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The mainstream approach of GNN-based recommendation aggregates high-order ID information associated with the node in
the user-item graph. The aggregation pattern using ID as signal has two disadvantages: lack of textual semantics and the
impact of interaction noise. These disadvantages pose a threat to effectively learn user preferences, especially in capturing
intricate user-item semantic relationships. Although large language models (LLMs) allow the integration of rich textual
information into recommenders and have had groundbreaking applications in recommender systems, current works need
to bridge the gap between different representation spaces. This is because LLMs-based methods align the representations
of GNN-based models only by using text embedding of LLM, leading to unsatisfactory results. To address this challenge,
we propose a Denoising Alignment framework with LLMs for GNN-based Recommenders (DALR), which aims to align
structural representation with textual representation and mitigate the effects of noise. Specifically, We propose a modeling
framework that integrates the representation of graph structure with textual information from LLMs to capture intricate
user-item interactions. We also suggest an alignment paradigm to enhance representation performance by aligning semantic
signals from LLMs and structural features from GNN models. Additionally, we introduce a contrastive learning scheme to
relieve the impact of noise and improve model performance. Extensive experiments on public datasets demonstrate that our
model consistently outperforms the state-of-the-art methods. DALR achieves improvements ranging from 2.82% to 12.20% in
Recall@5 and from 1.04% to 3.48% in NDCG@5 compared to the strongest baseline model, using the Steam dataset as an
example.
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1 INTRODUCTION
In practical situations, recommendation systems (RS) are designed to assist people in finding high-value in-
formation across various large-scale data platforms, such as e-commerce, multimedia, and online news [24].
A recommendation system is crucial for users to discover items of interest from severe information overload,
bringing significant convenience and attracting widespread attention from academic and industrial communities.
The graph data form provides a powerful tool for modeling user preferences [19], which expresses the behavioral
relationship between users and items appropriately, and offers significant advantages in understanding intricate
relationships. With the advancement of deep learning technologies, neural networks have demonstrated superior
capability in extracting deeper data features. Hence, mainstream recommendation technologies have evolved
from traditional methods to those based on neural networks [28].

Many studies based on graph neural networks (GNNs) [44] heavily rely on ID information throughout the
learning process. Although this reliance can improve the effectiveness, it poses a notable constraint for repre-
sentation learning due to neglecting the rich textual semantics (e.g., attributes and generated profiles by a large
language model (LLM) in Fig. 1 (a)) associated with users and items. Additionally, noise in interaction data, such
as misclicks [42] or information bias [5] (as shown in Fig. 1 (b)), can lead to an inaccurate representation of the
model. Models rely on sparse interaction data to deduce user preferences and item features and generate vector
representations during the training phase. In sparse datasets, the impact of noise is readily captured and magnified
by conventional neural models [67, 68]. It is mainly because conventional GNN-based models [20] typically treat
all nodes and their neighbors equally, disregarding the potential presence of noise or outliers among nodes. When
confronted with these challenges, it is observed that GNN-based models tend to exhibit suboptimal performance.
To address the above limitations, some approaches integrate self-supervised data augmentation techniques with
graph-based recommenders. These methods [29, 52, 57] enhance the semantic representation of data by leveraging
intrinsic information within the graph structure. Specifically, techniques such as subgraph reconstruction enable
the model to learn the relationships between nodes and the global structure of the graph, thereby extracting more
semantically meaningful feature representations. Moreover, the model learns robust representations to filter and
mitigate noise in the graph data by introducing self-supervised tasks, reducing its impact on model performance.
Recent models (such as SGL [29], HCCF [57], and DCCF [36]) have demonstrated promising performance by
employing contrastive augmentation techniques. For example, HCCF [57] leverages a hypergraph-enhanced
cross-view contrastive learning architecture to capture local and global semantic relationships effectively. DCCF
[36] utilizes self-supervised augmentation to achieve adaptive intent disentanglement, refining latent factors and
reducing noise from augmentation. Despite their success in enhancing recommendation accuracy, these models
need to address the challenge of lacking textual semantics. This is because the paradigm of these methods still
relies on ID information and lacks external semantics despite generating self-supervised signals through a data
augmentation approach.

To better represent the semantic features of nodes in the graph, LLMs can be regarded as an excellent additional
semantic extractor. Recently, outstanding LLMs such as GPT-4 [1] have demonstrated remarkable prowess in
semantic understanding in natural language processing (NLP), fueling a rising enthusiasm to harness their
potential for enhancing recommendation systems [18, 22]. Incorporating LLMs into recommendation systems is
advantageous as they can extract high-quality textual information and leverage essential external knowledge
encoded from LLMs[54]. The prevailing approach of utilizing LLMs in GNN-based recommendation is to design
meticulous prompts, which generate compelling profiles for users/items [49]. By leveraging these textual profiles,
recommendation models accurately capture user preference representations to enhance the model’s performance
[35]. For example, RLMRec [35] meticulously integrates representation learning with LLM to capture intricate
semantic facets of user preferences. GraphTranslator [65] connects pre-trained graph models (GMs) and large
language models (LLMs) through instruction fine-tuning to address pre-defined tasks within graphs.
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Fig. 1. Figure (a) illustrates an instance of the semantic disparity between GNN-based representations and semantic
representations. Figure (b) demonstrates the influence of noise in interactive data.

However, despite the effective recommendation performance demonstrated by the LLMs-based methods above,
they still have the following shortcomings: (1) Representation alignment issue. We define the semantic gap
as the alignment issue between different representation spaces. Specifically, the semantic gap is the gap between
textual representation and structure representation in the recommender scenario (as shown in Fig. 1 (a)). existing
GNN-based methods [4, 45] mainly adhere to the aggregation paradigm, which captures rich structural properties
but lacks textual semantics. In contrast, methods based on LLMs can comprehend the textual semantics of user
preferences, yet they lose the rich structural properties of interaction relationships. Therefore, it is necessary to
align the semantic space with the representation space of GNN-based models and integrate cross-view features.
However, existing approaches (like RLMRec [35]) need more capability to effectively bridge the gap between
structural and textual space, as direct contrastive representations from different spaces limit their effectiveness.
Additionally, fine-tuning large language models based on instruction prompts incurs significant costs. (2) Impact
of noise issues. In real-world recommendation scenarios, the observed user-item interactions denoted as Y often
exhibit noise, encompassing both false positives (e.g., interactions of D1 influenced by popular book Different
Seasons in Fig. 1 (b)) and false negatives (e.g., instances where users do not engage with potentially interesting
items). Consequently, the performance of the recommender is susceptible to the influence of such noise data,
leading to a detrimental impact on recommendation accuracy. However, the ability of LLMs-based methods
to mitigate noise needs to be improved, as it solely relies on contrastive learning from the textual semantic
perspective, neglecting important structural property features.

To alleviate the limitations above, we propose a Denoising Alignment framework with Large language model
for GNN-based Recommendation (DALR), aiming to leverage the power of LLMs to align representation and
mitigate noise impacts. The core idea of DALR is to align structure representation from GNN-based models and
the intricate semantic features from LLM. Our framework contains the two components: (1) Hybrid feature
alignment. We propose a hybrid alignment scheme to bridge the gap between distinct representational spaces.
Firstly, hybrid features alleviate the independence between semantic and structural features in the representation
space by integrating the textual semantics generated by LLM with the structural information derived from the
user-item graph. Secondly, by aligning the hybrid features with the representation of the backbone model, DALR
smoothly integrates information from different spaces, enhancing the representation performance of the model
with the generation of hybrid semantic features. (2) Sementic attribute alignment. To better mitigate the
impact of noise, we devised a denoising contrastive strategy by aligning semantic and structural attributes. The
semantic attribute contrastive pattern enhances the model’s representation capacity by aligning the semantic
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representations of LLM and GNN-based features with a cross-view contrastive module. This approach integrates
the textual semantics of LLM into the encoded representations of users and items from the GNN-based model,
thereby augmenting the recommender’s representational capacity. Besides, we design a profile representation
module to provide profile information and semantic representations for users and items separately. The profile
module relieves the noise of the profile through controllable instruction prompts and enhances the hybrid features
by fusing ID and text semantics. Technically, we design a prompting paradigm to generate textual profiles for
users and items using ChatGPT. Then, we transform textual profiles into meaningful embedding and utilize them
as crucial signals for downstream alignment tasks. Ultimately, we refine both the alignment framework and the
model’s parameters via joint training to enhance synergy and improve recommendation accuracy.

To validate the effectiveness of our approach, we conducted a series of relevant experiments. The results
indicate effective improvements in the Recall and NDCG metrics. For instance, on the SGL backbone network, our
method achieved a 12.20% increase in the Recall@5 metric on the steam dataset. Furthermore, the intermediate
results of aligning representations, as shown in section 5.4, demonstrate notable enhancements in addressing
noise and semantic issues with our method. We summarize the contributions of this work as follows:

• We propose a general alignment framework DALR, to explore the integration of LLMs to GNN-based recom-
menders by fusing their semantic and structural representations.

• We develop a hybrid attribute alignment module aim at bridging the gap between representations in different
spaces, a challenge previously addressed mainly through semantic alignment with limited effectiveness.

• We devise a denoising alignment strategy, which operates from both semantic and structural perspectives. It
utilizes mutual information maximization as the optimization objective to enhance representation quality.

• We compare DALR with state-of-the-art LLM-based and Graph-based recommendation models and validate
the effectiveness of our approach.

2 RELATED WORK
In this work, we propose a denoising alignment framework with large language models for GNN-based recom-
mendation, which is closely related to GNN-based recommendation, contrastive learning for recommendation,
and large language models for recommendation.

2.1 GNN-based recommendation
Numerous endeavors have been devoted to constructing recommenders using various graph neural network
techniques [12]. These GNN-based recommenders model high-order collaborative relationships by executing
message passing on graph structures [20, 38, 44]. Firstly, graph convolutional networks (GCNs) have emerged
as prevalent encoders for modeling user-item interaction graphs, exemplified by LightGCN [20], LR-GCCF [6],
and HGCF [39]. LightGCN streamlines collaborative filtering by leveraging the user-item interaction graph
without additional user/item side information. Secondly, graph-enhanced attention mechanisms play a crucial
role in delineating the impact of embedding propagation among neighboring nodes and serve as pivotal com-
ponents in numerous recommenders, such as DGCF [45] and ASR [32]. DGCF [26] employs graph-enhanced
attention mechanisms to dissect user-item relationships at a granular level of user intents, thereby generating
disentangled representations. Furthermore, further innovations extend to hypergraph learning [27, 60], and
intention disentanglement [36, 51], aimed at unraveling intricate collaboration patterns. DCCF [36] excels in
unraveling complex collaboration patterns and mitigating augmentation-induced noise through techniques like
hypergraph learning and intention disentanglement. Recent advancements in denoising implicit feedback for
GNN-based recommenders focus on mitigating the negative impacts of noisy data ([13, 41]). BOD ([47]) introduces
a bi-level optimization approach that dynamically adjusts weights and eliminates the need for prior knowledge,
enhancing efficiency and performance. SocialRec ([34]) addresses noise in the social recommendation by refining

ACM Trans. Inf. Syst.

 



Denoising Alignment with Large Language Model for Recommendation • 5

social graphs through preference-guided denoising and adaptive strategies. Benefiting from the advantages of
GNN, the GNN-based paradigm has been applied in various recommendation scenarios. These encompass social
relationship learning, exemplified by DGRec [37] and DANSER [55], as well as multi-behavioral recommendation
[60] and knowledge graph-based recommenders like KGAT [43]. KGAT [43] utilizes knowledge graphs to improve
recommendation performance by integrating user-item relationships with entities and relations from the KG.

2.2 Contrastive learning for recommendation
Recently, the impressive achievements of self-supervised learning in NLP [11] and CV [7, 8] have sparked signifi-
cant interest in the field of recommender systems. Self-supervised learning is a machine learning paradigm that
learns semantic representations from unlabeled data by generating self-supervised signals from the data itself
rather than relying on external labels [52, 58]. Recommender systems enhance the representation performance
of models through contrastive learning on different structural views [48, 52, 67]. Current research in this area
is divided into two categories: same-scale contrast and cross-scale contrast [25, 63]. In same-scale contrast, the
views being compared originate from two entities of equivalent scale [40, 52]. Approaches within this category
utilize data augmentation techniques to create different views on graph structures. Specifically, ContraRec [40]
introduces a contrastive learning task, called context-context contrast, to encourage sequences after augmentation
and sequences with the same target item to have similar representations. SGL [52] employs random dropout
operations to augment the interaction graph structure, enhancing recommendation performance. NCL [29]
conducts representation alignment between individual users and semantically centered nodes to improve recom-
mendation effectiveness. Conversely, cross-scale contrast involves views from entities at different scales [67, 69].
For example, MCCLK [69] employs contrastive learning across three views at both local and global levels, mining
comprehensive graph feature and structure information in a self-supervised manner. Additionally, contrastive
learning strategies have enhanced some sequential models to improve recommendation performance, such as
CL4SRec [59]. CL4SRec [59] is a multi-task model for a sequential recommendation that integrates traditional
next-item prediction with contrastive learning, enabling more meaningful user feature extraction and effective
semantic representation.

2.3 Large language models for recommendation
With the significant advancements of large language models [3] in the field of natural language processing,
researchers have repeatedly attempted to leverage these models for modeling user preference [15, 53]. Existing
studies [30, 50] predominantly fall into two categories: (1)As predictor, which employ LLMs to generate recom-
mendations for users directly; (2) As extractor, which provides profiles for downstream recommendation tasks
utilizing rich external knowledge and reasoning capabilities.

In the first approach, LLMs generate recommendations directly by employing techniques such as context
learning [30], prompt tuning [2], and instruction tuning [64]. However, such fine-tuning methods typically expend
high computational costs. TALLRec [2] is a framework crafted to narrow the divide between large language models
and recommendation tasks. It effectively fine-tunes LLMs with recommendation data, mitigating the mismatch
between LLM training tasks and recommendation tasks and overcoming the scarcity of recommendation data
during pre-training. Similarly, GraphTranslator [65] connects pre-trained graph models (GMs) and large language
models through instruction fine-tuning to implement downstream tasks within graphs. In the second approach,
the goal is to parse relevant semantic information and generate user/item profiles [31], and other textual data
[14] for recommendation tasks, enriching the accuracy and personalization of the recommendations. P5 [14] is a
text-to-text paradigm for recommendation that unifies diverse data into natural language sequences, enabling
instruction-based recommendation and reducing the need for extensive fine-tuning with adaptive personalized
prompts. In GNN-based recommendation, LLMRec [50] employs Large Language Models (LLMs) to enhance
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Table 1. Frequently used notations in this article.

Notation Description
U,V, D, E The user set, the item set, user D, and item E

G, . The user-item graph and the interaction data
N (8) , ℎ (; )

8
Set of neighbors of node 8 , feature vector of node 8 at layer ;

0
(;+1)
8

Aggregated feature vector for node 8 at layer ; + 1
~̂DE Predicted interaction score between user D and item E

483 , 4C , 40, 43 483 , 4C , 40, 43 denote unique number, title, attributes, descriptions
S�
D , S�

E The system prompt instructions of user and item
PD , PD The input prompt of user and items
AD , AE The generation profiles of user and item
rAD

, rAE
The semantic representation of user’s profile and item’s profile

R� (·, ·) , u8 , v9 a GNN-based model, the representation of user and item
L�~1 , L(4< the loss of hybrid feature alignment and the loss of semantic contrastive modeling

BD , BE The user’s structure attributes and The item’s structure attributes
hBD , hBE LLM-augmented user/item hybrid features of user and item
L,L�%' The total loss and the BPR loss

user-item interaction information and multimodal data, mitigating data sparsity issues. Meanwhile, RLMRec [35]
enhances text semantics by aligning the textual representations of large models with those of GNNs to improve
representation performance.

However, current LLM-based methods fail to effectively bridge the gap across different spaces by directly
aligning text. Besides, there is room for improvement in mitigating the impact of noise, as we explained in the
introduction. We propose a denoising alignment framework incorporating hybrid features and semantic contrast
to achieve more effective recommendation results.

3 PRELIMINARY

3.1 Problem Statement
First, we present the concept of the recommendation task based on GNNmodels. Next, we describe the interaction
data and introduce the User-Item Graph. Besides, we provide Table 1 to explain the meaning of frequently used
notations in this article.
Task Description. In this work, we define our model’s task as follows: Utilizing interaction data Y, the

User-Item Graph G, and Large Language Models (LLMs), we aim to learn the probability ~̂DE = f (u · v). This
probability ~̂DE predicts whether user D will engage with a candidate item E . Here, f represents the activation
function, u is the user’s vector representation, and v is the vector of the candidate item.
Interaction Data. In our study, we gather user-item interactions (such as browsing, clicking, purchasing,

and commenting behaviors) as feedback data. We define U = {D1, D2, · · · , D=} as the set of users and V =

{E1, E2, · · · , E<} as the set of items. Consequently, we establish Y = {~DE |D ∈ U, E ∈ V} to represent the user-item
interaction matrix, where ~DE signifies that user D has clicked on or purchased item E .
User-Item Graphs. In our work, we construct an User-Item Graph as follows: Drawing on methods from

existing literature [46], we generate an User-Item Graph G based on historical interaction data. Specifically, G is
constructed as {(D,~DE, E |D ∈ U, E ∈ V)}, representing the interactions between users and items.

ACM Trans. Inf. Syst.
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3.2 Theory of GNN-based Recommendation
The collaborative filtering method in recommender systems leverages embedding vectors (u8 , v9 ) for users D8 and
items E 9 , and calculates the predicted rating A8, 9 for a target user-item pair through a dot product operation. The
embedding vectors are learned by minimizing the discrepancy between observed ratings and model-predicted
ratings.
GNN-based recommendation. A GNN-Based model treats users and items as nodes in a graph G. Edges

between nodes represent interactions, such as ratings or purchases. The model learns to embed nodes (users
and items) into a low-dimensional space where the embedding vectors capture the complex relationships and
characteristics of users and items. These embeddings can then be used to predict future interactions or preferences.

0
(;+1)
8

= �66A460C4 (; )
({
ℎ
(; )
9

: 9 ∈ N (8)
})
, (1)

Were, 0 (;+1)
8

is the aggregated feature of node 9 at layer ; + 1, ℎ (; )
9

represents the features of neighbor nodes 9 at
layer ; , and N (8) denotes the neighbors of node 8 . The aggregate function can vary, common choices include
mean, sum, or max pooling.

ℎ
(;+1)
8

= Update(; )
(
ℎ
(; )
8
, 0

(;+1)
8

)
(2)

In this step, ℎ (;+1)
8

is the updated feature of node 8 at layer ; + 1, which is computed by combining its previous
feature ℎ (; )

8
with the aggregated feature 0 (;+1)

8
. The update function often involves non-linear transformations,

such as applying a neural network.
After several iterations of feature aggregation and update, the final embeddings (features) of users and items

are used to predict the likelihood of interaction between a user and an item, typically through a dot product or a
neural network:

~̂D8 = 5

(
ℎ
(!)
D , ℎ

(!)
8

)
, (3)

where, ~̂D8 is the predicted score of interaction between user D and item 8 , ℎ (!)D and ℎ (!)
8

are the final embeddings
of D and item 8 at layer ! of GNN. 5 is a function to compute the prediction score.

3.3 Feature Augmentation with Contrastive Learning
To mitigate the impact of irrelevant data on representation, incorporating text semantics is an effective approach
[35]. These textual information (e.g., user and item profiles) provide crucial support for learning interaction
interests. the semantic vectors of these profiles can effectively capture users’ semantic interests by using pre-
trained language model encoders. Notably, both the semantic encoder and the neural graph model capture shared
information from interaction behaviors (i.e., both contain useful information). Therefore, our goal is to learn the
optimal value of this shared information by maximizing the conditional probability.

Mutual Information Maximization (MIM) [21] is a critical technique in the DALR model. Mutual Information
(MI) quantifies the degree of information shared between two random variables, indicating how much observing
one variable reduces the uncertainty of the other. In our model, MIM is employed to align semantic features rs from
large language models (LLMs) with structural features rg from graph data, thereby enhancing the performance of
the recommendation system. Formally,

�
(
r6, rB

)
= E(

r6,rB
) [log ?

(
r6, rB

)
?
(
r6
)
? (rB )

]
, (4)

here, ?
(
r6, rB

)
is the joint probability distribution of r6 and rB . ?

(
r6
)
and ?

(
r6
)
are the marginal probability

distributions of r6 and rB , respectively. To optimize the above objective function, we can approximate the
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maximization of mutual information through InfoNCE (Contrastive Estimation of Neural Entropy) [17, 67]. The
InfoNCE loss is formulated as follows:

LInfoNCE = E?
(
r6,rB

) [5B8< (
r6, rB

)
− log

∑
B′∈(

exp5B8<
(
r6, rB′

) ]
, (5)

where, We introduce a discriminator function 5B8< (·, ·) to measure the similarity between different views. The
goal is to ensure that the similarity of positive sample pairs is higher than that of negative sample pairs. During
training, the model minimizes the InfoNCE loss using gradient descent methods, updating the parameters of both
the GNNs and the LLMs.

4 METHODOLOGY
In this section, we initially present our DALR framework. We then delve into a detailed examination of each
module within this framework.

4.1 An Overview of DALR
We propose a general framework named DALR, which aims to leverage the capabilities of LLMs to align the
representations of GNN-based models and mitigate the noise impacts. The structure is shown in Fig. 2. DALR
predicts the probability of a user interacting with a candidate item by utilizing interaction data and LLMs’ textual
information as input. We improve recommender’s performance and addresses noise issues through two key
components: hybrid feature alignment and semantic attribute alignment. (i) Hybrid feature alignment. The
objective of hybrid feature alignment is to co-align hybrid features with the feature representations from the
backbone network, thereby bridging the gap between different spaces and enhancing the model’s representation.
Hybrid features are defined as a fusion of semantic information from LLMs and structural information from graph
data. Additionally, our sampling strategy can effectively control and capture the similarity of neighbourhood
graph nodes based on transition factors, thereby reducing interference from irrelevant nodes. (ii) Semantic
attribute alignment. We enhance model representation by maximizing the mutual information paradigm. By
contrasting the similarities and differences between samples from different views, this method helps our model
to alleviate noise issues. We treat the representations from the backbone network and the semantic information
from the LLM as two distinct perspectives. Besides, we design a profile representation module to provide profile
information and semantic representations for users and items separately using ChatGPT. We aim to provide
valuable profiles and semantic representation for user preference learning by a carefully designed prompt template.
Finally, our model yields high-quality representations of items and users with joint training.

4.2 Profile Representation Module
This section discusses the significance and design patterns of user and item profiles. To effectively understand
the semantic preferences underlying user-item interactions, valuable profiles play a crucial role in the model.
Technically, we generate user and item profiles from interaction data and user/item information using ChatGPT
API from OpenAI1. We have established precise prompt instructions to control the quality of profiles and avoid
the influence of text noise. User profiles should effectively summarize the types and features of items representing
the user’s historical preferences, reflecting the user’s personalized interests. Item profiles should clearly describe
the characteristics, features, and audience types, facilitating better alignment with user preferences. Furthermore,
we incorporate unique user identifiers into the input prompts to mitigate the gap between diverse spatial
representations.

1https://platform.openai.com/
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Fig. 2. An intuitive illustration of our DALR framework. DALR is a universal recommendation framework comprising three
modules: (a) Hybrid Feature Alignment, (b) Semantic Attribute Alignment, and (c) Backbone Models. In the Hybrid Feature
Alignment stage, cross-representation space contrastive learning is utilized to align knowledge from two modalities. During
the Semantic Attribute Alignment stage, mutual information learning is employed to contrast self-supervised signals from
different views. In the third stage, a joint collaborative model fine-tunes the backbone model and evaluates its performance
on the test dataset.

4.2.1 Item Prompt Construction. Fig. 8 illustrates the design of input prompts and system instructions for
generating item profiles. Inspired by prior research [9, 14], we recognize that effective prompts must encompass
key semantic details like the item’s unique number, title, category, and description. Accordingly, we crafted the
following input prompt template for items:

PE = 5E ( [483 , 4C , 40, 43 ]) , (6)

where, the function 5E (·) merges different elements into a unified string. 483 , 4C , 40, 43 represent unique number,
title, attributes, and descriptions, respectively. If the element 4 is absent, we assign it as NULL.

4.2.2 User Prompt Construction. Similar to constructing prompts for items, we leverage historical interaction
data and item details to create user profiles, illustrated in Fig. 9. We select a random subset of items the user has
interacted with and consolidate them into a coherent string. To capture user preferences accurately, comments
made by the user on interactive items are incorporated as a crucial component. The user’s input prompt PD is
established as follows:

PD = 5D ({rE | E ∈ VD}) , (7)
where, the function 5D (·) merges various elements into a single string, similarly to how 5E (·) operates. VD is is
the collection of items that the user interacted. We form an interaction record as rE =

[
PD,E, 2

E
D

]
, where 2ED denotes

the comments given by user D. This format of user prompts captures authentic user interests and feedback in text
format, which are subsequently translated into semantic features for utilization in downstream tasks.

4.2.3 Profile Generation and Semantic Representation. To alleviate the hallucination issues [61] in inference
generation of large language models and enhance the quality of generated data, we designed the system prompt
instructions S�

E/D as a crucial input provided to the LLMs. Our objective is to accurately set the boundaries for
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generating user and item profiles by detailing the input-output content and format. Following existing handling
approaches [35], our profile generation approach is outlined as follows:

AE = !!"�ℎ0C�%)

(
S�
E,PE

)
, AD = !!"�ℎ0C�%)

(
S�
D,PD

)
, (8)

where, PD and PE denote the input prompts of users and items. S�
D and S�

E are the system prompts for users and
items, respectively. AD and AE denote the generated profiles for users and items. !!"�ℎ0C�%) is a large language
model developed by OpenAI.

The enhanced information on users and items is transformed into feature representations and used as input in
the recommendation system. The LLM plays a crucial role as an encoder, analyzing what users are interested
in, reducing noise in item features, and tackling issues of sparse interactions with its accurate and advanced
understanding of semantics. Formally, the process for generating LLM-based semantic representations is outlined
as follows:

rAE
= !!"4<1 (AE) , rAD

= !!"4<1 (AD) , (9)

where, rAE
, rAD

, ∈ R3!!" are LLM-augmented representation of users and items. !!"4<1 denotes text-embedding-
ada-002, which is a new and improved text embedding model from OpenAI.

4.3 Hybrid Feature Alignment
As previously discussed, existing efforts enhance recommendation systems by leveraging the external knowledge
and semantics of large language models. However, current LLMs-based methods struggle to effectively bridge
the gap between textual semantic expression and the structured spatial representation offered by graph neural
networks. This challenge stems from the direct alignment of textual semantics with aggregated ID representations
being unsmooth. Such alignment fails to maximize mutual information across different spaces. To address this
problem, we propose a hybrid feature alignment module designed to improve the representational capabilities of
recommendation systems. Specifically, We define hybrid features as the fusion of semantic information from
LLMs and structural information from graph data. These hybrid features are used for collaborative alignment
with the feature representations from the backbone network to alleviate the representation gap and enhance
performance effectively.

4.3.1 Hybrid Feature Representation. The concept of homogeneity in a network means that embeddings of
closely linked nodes are alike. Meanwhile, homology in a network indicates that nodes with similar structures
yield similar embeddings. Both homogeneity and homology play vital roles in the representation of graph-
based recommendation systems. Drawing inspiration from node2vec [16], our approach integrates both the
homogeneity and structural attributes into the node representations. The above function is implemented by
utilizing the transition probabilities between nodes in the graph.

Sampling strategy. The sampling strategy aims to obtain structure sequences centred on the current node =8
from the interaction graph to generate hybrid features. This strategy is a core component of the hybrid feature
alignment module, designed to bridge the gap between different representation spaces and enhance the model’s
representation capability. In the sampling module, we control the transition probability of sampling through
transition factors @ and ? . By controlling transition factors of the sampling strategy, we can effectively manage
the homogeneity and isomorphism of the sampled nodes centred on node =8 .

Following the design of node2vec [16], we employ a neighbor sampling strategy. This approach allows the
model to seamlessly transition between breadth-first search (BFS) and depth-first search (DFS) sampling methods.
During the sampling process, two primary parameters are involved: the return parameter ? and the in-out
parameter @. Given a current node E1 and a previously visited node D0, the transition probability cE1,G to a next
node G is calculated as follows: cE1,G = U?,@ (D0, G) ·FE1,G . Here,FE1,G is the edge weight between vertices E1 and
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G , it is set to 1 by default. U?,@ (D0, G) is a correction factor, defined as follows:

U?,@ (D0, G) =


1
?
, if 3D0,G = 0

1, if 3D0,G = 1
1
@
, if 3D0,G = 2

. (10)

where, 3D0,G = 0 indicates that the distance from node D0 to node G is 0 (also referring to D0 itself), then the
transition probability is 1

?
. If there is a path with a distance of 1 from node D0 to G , then the probability of walking

to G in the next step is 1. If G is a direct neighbor of D0, but D0 and the current node E1 are not direct neighbors,
then the transition probability is 1

@
.

By adjusting ? and @, we can flexibly balance between preserving local neighborhood information (homophily)
and exploring distant nodes (structural exploration). For each node 4 (4 ∈ {D8 , E8 }), the sequence B4 obtained by
sampling strategy can be expressed as B4 = (41, · · · , 4; ), Here, 48 is the node from GD,E and ; is the length of the
sequence.

Hybrid Feature.Through the sampling strategy, we obtain a sequence of structural attributes centered around
the current node. To represent the enhanced structural sequence, we utilize !!"4<1 as an encoder to provide
efficient and state-of-the-art representation understanding for aligning structural attributes. The !!"4<1 encoder
refers to ”text-embedding-ada-002,” an advanced language model embedding technique developed by OpenAI.
This model can transform text into high-dimensional vector representations, thereby capturing the semantic
information of the text.

Given the structured sequence of the current node B83 = {41, · · · , 4; }, which is obtained through a sampling
strategy. We aim to generate hybrid features by integrating the LLM-generated profiles with the structured
sequences. This integration produces a hybrid feature sequence containing both structural and textual features:
Bℎ = 5

( [
48 ,A48 |48 ∈ B83

] )
. Subsequently, this hybrid feature sequence is encoded by the !!"4<1 encoder, trans-

forming the hybrid sequence into a vector form hB . Formally, the LLM-based hybrid feature augmentation is
as: {

DB4A : hBD = !!"4<1 (BD)
8C4< : hBE = !!"4<1 (BE)

, (11)

where, hBD , hBE , ∈ R3!!" are LLM-augmented user/item hybrid features. !!"4<1 (·) is an advanced language
model encoder (text-embedding-ada-002) by OpenAI. Here, we obtain the hybrid features by fusing structural
sequences and textual semantics from LLMs.

4.3.2 alignment modeling module. To align backbone model representations with hybrid structural features, we
consider the user/item representation by the GNNs module and the LLM module, respectively, as two different
views. Our model boosts the learning of representations by optimizing for maximum mutual information between
positive and negative examples. In detail, each user and item is assigned initial embeddings D and E in GNN-based
recommenders. The goal is to learn user and item representations u, v through a GNN-based model, formally:

u8 , v9 = RG
(
D8 , E 9

)
, (12)

where, RG is a GNN-based backbone model. u8 and v9 are the feature representation by the backbone model.
D8 and E 9 mean the initialize feature of the user and item. The user’s hybrid feature hBD and the item’s hybrid
feature hBE are obtained from the section 4.3.1. We calculate the alignment loss function for two different spatial
features. From a technological standpoint, we adopt a modeling strategy centered on similarity contrast, denoted
as 5B8< (·, ·), inspired by existing techniques [35]. The function 5B8< (·, ·) serves as a measure of similarity, assessing
the resemblance between u8/v9 and hBD/hBE . The optimization formula for the representation of users and items
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is specified as follows:
LD

0;86
= 5B8<

(
hBD , u

)
− log

∑
D′∈U

exp
(
5B8<

(
hBD′ , u

) )
, (13)

LE
0;86

= 5B8<
(
hBE , v

)
− log

∑
E′∈V

exp
(
5B8<

(
hBE′ , v

) )
, (14)

where D′ and E ′ are the negative sample. 5B8< (·, ·) is implemented with cosine similarity function. Finally, we
denote the alignment loss of the hybrid feature module as L�~1 = LD

0;86
+ LE

0;86
.

4.4 Semantic Attribute Alignment
Existing GNN-based recommendation methods predict user preferences based on the similarity of user and item
representations. With their exceptional ability to harness external knowledge and semantics, large language
models can significantly enhance recommendation systems’ semantic representations [66]. Inspired by RLMRec,
we have explored a semantic alignment attribute module to mitigate the effects of noise better. Denoising
contrast improves model performance by the paradigm of mutual information maximization, which regards
the representations (aggregated information) of backbone networks and the LLM’s semantics (interaction and
profiles) as two different views. It aims to bolster the model’s representative capacity by aligning semantic
representations of features based on LLM and GNN with a cross-view contrastive module. To ensure alignment
consistency, we also utilize two modeling methodologies: comparative and generative. This strategy improves the
alignment between representations from GNN-based models and those from LLM, reducing the effects of noise
during the learning of representations.

4.4.1 Contrastive modeling module. Contrastive modeling has been widely validated on recommender systems
to align different views efficiently [23]. As shown in Fig. 2 (b), we consider the representation of users/items
from the GNNs and LLM modules to be two different views. Effective contrastive learning can be achieved by
maximizing the similarity between similar samples and minimizing the similarity between dissimilar samples.
The optimization function of the user’s representation is as follows:

LD
2>= = −Elog

[
5 2B8<

(
rAD

, u
)∑

D′∈U 5 2B8<
(
rAD′ , u

) ] , (15)

where, 5 2B8<
(
rAD

, u
)
= 4G? (B8<(5 −

<;?
(rAD

, u))) is the cosine similarity function. The goal of the function 5 −
<;?

is
to map the semantic representation rAD

into the GNNs representation u.
Similar to the handling of users, the optimization function of item’s representation can be denoted:

LE
2>= = −Elog

[
5 2B8<

(
rAE

, v
)∑

E′∈V 5 2B8<
(
rAE′ , v

) ] , (16)

where 5 2B8<
(
rAE

, v
)
= 4G? (B8<(5 −

<;?
(rAE

), v)). In the end, we denote the loss of contrastive modeling module as
L2>= , L2>= = LD

2>= + LE
2>= .

4.4.2 Generative modeling module. Inspired by generative self-supervised learning [56], we utilize a masked
autoencoder (MAE) as a generative modeling component following RMLRec [35]. The generative process aims
to reconstruct the semantic representations for the masked samples by a single-direction reconstruction ap-
proach. Technically, we explore the reconstruction capability within the semantic feature space by masking and
reconstructing random subsets of users/items. For the user’s representation, the calculation function of cosine
similarity between the GNNs representation and the LLMs representation can be denoted as follows:

5
6

B8<

(
rAD

, u
)
= 4G? (B8<(rAD

, 5 +
<;?

(ũ))), (17)
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where, ũ = R ({u \ u8 }) denotes the initial embedding of the 8-th sample with a masking technique. The function
5 +
<;?

maps the GNNs representation to the semantic representation via a multi-layer perception layer. The
generative process adopts a single-direction reconstruction method, with a focus on reconstructing the semantic
representations solely for the masked samples. This permits us to explore the generative power in semantic space.

After obtaining generative self-supervised signals from users and items, we optimize the generative alignment
using a contrastive learning approach. Formally:

L64= = LD
64= + LE

64= = −Elog
[

5
6

B8<

(
rAD

, u
)∑

D′∈U 5
6

B8<

(
rAD′ , u

) ] − Elog

[
5
6

B8<

(
rAE

, v
)∑

E′∈V 5
6

B8<

(
rAE′ , v

) ] (18)

where, D′ ≠ D, E ′ ≠ E , LD
64= and LE

64= denote the user’s optimization loss and item’s optimization, respectively.
The loss L64= of the generative modeling module is obtained by summing the user generative loss LD

64= and the
item generative loss LE

64= .

4.5 Prediction and Model Optimization
Prediction Module. In the prediction layer, we calculate the relevance probability by a user’s feature u and
vectors v of candidate items as follows:

~̂DE = f (u · v) , (19)

where f is a sigmoid activation function, u and v indicate the embedding representation of user and items,
respectively.
Model Optimization. We minimize the following objective function to learn the model’s parameter by

combining the independence loss and BPR loss [44]:

L = L�%' + _1L�~1 + _2L(4< + _3 ‖K ‖22 , (20)

whereK is the set of parameters; _1, _2 and _3 are the hyper-parameters to control the independence loss and !2
regularization term, respectively. L(4< contains two different strategies: contrastive loss L2>= and generative
loss L64= . In particular, we assume that observed interactions indicate more user preferences and should be given
higher predictive values than unobserved interactions:

L�%' =
∑

(D,E+,E− ) ∈O
− lnf

(
~̂D,E+ − ~̂D,E−

)
, (21)

where $ = {(D, E+, E−) | (D, E+) ∈ R+, (D, E−) ∈ R−} is the pairwise training data, R+ means the positive samples,
R− denotes the negative samples, E+ is user clicked item, E− is no click item. ~̂D,E+ represents the calculated score.

To optimize the loss L, we employ the mini-batch Adam algorithm, which adaptively adjusts both the gradient
and the learning rate. For training data, we select samples from both observed and unobserved interactions,
representing positive and negative instances, respectively. In practice, we randomly select a batch consisting of
user-item pairs (D, E+, E−) to capture the representation of users and items. The training procedure of our model
is illustrated in Algorithm 1.

The learning process of our model is detailed in Algorithm 1. Lines 1-2 initiate the process by setting up model
parameters and the adjacency matrix based on the user-item graph. The algorithm samples interactions and gener-
ates collaborative representations from lines 3-6. Lines 7-8 focus on deriving semantic representations from LLMs
and calculating the corresponding loss. In lines 9-11, the model infers hybrid features and computes the overall
loss by integrating semantic and hybrid loss components with specific weights. Finally, line 12 updates the model’s
parameters, concluding with the optimized parameters being returned in line 13. Finally, DALR enhances the
performance of the recommender through a mix of collaborative signal and alignment representation. We provide
the source code repository of our DALR framework at the following link: https://github.com/pengyingtao/DALR.
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Algorithm 1 Our model Learning algorithm.
Require:

Interaction matrix Y, user-item graph G, LLMs, the backbone model R� , loss weights and hyper-parameters
_1, _2, _3, learning rate [.

Ensure:
Model parameters �

1: Randomly initialize neural parameters �
2: Constructe adjacency matrix of entities A4 from G
3: while An epoch is not end do
4: Sample minibatch of positive and negative interactions from Interaction matrix Y;
5: Inference collaborative-side representation eD/E with R� ;
6: Compute model optimization objective L�%' (�) (�@. (21))
7: Inference semantic representation rAD

and rAE
with LLMs

8: Compute the loss L(4< (�) ((42.4.3)
9: Inference hybrid feature hBD and hBE

10: Compute the loss L�~1 (�) ((42.4.4.2)
11: L (�) = L�%' + _1L�~1 (�) + _2L(4< (�)
12: Update neural parameters
13: end while
14: return �

5 EXPERIMENTS
In this section, we assess the performance of our framework. Initially, we outline the datasets used for evaluation.
Subsequently, we detail the baseline models and the settings of our experiments. Lastly, we present the results of
these experiments and analyze the impact of various hyper-parameters.

5.1 Experimental Setings
We aim to answer the following three research questions (RQ) in experiments.
• RQ1: How does our proposed DALR framework perform compared with state-of-the-art GNN-based recom-

mendation methods? Specifically, has it effectively bridged the representation gap that was a notable issue in
prior methodologies?

• RQ2: Whether the modules of our model can work well, including the hybrid feature alignment and the
semantic attribute alignment?

• RQ3: Can DALR perform well in the presence of noise and data sparsity issues?
• RQ4. How do different hyper-parameter settings (e.g., _8 , @) affect the recommendation performance?

5.1.1 Datasets Description. The Amazon-Book2 dataset is a collection of data on book products from the Amazon
website, which includes user reviews, ratings, and other relevant information about the books. Specifically, the user
information includes unique user IDs and profile information. The book information includes unique identifiers,
titles, authors, and so on. Other relevant information also includes user purchase records, click behaviors,
preference tags, and more. Similarly, the Steam dataset3, sourced from the Steam platform, encompasses user
reviews and game attribute data, featuring a vast user base, numerous game titles, and millions of reviews. In
addition to textual reviews, it provides temporal data on user gameplay activities. The Yelp2018 dataset, sourced
2http://jmcauley.ucsd.edu/data/amazon/
3https://www.kaggle.com/tamber/steam-video-games/data
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Table 2. Statistics of the experimental datasets.

Dataset #Users #Items #Interactions #Density
Amazon-Book 11,000 9,331 200,860 1.96E-03

Steam 23,310 5,236 525,923 4.31E-03
Yelp 11,091 11,010 166,620 1.41E-03

Movie-1m 6,040 3,952 1,000,209 4.19E-02

from the Yelp website4, includes user and business information, ratings, reviews, and millions of interaction
records, making it ideal for evaluating large-scale recommender systems. The MovieLens-1M (Movie1M) dataset5,
sourced from GroupLens Research, comprises 1 million ratings on almost 3,900 movies by over 6,000 users.

For preprocessing, we followed the established protocols outlined in previous studies [35, 56]. Specifically,
we filtered out interactions with ratings below 3 in the Amazon-Book and Yelp dataset, while no filtering was
applied to the Steam and Movie1m dataset. Each dataset was then partitioned into training, validation, and test
sets using a 6:2:2 ratio. For detailed dataset information, please refer to Table 2.

5.1.2 Baselines. To evaluate the performance improvement of our framework, we conduct comparisons with
the state-of-the-art GNN-based recommender enhanced with LLMs. This approach allows for an independent
assessment of our framework’s effectiveness compared to baselinemodels.These baselines fall into three categories:
aggregation-based approaches (such as LightGCN [20]), denoising models (like DenoisingRec [41], SGDL [13]
and BOD [47]), self-supervised models (including SGL [52], SimGC [62]L, DCCF [36], and AutoCF [56]), and
LLMs-enhanced approaches (like LLMRec [50] and RLMRec [35]).
• LightGCN [20], a simplified graph convolutional neural network, models user-item interactions in recom-

menders.
• DenoisingRec [41] improves recommender systems by adaptively identifying and pruning noisy feedback

during training, using Truncated Loss and Reweighted Loss strategies to enhance recommendation quality.
• SGDL [13] leverages early memorized interactions to guide training and automatically adapts learning phases,

improving robustness across various recommendation models and loss functions.
• BOD [47] models denoising recommendation as a bi-level optimization problem, addressing implicit feedback

noise by adapting weights dynamically based on previous iterations and avoiding prior knowledge.
• SGL [52] is a recommendation system approach based on graph self-supervised learning, which leverages the

structural information of user-item interaction graphs to learn embedding representations without requiring
additional annotations, thereby improving recommendation performance.

• SimGCL [62] aims to enhance recommendation performance by conducting contrastive learning on sim-
plified graph representations of user-item interaction graphs to learn more discriminative user and item
representations.

• DCCF [36] is a collaborative filtering method that disentangles user-item interactions into distinct aspects and
applies contrastive learning to these aspects separately. DCCF improves recommendation quality by effectively
capturing diverse user preferences and item characteristics.

• AutoCF [56] provides an automated graph-enhancement scheme by combining subgraph semantic relevance
based on information maximization with self-supervised learning signals. This approach automatically extracts
rich self-supervised information in an unsupervised manner.

• LLMRec [50] improves data reliability and recommendation performance through three LLM-based graph
augmentation strategies and a denoising data robustification mechanism.

4https://www.yelp.com
5https://grouplens.org/datasets/movielens/1m/
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• RLMRec [35] proposes a model-agnostic framework to enhance existing recommendation systems through
representation learning empowered by LLMs. It combines representation learning with large language models
to capture complex semantic aspects of user behavior and preferences.

5.1.3 Evaluation Metrics. When evaluating GNN-based recommender systems, it is essential to assess model
performance from two perspectives: (1) the average accuracy of the recommended items and (2) the accuracy of
item ranking within the recommended set. To take both aspects into account, we use commonly adopted metrics
[20, 33]: Recall@K and Normalized Discounted Cumulative Gain (NDCG@K ). We set the default values of K to 5,
10, and 20 and report the average metrics for all users in the test dataset.

Recall: It is the proportion of correctly predicted positive samples by the model out of the total true positive
samples.

Recall =

∑
D∈*

|'(D)∩) (D) |∑
D∈*

|) (D) | , (22)

here, '(D) represents the recommended list given based on user behavior in the training set, and ) (D) represents
the recommended list given based on user behavior in the test set.

Discounted Cumulative Gain (DCG): This metric indicates that placing the items liked by the user at the top of
the recommendation list can significantly enhance the user experience compared to placing them further down.

��� (1, !) =
1∑
8=1

A8 +
!∑

8=1+1

A8

log18
, (23)

where A8 denotes whether the item ranked in position 8 is liked by the user. If A8 = 1, it indicates that the user
likes the item; if A8 = 0, it means the user does not like the item. 1 is a free parameter, and ! represents the length
of the recommendation list. Then, since DCG values are not directly comparable between users, they need to be
normalized. Specifically, all items in the test set are first sorted in the ideal order, and the top K items are selected
to calculate their DCG. Then, the original DCG is divided by the DCG under the ideal order, resulting in the
Normalized Discounted Cumulative Gain (NDCG):

#���@ =
���

8���
(24)

5.1.4 Parameter Settings. The experiments were performed using the PyTorch framework on an Nvidia GPU
equipped with 48 GB of memory. User and item profiles were generated using the ChatGPT model (gpt-3.5-turbo),
while semantic representations were obtained using the text embedding model (text-embedding-ada-002) from
OpenAI. Baseline models were evaluated using their respective released implementation source codes to ensure
fairness in comparison. The dimension of representations was standardized to 32 across all base models. The
training process employed the Adam optimizer with a fixed batch size of 4096 and a learning rate of 0.001.
Additional insights on parameter analysis can be found in Section 5.5.

5.2 Performance Comparison (RQ1)
To validate the effectiveness of our approach in improving recommendation performance, we compared it with
five state-of-the-art graph-based recommenders. We conducted three random initializations in the experiments
and averaged the results, as shown in Table 3, 4, 5, and 6. We report the performance comparison in the result
tables, where the performance of the strongest baseline is presented in an underlined format, and the best
performance is in bold font. From these experimental results, we can draw the following conclusions:

(1) Firstly, we observed that our denoising alignment framework for recommendation outperforms LLMRec and
RLMRec in enhancing the performance of the backbone recommender. The results in Table 1 provide compelling
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Table 3. Overall performance comparisons with baseline models on Amazon-Book.

Recall@5 Recall@10 Recall@20 NDCG@5 NDCG@10 NDCG@20
DenoisingRec Denoising 0.0330 0.0543 0.0838 0.0348 0.0419 0.0517

NGCF 0.0486 0.0841 0.1312 0.0512 0.0613 0.0789
Base 0.0579 0.0916 0.1434 0.0584 0.0700 0.0869

LLMRec 0.0608 0.0972 0.1480 0.0625 0.0743 0.0911
LightGCN RLMRec-Con 0.0613 0.0976 0.1490 0.0616 0.0742 0.0910

RLMRec-Gen 0.0615 0.0969 0.1492 0.0628 0.0747 0.0916
Our model 0.0642 0.1023 0.1527 0.0634 0.0764 0.0927

Imp.% 4.41% 4.87% 2.36% 0.89% 2.32% 1.24%
SGDL Denoising 0.0664 0.1067 0.1500 0.0677 0.0797 0.0954

Base 0.0644 0.1023 0.1480 0.0643 0.0774 0.0925
RLMRec-Con 0.0660 0.1026 0.1527 0.0661 0.0786 0.0950

SGL RLMRec-Gen 0.0644 0.1010 0.1529 0.0653 0.0779 0.0948
Our model 0.0676 0.1039 0.1560 0.0664 0.0793 0.0960

Imp.% 2.45% 1.21% 2.02% 0.49% 0.97% 1.00%
BOD Denoising 0.0713 0.1126 0.1659 0.0733 0.0875 0.1048

Base 0.0610 0.0991 0.1513 0.0612 0.0747 0.0915
RLMRec-Con 0.0651 0.1022 0.1559 0.0653 0.0781 0.0955

SimGCL RLMRec-Gen 0.0619 0.0984 0.1518 0.0631 0.0755 0.0928
Our model 0.0664 0.1058 0.1616 0.0663 0.0799 0.0981

Imp.% 1.92% 3.50% 3.64% 1.47% 2.27% 2.68%
Base 0.0670 0.1034 0.1517 0.0662 0.0791 0.0945

RLMRec-Con 0.0665 0.1039 0.1555 0.0661 0.0791 0.0961
DCCF RLMRec-Gen 0.0680 0.1027 0.1542 0.0672 0.0789 0.0959

Our model 0.0690 0.1065 0.1583 0.0678 0.0802 0.0972
Imp.% 1.47% 2.52% 1.78% 0.85% 1.31% 1.11%
Base 0.0688 0.1058 0.1559 0.0714 0.0837 0.0998

RLMRec-Con 0.0696 0.1064 0.1578 0.0703 0.0827 0.0995
AutoCF RLMRec-Gen 0.0691 0.1088 0.1608 0.0711 0.0845 0.1014

Our model 0.0731 0.1118 0.1644 0.0735 0.0862 0.1028
Imp.% 4.96% 2.71% 2.28% 3.39% 1.98% 1.43%

evidence of the effectiveness of our model. Specifically, taking the SimGCL backbone model as an example, on the
Movie1m dataset, our model improves Recall@5, Recall@10, Recall@20, NDCG@5, NDCG@10, and NDCG@20
by 3.55%, 2.47%, 5.17%, 3.54%, 3.36%, and 2.91%, respectively, compared to the strongest baseline RLMRec. On
the Steam dataset, our model achieves improvements of 11.09%, 7.67%, and 5.64% in Recall@5, Recall@10, and
Recall@20, and 1.04%, 0.97%, and 1.14% in NDCG@5, NDCG@10, and NDCG@20, respectively, compared to the
strongest baseline RLMRec. These enhancements are attributed to three main factors: (1) Hybrid feature alignment
further mitigates the gap between LLM semantic space and GNN-based structural space. (2) By contrasting
semantic information from different views, DALR effectively alleviates the impact of irrelevant noise on the
recommendation features. (3) Our carefully designed prompt representation module via LLM effectively controls
the quality of text semantic generation, providing semantic support for downstream tasks.

(2)The hybrid feature alignment supported by LLM enhances the recommender’s coverage of user interests.The
results show that the improvement in recall metrics surpasses that of NDCG metrics in most datasets. Specifically,
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Table 4. Overall performance comparisons with baseline models on Steam.

Recall@5 Recall@10 Recall@20 NDCG@5 NDCG@10 NDCG@20
DenoisingRec Denoising 0.0415 0.0671 0.1083 0.0476 0.0554 0.0689

NGCF 0.0588 0.0819 0.1292 0.0544 0.0631 0.0788
Base 0.0519 0.0863 0.1351 0.0571 0.0688 0.0852

LLMRec 0.0551 0.0908 0.1435 0.0601 0.0725 0.0905
LightGCN RLMRec-Con 0.0553 0.0900 0.1417 0.0604 0.0721 0.0897

RLMRec-Gen 0.0553 0.0910 0.1445 0.0604 0.0726 0.0907
Our model 0.0574 0.0931 0.1465 0.0625 0.0745 0.0928

Imp.% 3.82% 2.26% 1.41% 3.48% 2.64% 2.33%
SGDL Denoising 0.0559 0.0925 0.1431 0.0618 0.0740 0.0911

Base 0.0559 0.0911 0.1425 0.0614 0.0734 0.0909
RLMRec-Con 0.0592 0.0945 0.1481 0.0647 0.0766 0.0947

SGL RLMRec-Gen 0.0575 0.0930 0.1463 0.0625 0.0745 0.0927
Our model 0.0664 0.1016 0.1530 0.0668 0.0789 0.0961

Imp.% 12.20% 7.48% 3.37% 3.21% 2.99% 1.46%
BOD Denoising 0.0568 0.0929 0.1442 0.0635 0.0759 0.0937

Base 0.0567 0.0930 0.1450 0.0621 0.0742 0.0920
RLMRec-Con 0.0581 0.0948 0.1475 0.0639 0.0761 0.0941

SimGCL RLMRec-Gen 0.0578 0.0934 0.1462 0.0632 0.0753 0.0932
Our model 0.0645 0.1021 0.1558 0.0645 0.0768 0.0951

Imp.% 11.09% 7.67% 5.64% 1.04% 0.97% 1.14%
Base 0.0562 0.0921 0.1453 0.0622 0.0743 0.0923

RLMRec-Con 0.0568 0.0934 0.1466 0.0627 0.0749 0.0929
DCCF RLMRec-Gen 0.0566 0.0920 0.1437 0.0626 0.0745 0.0921

Our model 0.0584 0.0946 0.1478 0.0640 0.0759 0.0940
Imp.% 2.82% 1.30% 0.85% 2.16% 1.34% 1.16%
Base 0.0519 0.0853 0.1357 0.0574 0.0687 0.0858

RLMRec-Con 0.0524 0.0873 0.1383 0.0577 0.0695 0.0868
AutoCF RLMRec-Gen 0.0542 0.0894 0.1408 0.0592 0.0711 0.0886

Our model 0.0562 0.0923 0.1448 0.0608 0.0728 0.0906
Imp.% 3.73% 3.32% 2.86% 2.75% 2.45% 2.29%

considering the Amazon-book dataset, on the LightGCN backbone model, our model outperforms the strongest
baseline model by 4.41%, 4.87%, and 2.36% in Recall@5, Recall@10, and Recall@20, respectively, while achieving
improvements of 0.89%, 2.32%, and 1.24% in NDCG@5, NDCG@10, and NDCG@20. For Yelp, compared to the
strongest baseline model on the LightGCN backbone model, our model achieves enhancements of 5.57%, 4.19%,
and 2.33% in Recall@5, Recall@10, and Recall@20, respectively, while achieving improvements of 5.55%, 2.19%,
and 1.92% in NDCG@5, NDCG@10, and NDCG@20. These results indicate that our framework better captures
user interests than the baseline models. This improvement is attributed to the meticulously designed prompts via
LLM and the alleviation of the gap between different spaces through hybrid feature alignment.

(3) Both the hybrid alignment and semantic alignment methods generally lead to performance improvements.
From the table, it can be observed that the RLMRec and LLMRec methods outperform all baseline methods.
Specifically, on the Steam dataset, the RLMRec method achieves Recall@5, Recall@10, and Recall@20 scores of
2.51%, 1.93%, and 1.74% higher than the SimGCL method, respectively. Similarly, the RLMRec method achieves
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Table 5. Overall performance comparisons with baseline models on Movie1M.

Recall@5 Recall@10 Recall@20 NDCG@5 NDCG@10 NDCG@20
DenoisingRec Denoising 0.0589 0.1038 0.1784 0.2668 0.2589 0.2633

NGCF 0.0579 0.1092 0.1799 0.2651 0.2524 0.2547
Base 0.0575 0.1071 0.1793 0.2646 0.2516 0.2538

LLMRec 0.0663 0.1132 0.1849 0.2732 0.2617 0.2616
LightGCN RLMRec-Con 0.0675 0.1139 0.1861 0.2751 0.2623 0.2618

RLMRec-Gen 0.0647 0.1093 0.1794 0.2702 0.2563 0.2554
Our model 0.0716 0.1196 0.1920 0.2893 0.2741 0.2696

Imp.% 6.12% 4.98% 3.17% 5.13% 4.50% 2.99%
SGDL Denoising 0.0685 0.1256 0.1930 0.2791 0.2689 0.2713

Base 0.0672 0.1148 0.1877 0.2689 0.2589 0.2601
RLMRec-Con 0.0739 0.1256 0.2020 0.2847 0.2746 0.2763

SGL RLMRec-Gen 0.0723 0.1238 0.1998 0.2848 0.2719 0.2737
Our model 0.0777 0.1294 0.2073 0.2900 0.2791 0.2828

Imp.% 5.10% 2.96% 2.66% 1.85% 1.64% 2.38%
BOD Denoising 0.0775 0.1309 0.2135 0.2893 0.2801 0.2825

Base 0.0680 0.1161 0.1903 0.2691 0.2574 0.2592
RLMRec-Con 0.0758 0.1285 0.2077 0.2798 0.2696 0.2728

SimGCL RLMRec-Gen 0.0758 0.1287 0.2079 0.2818 0.2692 0.2715
Our model 0.0785 0.1316 0.2184 0.2897 0.2787 0.2807

Imp.% 3.55% 2.47% 5.17% 3.54% 3.36% 2.91%
Base 0.0757 0.1287 0.2058 0.2868 0.2781 0.2789

RLMRec-Con 0.0767 0.1296 0.2092 0.2917 0.2801 0.2822
DCCF RLMRec-Gen 0.0746 0.1262 0.2054 0.2884 0.2762 0.2788

Our model 0.0795 0.1342 0.2185 0.2980 0.2892 0.2870
Imp.% 3.53% 3.55% 4.46% 2.17% 3.27% 1.69%
Base 0.0270 0.0501 0.0853 0.1908 0.1835 0.1680

RLMRec-Con 0.0288 0.0506 0.0856 0.1953 0.1828 0.1729
AutoCF RLMRec-Gen 0.0299 0.0537 0.0927 0.2092 0.1925 0.1798

Our model 0.0314 0.0556 0.0951 0.2114 0.1985 0.1869
Imp.% 4.95% 3.43% 2.61% 1.06% 3.13% 3.96%

NDCG@5, NDCG@10, and NDCG@20 scores of 2.90%, 2.51%, and 2.24% higher than the SimGCL method,
respectively. However, it is worth noting that the DALR method exhibits superior performance when combined
with the backbones of SGL and SimGCL. Specifically, on the Steam dataset, the DALR method achieves Recall@5,
Recall@10, and Recall@20 scores of 13.88%, 9.75%, and 7.47% higher than the SimGCL method. Likewise, the
DALR method achieves NDCG@5, NDCG@10, and NDCG@20 scores of 3.98%, 3.51%, and 3.40% higher than the
SimGCL method. Thus, this further validates the efficacy of our framework over the RLMRec method.

(4) We achieved a significant improvement compared to the denoising baseline. From the results presented in
the tables, the following conclusions can be drawn: a) Our model consistently outperforms both the baseline
model (Base) and the denoising model (Denoising) across all datasets and evaluation metrics. This indicates
that the proposed hybrid alignment and denoising alignment methods significantly mitigate the impact of noise
and enhance the model’s performance. b) The BOD model demonstrates a notable improvement over SGDL,
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Table 6. Overall performance comparisons with baseline models on Yelp.

Recall@5 Recall@10 Recall@20 NDCG@5 NDCG@10 NDCG@20
DenoisingRec Denoising 0.0260 0.0451 0.0766 0.0316 0.0373 0.0481

NGCF 0.0367 0.0621 0.1064 0.0443 0.0528 0.0619
Base 0.0416 0.0706 0.1150 0.0485 0.0577 0.0728

LLMRec 0.4105 0.1716 0.1210 0.0492 0.0600 0.0745
LightGCN RLMRec-Con 0.0417 0.0717 0.1134 0.0492 0.0606 0.0739

RLMRec-Gen 0.0416 0.0719 0.1212 0.0494 0.0596 0.0748
Our model 0.0440 0.0749 0.1240 0.0521 0.0620 0.0762

Imp.% 5.57% 4.19% 2.33% 5.55% 2.19% 1.92%
SGDL Denoising 0.0428 0.0735 0.1241 0.0488 0.0598 0.0756

Base 0.0429 0.0731 0.1207 0.0502 0.0597 0.0758
RLMRec-Con 0.0453 0.0768 0.1227 0.0528 0.0625 0.0782

SGL RLMRec-Gen 0.0459 0.0761 0.1219 0.0526 0.0622 0.0781
Our model 0.0484 0.0785 0.1273 0.0556 0.0643 0.0807

Imp.% 5.52% 2.31% 3.77% 5.39% 2.91% 3.15%
BOD Denoising 0.0480 0.0795 0.1309 0.0561 0.0657 0.0835

Base 0.0460 0.0758 0.1255 0.0536 0.0626 0.0793
RLMRec-Con 0.0464 0.0782 0.1304 0.0542 0.0642 0.0816

SimGCL RLMRec-Gen 0.0462 0.0759 0.1241 0.0537 0.0634 0.0803
Our model 0.0468 0.0795 0.1316 0.0556 0.0653 0.0835

Imp.% 1.02% 1.72% 0.92% 2.69% 1.75% 2.31%
Base 0.0463 0.0770 0.1249 0.0548 0.0639 0.0803

RLMRec-Con 0.0480 0.0805 0.1326 0.0553 0.0661 0.0829
DCCF RLMRec-Gen 0.0476 0.0789 0.1268 0.0549 0.0646 0.0815

Our model 0.0499 0.0831 0.1340 0.0572 0.0673 0.0847
Imp.% 3.98% 3.22% 1.07% 3.30% 1.80% 2.17%
Base 0.0470 0.0793 0.1287 0.0541 0.0642 0.0808

RLMRec-Con 0.0485 0.0802 0.1311 0.0560 0.0656 0.0829
AutoCF RLMRec-Gen 0.0493 0.0820 0.1330 0.0571 0.0673 0.0840

Our model 0.0509 0.0853 0.1365 0.0586 0.0693 0.0866
Imp.% 3.22% 3.91% 2.60% 2.67% 2.92% 3.00%

DenoisingRec, and the Base model. This suggests that the BOD model exhibits substantial advancements in
recommendation accuracy and relevance.

5.3 Ablation Study (RQ2)
To evaluate the effectiveness of our proposed denoising alignment based on large language models (LLMs), we
conducted two ablation experiments: (1) Effectiveness of different alignment components and (2) Effectiveness of
representation components using different LLMs.

5.3.1 Effectiveness of different alignment components. In this section, we explore the effects of various alignment
components on performance through a series of ablation experiments. These experiments evaluate the alignment
performance individually based on hybrid features and textual semantics. The outcomes of these experiments are
summarized in Table 7, leading to the derivation of two pivotal observations.

ACM Trans. Inf. Syst.

 



Denoising Alignment with Large Language Model for Recommendation • 21

Table 7. The results of ablation study.

Amazon Steam
Recall@5 Recall@10 NDCG@5 NDCG@10 Recall@5 Recall@10 NDCG@5 NDCG@10

NGCF 0.0486 0.0841 0.0512 0.0613 0.0588 0.0819 0.0544 0.0631
LightGCN Base 0.0579 0.0916 0.0584 0.0700 0.0519 0.0863 0.0571 0.0688
RLMRec[con] 0.0613 0.0976 0.0616 0.0742 0.0553 0.0900 0.0604 0.0721
RLMRec[gen] 0.0615 0.0969 0.0628 0.0747 0.0553 0.0910 0.0604 0.0726

w/o -RLMRec[con] 0.0638 0.0986 0.0629 0.0759 0.0566 0.0923 0.0609 0.0732
w/o -RLMRec[gen] 0.0625 0.0982 0.0628 0.0752 0.0570 0.0924 0.0614 0.0736

our Model 0.0642 0.1023 0.0634 0.0764 0.0574 0.0931 0.0625 0.0745
SGL Base 0.0644 0.1023 0.0643 0.0774 0.0559 0.0911 0.0614 0.0734

RLMRec-Con 0.0660 0.1026 0.0661 0.0786 0.0592 0.0945 0.0647 0.0766
RLMRec-Gen 0.0644 0.1010 0.0653 0.0779 0.0575 0.0930 0.0625 0.0745

w/o -RLMRec[con] 0.0487 0.0786 0.0495 0.0597 0.0543 0.0892 0.0596 0.0714
w/o -RLMRec[gen] 0.0638 0.1024 0.0645 0.0778 0.0600 0.0954 0.0655 0.0773

Our model 0.0676 0.1039 0.0664 0.0793 0.0664 0.1016 0.0668 0.0789
SimGCL Base 0.0610 0.0991 0.0612 0.0747 0.0567 0.0930 0.0621 0.0742
RLMRec-Con 0.0651 0.1022 0.0653 0.0781 0.0581 0.0948 0.0639 0.0761
RLMRec-Gen 0.0619 0.0984 0.0631 0.0755 0.0578 0.0934 0.0632 0.0753

w/o -RLMRec[con] 0.0641 0.1025 0.0638 0.0771 0.0565 0.0897 0.0608 0.0720
w/o -RLMRec[gen] 0.0557 0.0912 0.0561 0.0684 0.0588 0.0939 0.0637 0.0751

our Model 0.0664 0.1058 0.0663 0.0799 0.0645 0.1021 0.0645 0.0768
AutoCF Base 0.0688 0.1058 0.0714 0.0837 0.0519 0.0853 0.0574 0.0687
RLMRec-Con 0.0696 0.1064 0.0703 0.0827 0.0524 0.0873 0.0577 0.0695
RLMRec-Gen 0.0691 0.1088 0.0711 0.0845 0.0542 0.0894 0.0592 0.0711

w/o -RLMRec[con] 0.0727 0.1109 0.0731 0.0859 0.0518 0.0855 0.0568 0.0681
w/o -RLMRec[gen] 0.0717 0.1097 0.0725 0.0852 0.0477 0.0803 0.0512 0.0627

Our model 0.0731 0.1118 0.0735 0.0862 0.0562 0.0923 0.0608 0.0728

(1) Our proposed alignment based on hybrid features is effective, indicating the importance of emphasizing
hybrid feature alignment in DALR. Specifically, the results of DALR outperform all ablation models across all
evaluation metrics on the Amazon-book and Steam datasets, as observed in Table 7.

(2) The performance improvement brought by single-level alignment components is suboptimal. Specifically,
on models based on SGL as the backbone, the hybrid feature alignment component enhances Recall and NDCG
performance on the Steam dataset. On the Amazon dataset, the hybrid feature alignment component instead
leads to a slight decrease in performance compared to the textual semantics alignment component. Similarly,
on networks based on autocf as the backbone, the effectiveness of the hybrid feature alignment component
is lower than that of the textual semantics component on the Steam dataset. We attribute these observations
to two main reasons: (i) while the process of learning mixed alignment representations can help obtain better
user and item embeddings, we cannot ignore the impact of fine-grained text semantics; (ii) we attribute the
performance differences to the differences between the Amazon and Steam datasets when aligning features in a
single dimension.

5.3.2 Effectiveness of representation components using different LLMs. In this section, we investigate the impact
of semantic representations from different large language models on performance. For this purpose, we analyze

ACM Trans. Inf. Syst.

 



22 • Peng Y, et al.

Table 8. Comparison with LLMs-enhanced Approaches.

SimGCL Based RLMRec-con
(BERT)

RLMRec-gen
(BERT)

RLMRec-con
(GPT2)

RLMRec-gen
(GPT2)

Our Model
(BERT)

Our Model
(GPT2) Our Model

Amazon

R@5 0.0610 0.0551 0.0611 0.0412 0.0615 0.0616 0.0593 0.0664
R@10 0.0991 0.0901 0.0973 0.0881 0.0977 0.0988 0.0962 0.1058
R@20 0.1513 0.1410 0.1505 0.1369 0.1491 0.1525 0.1485 0.1616
N@5 0.0612 0.0607 0.0621 0.0511 0.0618 0.0613 0.0607 0.0663
N@10 0.0747 0.0725 0.0744 0.0664 0.0739 0.0745 0.0736 0.0799
N@20 0.0915 0.0909 0.0918 0.0719 0.0907 0.0920 0.0908 0.0981

Steam

R@5 0.0567 0.0572 0.0571 0.0438 0.0566 0.0589 0.0585 0.0645
R@10 0.0930 0.0942 0.0927 0.0867 0.0925 0.0953 0.0956 0.1021
R@20 0.1450 0.1481 0.1453 0.1344 0.1451 0.1488 0.1512 0.1558
N@5 0.0621 0.0633 0.0626 0.0543 0.0622 0.0643 0.0643 0.0644
N@10 0.0742 0.0759 0.0745 0.0635 0.0744 0.0765 0.0767 0.0768
N@20 0.0920 0.0942 0.0924 0.0887 0.0922 0.0947 0.0957 0.0947

AutoCF Based RLMRec-con
(BERT)

RLMRec-gen
(BERT)

RLMRec-con
(GPT2)

RLMRec-gen
(GPT2)

Our Model
(BERT)

Our Model
(GPT2) Our Model

Amazon

R@5 0.0688 0.0687 0.0687 0.6048 0.0689 0.0710 0.0695 0.0731
R@10 0.1058 0.1054 0.1075 0.0897 0.1066 0.1073 0.1076 0.1118
R@20 0.1559 0.1554 0.1580 0.1499 0.1567 0.1599 0.1610 0.1644
N@5 0.0714 0.0699 0.0711 0.0589 0.0700 0.0708 0.0709 0.0735
N@10 0.0837 0.0821 0.0841 0.0668 0.0828 0.0834 0.0838 0.0862
N@20 0.0998 0.0985 0.1005 0.0746 0.0991 0.1005 0.1011 0.1028

Steam

R@5 0.0519 0.0453 0.0526 0.0487 0.0526 0.0506 0.0524 0.0562
R@10 0.0853 0.0784 0.0857 0.0749 0.0866 0.0841 0.0860 0.0923
R@20 0.1357 0.1261 0.1372 0.1210 0.1376 0.1365 0.1380 0.1448
N@5 0.0574 0.0509 0.0581 0.0488 0.0578 0.0554 0.0570 0.0608
N@10 0.0687 0.0623 0.0691 0.0598 0.0692 0.0667 0.0684 0.0728
N@20 0.0858 0.0785 0.0864 0.0795 0.0865 0.0845 0.0860 0.0906

the effects of three different pre-trained large language models on performance: ChatGPT3.5, GPT2, and BERT
[10]. Among them, DALR defaults to using the semantic encoding model text-embedding-ada-002 based on
ChatGPT3.5. We evaluate our approach using two backbone methods (i.e., SGL and AutoCF). The results are
summarized in Table 8, yielding two key observations:

(1) The advancement of ChatGPT3.5 improves the recommender’s performance. As shown in Table 8, when
DALR framework utilizes ChatGPT3.5’s text embedding model (default setting of text-embedding-ada-002),
it significantly enhances the baseline performance, outperforming the backbone model and RLMRec. This
result indicates that DALR effectively leverages the text encoder to transform text semantics into preference
representations, thereby enhancing the performance of the recommendation backbone. Additionally, compared to
pre-trained models based on GPT2 and BERT, the advanced pre-trained model ChatGPT3.5 can capture semantic
information with higher precision, leading to more significant improvements. (2) Integrating BERT and GPT2
into RLMRec did not significantly outperform the baseline models and, in some cases, even performed worse than
the base models. This result indicates that for specific datasets and backbone models, the richness of semantics in
BERT and GPT2 may not be as effective as that in GPT3.5. Moreover, simply injecting semantic information from
this paper into the backbone network does not significantly bridge the gap between semantic representation and
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Fig. 3. Visualization of the representations before and after the alignment.

spatial structural representation. Therefore, our hybrid structural alignment component can effectively mitigate
this issue.

5.4 In-depth Analysis of DALR (RQ3)
5.4.1 Visualization of bridging the gap. To investigate the impact of hybrid feature alignment in bridging the
gap between different representation spaces, we capture users’ representations on the backbone, RLMRec, and
our model, respectively. Then, we compute the distances between the user’s embedding vector on the backbone
and the vectors obtained from RLMRec and DALR, respectively. To ensure the reliability of our experiments, we
select two backbone networks, LightGCN and SimGCL, and include two datasets: Amazon-Book and Steam. The
visualization format we utilize is the box plot.

DALR effectively reduces the gap between different representation spaces and significantly enhances the
representational power of the recommendation system. In the subfigure of Fig. 3, the left side illustrates distances
from RLMRec to the base model, while the right side illustrates distances from DALR to the base model. Initially,
the vectors for GNN and RLMRec exhibit a large Euclidean distance on the left side. However, the distance
between vectors is markedly reduced after applying hybrid feature alignment. These findings affirm DALR’s
effectiveness in aligning the spaces of structural and textual modalities.

5.4.2 Performance of noise data. We evaluate the robustness of DALR to data noise by augmenting the original
training data with virtual interactions. The noise level is set at 5% relative to the size of the training set. We
compare our approach with backbone networks SimGCL, SGL, and RLMRec-Con/Gen on the Amazon and Steam
datasets.

The main findings of Fig. 4 are as follows: (i) Our model consistently outperforms the backbone models of
SimGCL and SGL, as well as RLMRec-Con/Gen. This result underscores the advantage of aligning semantic
information and structural features, wherein the framework leverages contrastive learning to filter out Irrelevant
data influences, thereby enhancing recommendation performance and robustness against noise. (ii) Compared to
the base model, all alignment methods demonstrate better resistance to data noise. The results suggest that the
introduction of alignment methods, whether based on semantic information or hybrid features, can alleviate
noise effects in feature representation, thus exhibiting superior performance under the same noise ratio.
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Fig. 4. The Impact of noise data.
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Fig. 5. Comparing performance on different levels of noise in the Movie1m dataset with DCCF backbone models.

Moreover, We evaluated six noise levels (5%, 10%, 15%, 20%, 25%, and 30%) to investigate the impact of different
levels of interaction noise on the model. We generated new noisy training data by adding varying levels of random
noise to the interaction data. We compared the performance of the DCCF backbone network and its variant
models on Movie1m dataset. The results in Fig. 5 indicate that our model outperforms both the DCCF backbone
and its RLMRec variant across all noise levels. The above results demonstrate the advantage of combining hybrid
feature alignment and leveraging denoising alignment to mitigate noisy data, thereby enhancing noise robustness
and improving recommendation performance.

5.4.3 Performance on Sparse Interaction Data. To evaluate the performance of our model in handling real-world
sparse datasets, we conducted sparse interaction testing experiments. Specifically, we attempted to retain only data
with interactions below the average as training data across the Amazon-Book and Steam datasets. Additionally,
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Fig. 6. The impact of sparse data.

we assessed performance under sparse interaction conditions across the SimGCL and DCCF backbone networks
and the RLMRec and DALR models.

The experimental results are presented in Fig. 6. From these results, we draw the following conclusions: (1)
DALR consistently outperforms the backbone models of SimGCL and DCCF, as well as RLMRec-Con/Gen. This
result underscores the critical role of large-scale language models in semantic information and the alignment of
hybrid features. Our framework compensates for the deficiencies of sparsity from a data augmentation perspective
by utilizing ChatGPT to generate user and item profile information. (2) Relative to RLMRec, our framework
achieves significant improvements. The above result indicates that introducing hybrid features enables learning of
relationships between nodes in the network, resulting in superior performance under the same sparse interaction
conditions. (3) Compared to RLMRec-Gen, RLMRec-Con demonstrates better resistance to data sparsity. This may
be attributed to the generative approach increasing the likelihood of introducing noise through node masking. In
contrast, the contrastive method exhibits better performance.

5.4.4 Analysis of Efficiency. We analyzed the time complexity of our model from the perspectives of model
complexity and running time. We can find that compared with those competitive baselines, our proposed models’
efficiency is similar to baseline models, while our models significantly outperform baselines on recommendation
performance.
Analysis of the computational complexity. For the hybrid feature alignment module, the theoretical

time complexity of the sampling strategy is $ ( |+ |), and the complexity of the alignment loss computation
is $

(
# 2 × 3

)
. For the semantic attribute alignment module, the time complexity of the contrastive modelling

module is $
(
# 2 × 3

)
, and the generative modelling module has a time complexity of $ (" × # × 3). For BPR

(Bayesian Personalized Ranking), the time complexity is $ (* × =D × 3).
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Table 9. Timing cost analysis of our model and its variants.

DCCF backbone Amazon-Book Steam Yelp Movie1m
Base 2.02s 11.54s 4.05s 18.21s

RLMRec-Con 2.55s 12.02s 4.53s 20.35s
RLMRec-Gen 2.10s 12.03s 4.12s 20.16s
Our model 3.01s 14.05s 5.02s 22.45s

Table 10. The impact of hyperparameter _1.

_1 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Recall@5 0.0661 0.0660 0.0664 0.0676 0.0660 0.0653 0.0660 0.0653 0.0652
Recall@10 0.1004 0.1014 0.1033 0.1049 0.1026 0.1028 0.1030 0.1028 0.1034
Recall@20 0.1521 0.1552 0.1560 0.1561 0.1563 0.1547 0.1549 0.1544 0.1551
NDCG@5 0.0644 0.0646 0.0649 0.0663 0.0648 0.0647 0.0649 0.0645 0.0646
NDCG@10 0.0764 0.0768 0.0778 0.0792 0.0775 0.0776 0.0778 0.0777 0.0779
NDCG@20 0.0933 0.0944 0.0950 0.0981 0.0946 0.0948 0.0947 0.0948 0.0950

Table 11. The impact of hyperparameter _2.

_2 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6
Recall@5 0.0400 0.0573 0.0620 0.0647 0.0650 0.0676 0.0659 0.0465 0.0447 0.0408
Recall@10 0.0645 0.0897 0.0982 0.1001 0.1011 0.1039 0.1026 0.0710 0.0677 0.0644
Recall@20 0.1020 0.1408 0.1498 0.1511 0.1519 0.1560 0.1522 0.1040 0.0997 0.0964
NDCG@5 0.0412 0.0571 0.0620 0.0649 0.0649 0.0664 0.0655 0.0469 0.0453 0.0414
NDCG@10 0.0491 0.0680 0.0746 0.0769 0.0773 0.0793 0.0781 0.0552 0.0531 0.0494
NDCG@20 0.0612 0.0847 0.0914 0.0935 0.0939 0.0960 0.0943 0.0660 0.0637 0.0598

Runtime performance. We measured the epoch time during training on a server equipped with an NVIDIA
A40 GPU to further evaluate the time cost. Specifically, we used DCCF as the backbone network and tested the
runtime on four datasets (as shown in Table 9). The additional time cost of our model is only about 10% to 20%
higher than the original RLMRec. However, our model achieves significant performance improvements.

5.5 Hyper-parameter Sensitivity (RQ4)
To evaluate the effect of the hyperparameter _8 and sample strategy parameter @, we conduct experiments on
two datasets by varying their values.

5.5.1 The hyperparameter _8 . Using a controlled variable design, we explored the impact of different hyperpa-
rameter weights on experimental results while keeping other parameters constant. We used the Amazon-Book
dataset as an example and conducted a detailed analysis on the SGL-based backbone network. The experimental
results are shown in Table 10, 11, and 12.

The hyperparameters _1: Within the specified threshold range, as _1 increases, the performance of DALR ini-
tially improves and then declines. Specifically, DALR achieves optimal results at _1 = 0.4 (such as Recall@5=0.0676
and NDCG@5=0.0663 ) and _1 = 0.5 (Recall@20=0.1563). These findings suggest that the hybrid feature alignment
enhances the representation capability and effectiveness of the recommender system. However, if _1 = 0, the model
lacks the alignment signal of hybrid features. Conversely, if _1 is 1, the model suffers from overgeneralization,
leading to a decrease in recommendation accuracy.

The hyperparameters _2: As _2 increases, the performance of DALR exhibits a rising and then falling curve.
DALR achieves the best results at _2 = 0.25 (such as Recall@10=0.1039 and NDCG@10=0.0793). These results
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Table 12. The impact of hyperparameter _3.

_3 1.0E-06 5.0E-06 1.0E-05 5.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
Recall@5 0.0634 0.0641 0.0654 0.0676 0.0624 0.0472 0.0376 0.0288
Recall@10 0.0991 0.0997 0.1013 0.1039 0.0981 0.0740 0.0594 0.0462
Recall@20 0.1485 0.1508 0.1535 0.1560 0.1501 0.1119 0.0883 0.0690
NDCG@5 0.0630 0.0629 0.0637 0.0664 0.0621 0.0485 0.0389 0.0289
NDCG@10 0.0754 0.0755 0.0761 0.0793 0.0744 0.0575 0.0460 0.0349
NDCG@20 0.0915 0.0921 0.0933 0.0960 0.0913 0.0697 0.0555 0.0422
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Fig. 7. The impact of sample strategy parameter @ on Amazon-Book.

indicate that denoising alignment enhances the representation capability of our model. If _2 = 0.01, the impact
weight of the denoising alignment signal is too small, contributing insufficiently to the model. Conversely, if
_2 > 0.4, the model overgeneralizes during the training process, resulting in decreased recommendation accuracy.
The hyperparameters _3: The choice of the regularization parameter _3 is a balancing act that must pre-

vent both overfitting and underfitting, ultimately aiming to enhance the model’s generalization capability and
stability. The experimental results show that the model achieves stable performance at _3 = 5.0E-05 (such as
Recall@5=0.0676, Recall@10=0.1039 and Recall@20=0.1560). If the regularization parameter _3 is small, the
regularization effect is insignificant, and the model may overfit the training data, leading to poor performance on
the test data. Conversely, if _3 is too large, the regularization effect is too strong, excessively limiting the model’s
freedom and preventing it from adequately learning the data patterns, resulting in underfitting.

The analysis reveals that optimal performance is achieved with specific hyperparameter values: _1 = 0.4 and 0.5
for alignment, _2 = 0.25 for denoising, and _3 = 5.0E-05 for regularization. At these values, the model demonstrates
enhanced representation capability and stability. Deviations from these optimal settings result in insufficient
alignment, overgeneralization, or inadequate regularization, affecting the model’s accuracy and performance.

5.5.2 Samle strategy parameter @. In this section, we conducted hyperparameter experiments to validate the
impact of the sampling strategy parameter @ on performance. As indicated in Section 4.4.1, the results of structural
features are predominantly influenced by the sampling strategy parameters ? and @. A smaller ? value causes
the sampling to hover around the root node, exhibiting BFS characteristics, while a smaller @ value leads to the
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sampling gradually moving away from the root node, demonstrating DFS characteristics. This approach enables
us to employ different sampling strategies for various graphs, obtaining higher-quality node structural properties.

Specifically, we fixed the ? value (? = 1) and varied the @ value to examine its impact on different structural
attributes and model performance. We tested @ values of 4, 1, 0.5, 0.1 on two backbone networks based on SimGCL
and DCCF, respectively, using the Amazon-Book dataset. From the experimental results in Fig. 7, we observed
the following conclusions: Under the condition of fixed ? values, a decreasing trend is observed in Recall and
NDCG@5, 10, 20 as the @ values decrease 4, 1, 0.5, 0.1. This trend indicates that nodes sampled farther away from
the root node exhibit significant dissimilarities with the root node, which aligns with our theoretical expectations.

6 CONCLUSION AND FUTURE WORK
In summary, we have proposed DALR, a denoise alignment framework that bridges the representation gap
between the semantics of LLMs and GNN-based recommenders. Our framework addresses the challenge of
aligning structural with textual representations and mitigating noise effects to enhance recommendation accuracy.
In detail, DALR consists of two key components: a hybrid alignment paradigm and a semantic contrast component.
Firstly, we propose an alignment paradigm to enhance representation performance by aligning hybrid and
structural features from backbone models. Secondly, we introduce a semantic contrast component to relieve the
impact of noise and improve model performance. Lastly, a lightweight collaborative framework fine-tunes the
backbone model and evaluates its performance on the test dataset. We have demonstrated that DALR consistently
outperforms state-of-the-art methods through extensive experiments on public datasets. Furthermore, our future
research will focus on enhancing model effectiveness while reducing the costs associated with large language
model deployment to deploy these methods in online recommenders.
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A SUPPLEMENTARY MATERIAL
In the supplementary material, we provide an in-depth analysis of prompt design. Through examples, we
demonstrate the visualization transition from user-generated samples to the profile generation process.

A.1 Profile Generation
This section elaborates on the generation of user and project profiles. We illustrate this process using real examples
from the Amazon-book dataset, as shown in Fig. 8 and Fig. 9. A standard interaction paradigm with large language
models (LLMs) is employed, where system prompts serve as directives for profile generation. Although the focus
here is on the Amazon-book dataset, the generation approach for the Steam dataset is similar, with only minor
differences in the commands used to represent data information in Fig. 10 and Fig. 11. Furthermore, we illustrate
the generation of user and item profiles for both the Yelp and Movie1m datasets through examples presented in
Fig. 12, 13, 14, and 15.
An illustration of the generated item profile. We aim to provide explicit instruction prompts for the

project, guiding LLMs in generating book profiles to offer valuable information for recommendations in Fig. 8.
Input information consists of unique identifiers, book titles, and attribute descriptions. To ensure profile quality,
we mandate that the language model output adheres to specified requirements and prevents the occurrence of
illusions. Output information encompasses basic book features, descriptions, and inferences. Results indicate that
LLMs accurately capture significant book features and potential reader types they may attract.
An illustration of the generated user profile. We generate user profiles from project descriptions and

user interaction data. This design enables the large language models to identify user preferences with precision
by merging both sources of information. Furthermore, we employ system commands to control the quality of
outputs. For example, by analyzing descriptions and reviews of books, the model precisely extracts user preference
features in Fig. 9.
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Please help me generate item profile and reason for the
item. I will provide you with the title and a description of
the item. 
Input prompt:
{"id": "the unique number of a book", "tittle": "the tittle of a
book", "attributes": "the attributes of a book"}
Requirements: 
1. Please output the following infomation, following this
structure: 
{"character":"A string of this book's all attributs", 
"description": "A description for this book"。
"reasoning": "Summarize what kind of users this book
attracts?"}
2. Please ensure that the "description" and reasoning are no
longer than 150 words. 

{item_id:0060930187, 
title:"The Bell Jar: A Novel (Perennial Classics)", 
attributes:"categories:Books, price:3.99, brand:None"}

{"character": "item_id:0060930187, title: The Bell Jar A Novel
(Perennial Classics), attributes:'categories:Books, price:3.99,
brand:None'"; 
"description": "The Bell Jar recounts the mental unraveling of a
talented young woman during a 1950s New York City magazine
internship. Reflecting Sylvia Plath's own struggles, the novel delves
into themes of mental illness and societal pressures. Published
posthumously in 1963, it remains a poignant portrayal of one
woman's descent into madness, hailed as a masterfully crafted
exploration of the human psyche.";
"reasoning": "The Bell Jar appeals to readers interested in
introspective and psychologically rich narratives. It captivates those
drawn to themes of mental illness, societal pressures, and personal
identity. Fans of Sylvia Plath's evocative writing style and those
seeking poignant explorations of the human psyche are likely to be
attracted to this poignant and thought-provoking novel."}

Imput prompt

Generated item profilesSystem instruction

Fig. 8. An illustration of item profile generation in Amazon-book data.

Please help analyze users' book purchases and reviews
to determine their preferences and recommend similar
books.
Input prompt (interacted items):
{ "id": "the unique number of the book",
"title": "the title of the book",) 
"description": "A description for this book",
"review": "the user's review on the book"}
Requirements: 
1. Please output the following infomation, following this
structure: 
{ "summarization": "A summary of the types of books
this user might like",
 "reasoning": "Please give reasons for this summary" }
2. Please ensure that the "summarization" and "reasoning"
are no longer than 60 and 150 words, respectively. 

Interacted items: [ 
{"id": "0985804602", 
"title": "Stitch (Stitch Trilogy, Book 1)",
"description": "Stitch (Stitch Trilogy, Book 1) is a captivating novel that
follows the journey of a young girl named Alessa, who wakes up in a
strange facility with no memory of her past. As Alessa unravels ...", 
"review": "I'm a sucker for a captivating ghost story, and this book
delivered on all fronts. The suspenseful plot and intriguing characters had
me eagerly turning the pages…"}
{"id": "0985816163",
 "title": "The Golden Medina: The Land Of Opportunity" ,
"description" : "...this book follows the journey of immigrants as they
navigate the challenges and triumphs of pursuing the American  ...", 
"review" : "... I found the characters' struggles and triumphs deeply
relatable. A captivating read that left me feeling inspired and …"
}  ...]

{"summarization": "This reader is drawn to young adult fiction that seamlessly weaves together paranormal or supernatural elements
with romance, mystery, humor, and coming-of-age themes. They particularly enjoy stories with intricate world-building that immerses
them in richly imagined settings ...";
"reasoning": "Given the reader's preferences for young adult fiction, it's evident that they enjoy stories that offer a blend of genres, such
as paranormal or supernatural elements intertwined with romance, mystery, humor, and coming-of-age themes. Additionally, their
appreciation for complex world-building suggests a desire for immersive storytelling ..."}

Generated user profiles

Imput promptSystem instruction

Fig. 9. An illustration of user profile generation in Amazon-book data.
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Please help me generate item profile and reason for the
game. I will provide you with the id, name, publisher,
genres and tags the item. 
Input prompt:
{"id": "id of the game", "name": "name of the
game", "publisher": "publisher of the game","genres": "types
of the game", "tags":"tags of the game"}
Requirements: 
1. Please output the following infomation, following this
structure: 
{"character":"A string of this game's all information, 
"description": "A description for this game",
"reasoning": "Summarize what types of users would enjoy this
game"}
2. Please ensure that the "description" and reasoning are no
longer than 150 words. 

{id:772540, 
name:"Battle Royale Trainer", 
publisher:"Trickjump Games Ltd", 
genres:"[Action, Adventure, Simulation]",
tags:"[Action, Adventure, Simulation, FPS, Shooter, Third-
Person Shooter, Sniper, Third Person]"}

{"character": id:772540, name:"Battle Royale
Trainer", publisher:"Trickjump Games Ltd", genres:"[Action,
Adventure, Simulation]", tags:"[Action, Adventure, Simulation,
FPS, Shooter, Third-Person Shooter, Sniper, Third Person]"; 
"description": "Battle Royale Trainer" is an action-adventure
simulation game published by Trickjump Games Ltd. Players will
immerse themselves in the ultimate combat simulation experience.
The game offers a variety of weapons and tools, allowing players to
freely choose and train in modes such as FPS (First-Person Shooter)
and Third-Person Shooter. Players can practice shooting skills,
building techniques, tactical strategies, and more in various combat
scenarios to enhance their skills in competitive shooting games.
Whether aiming to improve shooting proficiency or stand out in
competitive battles, this game meets the needs of players seeking
intense combat training.";
"reasoning": "This game would appeal to users who enjoy action-
packed gameplay and are looking to improve their skills in shooting
and combat scenarios. It caters to players who are interested in
competitive shooting games and enjoy the challenge of mastering
various weapons and tactics. Additionally, individuals who
appreciate realistic combat simulations and want to enhance their
reflexes, accuracy, and strategic thinking would also find this game
enjoyable."}

Imput prompt

Generated item profilesSystem instructionSystem instruction

Fig. 10. An illustration of item profile generation in Steam data.
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Please help analyze users' game purchases and reviews
to determine their preferences and recommend similar
game.
Input prompt (interacted items):
{ "id": "the id of the game",
"name": "the name of the game",
"publisher": "publisher of the game",
"genres": "types of the game",
"tags":"tags of the game"}
"description": "A description for this game",
"review": "the user's review on the game"}
Requirements: 
1. Please output the following infomation, following this
structure: 
{ "summarization": "A summary of the types of game
this user might like",
 "reasoning": "Please give reasons for this summary" }
2. Please ensure that the "summarization" and "reasoning"
are no longer than 100 and 150 words, respectively. 

Interacted games: [ 
{id:772540, name:"Battle Royale Trainer", publisher:"Trickjump
Games Ltd", genres:"[Action, Adventure, Simulation]",tags:"[Action,
Adventure, Simulation, FPS, Shooter, Third-Person Shooter, Sniper,
Third Person]",
"description": " 
Battle Royale Trainer" is an action-adventure simulation game published
by Trickjump Games Ltd. Players will immerse themselves in the
ultimate combat simulation experience. The game offers a variety of
weapons and tools, allowing players to freely choose and train in modes
such as FPS (First-Person Shooter) and Third-Person Shooter. Players
can practice shooting...", 
"review": "Battle Royale Trainer" is an exhilarating game that truly tests
your combat skills. As an avid fan of shooting games, I was impressed by
the realism and intensity of the combat scenarios. The variety of weapons
and training options allowed me to tailor my experience to focus on areas
where I needed improvement. Whether I was honing my accuracy with
long-range sniper shots or practicing close-quarters combat with
shotguns, every session felt rewarding and challenging…"}  ...]

{"summarization": "It can be deduced that this user enjoys gaming experiences that involve both strategic thinking and intense action.
They may also appreciate other types of games such as strategy games, RPGs, tactical shooters, or competitive multiplayer games.
Additionally, the user's interest in "Ironbound" suggests an ...";
"reasoning": "This user exhibits a versatile gaming taste, demonstrating an openness to diverse gaming experiences. Their enjoyment of
both "Ironbound," a strategic card game with RPG elements, and "Battle Royale Trainer," an action-packed combat simulator, suggests a
preference for games that offer a blend of strategic depth and adrenaline-fueled excitement. They likely appreciate challenges that test
their intellect and strategy, as well as immersive ..."}

Generated user profiles

Imput promptSystem instruction

Fig. 11. An illustration of user profile generation in Steam data.
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Please help me generate item profile and reason for the Yelp. I will provide you with
the basic information (name, city and category) of that business and also some
feedback of users for it.
Input prompt:
{"id": "id of the business", "name": "name of the business", "city": "city where the company
is located", "categories": "several tags describing the business"
"Feedback list from users": ["the first comment", "the second comment", .... ]}
Requirements: 
1. Please output the following infomation, following this structure: 
{"character":" basic information of this business, "description": "generate a description for
this business", "reasoning": "Summarize what types of users would enjoy this game", }
2. Please ensure that the "description" and "reasoning" are no longer than 150 words.

{id:"tnhfDv5Il8EaGSXZGiuQGg", 
name:"Garaje",
city:"San Francisco", 
categories:"Mexican, Burgers,
Gastropubs", 
Feedback list from users:"['Great
place to hang out after work: the prices
are decent, and the ambience is fun. It's
a bit loud, but very lively. The staff is
friendly, and the food is good. They
have a good selection of drinks.']"}

{"character": id:"tnhfDv5Il8EaGSXZGiuQGg", name:"Garaje", city:"San Francisco", categories:"Mexican, Burgers, Gastropubs"
 "description": "Garaje is a vibrant gastropub located in San Francisco, specializing in Mexican cuisine and burgers. It's an ideal spot for
a lively after-work hangout, offering a fun atmosphere with friendly staff and a decent selection of drinks. While it can be a bit noisy, the
lively ambience complements the flavorful food and good value."
"reasoning": "This place is perfect for young professionals and groups looking for a casual, energetic environment to unwind after
work. If you enjoy a bustling, social setting with tasty Mexican food and burgers, Garaje is likely to be a hit with you."}

Imput promptSystem instructionSystem instruction

Generated item profiles

Fig. 12. An illustration of item profile generation in Yelp data.

Please help analyze users' business reviews to determine their preferences and
recommend similar business .
Input prompt (interacted items):
Interacted items: [{ "id": "the unique number of the business ","name": "the name of
the business ","categories": "several tags describing the business", "review": "the user's
review on the business "}...]
Requirements: 
1. Please output the following infomation, following this structure: 
{ "summarization": "A summary of the types of business this user might like",
 "reasoning": "Please give reasons for this summary" }
2. Please ensure that the "summarization" and "reasoning" are no longer than 150 words.

Interacted items: [ 
{"id": "tnhfDv5Il8EaGSXZGiuQGg", 
"name": "Garaje",
"city": "San Francisco",
"review": "Great place to hang out after
work: the prices are decent, and the
ambience is fun. It's a bit loud, but very
lively. The staff is friendly, and the food
is good. They have a good selection of
drinks."}
 ...]

{ "summarization": "The user enjoys lively, casual dining spots with a fun atmosphere, good food, and a decent selection of drinks.",
  "reasoning": "...The review of 'Garaje' indicates that the user appreciates vibrant venues where they can relax after work. They value
friendly service, a lively ambiance, and quality food and drinks at reasonable prices. Thus, similar recommendations should focus on
establishments offering a social, energetic setting with a variety of food and drink options. ..." }

Generated user profiles

Imput promptSystem instruction

Fig. 13. An illustration of user profile generation in Yelp data.
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Please help me generate item profile and reason for the movie. I will provide you with
information about movies that the user has purchased.
Here are the instructions:
Input prompt:
{"id": "The unique number of the movie", "name": "the title of the movie",  "categories": "a
attributes of the movie", "depict": "Please describe the movie"}
Requirements: 
1. Please output the following infomation, following this structure: 
{"character":" basic information of this movie,  "summarization": "A summarization of
what types of movies this user is likely to enjoy", "reasoning": "briefly explain your
reasoning for the summarization" }
2. Please ensure that the "summarization" and "reasoning" are no longer than 150 words.

{id:"1", 
name:"Toy Story (1995)",
city:"San Francisco", 
categories:""Animation, Children's,
Comedy", 
depict: "None"}

{ "character":"Toy Story (1995) is an animated film that blends children's adventure with comedy, featuring a whimsical world where
toys come to life when humans aren't around. Set in a colorful, imaginative environment, the film offers family-friendly humor and
heartwarming moments.",
 "summarization": "The user is likely to enjoy other family-friendly animated films with a blend of adventure and comedy, which appeal
to both children and adults.",
"reasoning": "Given the user's interest in 'Toy Story', which is a classic example of animated comedy that caters to all ages, similar
recommendations should focus on movies with engaging, imaginative storytelling, humor, and appeal to both children and families.
These films typically feature vibrant animation, memorable characters, and positive themes."}

Generated item profiles

Imput promptSystem instructionSystem instruction

Fig. 14. An illustration of item profile generation in Movie1m data.

Please help analyze users' business reviews to determine their preferences and
recommend similar movie.
Input prompt (interacted items):
{"id": "id of the movie",     "name": "the title of the movie", (if there is no title, I will set
this value to "None"), "character": "a description of what types of users will like this
movie", "review": "the user's review on the movie" (if there is no review, I will set this
value to "None") }
Requirements: 
1. Please output the following infomation, following this structure: 
{ "summarization": "A summary of the types of movie this user might like",
 "reasoning": "Please give reasons for this summary" }
2. Please ensure that the "summarization" and "reasoning" are no longer than 200 words.

Interacted items: [ 
{"id": "1", 
"title": "Toy Story (1995)",
"description": "Stitch (Stitch Trilogy,
Book 1) is a captivating novel that follows
the journey of a young girl named Alessa,
who wakes up in a strange facility with no
memory of her past. As Alessa unravels
...", 
"review": "Toy Story (1995) is an
animated film that blends children's
adventure with comedy, featuring a
whimsical world…"}

{  "summarization": "The user is likely to enjoy animated movies that combine adventure, comedy, and whimsical storytelling,
particularly those with engaging plots and imaginative worlds.",
  "reasoning": "Given the user's positive review of 'Toy Story (1995)', which is known for its creative animation, humor, and family-
friendly themes, similar movies should feature a blend of adventure and comedy within a vibrant, imaginative setting. Such films appeal
to both children and adults, offering engaging narratives and memorable characters that resonate across age groups."}

Generated user profiles

Imput promptSystem instruction

Fig. 15. An illustration of user profile generation in Movie1m data.
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