global Encoding Layer. We build both domain-specific
local and cross-domain global embeddings for items. We further
encode them with local and global encoders, respectively, to
capture the domain-specific and cross-domain item sequential
patterns.

• Mixed Attention Layer. We propose Item Similarity Attention,
Sequence-fusion Attention, and Group-prototype Attention to
capture the cross-domain patterns at the item, sequence, and
group levels.
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Figure 2: Illustration of our proposed MAN model. (1) The item sequences are first input into the Local/Global Encoding Layer,
which builds local and global embeddings for each item and encodes them to extract the local and global sequential patterns; (2)
In the Mixed Attention Layer, Item Similarity Attention is fed with local and global item embeddings to capture the item-level
relation; Sequence-fusion Attention fuses the encoded local and global sequential representations to capture the sequence-level
relation; Group-prototypes attention leverages the shared group prototypes to capture the group-level relation. Here we take
domain A to illustrate each proposed attention component in detail. (4) The aggregated embeddings will be fed into the local
prediction layer and global prediction layer, respectively, for the final prediction.

• Local/Global Prediction layer. To evolve the interests and
predict the probability of the candidate’s next item that the user
will interact with in each domain, we propose a local prediction
layer and a global prediction layer.

3.1 Local/Global Encoding Layer
We first build local and global item embeddings. Then we further
look up item embeddings and encode them with local and global
encoders at the sequence level.

3.1.1 Local andGlobal ItemEmbeddings. To capture the domain-
specific patterns for different domains, we create two item embed-
ding matrices M𝐴 ∈ R | I𝐴 |×𝐷 and M𝐵 ∈ R | I𝐵 |×𝐷 where 𝐷 de-
notes the latent dimensionality. Then, to capture the shared item

characteristics across different domains, from the perspective of
representation learning, we assume there exists a shared latent
space [39] where different domains have common representation;
Thus, we create a shared embedding matrix M ∈ R | I𝐴∪I𝐵 |×𝐷 ′

.
Here we use (𝑖𝐴1 , 𝑖

𝐴
2 , . . . , 𝑖

𝐴
𝑡 ) and (𝑖𝐵1 , 𝑖

𝐵
2 , . . . , 𝑖

𝐵
𝑡 ), to denote the

historical item sequences of domain A and domain B, specifically.
Note that we pad sequences shorter than 𝑇 with a constant zero
vector, following existing works [2, 15]. To further capture the posi-
tion of items in the sequence, we also integrate learnable positional
embeddings into item embeddings (domain A example) as:

E𝐴 =

[
M𝐴

𝑖𝐴1
,M𝐴

𝑖𝐴2
, · · · ,M𝐴

𝑖𝐴𝑛

]
+
[
P𝐴1 ,P

𝐴
2 , · · · ,P

𝐴
𝑛

]
,

E𝐴𝑔 =

[
M𝑖𝐴1

,M𝑖𝐴2
, · · · ,M𝑖𝐴𝑛

]
+ [P1,P2, · · · ,P𝑛] ,

(1)
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E𝐵 =

[
M𝐵

𝑖𝐵1
,M𝐵

𝑖𝐵2
, · · · ,M𝐵

𝑖𝐵𝑛

]
+
[
P𝐵1 ,P

𝐵
2 , · · · ,P

𝐵
𝑛

]
,

E𝐵𝑔 =

[
M𝑖𝐵1

,M𝑖𝐵2
, · · · ,M𝑖𝐵𝑛

]
+ [P1,P2, · · · ,P𝑛] ,

(2)

where E𝐴 , E𝐵 ∈ R𝑇×𝐷 (E𝐴𝑔 , E𝐵𝑔 ∈ R𝑇×𝐷 ′
) denote the local (global)

embeddings for domain 𝐴 and domain 𝐵, respectively. Besides,
𝑔 means global. Here P𝐴 , P𝐵 ∈ R𝑇×𝐷 and P ∈ R𝑇×𝐷 ′

are the
learnable positional embeddings.

3.1.2 Local Encoder and Global Encoder of Sequences. After
obtaining E𝐴 , E𝐵 , E𝐴𝑔 and E𝐵𝑔 from the embedding layers, we then
apply sequential encoders to learn the sequential patterns. Here we
propose the local encoder and global encoder as follows,

S𝐴 = Encoder(E𝐴), S𝐵 = Encoder(E𝐵), (3)

S𝐴𝑔 = Encoder𝑔 (E𝐴𝑔 ), S𝐵𝑔 = Encoder𝑔 (E𝐵𝑔 ), (4)

where Encoder and Encoder𝑔 are the sequential backbone mod-
els (i.e., SASRec [15] or SURGE [2]) with independent and shared
parameters, respectively, across domains.

Based on it, we obtain S𝐴 (S𝐵 ) and S𝐴𝑔 (S𝐵𝑔 ), which capture local
sequential patterns and global sequential patterns, respectively, in
domain A (B).

3.2 Mixed Attention Layer
In this section, we first propose item similarity attention to ex-
tract similar items from local and global spaces. Then we propose
sequence-fusion attention to further fuse the local and global item
sequence representations, which will combine the domain-specific
and cross-domain sequential patterns. Finally, we propose group-
prototype attention to extract the group pattern across domains.

3.2.1 Item Similarity Attention. To capture the similarity be-
tween local/global item embeddings and target item embedding,
we first fuse the item embedding from local space (i.e., E𝐴

𝑗
and E𝐵

𝑗
)

and global space (i.e., E𝐴𝑔

𝑗
and E

𝐵𝑔
𝑗

) together. Specifically, given a
user in domain A (B), we can calculate the item similarity scores F𝐴
(F𝐵 ) between his/her historical items and the target item as follows,

F𝐴 = MLP
(
M𝑖𝐴

𝑡+1
∥E𝐴 + E𝐴𝑔

)
, F𝐵 = MLP

(
M𝑖𝐵

𝑡+1
∥E𝐵 + E𝐵𝑔

)
, (5)

whereM𝑖𝐴
𝑡+1

(M𝑖𝐵
𝑡+1

) denotes the embedding of the target item for
domain A (B) and ∥ denotes the concatenation operation. Based
on the item similarity scores, we can then weigh similar historical
items’ embeddings to refine item embeddings as follows,

E𝐴𝑖 = softmax
(
F𝐴

)
(E𝐴 + E𝐴𝑔 ), E𝐵𝑖 = softmax

(
F𝐵

)
(E𝐵 + E𝐵𝑔 ), (6)

where E𝐴𝑖 and E𝐵𝑖 ∈ R𝑇×𝐷 are the representations of target items’
similar historical items weighted by similarity scores of F𝐴 and F𝐵

in domain A and domain B, respectively. Here 𝐴𝑖 and 𝐵𝑖 mean item
similarity of domain 𝐴 and 𝐵, respectively.

Note that all functions are with dependent parameters except that they are subscript
with 𝑔 w.r.t. 𝑔𝑙𝑜𝑏𝑎𝑙 .

3.2.2 Sequence-fusion Attention. After obtaining S𝐴 , S𝐵 , S𝐴𝑔 ,
and S𝐵𝑔 , we then fuse them to combine the domain-specific and
cross-domain sequential patterns together as follows,

S𝐴𝑠 = MLP(CA(S𝐴, S𝐴𝑔 ) + S𝐴 ) ; S𝐵𝑠 = MLP(CA(S𝐵, S𝐵𝑔 ) + S𝐵 ) ; (7)

where the cross-attention (CA) layer [37] is defined as follows (take
S𝐴 as an example),

CA(S𝐴, S𝐴𝑔 ) = Atten
(
S𝐴W𝑄

𝐴𝑠
, S𝐴𝑔W𝐾

𝐴𝑠
, S𝐴𝑔W𝑉

𝐴𝑠

)
, (8)

where W𝑄

𝐴𝑠
, W𝐾

𝐴𝑠
, W𝑉

𝐴𝑠
∈ R𝐷×𝐷 are parameters to be learned and

Atten function is defined as below.

Atten(Q,K,V) = softmax
(
Q K𝑇
√
𝐷

)
V, (9)

where Q, K, and V are the query matrix, key matrix, and value
matrix, respectively.

3.2.3 Group-prototype Attention. Although we can not lever-
age overlapped user IDs across domains, there often exist user
groups with similar preferences. Specifically, we first pool each
sequence to obtain relevance to each group. Then we leverage mul-
tiple group prototypes to aggregate the item groups and weigh
them based on their relevance.

Group Interest Pooling. For an item sequence of a user, it actu-
ally does not belong to only one group prototype. Instead, it can be
a hybrid combination of several prototypes with different weights.
For example, a user can be both an adolescent and a basketball
lover at the same time. Thus, we propose a learnable soft cluster as-
signment matrix [33, 41], to calculate the importance of 𝑁𝑔 groups.
Specifically, the item sequence of each user is firstly pooled by a
pooling matrix W𝑃

𝐴
∈ R𝑁𝑔×𝑇 ( W𝑃

𝐵
∈ R𝑁𝑔×𝑇 ), based on which the

relevance of the user to each group can be calculated as follows,

C𝐴 = MLP
(
W𝑃
𝐴S
𝐴
)
,C𝐵 = MLP

(
W𝑃
𝐵S
𝐵
)
, (10)

where C𝐴 and C𝐵 ∈ R𝑁𝑔×1 are relevance scores for each group.

Group Interest Aggregation. We then create𝑁𝑔 group-prototype
embeddings G ∈ R𝑁𝑔×𝐷 to represent the interest groups. These
embeddings can then be transformed to each domain, aggregating
the typically related items as follows,

G𝐴 = MLP
(
CA(G, S𝐴)

)
,G𝐵 = MLP

(
CA(G, S𝐵)

)
, (11)

where G𝐴 and G𝐵 ∈ R𝑁𝑔×𝐷 are the obtained group-prototype
representations for the sequences of domain A and domain B, re-
spectively. Here CA layer is similar to Eqn.(8). We can then weigh
all group-prototype representations based on the relevance scores
as follows,

G𝐴𝑢 = softmax
(
C𝐴

)
G𝐴,G𝐵𝑢 = softmax

(
C𝐵

)
G𝐵, (12)

where G𝐴𝑢 and G𝐵𝑢 ∈ R𝑁𝑔×𝐷 are the weighted group-prototype
representations for each user.
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Group-prototype Disentanglement. Each group prototype ob-
viously should be distinct, according to its definition. Therefore, in-
spired by the advances of disentangled representation learning [28],
we propose the prototype disentanglement regularization as:

L𝑔 = −𝜆𝑔
𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=𝑖+1

(
G𝑖 − G𝑗

)2 (13)

where 𝜆𝑔 is the penalty hyper-parameter. This loss function will be
jointly learned with the main loss function later.

3.3 Local/Global Prediction Layer
In this section, we first evolve the local and global interests via
corresponding prediction layers. Then we optimize them with the
objective function for each domain.

3.3.1 Local and Global Prediction Layer. With the proposed
mixed-attention network (item similarity attention, sequence-fusion
attention, and group-prototype attention), we concatenate the out-
puts together and feed them into the proposed local prediction layer
and global prediction layer based on MLP [2, 46, 47], which can be
formulated as follows,

𝑦𝐴𝑢,𝑡 = MLP
(
e𝐴𝑖 ∥s𝐴𝑠 ∥g𝐴𝑢 ∥s𝐴∥M𝐴

𝑖𝐴
𝑡+1

)
+MLP𝑔

(
s𝐴𝑔 ∥M𝑖𝐴

𝑡+1

)
, (14)

𝑦𝐵𝑢,𝑡 = MLP
(
e𝐵𝑖 ∥s𝐵𝑠 ∥g𝐵𝑢 ∥s𝐵 ∥M𝐵

𝑖𝐵
𝑡+1

)
+MLP𝑔

(
s𝐵𝑔 ∥M𝑖𝐵

𝑡+1

)
, (15)

where MLP𝑔 is the MLP layer with shared parameters across do-
mains, and the concatenated embeddings are obtained via,

e𝐴𝑖 =

𝑇∑︁
𝑡=1

E𝐴𝑖
𝑡 , s𝐴𝑠 =

𝑇∑︁
𝑡=1

S𝐴𝑠
𝑡 , g𝐴𝑢 =

𝑁𝑔∑︁
𝑘=1

G𝐴𝑢

𝑘
, s𝐴 =

𝑇∑︁
𝑡=1

S𝐴𝑡 , s
𝐴𝑔 =

𝑇∑︁
𝑡=1

S
𝐴𝑔

𝑡 ,

e𝐵𝑖 =

𝑇∑︁
𝑡=1

E𝐵𝑖
𝑡 , s

𝐵𝑠 =

𝑇∑︁
𝑡=1

S𝐵𝑠
𝑡 , g𝐵𝑢 =

𝑁𝑔∑︁
𝑘=1

G𝐵𝑢
𝑘
, s𝐵 =

𝑇∑︁
𝑡=1

S𝐵𝑡 , s
𝐵𝑔 =

𝑇∑︁
𝑡=1

S
𝐵𝑔
𝑡 ,

which denotes average pooling before being fed into MLPs.

3.3.2 Objective Function with Independent Updating. We
then exploit the negative log-likelihood function [2, 46, 47] for
optimization, which can be formulated as follows,

L𝐴 = − 1
| R𝐴 |

∑︁
(𝑢,𝑖𝐴𝑡 ) ∈R𝐴

(
𝑦𝐴𝑢,𝑡 log �̂�

𝐴
𝑢,𝑡 +

(
1 − 𝑦𝐴𝑢,𝑡

)
log

(
1 − �̂�𝐴𝑢,𝑡

))
, (16)

L𝐵 = − 1
| R𝐵 |

∑︁
(𝑢,𝑖𝐵𝑡 ) ∈R𝐵

(
𝑦𝐵𝑢,𝑡 log �̂�

𝐵
𝑢,𝑡 +

(
1 − 𝑦𝐵𝑢,𝑡

)
log

(
1 − �̂�𝐵𝑢,𝑡

))
, (17)

where R𝐴 and R𝐵 are the training sets of domain A and domain B,
respectively. Here 𝑦𝐴𝑢,𝑡 = 1 (𝑦𝐵𝑢,𝑡 = 1) and 𝑦𝐴𝑢,𝑡 = 0 (𝑦𝐵𝑢,𝑡 = 0) indicate
a positive sample and a negative sample, respectively, and 𝑦𝐴𝑢,𝑡 and
𝑦𝐵𝑢,𝑡 stand for predicted click probability of the next item.

To optimize jointly across two domains, the final objective func-
tion is a linear combination ofL𝐴 ,L𝐵 andL𝑔 calculated in Eqn.(13),
Eqn.(16) and Eqn.(17), respectively, as follows,

L = L𝐴 + L𝐵 + 𝜆𝐴∥Θ𝐴∥2 + 𝜆𝐵 ∥Θ𝐵 ∥2 + L𝑔 (18)

where Θ𝐴 and Θ𝐵 are the sets of learnable parameters with 𝜆𝐴 and
𝜆𝐵 as the regularization penalty hyper-parameters of domain A
and domain B, respectively.

Table 1: Data statistic for two datasets. Here Avg. Length is
the average number of users’ history interacted items.

Dataset Micro Video Amazon
Domain A B Video Games Toys
#Users 43,919 37,692 826,767 1,342,911
#Items 147,813 131,732 50,210 327,698

#Records 18,011,737 14,908,625 1,324,753 2,252,771
Overlap Items 71.22% 79.91% 7.66% 4.72%
Overlap users 7.18% 8.37% 0.27% 0.04%
Ave. length 212.50 244.95 19.55 18.23
Density 0.2775% 0.3003% 0.0032% 0.0005%

4 EXPERIMENTS
In this section, we conduct extensive experiments with two real-
world datasets, investigating the following research questions (RQs).

• RQ1:How does the proposedmethod perform comparedwith the
state-of-the-art single-domain recommenders and cross-domain
recommenders?

• RQ2: What is the effect of different components in the method?
• RQ3: Is the proposed method model-agnostic? What about the
performance on different backbones? Is the method still effective
with the solely local or global module?

• RQ4: How do the group prototypes represent different groups?

4.1 Experimental Setup
4.1.1 Datasets. We evaluate the recommendation performance
on an industrial Micro Video dataset and a public e-commerce
dataset. The statistics of the datasets are shown in Table 1.

4.1.2 Baselines and Evaluation Metrics. To demonstrate the
effectiveness of our model, we compare it with two categories of
competitive baselines: single-domain models and cross-domain
models. Specifically, single-domain models are DIN [47] Caser [36],
GRU4REC [11], DIEN [46], SASRec [15], SLi-Rec [42] and SURGE [2].
These single-domain models are trained on each domain indepen-
dently following existing work [19, 29].

Besides, cross-domain models are NATR [5], PiNet [29] and
DASL [19]. PiNet and DASL are adapted to our settings without
fully-overlapped users (with the item sequence of another domain as
empty). Other cross-domain models like MiNet [30] and CoNet [13]
are not included in experiments because they are non-sequential
models and will be much poor than sequential models [29].

All models are evaluated on two popular accuracy metrics AUC
and GAUC [9], as well as two ranking metrics, MRR and NDCG [2].

4.1.3 Hyper-parameter Settings. The initial learning rate for
Adam [16] is 0.001 with Xavier initialization [8] to initialize the
parameters. Regularization coefficients are searched in [1𝑒−7, 1𝑒−5,
1𝑒−3]. The batch size is set as 200 and 20, respectively, for the
Micro Video dataset and Amazon dataset. The embedding sizes of
all models with 40 and 20 are fixed for the Micro Video dataset and
Amazon dataset, respectively. MLPs with layer size [100, 64] and
[20, 10] are exploited for the prediction layer on the Micro Video
dataset and Amazon dataset, respectively. Item sequence length of
250 is set for the Micro Video dataset, and 20 is set for the Amazon
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Table 2: Performance comparisons for MAN on Micro Video dataset and Amazon dataset.

Domain Metric Single-domain Cross-domain
DIN Caser GRU4REC DIEN SASRec SLi-Rec SURGE NATR PiNet DASL Ours

Micro
Video
A

AUC 0.5673 0.7744 0.7838 0.6666 0.7730 0.7558 0.7959 0.7972 0.7834 0.7879 0.8285
MRR 0.5544 0.5740 0.5417 0.5264 0.5359 0.5337 0.5888 0.5899 0.5273 0.5568 0.6167
NDCG 0.6628 0.6780 0.6531 0.6409 0.6488 0.6461 0.6892 0.6921 0.6422 0.6651 0.7112
WAUC 0.7837 0.8053 0.7910 0.7654 0.7911 0.7729 0.8170 0.8197 0.7880 0.8075 0.8435

Micro
Video
B

AUC 0.5613 0.7308 0.7625 0.6581 0.7794 0.7620 0.7605 0.7727 0.7595 0.7665 0.8094
MRR 0.4526 0.4971 0.5285 0.4768 0.5472 0.5418 0.5042 0.5462 0.5037 0.5288 0.5756
NDCG 0.5843 0.6184 0.6431 0.6025 0.6574 0.6529 0.6239 0.6571 0.6240 0.6431 0.6797
WAUC 0.7246 0.7533 0.7860 0.7420 0.7957 0.7845 0.7645 0.7939 0.7705 0.7858 0.8215

Domain Metric Single-domain Cross-domain
DIN Caser GRU4REC DIEN SASRec SLi-Rec SURGE NATR PiNet DASL Ours

Amazon
Video
Games

AUC 0.5577 0.5766 0.5303 0.6059 0.5234 0.5750 0.5975 0.5617 0.5740 0.5527 0.6559
MRR 0.3736 0.3284 0.2953 0.3526 0.2833 0.3503 0.4667 0.3388 0.3419 0.3053 0.4755
NDCG 0.5171 0.4854 0.4582 0.5046 0.4488 0.5009 0.5917 0.4918 0.4957 0.4667 0.5986
WAUC 0.5587 0.5805 0.5395 0.6115 0.5257 0.5721 0.6311 0.5629 0.5847 0.5652 0.6686

Amazon
Toys

AUC 0.6372 0.5138 0.6576 0.6321 0.5707 0.6106 0.6455 0.6127 0.5402 0.6237 0.6712
MRR 0.5946 0.3293 0.5949 0.5669 0.3110 0.5292 0.5566 0.5070 0.3140 0.3515 0.6385
NDCG 0.6879 0.4836 0.6889 0.6676 0.4721 0.6389 0.6602 0.6211 0.4729 0.5045 0.7221
WAUC 0.6398 0.5058 0.6540 0.6421 0.5784 0.6184 0.6504 0.6217 0.5419 0.6305 0.6788

dataset. The numbers of group prototypes are searched from [1, 5,
10, 20].

4.2 Overall Performance (RQ1)
The performance comparisons over all models are as shown in
Table 2, where SASRec and SURGE with better performance are
leveraged as backbones on these two datasets, respectively. It can
be observed that:

• Our approach performs best. Our model MAN significantly
outperforms all baselines under all metrics. Specifically, our
model improves AUC against all baselines by 4.10% and 3.85% on
Micro Video A and Micro Video B, respectively, while by 8.25%
and 2.07% on Amazon Video Games and Amazon Toys, respec-
tively. In general, the improvement is more consistent across
evaluation metrics on the Micro Video dataset with more over-
lapped users. The Amazon dataset with extremely sparse data
sees the highest improvement (8.25%), which verifies that our
approach can address the sparse data problem, promoting the
sequential learning of both domains simultaneously and that of
less interacted domains even more sharply.

• Existing cross-domain sequential recommenders rely heav-
ily on overlapped users or items. PiNet and DASL are based on
fully-overlapped user datasets [19, 29], but they are indeed com-
parable with GRU4REC under datasets without fully-overlapped
users, either outperforming or even underperforming. In contrast
to them, our proposed approach outperforms all baselines and
improves the backbones significantly, which illustrates the effec-
tiveness of our cross-domain modeling without user overlapping.
Though NATR achieves decent performance on the Micro Video
dataset with a lot of overlapped items, it fails to achieve effec-
tive cross-domain modeling on the Amazon dataset with limited
overlapped items.

• Sequential recommenders are effective but with data spar-
sity bottleneck. Based on the Micro Video dataset, comparing
the sequential models (i.e., Caser, GRU4REC, DIEN, SASrec, SLi-
Rec, and SURGE) with the non-sequential model (i.e., DIN), it is
necessary for us to model the chronological relationship between
items. Besides, SASRec and SURGE are comparable and outper-
form all other single-domain sequential models, which illustrates
the capacity of self-attention to handle long-term information
and verifies the effectiveness of compressing information with
metric learning. The observation of sequential models is consis-
tent with the experimental results of the SURGE [2] paper. Based
on the Amazon dataset, DIN even outperforms some sequential
models, i.e., SASRec, which also drops a lot under such a short
sequence scene. Though sequential models are the potential for
capturing the chronological relationship between items, they are
blocked by the data sparsity. Besides we have also attempted to
train them with two domains simultaneously ("Shared" models in
the backbone study), but the results show that one domain’s opti-
mization will have a negative impact on another domain, leading
to negative transfer. Thus it is necessary to design cross-domain
modeling to avoid negative transfer.

4.3 Impact of Each Component (RQ2)
To study the impact of our proposed components, we compare our
model with that detaching Item Similarity Attention (ISA) module,
Sequence-fusion Attention (SFA) module, and Group-prototype
Attention (GPA) module on two datasets under four evaluation
metrics, as shown in Table 3. Firstly, it can be observed that the
shared group prototypes of GPA are most effective in both Micro
Video and Amazon Video datasets, illustrating that there are similar
interest groups across different domains. Besides, the performance
also drops a bit when removing the sequence-fusion component
(most effective in Micro Video B), i.e., SFA for fusing the local and
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Figure 3: AUC performance of MAN with different backbones on Micro Video dataset and Amazon dataset. Here "Single" means
backbone models trained with single domain data, which refers to the local module. "Shared" means shared backbone model
trained with cross-domain data, which refers to the global module. "Cross" is the backbone equipped with our method.
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Figure 4: K-Means and t-SNE visualization of pooled group representations on Micro Video dataset and Amazon dataset, with
different colors representing different groups. Group patterns across domains of two datasets are captured by the different
distribution of group representations. (Best view in color.)

Table 3: Ablation study of the proposed components onMicro
Video dataset and Amazon dataset.

Domain Model AUC MRR NDCG@10 WAUC

Micro
Video
A

w/o ISA 0.8136 0.5795 0.6826 0.8216
w/o SFA 0.8133 0.5895 0.6904 0.8292
w/o GPA 0.7983 0.5714 0.6762 0.8134
w all 0.8285 0.6167 0.7112 0.8435

Micro
Video
B

w/o ISA 0.8059 0.5644 0.6711 0.8162
w/o SFA 0.7939 0.5559 0.6643 0.8073
w/o GPA 0.7996 0.5631 0.6701 0.8147
w all 0.8094 0.5756 0.6797 0.8215

Amazon
Video
Games

w/o ISA 0.6195 0.4437 0.5743 0.6352
w/o SFA 0.642 0.4426 0.5735 0.6523
w/o GPA 0.6195 0.4198 0.5549 0.6288
w all 0.6559 0.4755 0.5986 0.6686

Amazon
Toys

w/o ISA 0.6499 0.5497 0.6548 0.6516
w/o SFA 0.6502 0.6126 0.7021 0.6583
w/o GPA 0.6546 0.6183 0.7074 0.6606
w all 0.6712 0.6385 0.7221 0.6788

global sequential patterns, which means there are truly common
sequential patterns across different domains. There are also similar

items across different domains when the performance decreases
after the detaching item similarity attention module (most effective
in Amazon Toys).

In short, Group-prototypeAttention is themost important among
the three proposed attentions.

4.4 Backbone Study (RQ3)
Here, we study whether GRU4REC, SASRec, and SURGE can be
boosted under our proposed method. That is to say, whether our
proposed method is model-agnostic. The reason why we choose
these three models is that they perform better on the experimented
datasets. Figure 3 shows the results of our method with different
backbones on two datasets under AUC evaluation, where we can
observe that:
• Our proposed method is model-agnostic. The selected back-
bones are all boosted by our proposed MAN, which means our
proposed method is model-agnostic. The backbones selected here
are RNN-based, attention-based, and even graph-based models.
Thus our method can be applied in various state-of-the-art se-
quential recommendation models to boost their performance.

• Our proposed method performs better on larger datasets.
The improvement on the Micro Video dataset is generally more
obvious than that on the Amazon dataset. This is because a large
dataset can provide rich cross-domain information.
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4.5 User Group Visualization (RQ4)
In this section, the embeddings of all users’ pooled group represen-
tations will be visualized to show the patterns our group-prototype
attention module has captured.

The pooled group representation (calculated in Eqn.(12)) for each
user is visualized with K-Means and t-SNE, as shown in Figure 4.
More specifically, we first apply K-Means on the pooled group rep-
resentations to cluster data into 𝑁𝑔 groups. Then t-SNE is exploited
to reduce the group representations into two-dimensional space,
and the clustered groups by K-Means are used to label each user. It
can be observed that: (1) for each dataset, the group patterns vary
across different domains, where the users under Micro Video A
are distributed evenly while the users under Micro Video B mostly
belong to groups 0, 1, and 6. On the Amazon dataset, the users
mostly belong to group 2, and group 0 under Video Games and
Toys, respectively; (2) for two datasets, the users on the Amazon
dataset are distributed more unbalanced and dispersed than those
on the Micro Video dataset, which may because the Amazon dataset
is more sparse.

5 RELATEDWORK
Sequential Recommendation Sequential Recommendation [38]
is the fundamental model of our work, which models the user’s
historical behaviors as a sequence of time-aware items, aiming to
predict the probability of the next item. Initially, the Markov chain
is exploited to model the sequential pattern of item sequence as
FPMC [34]. To further extract the high-order interaction between
the historical items, researchers have also applied deep learning
models such as recurrent neural network [4, 12], convolution neu-
ral network [18] and attention network [37] in recommender sys-
tems [11, 15, 36, 46, 47]. However, recurrent neural network-based
and convolution neural network-based methods often pay atten-
tion to the recent items before the next item, failing to model the
long-term interest. Recently, researchers have also combined the
sequential recommendation model and traditional recommendation
model such as matrix factorization [17] to model the long and short-
term interest [42, 45] while SURGE [2] exploits metric learning to
compress the item sequence. Some recent works like DFAR [23]
and DCN [22] focus on capturing more complex relations behind se-
quential recommendation. In this paper, we perform cross-domain
learning based on sequential recommendation models to achieve
knowledge transfer between different domains.
Cross-Domain Recommendation Cross-domain recommender
systems [1] are an effective solution to the highly sparse data prob-
lem and cold-start problem that sequential recommendation meets.
Early cross-domain recommendation models are based on single-
domain recommendation, assuming that auxiliary user behaviors
across different domains will benefit the target domain’s user model-
ing [14, 26, 35]. Indeed, the most popular approaches are often based
on transfer learning [31] to transfer the user embedding or item
embedding from the source domain to improve the target domain’s
modeling, including MiNet [30], CoNet [13] and itemCST [32] etc.

However, industrial platforms tend to improve all domains of
their products simultaneously instead of improving the target do-
main without consideration of the source domain. Thus, dual learn-
ing [10, 25], which can achieve simultaneous improvements across

both source domain and target domain, grabs researchers’ atten-
tion and has already been applied in cross-domain recommender
systems [20, 48]. Moreover, to enhance the recommendation per-
formance across all domains simultaneously, researchers have pro-
posed some dual-target approaches focusing on sequential model-
ing [3, 19, 29], which addresses the sparse data problem and cold-
start problem promisingly and considers the performance of both
source domain and target domain. Specifically, PiNet [29] tackles
the shared account problem and transfers account information from
one domain to another domain where the account also has historical
behaviors; DASL [19] proposes dual embedding to interact embed-
dings and dual attention to mix the sequential patterns for the same
users across two domains. Besides PiNet and DASL, DAT-MDI [3]
applies dual attention like DASL on session-based recommendation
without relying on user overlapping. However, requiring the item
sequence pairs in two domains as input is unreasonable because the
item sequences of two domains are often independent of each other
despite belonging to the same user. Hence such a dual attention
manner by mixing the sequence embedding of two domains will not
result in a promising performance, theoretically speaking, under a
non-overlapped user scene. Though NATR [5] tends to avoid user
overlapping, it is a non-sequential and single-target model.

In this paper, we perform cross-domain learning in a dual-target
manner to achieve simultaneous improvements across different
domains without any prior assumption of overlapped users or items.

6 CONCLUSIONS AND FUTUREWORK
In this work, we studied the task of sequential recommender sys-
tems in a cross-domain manner from a more practical perspective
without any prior assumption of overlapped users. Such exploration
brought us three key challenges from the item, sequence, and group
levels. To address these three challenges, we proposed a novel so-
lution named MAN with local and global modules, mixing three
attention networks and transferring at the group level. The first
one was the local/global encoding layer that captures the sequen-
tial pattern from domain-specific and cross-domain perspectives.
Secondly, we further proposed the item similarity attention that
captured the similarity between local/global item embeddings and
target item embedding, the sequence-fusion attention that fused
sequential patterns across global encoder and local encoder, and
the group-prototype attention with several group prototypes to
share the sequential user behaviors implicitly without leveraging
the user ID. Finally, we proposed a local/global prediction layer
to evolve the domain-specific and cross-domain interests. As for
future work, we plan to conduct online A/B tests to further evaluate
our proposed solution’s recommendation performance.
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