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Abstract—It is well-known that online services resort to various
cookies to track users through users’ online service identifiers
(IDs) — in other words, when users access online services, various
“fingerprints” are left behind in the cyberspace. As they roam
around in the physical world while accessing online services via
mobile devices, users also leave a series of ‘“footprints” — i.e.,
hints about their physical locations — in the physical world. This
poses a potent new threat to user privacy: one can potentially
correlate the ‘“fingerprints” left by the users in the cyberspace
with “footprints” left in the physical world to infer and reveal
leakage of user physical world privacy, such as frequent user
locations or mobility trajectories in the physical world — we refer
to this problem as user physical world privacy leakage via user
cyberspace privacy leakage. In this paper we address the following
fundamental question: what kind — and how much - of user
physical world privacy might be leaked if we could get hold of
such diverse network datasets even without any physical location
information. In order to conduct an in-depth investigation of
these questions, we utilize the network data collected via a DPI
system at the routers within one of the largest Internet operator
in Shanghai, China over a duration of one month. We decompose
the fundamental question into the three problems: i) linkage of
various online user IDs belonging to the same person via mobility
pattern mining; ii) physical location classification via aggregate
user mobility patterns over time; and iii) tracking user physical
mobility. By developing novel and effective methods for solving
each of these problems, we demonstrate that the question of
user physical world privacy leakage via user cyberspace privacy
leakage is not hypothetical, but indeed poses a real potent threat
to user privacy.

Index Terms—Privacy, spatio-temporal trajectories, identity
linkage, location classification.
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I. INTRODUCTION

MART phones and other mobile devices have made it easy

for users to access various online services nearly every-
where and at any time — literally with a few touches of fingertip
— whether on the go, at home, school or work. Online services
such as social networks, messaging apps or e-commerce sites
typically require users to create online user identifiers (IDs) to
login and access their services. Due to the stateless nature of
the HTTP protocol, it is well known that HTTP requests and
responses often contain cookies as part of the HTTP headers
that embed user online ID information. This is despite the fact
that the HTTP payload itself may be encrypted. Hence in this
sense, users leave a variety of “fingerprints” in the cyber world.
Previous studies have shown a wide range of highly sensitive
personal attributes and information such as age, gender, pho-
tos, friends, sexual orientation, ethnicity, religious and political
views, hobbies, activities, even emotions, can be culled from
online social network profiles and activities [1], [2], and cor-
related and inferred — especially coupled with network traffic
— to build a mosaic of various personal traits and activities [3].
As they roam around in the physical world while access-
ing online services, users also leave a series of “footprints”
— i.e., hints about their physical locations — in the physi-
cal world. This poses a potent new threat to user privacy —
leakage of user physical world privacy: one can potentially
correlate the “fingerprints” left by the users in the cyberspace
with “footprints” left in the physical world to infer and reveal
information about users in physical world, such as frequent
user locations or mobility trajectories in the physical world!
To demonstrate that this problem of user physical world pri-
vacy leakage via user cyberspace privacy leakage is plausible,
we make the weakest assumption about the (physical) loca-
tion information: we simply assume that we have access to a
(diverse) collection of deep packet inspection (DPI) data of a
number of broadband subscribers, each of which is associated
with a physical location (of certain geographical resolution),
e.g., a WiFi access point, or a broadband interface; but we
do not have information regarding the nature of the physical
location (e.g., whether they are residential, business or down-
town commercial districts), not to mention the GPS location
coordinates. We further assume that each network data record
(e.g., an HTTP session) are time-stamped, and the collection of
network datasets has a large geographical span as well as tem-
poral span that cover the mobility and other physical activities
of a significant portion of users. Users can employ multiple
and different online user IDs to access online services — these
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are the so-called cyberspace fingerprints; here we assume that
we do not know the true user identity — e.g., the mobile phone
number or the device ID — behind these online user IDs. The
fundamental question we are interested in answering is: what
kind — and how much — of user physical world information
might be leaked if we could get hold of such diverse network
datasets even without any physical location information; or is
this concern merely hypothetical?

Given the above assumptions, we decompose this question of
user physical world privacy leakage via user cyberspace privacy
leakage into three sub-problems: i) Is it possible to link various
online service IDs belonging to the same user together, using only
mobility patterns of users across multiple locations over time,
but without the precise location information? Here a key insight
is that users’ daily mobility patterns are fairly predictable, e.g.,
two frequent locations are home and work/school, as previous
studies have shown [4]. Hence the question becomes whether
such predictability can be exploited to link together various user
online IDs. ii) Assuming that we could link together various
online user IDs of a significant portion of users, could we then
use such information to classify the physical locations that users
are associated with, such as residential, business, entertainment,
etc.? Here the intuition is that the time, frequency and duration
that various users visitalocation canreveal the nature of alocation
or provide other contextual information about a location. For
example, very few people tend to visit shopping malls in late
night, because they are usually closed before 9 pm; whereas
a location that is associated with many people throughout the
evening and night would likely be a residential place. Lastly,
iii) with answers to i) and ii), we would like to develop an
effective method to piece together and track users’ physical
world trajectories and activities.

We remark that many of today’s Internet service providers
(ISPs) collect and store various sources of network traffic
data for legitimate business reasons (e.g., for service billing,
network management, traffic engineering and performance
monitoring). It therefore is possible that stored network traffic
data might be hacked and stolen, despite the fact that loca-
tion information might have been encrypted, anonymized or
removed. This is not notwithstanding that a powerful third
party, e.g., a crime syndicate, a rogue employee of an Internet
operator or a state agent of an authoritarian government, or any
other “big brother” entities, could possibly directly tap into the
wire or force an ISP to surrender (e.g., via subpoena) to get
access to such data. In this case, the physical locations might
even be available to the third party, yielding a simpler ver-
sion of the problem that what we try to address in this paper;
in other words, the sub-problem ii) becomes trivial, when
exact location information is available. However, this is a very
limited situation. In more cases, we should consider the sub-
problem ii). From the perspective of network measurement, the
problem we attempt in this paper is also highly relevant: an
affirmative answer to the fundamental question posed above
suggests that merely encrypted or anonymized user id (e.g.,
phone numbers) and location information (e.g., GPS coordi-
nates) associated with network datasets is insufficient — not
only user cyberspace privacy but also the user physical world
privacy could be mined and inferred, thus leaked.
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Fig. 1. Framework for extracting cookies from packets.

In order to conduct an in-depth investigation of these ques-
tions, we utilize the network traffic data collected via a DPI
system at the routers within one of the largest Internet oper-
ators in Shanghai, China over a duration of one month. Only
cookies in the HTTP header traffic which contain users’ online
service IDs during the online login process are collected and
used in our study (see Section II for more details)— no pay-
load or other personally identifiable information is collected.
For scalability, we also limit ourselves with only the user
online IDs of four popular online services in China, namely,
QQ (online instant messenger), Weibo (online social network),
Tmall and Taobao (online shopping sites), and Dianping
(online review site). A total of 470 million records containing
32.0 million distinct user IDs and spanning nearly the whole
city are used in our study. The contributions of our study are
summarized below:

e We develop a user detection system to discover users’
identifiers in multiple cyberspace by utilizing the spatio-
temporal locality. By checking against the ground-truth
data, we validate that our algorithm achieves high accu-
racy with performance gain over 0.1 compared with
baselines.

¢ We develop a location-classification system that is able to
divide millions of locations into three types: residential,
business and entertainment. Our results achieve F1-score
of 0.78 and highly coincide with the POI distribution,
indicating the effectivity of our system.

¢ We systematically analyze the obtained all-round mobil-
ity trajectories with physical context of over 10 million
users, and reveal their main privacy leakage in terms of
time, locations and services.

A conference version of this paper was published in [5].
Compared with the conference version, we propose a new
probabilistic mobility model for identity linkage without
requiring location information, which better satisfies our
system model. In addition, additional important baselines,
experimental analysis, and discussion about our proposed
algorithms are supplemented in this version.

II. DATA COLLECTION AND PROCESSING

The datasets used in our study were collected from the core
routers of a major Internet service provider (ISP) in Shanghai,
China. They are obtained through the two processes: extracting
the cookie data from the DPI system, and culling user IDs from
the cookies.
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GET /<User ID> HTTP/1.1
Host: user.qzone.qq.com
Cookie: pt2gguin=o<User ID>||_qz_referrer=
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TABLE I
DATASET SUMMARY

www.baidu.com||qz screen=1920x1080 # Records | # Online IDs | # Subscribers Duration
470 million | 32.7 million 3.4 million One month
GET / HTTP/1.1
Host: www.taobao.com Standard
Scheme: https Items Mean Deviation
Cookie: thw=cn||cna=<User ID>
] 12.70 122.28
Fig. 2. A Cookie of different online services for example. 10 Nid 1.31 41.68

The diagram of the first process is shown in Fig. 1. This
system records users’ Internet accessing activities via broad-
band subscribers across the city. Each subscriber is associated
to a physical locations, e.g., a broadband Internet connection
at a user’ home or a WiFi access point. By deploying network
monitoring and packet capture tools on the core routers of
the ISP, we extract cookies generated by users. In addi-
tion, the ISP maintains a separate (billing) database, namely,
the identification of each broadband subscriber, which can
tell us in which broadband subscriber each HTTP session is
generated. However, we still do not know the GPS coordinate
of each broadband subscriber. Thus, we believe this dataset
provides a meaningful representation of users’ cyberspace
Internet accessing behavior. Combining these two data sources,
we can correlate cookies extracted from the data packets with
the corresponding broadband subscribers. One issue is that
cookies in HTTPS session cannot be obtained. It is found that
only 14% of top websites in China use HTTPS in 2015 [6],
which indicates the overwhelming majority of users’ cook-
ies can be extracted from HTTP packets. This number has
increased to 60% in 2019 [6]. However, we observe that these
60% websites still use HTTP for parts of the Internet requests,
while they use HTTPS only to transmit sensitive information.
Overall, the privacy leakage through HTTP protocol is still a
considerable problem. In addition, for services based on HTTP
protocol, all the users’ cookies can be extracted.

The second step is to cull user IDs from the cookies. It
has been discovered that although cookies are often opaque
strings with hidden semantics known only to the party setting
the cookie, they may include visible identity information [7].
Inspired by this idea, we turn on the Chrome Developer
Tools [8] and display HTTP request/response headers con-
taining cookies we need. Take the first request header shown
in Fig. 2 as an example. This request header is generated
when we want to login their accounts through the website
user.qzone.qq.com. Fields such as Accept and User-Agent
have been ignored for simplicity. As we can observe, the ID
of the user is involved in the Path field, i.e., “/<User ID>"
in this request. On the other hand, in the cookie, there
are many visible information we can obtain. For example,
“qz_screen=1920x1080" indicates the resolution of the user’s
browser, and “pt2gguin=0<User ID>" contains the ID of the
user. Thus, we can extract the ID for QQ of the user by match-
ing the field “pt2gguin=""in cookies of QQ. The second request
header contains cookie for the Taobao service. Similarly, we
can find the ID of the user in the cookie field. Overall, by

100 200 300 400 500
The Number of IDs/Subscribers

Fig. 3. The relations between online IDs and subscribers, where Nifi denotes

#IDs appeared in one subscriber, NSid denotes #subscribers that one online
ID accessed.

performing regular expressions matching to these cookies, we
obtain account IDs of users for different online services. In
more detail, we list the regular expressions used to extract
online IDs and related examples in Table II. As mentioned
in the introduction, our study focuses on four representative
online services in China, i.e., QQ (online instant messenger),
Weibo (online social network), Taobao (online shopping site),
and Dianping (online review site). All of them are the leading
and most popular ones among the corresponding categories in
China.

By sniffing the traffic of millions of broadband subscribers,
we capture the login actions when users access these services.
The data collection was from Nov. 1 to Nov. 30, 2015, involv-
ing over 3.4 million broadband subscribers and 32.0 million
online IDs. There are 470 million entries in our dataset. Each
entry contains following fields: name of the online service,
online ID, identity of the broadband subscriber, and login time.
Take <Weibo, 123456, 789, 2015112113> as an example. It
records a user with ID 123456 logs in Weibo at 1PM Nov. 21,
2015, and the identity of the subscriber is 789. Table I presents
a summary of the dataset. The large-scale datasets guarantee
the credibility of our analyses of user physical world privacy
leakage via user cyberspace privacy leakage.

We now provide an informative overview of the data set. We
are interested in the following four metrics, i.e., the number
of online IDs that appear in one subscriber, the number of
subscribers accessed by one online ID. According to Fig. 3,
we can observe that there are in average 12.70 online IDs that
appear in a single subscriber, and a single online ID accesses
1.31 subscribers in average.

To preserve user privacy, the online ID and subscriber
identity in our datasets and aforementioned cookies are all
anonymized. The real online ID and subscriber identity are
never made available to, or utilized by us. In addition, there
is also no payload collected in the dataset. The usage of the
datasets is authorized by the ISP.

III. THREAT MODEL
A. Attack Scenarios

Though the datasets used in our study are collected by
the ISP, the ISP is not the only possible attacker, since the
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TABLE II
SERVICE TYPES AND REGULAR EXPRESSIONS TO MATCH IDS
Services Type Website RegExp Example Quantity
Instant messengers pt2gguin=o(\d+) .
QQ (IM) qq.com o_cookie=(\d+) pt2gguin=0<User ID> 1M
tmall.com Ige=(\w+) _
Taobao E-commerce (EC) taobao.com cna=(\w+) Ige=<User ID> 15M
Weib Online social b SID-(\w+) SUS=SID-<User ID>-1446074239-JA M
e1bo networks (OSN) wetbo.com £id%(\w+) -j90ae-cf43c6faT7aTect6fa3460£3f3611b724
L Online review - CO-9{T}1I"DI3-8] pvsid=
Dianping (OR) dianping.com {11\d{9}(3|["0-9]1)| <User ID> 4M
[ 3 [ 3
® D200 ‘ @20:00 ‘ 20:00
9 9 &
.@w:oo @ Dor:00 [ 3 ® Doroo [ d
@& D21:00 5559@17:00 .@21;00 % 17:00 .@ 21:00 . ®17:00
[ 4 @
Poem | R&ee =P R A SO
Q 9

(a) Original Dataset (b) User Detection

Fig. 4. Framework of the attacker model.

cyberspace fingerprints of users is a ubiquitous content and
can be easily obtained by different attackers. Another strong
attacker is the company-level attacker, e.g., a service provider,
who can infer users’ locations through packets uploaded by
the applications installed in their mobile phones. For exam-
ple, a user may have two IDs of two services provided by
one company. The company can link the two IDs based on
their mobility patterns and obtain users’ behavior in more
detail, which leads to more privacy leakage of users. Compared
with the ISP, the company-level attackers are only limited
in the number of services of which the user IDs they can
obtain, which are still a big potential threat to user pri-
vacy. An individual attacker can also infer users’ locations
through crawling their publicly available online check-ins
from multiple location-based services. However, this kind of
user trajectories are sparse and noisy [9]. Thus, individual
attackers are the weakest attackers. Overall, the datasets col-
lected by ISPs give us the most comprehensive view of this
kind of privacy leakage. For example, the threat of company-
level attackers can be analyzed by only considering a part of
services in the ISP dataset. Thus, we mainly focus on the ISP
dataset in our study.

B. Attacker Model

As described in Section II, by culling user online IDs from
the cookies, attackers obtain the login records of massive
online IDs with the corresponding time and locations as shown
in Fig. 4(a). The goal of the attacker is to obtain privacy
information of physical users based on them. However, it is
not a trivial task in terms of three major challenges. First,
users’ multiple identifiers are extracted without cross linking,
while it is quite normal for a physical user to have multiple
IDs of different services. Second, attackers have known few
background or context about physical locations, which are
critically important for inferring the privacy leakage of the
physical world mobility. Last but not the least, how can they
infer the privacy leakage from the physical world footprint is

(c) Location Classification (d) Privacy Analysis

the third challenge. To meet these challenges, we design the
attacker model with three modules as shown in Fig. 4, which
are discussed as follows.

In order to uncover physical world privacy leakage as much
as possible from cyberspace cookie records of users, a basic
question must be answered, namely which online IDs belong
to the same users? In physical world, it is quite normal for
an individual user to have multiple IDs for different online
services. The trajectory of a single online ID is only a subset of
mobility records left by the corresponding physical user. Thus,
in order to obtain the bound of users’ privacy leakage from
their login records, attackers must first link all the online IDs
for each user together to obtain the universal set of its mobility
records. Thus, as shown in Fig. 4(b), the first module of the
system is to link all the online IDs belonging to each user,
which is discussed in detail in Section IV.

On the other hand, physical context can provide rich
information about users’ behavior. For example, given the
physical context, attackers can infer what people are doing
through where users are located in physical world. Further,
attackers can infer what people are going to do through where
users are moving to. Through these behaviors, more pri-
vacy information of users is exposed. Meanwhile, locations of
places such as home and office are also sensitive information
for users. Thus, as shown in Fig. 4(c), attackers investigate the
physical context of each location in the second module, and
this module will be discussed in detail in Section V.

Finally, by combining the all-round login records and phys-
ical context, attackers can thoroughly analyze users’ privacy
information as shown in Fig. 4(d). Then, we will formally
define different types of attack and users’ privacy leakage in
the following section.

C. Privacy Metrics

We consider users’ physical world privacy leakage in terms
of three kinds of attack in this work.
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The first kind of attack is to find out an activity or an event,
which is described by a spatio-temporal point, in users’ trajec-
tories. We refer to this kind of attack as localization attack. The
privacy leakage in terms of localization attack can be quanti-
fied by the quality of the obtained trajectories, including their
density, spatial and temporal resolutions, etc.

The second kind of attack is the semantic attack. In seman-
tic attack, adversaries aim to acquire individual’s behavior or
motivation at some spatio-temporal points by using location
semantic information. For example, whether users visit loca-
tions of hospital is very sensitive for users. We introduce the
coverage rate of locations with different semantics for all tra-
jectories as the privacy metric in terms of semantic attack.
Specifically, the coverage rate is defined as the percentage
of users of which the trajectories have at least one residen-
tial, business or entertainment location, respectively. Higher
coverage rate indicates larger semantic information of users’
trajectories are leaked.

The third kind of attack is the re-identification attack. In the
re-identification attack, adversaries seek to identify individu-
als in this dataset based on external information (e.g., users’
check-ins on online social networks), or use this dataset as the
external information to identify users in other datasets. We use
uniqueness [10] as the metric of privacy leakage in terms of
re-identification attack. Specifically, it is to estimate the num-
ber of points necessary to uniquely identify the mobility trace
of an individual. If the uniqueness of trajectories is high, the
dataset has a high risk of being re-identifiable using external
datasets, and it also has a strong ability to identify users in
other external datasets [10].

These three kinds of attack cover main physical world pri-
vacy leakage by cyberspace cookie logs. We will evaluate
users’ privacy leakage in terms of them in detail in Section VI.

IV. PHYSICAL WORLD USER DETECTION

In our system, we do not know the identifier of physical
user — e.g., the device ID — behind these online user IDs. We
only know the identifier of subscribers, which correspond to
different physical locations. Thus, the extracted users’ multiple
online IDs are not linked together, while it is quite normal for
a physical user to have multiple IDs. In order to characterize
users’ privacy leakage in a comprehensive way, users’ multiple
IDs should be linked together to be analyzed. On the other
hand, users’ daily mobility patterns have been discovered to
be fairly predictable [4]. Inspired by this idea, we propose an
algorithm which maximizes the likelihood of observed records
of online IDs based on Markov human mobility model to solve
this problem.

A. Model and Problem Formulation

We first propose a mathematical model and formulation for
the problem. Let A represent the set of all online IDs in our
dataset, and let 24 denote the power set of A, i.e., the set of
all subsets of A. Given any online ID u € A, we define its
mobility records as R" = {(i1, 1), (b, t2),...,(In,,tN,)}>
where (I;,t;) represents a login record in location [; at time
slot ¢; that was traced by cookie, and N,, is the number of

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 4, DECEMBER 2020

records for ID u. Without loss of generality, we further assume
t1 < tg < --- < ty,. In addition, we denote L as the set of
locations. Moreover, for a cluster of online IDs U, we define
their mobility records RV = {R"|u € U}. Then R4 =
{R"|u € A} represents the set of mobility records of all
online IDs. Let s(u) € S denote the type of online ID v € A,
where S = {IM, OSN,EC, OR} is set of ID types.

Definition 1 (Partition of A): Let p = {Uy, Us, ..., Un},
where Vk = 1,...,n, U, € 24 We further define p as a
partition of A if following four conditions hold: (1) 0 ¢ p, (2)
UUGpU =A, Q) if Uy, Us € p, and Uy # Us, then Uy N
Uy =10, and (4 VU € p, if wy, ugp € U, then s(uy) # s(ug).

Traditional definition of partition only needs three condi-
tions (1)~(3) hold. In our case, we use the definition of
partition to represent a user detection result, where each set U
in partition p represents all online IDs belonging to one phys-
ical user. Thus, we add the condition (4) to limit that each set
in a partition has at most one ID of each type. In addition, we
define P as the set of all partitions.

Assume there is no shared online ID among different users.
Then, there is an inherent partition of A composed of the true
set of online IDs for each user denoted as pgrye. Our problem,
i.e., detecting all online IDs of each user, can be transformed
to finding a partition p for A that is close to pigrye as much
as possible. However, in most cases, we only need to detect
online IDs for a part of users, or even one user. Thus, by
using the target online IDs as the identifications of our target
“users”, the problem is transformed to: for a list of online IDs
{ ui}le, detecting all other online IDs belonging to the same
user with them. That is, find a partition p, where elements
involving {ui}i?:l approaches to elements involving {u,-}f:1
in pirye as close as possible.

In order to formally analyze our problem, it is necessary to
build a mobility model which describes how users move and
produce login records. Human mobility modelling has been
studied in a number of works [11], [12]. Brockmann et al. [11]
model human mobility as a Lévy flight, where the length of
spatial displacement of individuals follows power-law distri-
bution. Cho et al. [12] model human movements as periodic
movement between only two latent states, which represent
users’ home and work place, respectively. Further, it assumes
space coordinates together with timestamps follow a three-
dimensional Gaussian mixture model with two components
corresponding to the two latent states. However, these mobility
models require accurate GPS coordinates of locations, which
is not available in our scenario.

In the conference version of this paper [5], we model users’
spatial displacement to follow Gaussian distribution, which
still need GPS coordinates of locations. Thus, we relax the
constraint of unknown physical location information, and uti-
lize the GPS coordinates of locations provided by the ISP.
Instead, in this journal version, we assume the movement
of users follows Markov model, which is widely used to
model human behavior, and do not need GPS coordinates
of locations. Specifically, it models the movements of human
as transitions among definite and countable states, and each
state corresponds to a location. For arbitrary user (online
ID) u € A, there exists a unique transition matrix T, of
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size |L| x |L|, where |L| is the total number of locations.
Then, location of each mobility record is assumed to be only
dependent on the last mobility record. Denote T, (1, k) as the
probability that user # move from location / to location k in
adjacent records. Then, the conditional probability of a mobil-
ity record given its time-adjacent record can be calculated as
follows,

(L1, tig 1)l ), Tu) = Tu(l, ligr).

Then, the probability of all the mobility records of user u, i.e.,

R ={(i{", 1), (i, t5'), ..., (I, - ty, )} can be computed as:
N,—1 u
Cc
p(RUTy) = [[ Tu(@ 1) = [] Tu*@ k), D
i=1 k€L

where cjj is the observed transition counts between location /
and k of user u. It can be calculated by
Ny—1
cih =Y I =DI(lf = k), )
1=1
where I(-) is defined to be an indicator function of the logical
expression with I(true) = 1 and I(false) = 0.

On the other hand, considering that transition matrix 77,
is usually unknown, we adopt Bayesian probability methods,
where T, (1, k) for each location / and & is regarded as a ran-
dom variable. Further, by denoting Ty (l,:) as the |L|-sized
vector [Ty (1,1), Tu(1,2),..., Tu(l,|L|)] T, we use the com-
mon conjugate prior distribution to model T, [13], [14], which
can be expressed as follow:

Twu(l,:) ~ Dirichlet(-|5o). 3)

where Dirichlet(-|Bg) is Dirichlet distribution with hyper-
parameter 3y [15]. Specifically, By is used to describe how
much we believe this prior. By following the recommended
setting in [15], we set B9 = 0.1. Based on this prior distri-
bution, the probability density function (PDF) of T, can be
calculated as follows:

p(Ty) = H Dirichlet(Ty(1,:)|5o)- S

leL

Finally, the unconditional probability of observing mobility
records R" is computed by integrating 7', as follow:

PRY) = [ (R T)p(T)dTs = NG0) [T B, )

leL

where B(:) is the multivariate Beta function, and A(fg) is a
function of 5y and independent with R“. b; is an |L|-sized
vector with b;(k) = ¢y, + So for each k € L.

Different with Gaussian distribution used in [5], the mobil-
ity model based on (4), (5) considers personalized mobility
patterns of each user. For example, in the viewpoint of aggre-
gated user mobility, there are actually less users that move a
large distance in a short time. However, for a certain user, if we
observe that he travel between two distant locations in a short
time every day, this is a personalized mobility pattern of him.
Thus, his corresponding transition probability should be large.
A better solution to consider the dependence of distance and
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Fig. 5. Three example IDs to be matched.

the personalized mobility pattern of users simultaneously is
to use a better prior probability to the transition matrix which
considers the dependence of distance. However, it requires the
background or context of physical location, which is in con-
flict with our model. Thus, we do not consider the dependence
to the distance in (4).

For a cluster of ID U, conditioned on that all IDs in U
belong to the same user, we also use (5) to compute the
probability of observing their mobility records RV

Intuitively, according to the property of multivariate Beta
function, merged mobility records of IDs with similar distribu-
tion of transition counts have larger P(RY). Because different
users have different mobility patterns, the distribution of tran-
sition counts of their IDs are far from each other, leading to a
small probability P(RY) when putting their IDs in the same
set U. Then, based on this model, we can make a Bayesian
inference about the relationship of IDs.

B. Detection Method

The true partition pirye can be approximated by the partition
p that maximizes the posterior probability of

P = argmax P(p|R4). (6)
peEP
By applying Bayes’ theorem to it, we can obtain:
P(RA|p)P
P(slrA) - ( Ipi (p) o
P(R4)

In terms of P(R4|p), we assume the login records are
produced independently by different users. Thus we have

P(RA|p) - 11 P(RU|U), 8)

Uep

where P(RY|U) is the probability that the mobility records
in RY occur under the condition that they belong to the same
user. Under the proposed mobility model, this probability can
be computed by applying (5) to the merged mobility records
of the user, R = aclU R%. In addition, we further assume
that prior P(p) is only dependent on the online IDs of each
user, ie., P(p) =][ye, P(U). Then, we have:

P(p|RA) « [ P(RU\U)P(U). )

Uep
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We further assume users own each type of online ID inde-
pendently with Bernoulli distribution with probability 6; for
t € T. That is, P(U) = [L,ep 007 (1 — 0,)0=2(0),
where [;(U) is the indicator function of whether U contains
online ID of type t.

However, the computation time of finding a partition of
the over 30 million online IDs over a modern metropolis as
Shanghai that maximizes the posterior probability is intolera-
ble for us. Since it is NP-hard [16], even finding an optimal
partition for a subset of A is intractable. Thus, we alterna-
tively compute the set of online IDs U which maximizes
the local likelihood of the target online ID in a greedy way,
which is described in detail in Algorithm 1. It starts from
the target online ID as the initial node of the target cluster
C. Then, it works in an iterative way to discover prospective
nodes belonging to the same physical user. In each iteration
round, among all nodes in A, it picks the node with the maxi-
mum increase to the local log likelihood by involving it to
the current cluster C, in which the local log likelihood is
defined as:

9(C) = 1ogp(RC|c)P(C). (10)
Then, the change of the local log likelihood by involving ID
a, denoted by Aq(C, a), can be calculated as follows,

Aq(C,a) =q(CUa)—q(C) - q(a). (1)

Since Agq is compared with 0 in Algorithm 1, by changing
parameters in the prior distribution P(p), we can adjust the
threshold of the stop condition of the algorithm.

After that, the algorithm updates the target cluster by adding
the picked node, and continues to select another node. This
process is repeated until no increase of the local log likelihood
can occur, and C is outputted as the detected result.

Let n and k denote the total number of IDs and service
types, respectively. Then, for each user, we need to find its k
IDs at most among n IDs. It takes O(nlogn) time to find the
ID with largest Ag each time. Thus, the total computational
time is O(knlogn). Further, if we restrict the potential IDs of
the target user within those that have been appeared in the
same locations with the target ID. Denote 7 as the maximum
number of IDs appeared in the same locations. The computa-
tional complexity of the greed algorithm is only O(k7logr).
Thus, it significantly reduces the computational time.

To illustrate the model, let us consider three example IDs
with mobility records shown in Fig. 5. For simplicity, there
are only two locations [4 and [g in this example. Their
trajectories are shown in Fig. 5(a), where each column rep-
resents a time bin. Note that elements of different trajectories
in the same column do not represent the same time bin.
Posterior expectation of their transition matrix estimated based
on P(T“|R") is shown in Fig. 5(b). Finally, the change of
log likelihood by matching them is shown in Fig. 5(c), where
prior P(p) is ignored. We can observe that u; and w3 tend
to switch more frequently between [, and /g, and their tran-
sition matrixes are also more similar compared with ug, and
we have Agq(uy,ug) > Aq(ug,uz). Thus, we tend to match
uy and ug as IDs belonging to the same user.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 4, DECEMBER 2020

Algorithm 1: MLink Algorithm

Input: Network G = (V, F), the set of types of online
IDs S, the type s(v) € S for all online ID v € A, and
an initial online ID ug.
Output: C, the cluster of online IDs belonging to the
owner of .
Initialize:

¢ {uo};
L Sc « S;
while max, ¢ 4\ ¢ Aq(C,u) >0 and S¢ # 0 do

Umax = argmax, ¢ 4\ cAq(C, u);

C=CuU {Umax}§
L Sc = Sc\{s(umax)}

C. Performance Evaluation

1) Compared Algorithms: Since our proposed identity link-
age algorithm is based on Markov model, we denote it as
MLink. We compare our proposed MLink algorithm with
other three state-of-the-art approaches, which are described
as follows:

POIS: Riederer et al. [17] assume visit of each user to
a place follows the Poisson distribution, and an action (e.g.,
login) of each service occurs independently with the Bernoulli
distribution. Based on this mobility model, they compute a
score for every candidate pair of online IDs. They find the
maximum weighted matching of online IDs as the results. In
addition, it filters out IDs by the “eccentricity” factor e , which
is defined as the threshold for the weight gap between the best
and second-best IDs.

WYCI: Rossi and Musolesi [18] use the frequency of login
in different locations to approximate the probability of vis-
its to these locations, which is represented as: P(I|RV) =

%. NlU is the number of login records of user
(online ID) U at location /, i.e., the number of elements in
{t|(1,t) € RU}. In addition, o > 0 is the smoothing param-
eter and |L| is the number of locations in the dataset, which
are used to eliminate zero probabilities. Their target is to find
online ID a maximizing the probability []; ;)¢ ga P(I|RY).

LRCF: Goga et al. [19] further consider the popularity of
different regions. Specifically, they apply the term frequency -
inverse document frequency (TF-IDF) [20] weighting scheme
to the histograms, ie., Ay(l) = N}"/log(IDF(l)), where
IDF(r) = >°,c4 N* is the number of records in location [
of the whole dataset. Then, they measure the cosine similarity
between A, and A, as follow:

similarity (u, v) = AL Ay /|| A || Av]]-

Users (online IDs) u and v with largest similarity are linked.

2) Experiment Setting: To evaluate the accuracy of our
proposed user detection algorithm, we need some ground-
truth data for the validation. By a questionnaire survey, ISP
obtains all online IDs of 3000 users, where 65%, 29%, 58%,
68% of them have IM, OSN, EC, OR accounts, respectively.
The results are encrypted with the same encryption function
as the DPI data by the ISP, and thus they can be matched
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Fig. 6. Performance of different solutions (IM vs. OR).

with each other. We use this data as the ground truth in our
study. Note that the ground data is only used for evaluating
the performance, implementing the identity linage algorithm
does not require such background knowledge.

On the other hand, we also evaluate the performance of our
proposed algorithm on public dataset collected in previous
work by Zhang et al. [21]. On Foursquare, users may dis-
play their Twitter account information, which makes it possible
to obtain the ground-truth mapping between Twitter IDs and
Foursquare IDs. In total, this dataset contains 385 users with
location check-ins on both sides (770 online IDs), and totally
24,556 location check-ins collected from both Twitter and
Foursquare.

We use four key metrics in binary classification to quantify
the detection accuracy, i.e., precision, recall, F1-score, and hit-
precision [22]. Specifically in our problem, precision is defined
as the fraction of online IDs detected by our algorithm that are
included in the ground-truth data, and recall is defined as the
fraction of online IDs in the ground-truth data that are success-
fully retrieved. F1-score is the harmonic mean of precision and
recall, which is defined as F; = %m. Hit-precision
is another widely-used metric to evaluate the performance
of identity linkage in terms of the ranking. Specifically, the
hit-precision of top-k candidates is defined as follows,

k—(z—1) .
h(fl)):{k7 lszle,

12
0, if > k. (12)

where x is the rank of truly matched ID in the top-k candidates.
In addition, we set k as 10 by default.

3) Experiment Results: We first evaluate the performance
of our proposed algorithm on the ISP dataset. Specifically,
we focus on the performance of linking the IM account
and OR account belonging to the same user, and show the
performance in Fig. 6. Fig. 6(a) shows the precision-recall
trade-off by adjusting parameters (e.g., # in MLink, € in POIS).
From the result, we can observe that our proposed algorithm
outperforms other algorithms, since it lies in the top right
corner, meaning it has larger precision when recall is equal
and larger recall when precision is equal. In addition, the
largest performance gap of our algorithm achieves 0.13 in
terms of precision when recall is about 0.37. The main reason
is that our proposed method better models users’ transition
patterns between locations based on Bayesian probabilistic
model, while users’ transition patterns between locations are
ignored in the competing algorithms. Then, Fig. 6(b) shows
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the hit-precision of different algorithms on ISP dataset, we
can observe that our proposed algorithm also has the best
performance.

In Fig. 7, we conduct the same experiments using the
Twitter-Foursquare dataset, whose quality is found to be worse
than the ISP data — check-in data is much sparser. The
precision-recall curve and hit-precision become lower than that
of Fig. 6, but the trend is still consistent: our algorithm outper-
forms the baselines. In addition, the performance gain of our
algorithm becomes larger. For example, precision is increased
by over 0.20 when recall is 0.30, and hit-precision is increased
by 0.10, indicating that our proposed algorithm is more robust
to data quality. The underlying reason is that when trajectory
data is sparse, the prior distribution used in our method will
help to model users’ mobility, leading to a better performance.

In Fig. 8, we evaluate our algorithm with different types
of online IDs. Fig. 8(a) shows the performance with differ-
ent types of initial IDs, in which the Fl-score is evaluated
as the function of the number of login records of the tar-
get IDs. As we can observe, user detection with initial IDs
of EC shows better performance with stable Fl-score above
0.65, while that of OSN shows the worse performance, with
stable Fl-score of 0.45. One possible reason of this result is
the imbalanced number of different types of IDs as shown in
Table II. For example, when using OSN accounts as the initial
IDs, there are more candidate IDs of other services, leading to
the worst performance. From another point of view, we fix the
initial IDs to be EC accounts, and study the performance of
the detection to other types of online IDs. As we can observe
from Fig. 8(b), detection to all types of online IDs shows F1-
score larger than 0.7. Another interesting observation is that
performance of OSN accounts, in turn, shows relative bet-
ter performance. The main reason is users’ different behavior
for using different types of online IDs. For example, people
tend to use their EC accounts in more private places such
as home, while they tend to use their OSN accounts more
in public places. Thus, transition matrixes estimated based on
EC accounts are more likely to be biased with insufficient
information of public places, while estimation based on tra-
jectories of OSN accounts is more comprehensive, leading to
the better performance.

Overall, in order to detect all online IDs belonging to the
same user, we propose a user detection algorithm of opti-
mizing the local likelihood under Markov human mobility.
The proposed MLink algorithm does not require the accurate
GPS coordinates or other background knowledge of physical
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locations, which exactly solves the identity linkage problem in
our scenario. However, such requirements also limit the abil-
ity of MLink algorithm in modeling the intention or utilizing
other physical features such as velocity or diameter of users’
movements [5], and it is also hard to model the spatial or
temporal mistakes of different datasets without physical back-
ground [23], which are compromises have to be made in our
problem scenario. Experimental results show that our solution
achieves good performance. Specifically, its precision beats
baselines by 0.13 on the ISP dataset, and its hit-precision beats
baselines by 0.1 on the Twitter-Foursquare dataset.

V. LOCATION CLASSIFICATION

In order to characterize the physical-world behaviors of
users, we need to infer the types of the locations that
online IDs login. On the other hand, since in our system
the subscriber identity is encrypted, and the associated loca-
tion information is insufficient, we cannot obtain their types
directly through API provided by map services. Thus, in this
section we develop a location-classification system that labels
locations with different types based on the aggregate user
behavior.

A. Distinguishing Residential and Non-Residential Locations

From the subscribers’ registration information, we obtain
10,000 locations with type of residential or non-residential,
which was obtained by the ISP when users subscribed the
broadband service. We use the 10,000 locations as training
set, which enables us to utilize supervised learning algorithm
to distinguish residential or non-residential locations.

Using this information as training set does not have con-
flict with our assumption that adversaries do not have any
physical location information, since we still do not know any
information of the majority of locations (over 99.6%). In addi-
tion, it is easy for adversaries to manually find some residual
and non-residual locations as training set to develop this mod-
ular. In the worst case, adversaries can still use unsupervised
learning methods, which will be introduced in Section V-B.

Through detailedly investigating the character of residential
and non-residential locations, we select four features of each
location L, i.e., the number of online IDs Ny, (L), the number of
login records Nj(L), the location entropy E(L), and the day-
night login frequency ratio Ry(L) to distinguish residential
and non-residential locations, of which the distributions are
shown in Fig. 9.
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Fig. 9. Distribution of features for residential and non-residential locations.

As we can observe from Fig. 9(a) and (b), non-residential
locations have much more login records and appeared online
IDs compared with residential locations, which coincides
with our empirical knowledge. On the other hand, from
Fig. 9(c), we can observe that the temporal distributions of
login records in these two types of locations show much dif-
ference. Specifically, non-residential locations have more login
records from 8AM to 6PM (working time), while residential
locations have more login records from 6PM to 0AM (leisure
time). Thus, we use the ratio of the login number in these two
time periods as the feature. Another important feature is the
entropy. For a location L, its entropy E(L) can be calculated
by E(L) = =3 ,cpy, Pr(w)logPr(u), in which Uy is the
set of online IDs appeared in L, and Pr(u) is the probabil-
ity of any online ID appeared in L is u. It has been found
that places such as the university campus, shopping and din-
ing districts, have high entropy, while residential areas have
low entropy [24]. In fact, we plot the distribution of entropy
of different types of locations in Fig. 9(d). As we can observe,
non-residential locations have much larger entropy compared
with residential locations, indicating its effectiveness in distin-
guishing two types of locations. Overall, all these features we
select show much difference between two types of locations.
Thus, we use them in our classifier to distinguish residential
and non-residential locations.

For each type of online IDs, we can compute its value for
Ni(L), Ry(L), E(L) and Ny(L). There are 4 types of online
IDs in our dataset. Thus, we have 4 x 4 = 16 features in total.
Using these features, we apply three mainstream supervised
learning algorithms, i.e., logistic regression (LLR), support vec-
tor machine (SVM), random forest (RF) [25]. Specifically,
logistic regression is a generalized linear model. Compared
with it, SVMs can efficiently perform a non-linear classifica-
tion using what is called the kernel trick, implicitly mapping
their inputs into high-dimensional feature spaces [26]. Random
forest is an ensemble learning method that operates by con-
structing and combining a multitude of weak learners with
random subset of the features and training set. Due to the
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TABLE III
PERFORMANCE FOR DISTINGUISHING RESIDENTIAL AND
NON-RESIDENTIAL LOCATIONS

Algorithm Residential Non-residential
Prec. Recall FT Prec. Recall FT
LR 0.92 0.97 0.94 0.79 0.58 0.67
SVM 0.97 0.91 0.94 0.66 0.88 0.75
RF 0.95 0.95 0.95 0.78 0.78 0.78

randomness and ensemble, it can better deal with redundant
features.

We make a 10-fold cross-validation on the ground truth data,
and show the results in Table III. As we can observe, ran-
dom forest algorithm has the best performance with F1-score
of 0.78 for non-residential locations and 0.95 for residential
locations. Since about 90% locations in our ground truth are
residential locations, it is not surprising that performance for
distinguishing residential locations are much better. Overall,
the results validate the feasibility and correctness of the
selected features.

To compare the effectiveness of different features in the
classifiers, we evaluate the performance of only using one
feature or records of one services in Fig. 10(a) and (b),
respectively. Since the majority of locations are residential
locations, we focus on the performance of distinguishing
non-residential locations in this experiment. From Fig. 10(a),
we can observe that data-night ratio Ry(L) has the worst
performance to distinguish non-residential locations, since
non-residential locations are also possible to have similar
R4(L) with residential locations, e.g., hotel or bar. On the
other hand, location entropy E(L) and number of online IDs
Ny (L) are the most effective two features to distinguish non-
residential locations, since it contains more information about
the number of people in each location. In terms of different
types of IDs shown in Fig. 10(b), features of OR accounts
show the worst performance. The most possible reason is
that the corresponding online review service only serves for
a subset of non-residential locations. For the non-residential
locations not served by the OR service, users do not use their
OR accounts at these locations. Thus, using records of OR
accounts cannot distinguish these locations. Similarly, records
of OSN and EC accounts contain more information about the
number of people in each location. Therefore, they are most
effective to distinguish non-residential locations.

Overall, by elaborately selecting 4 features and the best
classifier among three mainstream supervised learning algo-
rithms, we divide millions of locations into residential and
non-residential types.

B. Clustering Non-Residential Locations

We further investigate location types among non-residential
locations. Since we do not have ground truth information
about non-residential locations, instead of supervised learning
method, we choose to use an unsupervised learning method.

As discussed before, entropy plays an important role in
distinguishing different types of locations. Thus, we further
investigate entropy in temporal dimension. Specifically, we use
the entropy of one location of the duration from one day to
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the whole 30 day as a 30 dimensional vector, and then get the
difference between adjacent elements, which is referred to as
the entropy difference, and defined as follow:

Di(L) = Ei(L) — Ei—1(L), (13)

where F; (L) is the entropy of location L during the first i days,
and Ey(L) is set to be 0. Intuitively, the entropy difference
can describe the difference of appeared IDs between adjacent
days. Using it as a feature, we apply a clustering algorithm,
i.e., hierarchical clustering [27]. The basic idea of hierarchi-
cal clustering is iteratively merging the nearest two clusters. It
first considers each input point as a cluster and then bottom-
up iteratively merges the nearest two clusters until the stop
condition is met. In the clustering, we use the Euclidean dis-
tance as the distance metric and define the distance between
clusters as average-linkage distance. Based on this method,
we divide non-residential locations with stable and unstable
appeared IDs into two clusters.

The distribution of entropy difference for the two clusters is
shown in Fig. 11(a). As we can observe, the entropy difference
of the first cluster reduces fast, which indicates the appeared
IDs are stable. In addition, it shows a periodic variation with a
cycle of one week, indicating periodicity of users. As for the
other cluster of location, its entropy difference remains high
throughout the month, indicating the appeared online IDs are
unstable. Then in Fig. 11(b), we plot login number of different
days in one week. As we can observe, there are more login
records at weekdays for locations in the first cluster. As for
the second cluster, there are more login records at weekends
than those at weekdays. By combining results from these two
figures, we label the first cluster as business locations, and the
second cluster as entertainment locations.

To validate our conjecture that locations in the two clusters
are corresponding to business and entertainment locations, we
study the POI distribution around these locations. POI is a
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TABLE IV
NORMALIZED POI DISTRIBUTION AROUND SUBSCRIBERS

Cluster

POI Business Entertainment

Office Building | 1.5634 0.9574

Factory 1.0435 0.4534

Restaurant 0.5635 1.3765

Hotel 0.4657 1.0343

TABLE V
SUMMARY OF LOCATION CLASSIFICATION
Location Type | Residential | Business | Entertainment

Number 3,271,529 36,071 55,200

specific point location of a certain function such as restau-
rant or shopping mall, and can be open accessed through the
APIs of map service providers. An area’s POI distribution
can reflect its function. Note that in order to obtain the POI
distribution of locations, we need GPS coordinates of these
locations. However, this information is only used in evaluating
the performance, while implementing location classification
algorithms does not require such background knowledge.

Specifically, we crawl four types of POI within 200m of
locations in the two clusters through APIs of the most pop-
ular map service in China, i.e., BaiduMap, and show their
average normalized value in Table IV. As we can observe, the
number of business POI, office Building and factory, around
locations of the first cluster are much higher than that of the
second one, while the number of entertainment POI, restaurant
and hotel, around locations in the second cluster have larger
values, indicating the correctness of our conjecture. Thus, we
conclude the two clusters of locations to be business locations
and entertainment locations.

Overall, by using the location entropy as the main feature
and applying both supervised and unsupervised method, we
are able to successfully divide locations into three types, i.e.,
residential, business and entertainment location. The inner for-
mation mechanism of the selected features and the types of
locations are ignored in our method. However, investigating
this problem requires more fine-grained user trajectories with
physical context, which is out of the scope of this paper. Thus,
we leave it for future work. We summarize the number of dif-
ferent locations obtained based on the location classification
module in Table V. Note that location classification helps to
the semantic attack, which cannot be protected by the pri-
vacy model of k-anonymity. These three types of locations
have covered most places where people access the Internet all
around the city.

VI. PRIVACY ANALYSIS

Having linked the online IDs belonging to the same user,
attackers are able to derive the complete trajectories of phys-
ical users from the mobility records of the whole 32 million
IDs. Moreover, attackers can infer the physical context of loca-
tions from the behavior of online IDs around them, which
provides rich information about users’ behavior. By combining
the mobility trajectories and physical context, in this section
we provide a thorough analysis of user physical world privacy
leakage via cyberspace.
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Fig. 12. Trajectory for example, in which red line indicates the complete
trajectory of all online IDs, and line with other colors indicates trajectory of
some single online ID.
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Fig. 13. Distance and time gap between adjacent records.

A. Privacy Leakage Through Localization Attack

As introduced in Section III-C, attackers in localization
attack aim to find out activities or events, which is described
by spatio-temporal points, as many as possible in users’ trajec-
tories. The corresponding privacy leakage can be quantified by
the quality of the obtained trajectories. Thus, we now present
analysis about the quality of users’ trajectories.

1) Examples Case Study: We first present two examples
about the obtained trajectories in Fig. 12. As we can observe
from Fig. 12, before merging the trajectories, we only know a
part of places users have visited, and their retrieved trajectories
are not complete. After merging login records of multiple types
of online IDs belonging to the same user, almost complete
trajectories of the users can be retrieved. Thus, benefiting from
it, more information about users is obtained.

2) Spatial and Temporal Resolution: In order to measure
the benefit obtained from merging different online IDs, we
then study the spatial and temporal distance between adjacent
records in the merged trajectories compared with unmerged
trajectories. The results are shown in Fig. 13. As we can
observe, by merging login records of multiple online IDs,
the average time gap and spatial distance between adjacent
records are obviously reduced. Specifically, the average time
gap is reduced by 50%, i.e., from about 18 hours to 8 hours by
merging login records from EC accounts to all types of IDs.
In terms of the average spatial distance, it is also reduced by
about 25%. These results demonstrate that by combining dif-
ferent types of online IDs together, the quality of the obtained
trajectories is significantly improved.

3) Basic Mobility Metrics: In Fig. 15, we present the com-
plementary cumulative distribution function (CCDF) of the
obtained trajectories in terms of two mobility metrics, includ-
ing radius of gyration [28] and login distance from home.
The radius of gyration is shown in Fig. 15(a), which is the
mean square root of the distance of each point in the trajec-
tory to its center of mass, and can be formally defined as

Tg = \/ Y2 (ri — rem)?/n, where r; represents the ith login
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Fig. 15. Basic mobility metrics of obtained trajectories.
recorded for ¢ € {1,...,n}, n is the total number of points in

the trajectory, and ¢, = 1/n Y 11 14 is the center of mass
of the trajectory. It characterizes the range of movement of
each user. In the trajectories obtained from cell phone when
users receive a call or a text message, the radius of gyration
follows the truncated power-law distribution [28]. However,
in our dataset, the distribution of radius of gyration can be
approximated with the exponential distribution better. Another
important indicator is login distance from home, which is
shown in Fig. 15(b). According to [12], the check-in distance
from home for Brightkite, Gowalla and the cell phones fol-
lows power-law distribution within around 100km. However,
as we can observe, empirical distribution of login distance
from home in our dataset is well approximated by exponential
distribution rather than power-law distribution. Specifically,
the average R-squared statistics between the empirical distri-
bution and exponential distribution is as high as 0.9827, while
for power-law distribution, it is only 0.6788. The fast decay
rate compared with power-law distribution indicates the disad-
vantage of the obtained user trajectories in localization attack
at places far away from users’ center of activity.

In summary, after linking the IDs of the same users and
classifying different kinds of locations, we obtain more com-
plete and meaningful user trajectories. The new user trajectory
has a higher temporal and spatial resolution, which leads to
more privacy leakage of users.

B. Privacy Leakage Through Semantic Attack

As for semantic attack, adversaries aim to acquire indi-
vidual’s behavior or motivation at spatio-temporal points by
using location semantic information. Thus, we first charac-
terize users’ privacy leakage by using the coverage rate of
three types of locations for trajectories. Then, we focus on
switching between different types of locations for users, and

analyze their concrete privacy leakages, including when they
go to work and go home, where and when they live, work,
and relax. For example, if a user goes home from work, he
might leave a pair of login records in business and residential
locations, respectively. We have 3 types of locations. Thus, we
have 3 x 3 = 9 switching types in total.

1) Coverage Rate for Different Location Context: We intro-
duce coverage rate of three types of locations for trajectories,
which is defined as the percentage of users of which the trajec-
tories have at least one residential, business or entertainment
location, respectively. The results are shown in Fig. 14, where
“comprehensive” represents trajectories combining mobility
records of all IDs belonging to the same users. As we can
observe, coverage rates of residential locations for all types of
online IDs are more than 95%. However, the coverage rates
of business and entertainment locations for different types of
online IDs are very diverse. EC accounts have the smallest
coverage, indicating people tend to use their EC accounts
in more private places; while OSN accounts have the high-
est coverage rate, indicating people tend to use their OSN
accounts in more public places. Though OSN accounts have
the highest coverage rate for business and entertainment loca-
tions, the number of OSN accounts is the smallest, as shown in
Table II. Thus, by merging online IDs belonging to the same
user, the coverage rate is balanced, however, smaller than OSN
accounts, but increases 2-3 times compared with IM and EC
accounts. In addition, the total number of covered users is
significantly improved. By combining them together, we can
obtain the trajectories covering more locations of all types,
and thus characterize users in a more comprehensive way.

2) Commute Analysis: We study the switch between home
and work places, which indicates users’ commuting behavior.
Using the hourly time series of the normalized frequency of
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switches between home and work places as features and apply-
ing the k-means clustering algorithm [25], we successfully
divide users into 7 clusters, where users commute at similar
time are divided into one cluster. The clusters and their tempo-
ral distribution of the time to work as well as their percentage
are shown in Fig. 16(a). Users in the clusters c2 to c7 tend to
go to work from about 8AM to 6PM, respectively, while in
the cluster c1, the time to go to work is dispersedly distributed
all over the day, indicating users in this cluster may not go
to work. The number of users in it is also the largest, which
is about 31.86% of all users. Then, Fig. 16(b), we implement
the same method to the time to go home of users. The results
are similar with Fig. 16(a). Differently, the earliest time to go
home is at around 12PM. By this method, the daily activity
and schedule of users are exposed to us, which is critically
sensitive information for users.

3) Standing Time Analysis: Based on location context
obtained based on our algorithm proposed in Section V, we
analyze the standing time of users in different type of places,
including residence, business, and entertainment. Using it as
feature and unsupervised learning method, we divide the users
into four clusters, of which the results are shown in Fig. 17.
User in the first three clusters tend to spend most of their time
in residential, business and entertainment locations, respec-
tively. Thus, we refer these users as residential-dominated,
business-dominated and entertainment-dominated users. Take
the business-dominated users for example. Their most login
records are generated in business locations, indicating that they
continuously stay in work places with the longest time. As for
users in the last cluster, we can observe their standing time dis-
tributes in multiple types of locations. Thus, we refer them as
comprehensive users. For any users, if we know which cluster
they belong to, we know what and where they spend their time
on doing every day.

Overall, the obtain users’ physical world trajectories have a
higher coverage rate of three kinds of locations. In addition,
much detailed privacy can be extracted from users’ trajectories.
For example, when they commute, where and when they live,
work, and relax, demonstrating that user physical world pri-
vacy leakage in terms of semantic attack via user cyberspace
privacy leakage is a real potent threat.

C. Privacy Leakage Through Re-Identification Attack

In this section, we adopt a well-recognized metric to mea-
sure the privacy leakage in terms of re-identification attack,
which is introduced by Montjoye et al. [10] and has been used
in a number of existing studies [29], [30]. Specifically, it is to
estimate the number of points necessary to uniquely identify
the mobility trace of an individual. If the uniqueness of trajec-
tories is high, the mobility dataset is likely to be re-identifiable
using information only on a few outside locations [10]. Thus,
in order to analyze the privacy bounds of cyberspace finger-
prints, we mainly focus on the uniqueness of trajectories in
this section.

1) Overall Privacy Bound: We first analyze uniqueness of
our obtained trajectories from three aspects: top p locations,
random p spatio-temporal points, continuous p spatio-temporal
points with temporal resolution of 3 hours for p from 1 to 4.

Specifically, let I, denote a sub-trajectory of a user with
p spatio-temporal points (for top p locations, we do not con-
sider temporal dimension). We define its anonymity set S(I;)
as the subset of trajectories that match the p spatio-temporal
points composing I,,. Then, its uniqueness is characterized by
|S(Ip)], i.e., the size of its anonymity set. If [S(I,)| = 1, its
anonymity set only contains one trace, i.e., trajectory of its true
owner. We define this sub-trajectory of p points is unique, indi-
cating that p points are sufficient to re-identify this user. Then,
we present the percentage of users satisfying |S(I,)| =1 and
|S(Ip)| < 2 with different p in Fig. 18.

As we can observe, top 4 locations can uniquely character-
ize 62% individuals, and 4 random spatio-temporal points are
enough to identify 82% of the individuals, and 4 continuous
spatio-temporal points are enough to identify 87% of the indi-
viduals, which indicates that uniqueness of trajectories is high
in our dataset, and most users are likely to be re-identifiable
by using only a few outside locations.

2) Temporal Difference: In Fig. 19, we analyze the unique-
ness of users’ trajectories at different time period and with
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different temporal resolution. The influence of temporal reso-
lution to the privacy bound is shown in Fig. 19(a). It is not
surprising that the uniqueness of trajectories is stronger with
higher temporal resolution. For one spatio-temporal point, per-
centage of unique trajectories is reduced from about 50% to
about 10% with temporal resolution from 1 hour to 1 day.
However, with more spatio-temporal points, the influence of
temporal resolution is reduced. For example, with 4 spatio-
temporal points, the percentage of unique trajectories is only
reduced from about 87% to about 60%. On the other hand, as
we can observe from Fig. 19(b), privacy bound of trajectories
at different time period are also diverse. Specifically, compared
with nighttime, from 0AM to 8AM, trajectories at daytime
expose more privacy of users. In addition, the trajectories
during 4PM to 8PM expose most privacy of users.

3) Spatial Difference: We next analyze the uniqueness of
trajectories with respect to the spatial resolution and location
types. We first analyze the privacy bound of trajectories with
different spatial resolution, which includes dividing the whole
city into 2048 regions, 17056 regions, and over 3 million
subscribers, respectively. The results are shown in Fig. 21(a).
Similar with temporal resolution, a trivial observation is that
with higher spatial granularity, more privacy of users is
revealed. However, when there are 4 spatio-temporal points,
the corresponding privacy bound is almost not influenced by
the spatial granularity, remaining as high as 0.88 even when the
city is only divided into 2048 regions, indicating that reduc-
ing spatial granularity does not work on preserving privacy
under this condition. In addition, the uniqueness of points for
locations of different types is shown in Fig. 21(b). Residential
places have the highest uniqueness, followed by entertainment
places, while business places expose the least information of
users. It indicates that residential locations expose more pri-
vacy of users, which coincides with our empirical knowledge
that home is more private places for users.

4) Different Types of Online IDs: Next, we analyze the influ-
ence of different types of IDs on the privacy leakage. As shown
in Fig. 20(a), the uniqueness of trajectories for IM accounts is
the strongest, indicating it contains the most information about
users, while the uniqueness of trajectories for OSN accounts
is the weakest. One possible reason is that users tend to use
OSN accounts more in public places, which makes the corre-
sponding trajectories less unique. Then, the component ratio
of points for each type of online ID in the merged trajectory
shown in Fig. 20(b). The component ratio for the IM account
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Fig. 21. Spatial difference of the privacy bound.

is as high as 68%, while the component ratios for the other
three types of accounts are all about 16%. Further, the pro-
cess of merging records of multiple online IDs is shown in
Fig. 20(c). By merging trajectories of different types of online
IDs, their uniqueness is increased, indicating that by linking
online IDs belonging to the same user together, more privacy
of users is revealed.

In summary, the obtained user trajectories are highly unique.
Even when spatial granularity is very low, 4 points are suffi-
cient to uniquely identify 88% users, indicating that it is easy
for the attacker to re-identify the trajectory of a targeted indi-
vidual and make a big threat to users’ privacy. In addition, the
type of online IDs, the time period of day, and the physical
context of locations show a big influence on the privacy bound,
which can help to preserve user privacy in further work.

VII. RELATED WORK

The potential threat of user privacy leakage through online
activities has attracted a lot of attention from the research com-
munity in the past decade. For example, it has been reported
that a variety of personally identifiable information, i.e., age,
gender, zipcode, address, or even real-name, can be leaked via
HTTP headers, URIs, cookies that we leave when browsing
the Web service [7], [31]-[33]. Furthermore, more underlaying
personal privacy, i.e., sexual orientation, ethnicity, friendship,
religious and political views, even personality traits, intelli-
gence and happiness can also be inferred from the digital
records we left [1], [34]-[37]. In order to preserve privacy,
lots of technical solutions are proposed to control or reduce
related sensitive information leakage [38]-[40]. For example,
Sanchez et al. [41] proposed a system which selectively blocks
or bypasses tracking on the browsed Web sites based on users’
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privacy to achieve privacy-preserving advertising. However, on
the other hand, recent studies find that personal information
across different Web service of both the same kind [42], [43]
and different kinds [2], [3], [44], [45] can be linked and aggre-
gated, which aggravates the Web privacy leakage and related
attacks. In addition, a number of studies investigated users’
privacy behavior, e.g., users’ privacy concern [46] and privacy
fatigue [47], etc. All these studies highlight the possibility of
personal information leakage from the cyberspace. In contrast,
our work calls attention to another aspect of physical world
privacy leakage when accessing the cyberspace Web services.

In terms of human mobility, recent extensive studies focus
on discovering individual mobility patterns [28], revealing
mobility prediction limits [48], and building accurate mobility
model [49], [50] by the movement data trace collected by mon-
itoring the devices’ connected base station or GPS positions.
On the other hand, individual mobility is revealed with high
uniqueness to distinguish each other even in a large population,
i.e., with only several locations visited most frequently [30] or
several random spatial-temporal points [10], [51]. These inves-
tigations call attention to the privacy risks inferred from human
mobility by re-identifying individuals from the spatial (only
locations) [29], [30], [52] or temporal-spatial trajectories [10],
along with a number of privacy-preserving techniques [29],
[52]-[55]. All these works deal with the mobility understand-
ing and privacy analysis based on the physical world directly
observed human mobility. These are very different scenarios
from the one we address here, because the mobility trajectories
we investigate are inferred from the cookies information when
we access the Web. In addition, as observed in this work, these
kind of mobility trajectories is different from these directly
obtained from the physical world.

In our system, user detection and location classification
are other two key workflows. In terms of user identifica-
tion, linking accounts of the same user across datasets are
recognized as an important open problem studied in diver-
sity contexts. A number of approaches are proposed to link
user IDs based on datasets of graph structures, e.g., friendship
graphs, contact graphs. Specifically, Korula and Lattanzi [56]
and Zhang and Philip [57] focused on linking user IDs based
on the friendship graph. Srivatsa and Hicks [58] focused
on linking user IDs between friendship graphs and contacts
graphs. Ji et al. [59], [60] further provided a theoretical anal-
ysis of linking users based on the graph structural data.
Kazemi et al. [61] presented another graph matching algo-
rithm that relies on smaller seeds than other approaches.
Wang et al. [62], [63] clustered IDs belonging to the same
users in one big contact graph of IDs. Zhou et al. [64]
proposed an unsupervised method to link IDs of different
social networks. In addition, other approaches focused on link-
ing user IDs based on various user profile attributes and posted
content by users. Goga et al. [19], [65] linked IDs based on
user name, profile photos, writing styles, etc. Zafarani and
Liu [66] linked IDs based on user names through behav-
ioral modeling. Narayanan and Shmatikov [67] linked users
of Netflix and IMDB based on the similarity of their movies
ratings. Mu et al. [68] used “latent user space” for linking user
profiles. Gao et al. [69] proposed an unsupervised method
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to link users based on their attributes and social features.
However, these algorithms require information such as friend-
ship graphs and user attributes. Thus, they are not applicable
in our scenario. The only way to adapt these algorithms to
the mobility trajectory data in our scenario is constructing the
“contact graph” to model users’ encountering with each other
based on their mobility trajectories, but such adaption ignores
users’ daily mobility patterns, which limits the performance
of linking user IDs. At the same time, a number of studies
focused on linking user IDs based on trajectory data directly.
Naini ef al. [70] focused on linked users by matching the
statistics of their trajectories. Riederer et al. [17] proposed an
algorithm combining Poisson processes and maximum weight
matching to link user IDs. Wang et al. [23] proposed an
algorithm based on Gaussian mixture model which consid-
ers spatio-temporal mismatches between different datasets.
Feng et al. [71] proposed a deep learning based algorithm to
link user IDs, which used a co-attention mechanism to over-
come the mismatches between different datasets. However,
these approaches need accurate GPS coordinates of locations,
which is not available in our scenario. In terms of location
classification, it is also a hot topic recently [72], especially
in location-aware social networks [12], [24], [73]. Different
from previous solutions, we combine the supervised learning
and un-supervised learning method to suit the dataset, which
achieves better performance.

VIII. CONCLUSION

In this work we have demonstrated that it is possible to
infer and reveal user physical world privacy via cyberspace pri-
vacy leakage, namely, by correlating the cyber “fingerprints”
(e.g., user IDs and other information contained in cookies)
left by users in the cyberspace with the “footprints” (e.g.,
hints about physical locations) left by users in the physical
world. We have developed a powerful privacy analysis system,
which combines the login records of users and physical context
information, and successfully reveals main privacy leakage of
users. Our analysis unveils that cyberspace cookie logs contain
high-quality user trajectories. In addition, most of user trajec-
tories can be discovered and confirmed by leveraging only
a few exogenous records of GPS coordinates. Furthermore,
much detailed physical privacy of users can be inferred by
applying some simple analytical methods to users’ mobility
trajectories. In summary, our study provides a systematic and
comprehensive understanding of users’ physical-world privacy
leakages from their cookie logs.
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