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Multi-behavior recommendation exploits multiple types of user-item interactions, such as view and cart, to
learn user preferences and has demonstrated to be an effective solution to alleviate the data sparsity problem
faced by the traditional models that often utilize only one type of interaction for recommendation. In real
scenarios, users often take a sequence of actions to interact with an item, in order to get more information
about the item and thus accurately evaluate whether an item fits their personal preferences. Those interaction
behaviors often obey a certain order, and more importantly, different behaviors reveal different information or
aspects of user preferences towards the target item. Most existing multi-behavior recommendation methods
take the strategy to first extract information from different behaviors separately and then fuse them for
final prediction. However, they have not exploited the connections between different behaviors to learn user
preferences. Besides, they often introduce complex model structures and more parameters to model multiple
behaviors, largely increasing the space and time complexity. In this work, we propose a lightweight multi-
behavior recommendation model named Cascading Residual Graph Convolutional Network (CRGCN for short)
for multi-behavior recommendation, which can explicitly exploit the connections between different behaviors
into the embedding learning process without introducing any additional parameters (with comparison to
the single-behavior based recommendation model). In particular, we design a cascading residual graph
convolutional network (GCN) structure, which enables our model to learn user preferences by continuously
refining the embeddings across different types of behaviors. The multi-task learning method is adopted to
jointly optimize our model based on different behaviors. Extensive experimental results on three real-world
benchmark datasets show that CRGCN can substantially outperform the state-of-the-art methods, achieving
24.76%, 27.28%, and 25.10% relative gains on average in terms of HR@K (K={10, 20, 50, 80}) over the best
baseline across the three datasets. Further studies also analyze the effects of leveraging multi-behaviors in
different numbers and orders on the final performance.
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1 INTRODUCTION
Personalized recommender systems, which find information and products that are of interest or
need for, achieve a great success in the information-overload era [43]. Collaborative Filtering
(CF) [3, 15, 28], which learns user preferences from user-item interaction data, is one of the most
successful and widely-used models in recommender systems. Along with the development of
recommendation techniques, plenty of CF models [14, 22, 26] have been proposed, from matrix
factorization methods [15, 27] to deep neural network models [10], and to the recent advances of
graph neural network models [9, 34]. Most CF models only consider one type of behavior (such
as the buy behavior on e-commerce platforms). With the huge number of products available for
selection on e-commerce platforms, the number of products ultimately purchased by a user is very
small, leading to extremely sparse data on buy behavior. As a result, the CF models relying on a
single-type behavior cannot well capture user preferences with limited interaction data (i.e., data
sparsity or cold-start problem) [9], resulting in dramatic performance degradation. Fortunately,
when interacting with information systems, there are other behaviors, such as view and collect,
which also provide interaction information between users and items. This motivates studies on
leveraging multi-behavior information to assist in learning user preferences and thus alleviates
the data sparsity issue. The technique, which exploits multiple types of behavior information for
recommendation, is also called multi-behavior recommendation [6, 11, 16, 24, 29, 37, 38, 44].
Among existing multi-behavior recommendation methods, many methods treat other types of

behavior data (besides the target behavior) as auxiliary data to help learn user preferences in the
training process. For example, the early matrix factorization-based model CMF [30] separately
performs matrix factorization on multiple matrices constructed from data of different behaviors
to learn shared user and item representations. Recent GCN-based model MBGCN [11] learns
user embeddings by propagating item nodes’ embeddings based on different user-item behavior
propagation layers; and the final user embeddings are obtained by aggregating the embeddings
learned from different user-item behaviors according to their contributions. The limitation of
those methods is that they have not exploited the information of user preferences contained in
the connections between different behaviors that often happen in a certain order in real scenarios,
e.g., view->cart->buy. In fact, the sequential behaviors of users interacting with items often disclose
different levels of user preferences toward the target item. For example, when a user is attracted to an
item by its easily-observable features, such as appearance or brand, she will click the item and take
a look at more information about the item (view behavior); if the user is still interested in the item
after getting more information about the item, she will put it into the shopping cart (cart behavior);
the user will finally purchase the item if the item satisfies her after carefully examining all aspects of
the item or comparing it with other candidates (buy behavior). The behaviors at different positions
in the sequence reveal user preferences to items at different levels. The preference dependence
information contained in the behavior sequence is beneficial to user preference modeling. As far as
we know, only a few methods in the literature attempt to model [6, 19] the dependent relationship
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between behaviors to exploit multiple types of behaviors. A typical example is NMTR [6], which
correlates the model predictions of each behavior type in a cascading manner and develops multiple
neural network modules to learn user preferences from the shared embedding layer under different
behaviors.

Despite the progress, there are still two major limitations in existing works as follows. Firstly, the
preference information conveyed in the behavior sequence has not been well exploited
in user preference modeling. Existing works of multi-behavior recommendation often inde-
pendently model the different types of behaviors, which have not well exploited the preference
dependence among different behaviors. Although a few recent works, such as NMTR, have consid-
ered the connection between different behaviors, it has not explicitly incorporated the connection
information into the embedding learning process. Instead, it exploits the connection information
in the predicted scores to guide the embedding learning based on different behaviors. Besides,
multi-behavior recommendation models are often implemented at the cost of complex
model structures and high computational costs. Existing multi-behavior recommendation
models generally ignore the model complexity when pursuing more accurate recommendation
performance. In fact, the common paradigm of modeling each type of behavior separately in existing
methods will introduce a large number of additional trainable parameters. Moreover, to achieve
higher recommendation accuracy, they often adopt some advanced techniques in the model, such
as attention mechanisms, which often further increase the computational complexity of the model.
In real applications, efficiency is also an important aspect of recommender systems. A model with
comparable recommendation accuracy but fewer parameters and lower computational complexity
will be more desirable.

Motivated by the above considerations, we propose a novel lightweight graph neural network-
based model named Cascading Residual Graph Convolutional Network (CRGCN), which leverages
the relations among the sequential behaviors to gradually learn and refine user preference repre-
sentations. We deem that the sequence of behaviors corresponds to the user’s decision-making
process, e.g., view, collect, and buy. The different types of behaviors in a sequence reflect user’s
preferences to items at different levels. For example, a buy behavior denotes that the item can well
satisfy the user’s preference, and a view behavior indicates that the user is interested in the item in
some aspect, such as appearance. With this consideration, we propose to model user preferences
(i.e., user embedding in the model) by continuously refining it across the sequence of behaviors. For
ease of presentation, we define the initialized embedding as the basic features, and the features
learned from each behavior as the behavioral features. More precisely, we first build cascading
sequences based on the user’s decision process, from the initial view behavior to the final buy
behavior. For each type of behavior, a residual block is assigned to learn the behavioral features
based on the output of the previous block and the interaction data of this behavior, and then output a
fusion of the learned features and the output of the previous block from a short-cut connection (see
Fig. 2 for the model structure). The short-cut connection is to preserve the information learned
from the previous type of behavior. The behavioral features in each block are learned by the
LightGCN model [9], due to its impressive performance and lightweight design by removing the
feature transformation and non-linear operation. The cascading structure is adopted to connect
multiple residual blocks according to the occurrence sequence of behaviors. User preferences can
be continuously learned and refined through the sequence of behaviors. In this way, our model
explicitly exploits the preference relation between different behaviors in the embedding learning
process. Finally, we utilize the multi-task learning approach, which can effectively exploit all the
data simultaneously to jointly optimize multiple behaviors to learn the user/item embeddings. It is
worth mentioning that our model does not introduce any trainable parameters besides the ones
used for initializing the user and item embeddings. Therefore, our model enjoys the advantage of
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low complexity and is easily trained. We conduct extensive experiments and ablation studies on
three real-world benchmark datasets, Tmall, Beibei, and Jdata, to evaluate both the effectiveness and
efficiency of our proposed CRGCN model. The evaluation results demonstrate that the proposed
CRGCN significantly outperforms the state-of-the-art recommendations, including single-behavior
models [9, 26] and multi-behavior methods [6, 11, 29, 37]. Remarkably, it achieves 24.76%, 27.28%,
and 25.10% relative gains on average in terms of HR@K (K={10, 20, 50, 80}) over the best baseline
across the three datasets, respectively. Interestingly, we observed that the one-layer (for each resid-
ual block) can already achieve very impressive performance in experiments. Furthermore, CRGCN
achieves the best performance in handling cold-start users even without user-item interactions
from auxiliary behaviors in the training dataset.

To summarize, the main contributions of this work are as follows:
• We highlight the importance of modeling the relations among multi-behaviors into user mod-
eling in recommendation, and propose to directly exploit such relations into the embedding
learning process by updating user preference along with the behaviors in an order. As far as
we know, this is the first work to take the cascading relations among multi-behaviors directly
into the embedding learning for recommendation.

• We propose a multi-behavior recommendation model called CRGCN, which consists of a set
of LightGCNs (corresponding to the sequence of behaviors) with a residual design, aiming
to preserve the features learned from the previous behavior to the next behavioral feature
learning. Our model is lightweight and does not introduce any additional trainable parameters
into the model with comparison to the standard matrix factorization for single-behavior
modeling. This makes our model enjoy a big advantage in space and time complexity.

• We conduct extensive experiments on three real-world datasets to verify the effectiveness
of our CRGCN model. Experimental results show that CRGCN can achieve a remarkable
improvement over the state-of-the-art models in terms of both accuracy and efficiency.

The remainder of this paper is structured as follows. Section 2 briefly introduces related work,
and Section 3 describes our CRGCN model in detail. Next, Section 4 introduces the experimental
setup and reports the experimental results. Finally, Section 5 concludes this paper.

2 RELATEDWORK
2.1 Multi-Behavior Recommendation
Multi-behavior recommendation refers to leveraging multiple types of user-item interactions to
enhance recommendation performance [23, 41]. Generally, it can improve the prediction ability
of target behavior by extracting useful prediction signals from other types of behaviors. The
existing works can be divided into two categories: shallow models and deep models based on neural
networks.

The former methods are based on traditional machine learning techniques, i.e., shallow models.
Earlier works exploited multi-behavior data with matrix factorization techniques [15]. For example,
Ajit et al. [30] proposed a collective matrix factorization model (CMF) to decompose multiple
matrices simultaneously with entity parameter sharing. Zhao et al. [46] further extended CMF
to perform matrix factorization of different behaviors by sharing items. In addition, some works
exploited multiple behaviors by designing new sampling strategies [4, 8, 19, 24]. Loni et al. [19]
extended BPR [26] by designing a negative sampling strategy to sample the interaction data of
user-item with different behaviors. Ding et al. [4] further developed on this basis and improved
the negative sampling strategy to make better use of the data. Guo et al. [8] proposed to generate
samples from multiple auxiliary behaviors according to the item-item similarity for training. Qiu et
al. [24] proposed an adaptive sampling strategy to solve the unbalanced correlation among different
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behaviors. Several studies consider temporal information in multi-behavior recommendations [5,
16, 21]. The major limitation of these methods is the lack of exploration of the relationship among
behaviors.

The latter ones are based on deep learning models. In recent years, deep learning has exhibited
a strong ability for representation learning [1, 20], and has also been applied in multi-behavior
recommender tasks. Gao et al. [6] constructed multiple neural collaborative filtering (NCF) units to
capture the complicated and multi-type interaction under each type of behavior. They consider the
cascading relationship among different types of behaviors shown in user multi-behavior data, by
re-using the previous-behaviors’ prediction scores in the given behavior. Jin et al. [11] constructed
a unified graph to represent multi-behavior data, and learned the influence strength (to the target
behavior) and semantics of different behaviors by user-item and item-item propagation layers,
respectively. Xia et al. [39] proposed a multi-behavior recommender framework with a graph meta-
network, which incorporates the multi-behavior pattern modeling into a meta-learning paradigm
for exploring the complex dependencies across different types of user-item interactions. Although
great progress has been achieved by these methods, they have not fully considered the fine-grained
relationships between behaviors, as discussed in the introduction. In addition, these methods often
rely on heavy network structure and introduce more parameters to model the multi-behaviors,
thus largely increasing the computational complexity.

In this work, we model different behaviors in the form of cascading residual blocks by effectively
exploring the preference information connections between behaviors. We propose to refine the
user embedding based on cascading residual blocks, corresponding to the user-decision process. In
addition, our model does not introduce any learnable parameters besides user/item embeddings,
which enjoys the benefits of low computational complexity.

2.2 Graph Convolutional Network for Recommendation
Graph Convolution Network (GCN)-based models have achieved outstanding success in a variety
of applications [13]. The basic idea of GCN is to update a target node’s embedding by iteratively
aggregating information from its local graph neighbors. Due to its strong capability of representa-
tion learned from non-Euclidean structures, GCN has also been widely applied in recommender
systems [25, 40, 45], since relations between users and items can be naturally represented by graph
structures.

As for collaborative filtering, which is the most fundamental recommendation technique, GCN-
based models have shown strong performance [2, 9, 17, 18, 34, 35]. Wang et al. [34] modeled the
higher-order connectivity information and recursively propagated embeddings non-linearly on the
graph. He et al. [9] deeply analyzed the effect of feature transformation and nonlinear activation.
Thus, the authors further proposed to replace nonlinear propagation with linear propagation, and
retain only the most basic neighborhood aggregation components. Such an operation not only
simplified the model structure but also made the model easier to implement and train. Wang et
al. [35] regarded the user-item interaction graph as an entanglement model of heterogeneous
information and obtained the representation of the user’s different intentions through embedding
disentanglement. Moreover, GCN-based models are also widely deployed in multi-behavior recom-
mendation tasks [11, 37, 39, 44]. For example, Jin et al. [11] built multi-behavior data into a unified
heterogeneous graph, and then used GCN to learn the behavioral strength and user preferences.
Xia et al. [37] captured type-aware behavior collaborative signals through message propagation on
heterogeneous graphs. Zhang et al. [44] modeled different graph networks for various behaviors to
explore the commonality and specificity of user preferences in different behaviors, in which the
GCN model helps improve the accuracy of feature extraction.
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In our work, we propose cascading residual blocks based on graph convolutional networks,
which can not only effectively extract the preference signal of each type of behavior but also refine
user embedding by extracting useful information from the signal learned in each behavior across
the residual blocks corresponding to the sequence of behaviors.

3 METHODOLOGY
3.1 Problem Formulation
In the real-world scenario of recommendation platforms, there are multiple types of interactions
between users and items. However, traditional methods often only consider the user-item interac-
tions under one specific behavior, i.e., target behavior [6, 11]. Other kinds of behaviors, such as
view, cart, collect, etc., have not been well exploited. These auxiliary behavioral data provide rich
information about user preferences and can be leveraged to model user preferences better, and
thus can help alleviate data sparsity and cold-start problems, as well as improve recommendation
performance. In this work, we propose a novel model to explicitly take the connections between
different behaviors into the embedding learning process. Before formally introducing our model,
we first introduce the key notations and problem setting.

LetU = {𝑢1, · · · , 𝑢𝑚, · · · , 𝑢𝑀 } and I = {𝑖1, · · · , 𝑖𝑛, · · · , 𝑖𝑁 } respectively be the set of users and
items, inwhich𝑀 and𝑁 denote the number of users and items.We useW = [𝑾 1, · · · ,𝑾𝑏, · · · ,𝑾𝐵]
to denote the list of interaction matrices sorted by a defined order, where𝑾𝑏 is the interaction
matrix of the b-th behavior and𝑾𝐵 is the target behavior. Specifically, interaction matrix𝑾𝑏 is
binary, that is each entry in it has a value of 1 or 0, defined as follows:

𝑤𝑏
𝑢𝑖 =

{
1, if user 𝑢 has interacted with item 𝑖 under behavior 𝑏;
0, otherwise.

(1)

The studied problem is formulated as follows:
Input: user setU, item set I, and the interaction matrix listW.
Output: predicting a similarity score, which indicates the possibility that a user 𝑢 will take a target
behavior (e.g., buy) to an item 𝑖 . The recommendation list can be generated by sorting items based
on the similarity score in descending order.

3.2 CRGCN Model
In this section, we will introduce our CRGCN model in detail. As discussed in the introduction, we
aim to explore the connections between different behaviors to obtain amore complete representation
of user and item embeddings. In fact, before the target behavior happens between the user and the
item, it is often the case that the user has already taken some other behaviors to the item [33, 47].
Taking the e-commerce platform as an example, the possible interactions between users and items
under different behaviors are shown in Fig. 1. While a user𝑢 uses the platform, she may be attracted
by the appearance or description of item 𝑖1, and thus leads to the view behavior. However, after
viewing the details of the product, she finds out that the item does not match her taste. As a result,
she would not take further action on the item, such as cart. Similarly, if she adds 𝑖2 to the shopping
cart after viewing, the user might not buy it due to price or some other reasons (for example, she
finds another item such as 𝑖3 can better fit her needs). From this example, we can have the following
three observations about the interaction between users and items. First, only partial information
of user preferences can be observed from the interaction of a single behavior. Second, along with
more behaviors involved in the interaction with an item, more information about user preferences
towards the item is revealed. Last, the order of behaviors interacted with the item also indicates a
cascading relationship of user preferences among different behaviors.
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Fig. 1. The illustration of the sequence and relation of different types of behaviors.

Fig. 2. Structure of our CRGCN model.

Enlighten by the above three points, we attempt to make full use of all behavioral data and design
the model to improve the prediction ability of target behavior by well exploiting the relationship
among behaviors. The overall structure of our CRGCNmodel is shown in Fig. 2. The key component
of our model is the residual block, which not only learns the user and item embeddings from each
type of behavior but also captures the cascading effect between different types of behaviors. The
influence of the previous behavior on the current behavior can be obtained from the input of the
residual module. Therefore, the functionality of our residual block sequence can be divided into
two parts: single behavior modeling and cascading effect modeling. The part of behavior modeling is
achieved by each residual block to model the behavioral features from each behavior. The sequence
of residual blocks models the cascading effects by leveraging multiple behaviors in a specific
order to capture the preference dependency information among different behaviors. Specifically,
the captured behavioral features are incrementally integrated into the basic features through a
short-cut path, and then fed to the next residual block. It refines the user/item embeddings through
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information propagation across different behaviors. Last, multi-task learning is used to jointly learn
the embeddings from different behaviors, improving the ability to predict the target behavior.

3.2.1 Embedding initialization. Following the common approach used in existing recommen-
dation methods [6, 9, 11], we associate each user and item with an ID embedding. Specifically,
let 𝑷 ∈ R𝑀×𝑑 and 𝑸 ∈ R𝑁×𝑑 be the embedding matrices for the user and item embedding initial-
ization, where 𝑀 and 𝑁 denote the number of users and items, respectively; and 𝑑 denotes the
embedding size. Formally, given the one-hot embedding matrix 𝑰𝑫U and 𝑰𝑫I for users and items,
the embeddings are initialized as:

𝒆0𝑢 = 𝑷 · 𝑰𝑫U
𝑢 , 𝒆0𝑖 = 𝑸 · 𝑰𝑫I

𝑖 , (2)

where 𝒆0𝑢 and 𝒆0𝑖 are the initialized user 𝑢’s and item 𝑖’s embeddings, respectively. 𝑰𝑫U
𝑢 (𝑰𝑫I

𝑖
) is

user 𝑢’s (item 𝑖’s) one-hot vector. It is worth mentioning that the embedding matrices 𝑷 and 𝑸 are
the only learnable parameters in our model.

3.2.2 Cascading Residual blocks. The goal of cascading residual blocks is to extract user prefer-
ences from individual behaviors and also capture the cascading relations of user preferences among
behaviors to comprehensively learn user preferences. The main idea is to take the basic features
as the initialized user and item embeddings, and then continuously refine them by leveraging the
behavioral features learned from each type of behavior. In the next, we will describe the residual
block sequence in detail from its two functionalities.
Single behavior modeling. This part is to learn user preferences from a single behavior (i.e.,

behavioral features). In recent years, Graph Convolutional Networks (GCNs) [17, 18, 34, 36, 42]
have shown a strong ability in learning from graph-structured data, and have demonstrated good
recommendation performance. In order to mine the behavioral features contained in the historical
interaction data, we employ neighborhood aggregation, which is an essential component in GCN. To
be more specific, inspired by the recent advances of GCN-based recommendation [9], we aggregate
the information from neighbors without nonlinear transformation. The information aggregated
from neighbors intuitively reflects the user’s interests in the current behavior based on learning
from high-order connectivity. The neighborhood aggregation for updating user node embeddings
is formulated as follows:

𝒆 (𝑙 )𝑢 = AGG({𝒆 (𝑙−1)
𝑖

: 𝑖 ∈ 𝑁𝑢}), (3)
where AGG denotes the aggregation function, which aggregates the information from neighboring
nodes of the user 𝑢; and 𝒆 (𝑙−1)

𝑖
denotes the item embedding of neighboring node of the user 𝑢

from the (l-1)-th layer. Here 𝑒 (𝑙 )𝑢 denotes the user embedding in the l-th layer, and 𝑁𝑢 denotes the
set of items that are interacted with by the user 𝑢. The embeddings of item nodes are updated in
the same way. For simplicity, the aggregation function in standard GCN [13] is adopted in our
implementation, namely:

𝒆 (𝑙 )𝑢 =
∑︁
𝑖∈𝑁𝑢

1√︁
|𝑁𝑢 |

√︁
|𝑁𝑖 |

𝒆 (𝑙−1)
𝑖

,

𝒆 (𝑙 )
𝑖

=
∑︁
𝑢∈𝑁𝑖

1√︁
|𝑁𝑖 |

√︁
|𝑁𝑢 |

𝒆 (𝑙−1)𝑢 ,

(4)

where 1√
|𝑁𝑢 |

√
|𝑁𝑖 |

denotes the normalization coefficient, 𝒆 (𝑙−1)𝑢 (𝒆 (𝑙−1)
𝑖

) denotes the user (item)

outputs from the (l-1)-th layer, 𝑒 (𝑙 )𝑢 and 𝑒 (𝑙 )
𝑖

are the final output of the GCN (i.e., behavioral features).
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when 𝑙 = 1, 𝑒0𝑢 and 𝑒0𝑖 denote the input of the GCN, respectively. For the convenience of the
description below, we define the final output of GCN as 𝑒′𝑢 and 𝑒′𝑖 (i.e., 𝑒′𝑢 = 𝑒

(𝑙 )
𝑢 , 𝑒′𝑖 = 𝑒

(𝑙 )
𝑖

).
In this part, we exploit the neighborhood aggregation of GCN to learn the user preferences (i.e.,

behavioral features) from each behavior. Remind that in our model, we assume that only a partial
preference of users can be observed from a single behavior. In the next, we will introduce how to
use these behavioral features to refine user preferences in detail.
Cascading effect modeling. As discussed above, different behaviors often reflect different

aspects of user preferences toward an item. More importantly, the behaviors interacting with items
in a certain order reveal user preferences at different degrees. We aim to continuously refine user
preferences by integrating all behavioral features and exploiting the connections between different
behaviors. We achieve the goal by answering two questions: 1) how to integrate the behavioral
features learned from different behaviors? and 2) how to explore the connection between different
behaviors?
For the first question, in each block, we can fuse the behavioral features learned in this block

with the input (i.e., the output of the previous block) to preserve the features from the previous
block. Therefore, we design a residual (i.e., short-cut) connection to refine the input embedding of
each behavior. This connection directly connects the feature embeddings learned from the previous
block (the input feature of the block) with the one learned from the behavior data in this block.
The summation method is then used to merge the two feature embeddings as output. Because the
numeric value of features after the GCN learning may be of a different range from the input of
the block, the direct summation may cause one feature embedding takes a dominant role in the
generated results, making the other one negligible, i.e., when the numeric values of two embeddings
are different in the order of magnitude. To avoid this problem, we take a normalization operation
on the behavioral features before summation. For simplicity, we adopt 𝐿2 normalization in our
model:

�̃�𝑢 =
𝒆′𝑢

∥𝒆′𝑢 ∥2
, �̃�𝑖 =

𝒆′𝑖
∥𝒆′𝑖 ∥2

. (5)

After normalization, we fuse the behavioral features learned in the current block with the one
output from the previous block via the residual connection, namely,

𝒆𝑢𝑜𝑢𝑡 = 𝒆𝑢𝑖𝑛 + �̃�𝑢,

𝒆𝑖𝑜𝑢𝑡 = 𝒆𝑖𝑖𝑛 + �̃�𝑖 ,
(6)

where 𝒆𝑢𝑖𝑛 and 𝒆𝑖𝑖𝑛 are the input user and item embeddings of the current block, which are also
the output of the previous block. 𝒆𝑢𝑜𝑢𝑡 and 𝒆𝑖𝑜𝑢𝑡 denote the output user and item embedding of the
current block, respectively.

With the designed residual block, the second problem can be easily addressed by connecting the
residual blocks in the order of behaviors, as shown in Fig. 2. In this structure, the output of the
previous residual block is taken as the input of the next block to deliver the extracted behavioral
information from one behavior to the next one. The information delivery between behaviors can
bring us two benefits: firstly, from the perspective of learning user preferences, it can continuously
refine the embeddings to model user preferences more accurately; secondly, for tackling the data
sparsity problem, it can make better use of data that has not been converted into target behaviors
to learn user preferences and alleviate the problem of cold-start users to some extent. Concretely,
the embeddings are learned and refined in the cascading residual blocks as follows:
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𝒆1 = 𝒆0 + �̃�1,

𝒆2 = 𝒆1 + �̃�2,

· · ·
𝒆𝐵 = 𝒆𝐵−1 + �̃�𝐵,

(7)

where B is the number of the behavior, 𝒆𝐵−1 denotes the input of the B-th residual block (i.e., the
output of the (B-1)-th residual block), �̃�𝐵 denotes the normalization behavioral features learned from
the B-th behavior, and 𝒆0 represents the initialized user and item embedding (i.e., basic features).
Based on this design, we implement message delivery in different behavior residual blocks from
the embedding level.
Through the above design, the behavioral features are fused into the basic features in an incre-

mental form to refine the user and item embeddings. With the cascading residual blocks, our model
explicitly takes the cascading effects between different behaviors into the embedding learning
process. Meanwhile, the residual design can ensure that the information can be well preserved and
delivered to the next behavior even when the current behavior has no interaction data. Thus, this
helps alleviate the data sparsity and cold start issues.

3.2.3 Multi-Task learning. Multi-task learning (MTL) [31] is a kind of joint-training paradigm
for different-yet-related tasks. In MTL, the performance of each task is improved by updating shared
parameters or shared models. As for CRGCN, each residual block learns a type of behavioral feature,
and all residual blocks share basic features through a cascading structure. To ensure effective
learning of CRGCN, we take the output of each residual block as a prediction task for the current
behavior. Thanks to the delivery of information in the cascading structure, during the training of
the current task, it can not only train the current residual block but also train the previous ones.
Loss function. We design a loss function for each behavior to supervise the learning process

of behavioral features. As shown in Fig. 2, our CRGCN model can obtain each user’ embedding
set {𝒆1𝑢, 𝒆2𝑢, · · · , 𝒆𝐵𝑢 } and each item’ embedding set {𝒆1𝑖 , 𝒆2𝑖 , · · · , 𝒆𝐵𝑖 } after learning for each behavior,
where 𝐵 denotes the number of behaviors. We then obtain the relevance scores 𝑦𝑢𝑖 of user-item
interaction by calculating the inner product of both as follows:

𝑦𝑢𝑖 = 𝒆⊤𝑢 𝒆𝑖 . (8)
It is necessary to ensure that the score of the observed user-item pair is higher than that of the

unobserved one. Given the first type of behavior as an example, the loss function is formulated as
follows:

L1 =
∑︁

(𝑢,𝑖, 𝑗 ) ∈𝑂
−𝑙𝑛𝜎 (𝑦𝑢𝑖 − 𝑦𝑢 𝑗 ), (9)

where 𝑂 = {(𝑢, 𝑖, 𝑗) | (𝑢, 𝑖) ∈ R+, (𝑢, 𝑗) ∈ R−} is defined as positive and negative sample pairs, and
R+ (R−) denotes the sample that has been observed (unobserved) in the current behavior. Here
𝜎 (·) denotes the sigmoid function. The loss function for other behaviors is similar. We then can get
the set of loss functions B = {L1, · · · ,L𝑏, · · · ,L𝐵}, where 𝑏 is the b-th behavior. Based on MTL,
we treat the learning of each behavior as a task. The final loss is an aggregation of all the losses
across different behaviors. It is formulated as follows:

L =
∑︁
𝑖∈B

L𝑖 + 𝛽 · ∥𝚯∥2 , (10)
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where 𝚯 represents all trainable parameters in our model and 𝛽 is the coefficient that controls the
strength of the 𝐿2 normalization to prevent over-fitting.

The direct optimization of the loss functionwill learn the parameters of multiple tasks. Specifically,
it updates the initialized embeddings (i.e., basic features) from the perspective of multiple tasks,
directly and indirectly, since initialized embeddings are the main learnable parameters in our model.
Training. We implement our model on Pytorch1 and adopt Adam [12] for optimization. The

mini-batch training strategy is also used to speed up the training process. To generate a mini-batch,
we sample the interaction data of different behaviors on a user-by-user basis to ensure that each
user is trained. Specifically, given a user in a batch, a positive-negative pair is sampled for each
behavior. The sampling is in the form of a triple (𝑢, 𝑖, 𝑗), where𝑢 represents the user, 𝑖 is the positive
sample, and 𝑗 is the negative one. Take one type of behavior as an example, where 𝑖 is a data sample
randomly from the observed interaction data. When user 𝑢 has no interaction data under this
behavior, a default triple (i.e., (0, 0, 0)) is returned to keep the training running properly.
In order to avoid the over-fitting problem, two widely-used dropout strategies are adopted in

experiments [11, 32, 34]: message dropout and node dropout. Specifically, message dropout is used
to drop out the information in the embedding, and node dropout is used to randomly drop out
nodes in the graph.

3.2.4 Complexity analysis. Our CRGCN model does not introduce any trainable parameters
other than the ones in user and item embedding initialization. Thus, CRGCN has the same trainable
parameters as the basic MF [26] model, demonstrating a big advantage in space complexity. The
computing complexity of our model is analyzed in the following. The time cost of our model is
mainly from computing the adjacency matrix, graph convolution, and BPR loss. Let |𝐸 | be the
number of edges in the user-item interaction graph, 𝐵 denotes the number of behavior types, 𝑛
is the number of epochs, 𝑏 denotes the size of each training batch, 𝑑 represents the embedding
size, and 𝐿 represents the number of GCN layers. In the process of learning the adjacency matrix,
the computational complexity is O(2|𝐸 |𝐵). In the Graph convolution process, the computational
complexity is O(2|𝐸 |𝑛𝐵𝐿𝑑 |𝐸 |

𝑏
). The computational complexity for BPR Loss is O(2|𝐸 |𝑛𝐵𝑑). Due

to the number of GCN layers in our model is 1 (i.e., 𝐿 = 1), the total computing complexity of
CRGCN is O(2|𝐸 |𝐵 + 2|𝐸 |𝑛𝐵𝑑 |𝐸 |

𝑏
+ 2|𝐸 |𝑛𝐵𝑑). Since the number of behaviors in multi-behavior tasks

is usually very small (𝐵 = 4 in Tmall and Jdata dataset, and 𝐵 = 3 in Beibei dataset). Thus, the
computing complexity of CRGCN is similar to LightGCN, which is O(2|𝐸 | + 2|𝐸 |𝑛𝐿𝑑 |𝐸 |

𝑏
+ 2|𝐸 |𝑛𝑑).

Compared with other multi-behavior recommendation models, our model enjoys a big advantage
in the computation complexity.

3.3 Model Discussion
In this section, we will analyze and discuss the design of each part in our model to justify the
rationality of the design of CRGCN. The overall design of our model is to explore the relationship
between different behaviors, and achieve the continuous refinement of user preferences with the
exploitation of different behaviors.

• Behavior modeling. The design of this part aims to mine the user preferences from different
types of behaviors. In recent years, GCN has set up a new standard for collaborative filtering-
based recommendation methods due to its powerful representation learning ability from
the graph structure. In the recommendation scenario, the GCN methods can leverage the
high-order connectivity in the user-item bipartite graph for the user and item embedding

1https://pytorch.org/
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learning. Accordingly, we also adopt the GCN techniques in our model to learn user and item
embeddings from the interaction data of each behavior.

• Residual block. Residual blocks are designed to integrate user preferences learned from
different behaviors. A short-cut connection is used to preserve the behavioral features learned
from the previous block. Before the fusion, 𝐿2 normalization is performed on the behavioral
features learned by GCN to balance the effects of the behavioral features learned from two
adjacent blocks.

• Cascading residual blocks. The cascading structure connects all residual blocks in a certain
order, and takes the output of the former as the input of the latter. Such a design connects
all behaviors to deliver behavioral features for embedding refinement. This design enables
our model to exploit the connections between different behaviors for embedding learning
explicitly.

• Multi-Task learning. We adopt the multi-task learning strategy by treating the learning
of each behavioral feature as an individual task. From the local view of a single task, it can
well utilize the current behavior information to learn user preferences; and from the global
view, different tasks are interacted with each other and learned jointly together with the
cascading structure, enhancing user preferences learning and refinement across different
types of behaviors.

4 EXPERIMENT
To evaluate the effectiveness of our CRGCN model, we conduct comprehensive experiments
on three publicly available datasets, which are commonly used to evaluate the multi-behavior
recommendation models. In particular, we aim to answer the following research questions:

• RQ1: How does our CRGCN model perform as compared with the state-of-the-art recom-
mendation models that are learned from single- and multi-behavior data?

• RQ2: How does each module in our CRGCN model affect the recommendation performance?
• RQ3:How does themulti-behavior information (e.g., the number or the order of the behaviors)
impact the recommendation performance?

• RQ4: Can our model effectively leverage the multi-behavior information to alleviate the
cold-start users problem as compared with the existing multi-behavior recommendation
models?

• RQ5: How about the computing efficiency of our CRGCN model?

4.1 Experiment Settings
4.1.1 Dataset. Three public real-world datasets have been adopted for experiments: Tmall2,
Beibei3, and Jdata4.

• Tmall. This dataset is collected from Tmall5, one of the largest e-commerce platforms in
China. It contains 41,738 users and 11,953 items with 4 types of behaviors, i.e., view, collect,
cart, and buy. On the Tmall platform, users can buy the item directly after viewing, or add
it to the cart before purchasing, or they may just click on the collection instead of the buy
behavior.

2https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
3https://www.beibei.com
4https://jdata.jd.com/html/detail.html?id=8
5https://www.tmall.com/
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• Beibei. This dataset is collected from Beibei6, the largest infant product retail e-commerce
platform in China. This dataset contains 21,716 users and 7,977 items with three types of
behaviors, including view, cart, and buy behavior data within the period from 2017/06/01 to
2017/06/30. On the Beibei platform, users’ shopping process is carried out according to the
process of view, cart, and finally buy.

• Jdata. This dataset is collected from JD7, a comprehensive online retailer in China and one of
the most popular and influential e-commerce websites in the Chinese e-commerce field. This
dataset contains 93,334 users and 24,624 items with 4 types of behaviors, i.e., view, collect,
cart, and buy behavior data within the period from 2018/02/01 to 2018/04/15. The behavior is
similar to that of Tmall.

For the three datasets, we followed the previous work to merge the duplicated user-item interactions
by keeping the earliest one [6, 11]. The statistical information of the three datasets used in our
experiments is summarized in Table 1.

Table 1. Statistics of three real-world benchmark datasets.

Dataset Users Items Buy Cart Collect View

Tmall 41,738 11,953 255,586 1,996 221,514 1,813,498
Beibei 21,716 7,997 304,576 642,622 - 2,412,586
Jdata 93,334 24,624 333,383 49,891 45,613 1,681,430

4.1.2 Evaluation Protocols. We adopt the widely used leave-one-out strategy for evaluation [6,
9, 10], which means for each user, the test set is comprised of one positive item and all the items
that she has not interacted with before. In the training stage, the last positive item for each user is
selected to construct the validation set for hyper-parameter tuning. In the evaluation stage, all the
items in the test set are ranked according to the predicted scores by recommendation algorithms.
We sort the items by predicting user preferences for all the items that do not appear in the training
set, and the top-𝐾 ranked items will be used for evaluation. Two popular evaluation metrics in
recommendation HR@K and NDCG@K are adopted to evaluate the performance:

• HR@K: Hit Ratio (HR) is a commonly used metric to measure whether the positive test item
is recommended in the top 𝐾 items in the ranking list.

• NDCG@K: Normalized Discounted Cumulative Gain (NDCG) takes the position of correctly
recommended items into consideration by assigning a higher score to the hit at a higher
position.

4.1.3 Baselines. We compare our CRGCN model with several competitive recommendation
models, including two single-behavior methods and six multi-behavior models. We briefly introduce
these methods as follows.

Single-behavior model:
• MF-BPR [26]. MF-BPR makes recommendations based on a single behavior and has been
widely used as a baseline to examine the performance of newly proposed models. BPR is
a widely used optimization strategy, which assumes that the predicted scores of positive
samples are higher than those of negative samples.

6https://www.beibei.com/
7https://www.jd.com/
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• LightGCN [9]. It becomes a new standard for CF models by exploiting a single user-item in-
teraction behavior in recommendation. LightGCN leverages the GCN technique to exploit the
high-order connectives in the user-item bipartite graph for recommendation. In particular, it
removes the feature transformation and non-linear activation components in traditional GCN
models to simplify the model structure and achieves a significant performance improvement
over its counterpart.

Multi-behavior model:
• R-GCN [29]. R-GCN differentiates the relations between nodes via edge types in the graph
and designs different propagation layers for different types of edges to model the relation
information. This model can adapt to the task of multi-behavior recommendation.

• NMTR-NCF [6]. It is a deep learning model for multi-behavior recommendation. NMTR-NCF
develops a neural network model to capture the complicated and multi-type interactions
between users and items. It sequentially passes the interaction score of the current behavior
to the next and also adopts multi-task learning to jointly optimize shared parameters.

• NMTR-GCN. This is a modified NMTR model which uses single-layer GCN to replace the
Neural Collaborative Filtering (NCF) module [10] in NMTR-NCF.

• MBGCN [11]. This model constructs a unified multi-behavior graph to learn user preferences
through the user-item propagation layer and employs learnable parameters to assign weights
for different behaviors during layer aggregation. In addition, it also exploits the high-order
item-item relations to enhance the item embedding learning.

• GNMR [37]. This model designs a relation aggregation network to model interaction het-
erogeneity. It attempts to explore the dependencies among different types of behaviors via
recursive embedding propagation over the multi-behavior interaction graph.

• S-MBRec [7]. This model consists of supervised and self-supervised learning tasks. It uses
multiple GCNs to learn the user and item embeddings from each behavior and adopts a
star-style contrastive learning strategy, which constructs a contrastive view pair for the
target and each auxiliary behavior.

4.1.4 Hyper-parameter Settings. We implemented our CRGCN model in Pytorch8. The source
code of our implementation is released 9. In our experiments, the mini-batch size of all models is
set to 1024, and the embedding size is fixed to 64 [9]. For all the models using pair-wise learning
loss [6], we randomly sampled 4 negative samples for each positive sample [6, 10]. In addition, we
used the grid search to tune the learning rate in the range of [1𝑒−2, 3𝑒−3, 1𝑒−3, 1𝑒−4] and tuned the
regularization weight (i.e., 𝛽) in the range of [1𝑒−2, 1𝑒−3, 3𝑒−4, 1𝑒−4]. For the other hyper-parameters
in the baselines, we carefully tuned them according to their original papers. Furthermore, we adopted
an early stop strategy in the training stage, that is, the training process will be stopped when
HR@20 on the validation set does not increase within 20 epochs. Note that the NMTR-NCF [6]
model needs the behaviors to be happening in a certain order; we strictly followed the strategy
reported in the original paper on the Tmall dataset, i.e. only view and buy behavior are used.

4.2 Overall Performance (RQ1)
In this section, we report the performance comparisons between our CRGCN model and the
baselines. The experimental results on the three datasets are shown in Table 2, Table 3, and Table 4.
Overall, CRGCN achieves the best performance. It can be seen that the CRGCN model significantly
outperforms all baselines on three datasets. For the two metrics, the average improvement across

8https://pytorch.org/
9The source codes are available at https://github.com/MingshiYan/CRGCN.
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Table 2. Overall performance comparisons on Tmall dataset.

Method HR@10 NDCG@10 HR@20 NDCG@20 HR@50 NDCG@50 HR@80 NDCG@80

One-behavior MF-BPR 0.0230 0.0124 0.0316 0.0144 0.0434 0.0166 0.0541 0.0183
LightGCN 0.0393 0.0209 0.0538 0.0243 0.0813 0.0295 0.0984 0.0322

Multi-behavior

R-GCN 0.0316 0.0157 0.0489 0.0198 0.0826 0.0262 0.1067 0.0300
NMTR-NCF 0.0517 0.0250 0.0847 0.0330 0.1498 0.0456 0.1963 0.0531
NMTR-GCN 0.0536 0.0286 0.0721 0.0330 0.1037 0.0391 0.1256 0.0426
MBGCN 0.0549 0.0285 0.0799 0.0345 0.1285 0.0438 0.1629 0.0493
GNMR 0.0393 0.0193 0.0619 0.0247 0.1071 0.0332 0.1410 0.0388
S-MBRec 0.0694 0.0362 0.1009 0.0438 0.1553 0.0544 0.1901 0.0601
CRGCN 0.0840 0.0442 0.1238 0.0540 0.1994 0.0685 0.2491 0.0766

Improvement 21.04% 22.10% 22.70% 23.29% 28.34% 25.92% 26.90% 27.45%

Table 3. Overall performance comparisons on Beibei dataset.

Method HR@10 NDCG@10 HR@20 NDCG@20 HR@50 NDCG@50 HR@80 NDCG@80

One-behavior MF-BPR 0.0268 0.0139 0.0427 0.0179 0.0793 0.0250 0.1075 0.0297
LightGCN 0.0309 0.0161 0.0478 0.0204 0.0880 0.0282 0.1220 0.0339

Multi-behavior

R-GCN 0.0327 0.0161 0.0561 0.0219 0.1118 0.0329 0.1603 0.0409
NMTR-NCF 0.0315 0.0146 0.0587 0.0214 0.1276 0.0348 0.1877 0.0448
NMTR-GCN 0.0301 0.0144 0.0524 0.0200 0.1139 0.0322 0.1607 0.0399
MBGCN 0.0373 0.0193 0.0639 0.0259 0.1287 0.0386 0.1807 0.0472
GNMR 0.0396 0.0219 0.0640 0.0280 0.1219 0.0394 0.1739 0.0480
S-MBRec 0.0489 0.0253 0.0770 0.0324 0.1234 0.0415 0.1570 0.0471
CRGCN 0.0539 0.0259 0.0944 0.0361 0.1817 0.0532 0.2536 0.0652

Improvement 10.22% 2.37% 22.60% 11.42% 41.18% 28.19% 35.11% 35.83%

Table 4. Overall performance comparisons on Jdata dataset.

Method HR@10 NDCG@10 HR@20 NDCG@20 HR@50 NDCG@50 HR@80 NDCG@80

One-behavior MF-BPR 0.1850 0.1238 0.2192 0.1325 0.2652 0.1417 0.2890 0.1456
LightGCN 0.2252 0.1436 0.2825 0.1582 0.3658 0.1747 0.4108 0.1822

Multi-behavior

R-GCN 0.2406 0.1444 0.3418 0.1588 0.4873 0.1891 0.5548 0.2008
NMTR-NCF 0.3142 0.1717 0.4086 0.1966 0.5227 0.2198 0.5843 0.2304
NMTR-GCN 0.3190 0.1914 0.4071 0.2006 0.5375 0.2274 0.5926 0.2469
MBGCN 0.2803 0.1572 0.3603 0.1790 0.5045 0.1984 0.5741 0.2098
GNMR 0.3068 0.1581 0.3694 0.1944 0.4607 0.2029 0.5106 0.2114
S-MBRec 0.4125 0.2779 0.4957 0.2989 0.6036 0.3203 0.6584 0.3295
CRGCN 0.5001 0.2914 0.6190 0.3225 0.7685 0.3535 0.8359 0.3652

Improvement 21.24% 4.86% 24.87% 7.90% 27.32% 10.37% 26.96% 10.83%

different ranges of top K (K= {10, 20, 50, 80}) items over the second best method can achieve 24.76%
and 24.69% on Tmall, 27.28% and 19.45% on Beibei, and 25.10% and 8.49% on Jdata for HR@K
and NDCG@K metrics, respectively. This is a remarkable improvement in the recommendation
accuracy, demonstrating the effectiveness of our CRGCN model. The contribution of different
components in our model will be further analyzed in the ablation study.
For the methods that only leverage a single type of behavior, LightGCN achieves consistently

better performance over MF-BPR, demonstrating the advantages of GCN models in taking advan-
tage of the higher-order neighbors’ information during the user and item embedding learning. The
graph is natural for modeling complex relations and is thus convenient for modeling multi-behavior
interactions between users and items. Meanwhile, GCN is powerful in learning node features in
graph structures, facilitating the advancement of GCN-based multi-behavior recommendation mod-
els. Our model also adopts this approach. Besides R-GCN, all the multi-behavior recommendation
models perform better than the single-behavior methods, which demonstrates the potential of
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exploiting multi-behavior information in user preference modeling. Different from other multi-
behavior recommendation models, R-GCN is not designed for this task. R-GCN separately models
each behavior and then fuses the features from different behaviors without distinguishing their
contributions to the target behavior. Thus it cannot well exploit different behaviors for user pref-
erence modeling, resulting in relatively worse performance. MBGCN considers the contributions
of different behaviors before fusion and achieves better performance than R-GCN, indicating the
importance of considering the contributions of different behaviors in modeling. GNMR attempts to
apply the attention mechanism to capture the dependencies between different behaviors. However,
it ignores the impact of the order of behaviors, which conveys important information about user
preferences on an item. It is interesting to observe that GNMR performs the third best in Beibei, but
it does not perform well on the Tmall and Jdata datasets. This is because of the strict requirement
on the order of behaviors on Beibei. This requirement reinforces the dependency effects between
different behaviors, and is also beneficial for the model to capture the dependency relations. In
contrast, the order of behaviors in Tmall is somewhat arbitrary, which limits the performance of
GNMR. S-MBRec performs the second best over the three datasets, attributing to the contrastive
learning to mine the commonalities between auxiliary behavior and target behavior.
The NMTR model considers the cascading effects of behaviors (e.g., view->cart->...). It models

the effects by passing the prediction scores of a previous behavior to the next one. The NMTR-NCF
is the original model proposed in [6]. As we can see, it can achieve the better performance among
all the baselines on Tmall and Jdata datasets because of the consideration of the cascading effects
of user behaviors. Our CRGCN also considers the cascading effects in the modeling. The core
difference between CRGCN and NMTR is in the way of modeling the cascading effects: NMTR
models the effects by passing the prediction score while CRGCN captures the effects by passing
the embedding learned from the previous behavior to the next one for further refining, which
is similar to an embedding refinement process according to users’ behavior sequences. Another
difference is that CRGCN models the individual behaviors via GCN while NMTR models each
behavior by using NCF as the backbone model. To analyze whether the improvement of CRGCN
over NMTR is attributed to the use of GCN in modeling each behavior, we replace the NCF with
GCN in NMTR (denoted as NMTR-GCN as shown in the tables). It can be seen that NMTR-GCN
can only perform comparable to NMTR-NCF or even slightly worse than NMTR-NCF in most
cases. This demonstrates that simply using GCN to replace the NCF cannot achieve performance
improvement. The substantial improvement of our CRGCN model should be credited to the way of
modeling the cascading effects. The contributions of some specific components in the modeling
(e.g., residual block, 𝐿2 normalization, one-layer GCN, etc.) will be further analyzed in the next
section.

Overall, we can have the following conclusions based on the performance comparisons among
all the adopted methods: 1) multi-behavior information is very useful for preference modeling and
can help recommendation models make much more accurate predictions; 2) the cascading effect of
different behaviors is important for multi-behavior recommendation methods to accurately model
user preferences; 3) the way of modeling the cascading effects is also important and can make a big
difference on the recommendation performance.

4.3 Ablation Study (RQ2)
To further study the CRGCN model, we conduct extensive ablation studies to examine the effec-
tiveness of different components for the final performance. We analyze the contributions of each
component from the following aspects.
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Table 5. Effects of different designs in our residual block ("𝐿2", "SC" represent 𝐿2 normalization for behavioral
feature and short-cut connection, respectively).

Ablation Tmall Beibei Jdata

L2 SC HR@10 NDCG@10 HR@20 NDCG@20 HR@10 NDCG@10 HR@20 NDCG@20 HR@10 NDCG@10 HR@20 NDCG@20
! 0.0137 0.0065 0.0225 0.0086 0.0130 0.0065 0.0249 0.0095 0.1566 0.0868 0.2046 0.0999

! 0.0729 0.0375 0.1059 0.0455 0.0350 0.0178 0.0615 0.0244 0.3965 0.2320 0.5093 0.2613
! ! 0.0840 0.0442 0.1238 0.0540 0.0539 0.0259 0.0944 0.0361 0.5001 0.2914 0.6190 0.3225

Table 6. Effects of 𝐿2 normalization before feature fusion ("-plain", "-LW ", "-𝐿2" represent without 𝐿2 normal-
ization, assign learnable weights for the two types of feature, and 𝐿2 normalization for behavioral feature,
respectively).

Model Tmall Beibei Jdata

HR@10 NDCG@10 HR@20 NDCG@20 HR@10 NDCG@10 HR@20 NDCG@20 HR@10 NDCG@10 HR@20 NDCG@20
CRGCN-plain 0.0729 0.0375 0.1059 0.0455 0.0350 0.0178 0.0615 0.0244 0.3965 0.2320 0.5093 0.2613
CRGCN-LW 0.0735 0.0373 0.1068 0.0454 0.0370 0.0191 0.0643 0.0260 0.4419 0.2548 0.5597 0.2855
CRGCN-𝐿2 0.0840 0.0442 0.1238 0.0540 0.0539 0.0259 0.0944 0.0361 0.5001 0.2914 0.6190 0.3225

4.3.1 Effects of the Residual Block. The residual block is a core design in our model to learn user
preferences by exploiting the multi-behavior in sequence. In particular, user preferences extracted
from a behavior are fed into the GCN module of the next behavior to learn more accurate user
preferences. In this process, we introduce two special designs: 1) 𝐿2 normalization to balance the
feature embeddings learned from previous behaviors and the one learned from current behaviors,
and 2) a short-cut connection to preserve the features learned from previous behaviors. To analyze
the effectiveness of both designs, we carry out experiments on the following two variants of our
model as competitors: 1) removing the short-cut connection in the residual block; 2) removing the
𝐿2 normalization from CRGCN.

The experimental results on Tmall, Beibei, and Jdata datasets are reported in Table 5. From the
results, we can see that the performance drops sharply after removing the short-cut connection
(the first row in Table 5). This demonstrates the importance of the residual design, which can well
preserve the features extracted from previous behaviors and integrate them into the next behaviors
to refine user preferences. After removing the 𝐿2 normalization, the performance has also greatly
decreased. This is because, without normalization, the value of the features learned from GCN
might have deviated far from the feature values passed from the residual block of the previous
behavior (e.g., in different orders of magnitude). As a result, this will largely weaken the effects of
the features passed from the short-cut connection in the network. To further validate the effects of
𝐿2 normalization, we conduct another experiment to replace it with learnable weights (denoted as
CRGCN-𝐿𝑊 ) for feature fusion. The experimental results are shown in Table 6. Compared with the
direct fusion (i.e., CRGCN-𝑝𝑙𝑎𝑖𝑛), the use of learnable weights can yield slight improvement, while
there is still an enormous gap compared to our model with 𝐿2 normalization. This validates the
importance of ensuring the feature values are in the same numerical range before feature fusion. In
a nutshell, the above experimental results can well validate the effectiveness of our designs in the
residual block.

4.3.2 Effects of the number of GCN layers. In this section, we study the effects of the number
of GCN layers on the model performance. For simplicity, we use the same number of layers for
different behaviors. The experimental results on Tmall, Beibei, and Jdata datasets are shown in
Fig. 3, in which CRGCN(0𝑙 ) , CRGCN(1𝑙 ) (our model), and CRGCN(2𝑙 ) represent GCN with 0, 1, and
2 layers, respectively. In particular, when the layer number of the GCN is 0, our CRGCN model
degenerates into multi-task learning with shared embeddings.
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Fig. 3. Effects of different GCN layers on the final performance of our model.

By comparing the results of CRGCN(0𝑙 ) and CRGCN(1𝑙 ) in Fig. 3, we find out that the use of
GCN to learn user preferences from behaviors can greatly improve the model performance. Besides,
the performance of the model decreases with the increase of GCN layers, which can be seen from
the results of CRGCN(1𝑙 ) and CRGCN(2𝑙 ) on Tmall and Beibei datasets. In previous work like
LightGCN [9] or NGCF [34], the best performance is often obtained when stacking 2 or 3 layers,
as stacking more layers can exploit higher-order neighboring information to learn better user
preferences. However, in our model, the best performance is achieved by using only one layer. This
is because our model applies the GCN model to learn user preferences from multiple behaviors
in a cascading way. The embedding learned from a GCN module (based on behavior) is passed
to the next GCN for refinement. And we assume that the behavior that performs the latter can
express more accurate user preferences. For example, the view behavior only expresses a general
interest of a user towards an item. It is not sure whether the user is really interested in an item yet
before the user gets more details of the item. And the number of interactions based on the view
behavior is significantly larger than other behaviors (see Table 1). In other words, the items in the
latter behaviors can better reflect a user’s preference (i.e., buy->collect->view). When stacking more
layers on the graph of view behavior, it may introduce noisy information into the learning process,
which will negatively affect the subsequent embedding learning based on the latter behaviors,
which can be confirmed in the results of Jdata dataset.

To validate this viewpoint, we perform an additional experiment. In this experiment, we change
the number of GCN layers for different behaviors, and each time we make the change for only one
behavior. The behavior modeling order is view->collect->cart->buy for Tmall and Jdata datasets,
and view->cart->buy for Beibei dataset, respectively. For ease of presentation, we use a list to
represent the number of GCN layers in the corresponding behavior. For example, in the Tmall
dataset, [2, 1, 1, 1] indicates that there are 2 GCN layers for view and 1 GCN layer for all other
behaviors. The same definition is used for Beibei and Jdata datasets. The experimental results
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are shown in Table 7. Generally, the earlier the behavior of using more layers, the worse the
performance. In addition, with the use of more layers in the last behavior (i.e., buy behavior),
the performance can be further improved (see T5 over T1, B4 over B1, and J5 over J1). The best
performance is achieved when using two GCN layers on the buy behavior, which is also the target
behavior. The results can well support our explanation for the results in Fig. 3. In addition, this
also verifies the benefits of using GCN to exploit higher-order neighbors in the graph to learn user
preferences. However, it is better to confirm that the neighbors are indeed positively related. This
is also one of the reasons that stacking more layers may cause performance degradation10. Because
after a few hops, it is hard to differentiate the relevance of high-order neighbors.

Table 7. Performance with different GCN layers for different behaviors.

Dataset Evaluation metrics Statistic

Tmall
View->Collect->Cart->Buy T1 T2 T3 T4 T5 T6

[1, 1, 1, 1] [2, 1, 1, 1] [1, 2, 1, 1] [1, 1, 2, 1] [1, 1, 1, 2] [1, 1, 1, 3]
HR@20 0.1223 0.1036 0.1165 0.1211 0.1233 0.1204

NDCG@20 0.0532 0.0440 0.0489 0.0528 0.0534 0.0514

Beibei
View->Cart->Buy B1 B2 B3 B4 B5 -

[1, 1, 1] [2, 1, 1] [1, 2, 1] [1, 1, 2] [1, 1, 3] -
HR@20 0.0812 0.0658 0.0598 0.0927 0.0778 -

NDCG@20 0.0312 0.0291 0.0248 0.0369 0.0290 -

Jdata
View->Collect->Cart->Buy J1 J2 J3 J4 J5 J6

[1, 1, 1, 1] [2, 1, 1, 1] [1, 2, 1, 1] [1, 1, 2, 1] [1, 1, 1, 2] [1, 1, 1, 3]
HR@20 0.1223 0.1036 0.1165 0.1211 0.1233 0.1204

NDCG@20 0.0532 0.0440 0.0489 0.0528 0.0534 0.0514

4.3.3 Effects ofmulti-task learning. To verify the effectiveness of multi-task learning in CRGCN,
we compare CRGCN with the one using the prediction loss of the target behavior (i.e., buy behavior)
for training (denoted as CRGCN(𝑠𝑖𝑛𝑔) ) in experiments. All the other parts are kept the same as
CRGCN. The experimental results on Tmall, Beibei, and Jdata datasets are shown in Fig. 4.

From the results, we can observe that the performance of CRGCN is consistently better than that
of CRGCN(𝑠𝑖𝑛𝑔) in terms of both HR@K and NDCG@K metrics, indicating that multi-task learning
can indeed significantly improve the prediction accuracy for the target behavior. The reason for
this is that multi-task learning can jointly train the outputs of all residual blocks at the same
time, making good use of each behavior to learn user preferences. This can not only learn better
embeddings from the interaction data of each behavior, but also facilitate the continuous refinement
of user preferences with a cascading structure by using the multi-task learning framework.

4.3.4 The importance of different weights. In this work, we mainly focus on studying the
potential of our model in exploiting the cascading effects of multi-behavior in embedding learning.
Therefore, we treat different tasks equally in the loss function for simplicity. Intuitively, different
behaviors may have different effects on the target behavior. Thus, we carry out experiments here
to analyze the impact of loss function on different tasks with different weights. Specifically, we
test different combinations of weight settings and we did not exhaust all the possibilities. The
experiment results are reported in Fig. 5.

From the results, we can see that the equal setting indeed cannot achieve the best results. Better
results can be achieved by assigning different weights to different tasks. In general, assigning higher
10Another reason is the over-smoothing problem, which is an inherent problem for GCN models.
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Fig. 4. Performance comparisons between the multi-task learning and single-task learning.

Fig. 5. Performance of assigning different weights to different tasks in multi-task learning.

weights to latter behaviors can yield relatively better performance, which is expected because the
latter behaviors are closer to the target behaviors. But still, it needs to carefully tune the weights
for the optimal performance. Because this is not our main focus in this study, and the simple equal
setting can already achieve impressive improvement over the most recently proposed models, we
did not carefully tune the weights of different tasks for the best performance. This experiment can
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already verify that the importance of different tasks should be different in the multi-task learning
for better performance. We would like to leave the exploration of automatically learning the best
setting in the future.

4.4 Influence of multi-behaviors (RQ3)
The underlying assumptions of our model include that different types of behaviors provide valuable
information about user’s preference and the order of behaviors (e.g., view->cart->buy) matters.
Specifically, the next behavior provides more specific information which can help us refine the
user’s preference. To validate the assumptions, in this section, we study the effects of multi-behavior
information on the recommendation performance from two aspects: 1) the number of behaviors,
and 2) the order of behaviors.
Before reporting the experimental results, we would like to describe the behavior sequence on

the Tmall, Beibei, and JD platforms. When shopping on Beibei, users must follow the order of
<view, cart, buy>, which is fixed. In contrast, on Tmall and JD, after the behavior of view, users
can perform the behaviors of collect or cart and then buy, or directly go to the final behavior of
buy. Specifically, the possible behavior sequences can be <view, buy>, <view, cart, buy>, <view,
collect, buy>, <view, collect, cart, buy>. Besides the above sequences, we also added other behavior
sequences as competitors for analysis.

The experimental results on Tmall, Beibei, and Jdata are shown in Fig. 6, respectively. From the
results on Tmall and Jdata datasets, it is interesting to find that the increase of behavior numbers
does not necessarily improve the performance and even may cause performance degradation,
especially when the behaviors have not been taken into consideration in the correct order (i.e.,
the order of behaviors that users often perform in real scenarios). We first take a look at the four
behavior orders that users often perform in real scenarios: T9/J9: view->buy, T7/J7: view->collect-
>buy, T8/J8: view->cart->buy, T1/J1: view->collect->cart->buy. The performance of J8 is much better
than that of J9, which means that considering the cart behavior helps to better model the user’s
shopping process. The performance of T8 is worse than that of T9 because the cart behavior data is
too sparse in Tmall. As a result, we cannot learn good representations of users and items for this
behavior based on such sparse data, and it will hurt the embedding learning process when taking
it into the sequence. The comparable performance of T1 and T7 can also validate this point. By
contrast, the addition of collect behavior significantly improves the performance (T7 over T9) for
Tmall dataset, the reason is that the collect behavior of Tmall dataset has more records (equivalent
to the buy behavior), so it can help to mine other aspects of user preferences. For the performance
with four behaviors in different orders, we can see that the more the behaviors are out of order
(i.e., the farther away from the correct order), the worse the performance is. For example, when
the view behavior is the first behavior, the performance is better than that of other cases (see T1/J1
and T2/J2), and the performance is the worst when we put the view behavior in the third place of
the behavior sequence. This demonstrates our assumption that the next behavior in a sequence
uncovers more information (than a previous behavior) about a user’s preference, and our CRGCN
can well model the cascading effects in multi-behaviors.
The performance on Beibei further validates the effectiveness of our model. Note that the

behaviors must be taken in a fixed order on Beibei, e.g., view->cart->buy. Obviously, with more
behaviors in this order, we can infer the user’s preference more accurately. The consistently better
performance of B1 over B2 demonstrates that our model can well capture user preferences step by
step based on the sequence of behaviors that are often taken by users in real scenarios. The reason
that B4 performs better than B3 might be that: 1) the cart behavior reveals more information about
user preferences than of the view behavior; 2) there are more overlapped preferences that encoded
between the behaviors of cart and buy than the one that encoded between the behaviors of view
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Fig. 6. Performance comparison of CRGCN w.r.t. different order and number of behaviors on three datasets.

and buy. In other words, the connection between buy and cart behavior is closer than that between
the buy and view behavior. Our model is designed to capture the connections between behaviors
and can make more use of the closer connections.

4.5 Performance on Cold-start Users (RQ4)
The cold-start user problem is an inherently challenging problem in recommender systems. When
the interactions between users and items become sparse, the performance of most collaborative
filtering-based recommendation models decreases sharply. In real scenarios, the buy behaviors of
users are often very sparse, which severely limits the effectiveness of recommendation models. The
advantage of multi-behavior recommendation models is that they can leverage the information
of other behaviors to make a recommendation for the final buy behavior, so as to alleviate the
cold-start problem of users. In this section, we would like to testify the effectiveness of our model
in tackling this problem.
We compare our CRGCN with two models S-MBRec and MBGCN, where S-MBRec is the best

baseline, and MBGCN yields better performance over S-MBRec in dealing with the cold-start
problem. To perform the study, we randomly select 1,000 users in the test set as cold-start users
and remove their records of buy behaviors from the training set. To be more specific, we remove
all the buy behavior interactions of these 1,000 users in the training set. In addition, for all the
user-item pairs involved in the removed buy behavior interactions, their interactions in all the
other behaviors are also removed. For example, for a sampled user 𝑢, we not only remove her buy
behavior interaction with an item 𝑖 , but all the other interaction behaviors with this item, such as
view and cart, are also removed from the training data. This process is to ensure that the system does
not have any prior information about the user’s preference for the test item. For other behaviors,
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Fig. 7. Performance comparisons among CRGCN, S-MBRec, and MBGCN for cold-start users.

we delete user-item interaction pairs observed in our randomly selected collection. These 1,000
users are simulated as the hard cold-start users with no buy behavior records. Then we exploit the
remaining users’ interaction records to train the model, and follow the same settings as described
in section 4.1.4. Finally, we use the trained model to make personalized recommendations for these
1,000 cold-start users.

The recommendation results of the three models are shown in Fig. 7 in terms of HR@K and
NDCG@K. It can be observed that our CRGCN model consistently outperforms MBGCN and
S-MBRec with a large margin. Compared with MBGCN, the average improvement of our model in
terms of HR@K and NDCG@K are 103.86% and 94.52% on the Tmall dataset, 29.76% and 15.61% on
Beibei dataset, and 230.82% and 194.99% on Jdata dataset. The superiority demonstrates that our
model can better utilize the assistive behavior information to learn users’ preferences for the target
behavior recommendation. This should be attributed to the cascading residual design, which can
effectively leverage the cascading behaviors to refine the user preference embedding. In addition,
we find that although S-MBRec is the best baseline, but it does not perform as well as MBGCN in
dealing with the cold-start problem. This is because MBGCN has an item-based scoring module
to leverage the item-item relations, which can provide additional information for user preference
modeling.

4.6 Efficiency Analysis (RQ5)
Another advantage of our CRGCN model is its light design without introducing additional weights
(compared with the single-behavior models) as other multi-behavior recommendation models,
which can greatly save the time cost in the training process. To evidently demonstrate the computing
efficiency of the model, we compare CRGCN with several representative baselines in the same
settings based on the average training time for one epoch and the number of epochs to converge.
Besides, we also report the time it takes for each method to perform the same prediction. The
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results are shown in Table 8. All methods in this experiment are implemented by Pytorch, in which
the NMTR-NCF model only considers two types of behaviors (i.e., view and buy) on Tmall and
Jdata dataset. The environment settings are as follows: CPU: Intel(R) Xeon(R) CPU E5-2650 v4 @
2.20GHz, GPU: GeForce RTX 2080 Ti Rev. A, Batch size: 1,024, Embedding size: 64.

Table 8. Comparison of computing efficiency for the training of each epoch.

Metric Dataset One-behavior Multi-behavior

MF-BPR LightGCN R-GCN NMTR-NCF MBGCN GNMR S-MBRec CRGCN

Training(s)
Tmall 2.28 3.58 23.72 13.30 106.72 112.35 109.79 10.66
Beibei 1.74 2.86 30.35 20.19 139.36 119.97 158.61 6.78
Jdata 5.14 7.92 21.89 23.76 105.69 120.00 168.29 19.58

From the results, we can see that CRGCN enjoys a good training efficiency compared with other
multi-behavior models in terms of both the training time for each epoch and the required number
of epochs for convergence. It is remarkable that our model is much more efficient than MBGCN
and S-MBRec, which are the most competitive baselines in terms of the recommendation accuracy.
Compared with the single-behavior LightGCN (only using the buy behaviors), the total time cost is
acceptable since our model uses much more interactions (see the number of interactions in Table 1).
This is consistent with the complexity analysis in section 3.2.4, i.e., CRGCN has the same computing
complexity as LightGCN. The time cost of R-GCN and NMTR-NCF is also much higher than our
method, and their performance on accuracy falls far behind our model. Note that MTR-NCF only
models two behaviors on the Tmall and Jdata datasets. In addition, it is worth mentioning that the
training results of CRGCN (i.e., the final representation of users and items) can be conveniently
saved, which means that our model has the same time consumption when making recommendation
compared with MF-BPR, the most basic single-behavior recommendation model. The light design
of CRGCN makes it more applicable for applications with large-scale datasets.

5 CONCLUSION
In this work, we proposed a novel multi-behavior recommendation model named CRGCN, which
exploits the cascading residual blocks to better mine user preferences expressed in a single behavior
and the connection between different behaviors. Meanwhile, we designed the cascading residual
structure to continuously refine user preferences and adopted the multi-task learning framework
to optimize the model. Extensive experimental results on three real-world benchmark datasets
demonstrate the superiority of our CRGCNmodel. Further ablation studies verified the effectiveness
of the components of CRGCN, including cascading residual blocks and multi-task learning. We also
evaluated the performance of cold-start users and analyzed the model complexity, which confirms
the high application value of our CRGCN in the real world.
In the future, we would like to explore how to combine and leverage micro-behavior (e.g.,

short-term multi-behavior interactions at the session level) and macro-behavior (e.g., long-term
multi-behavior interactions) to further improve the performance of the personalized recommender
systems.
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