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Abstract—Point-of-Interest (POI) recommendation has drawn a lot of attention in both academia and industry. It utilizes user check-in

data, aiming at recommending unvisited POIs to users. To address the data-sparsity problem, geographical information of POIs is often

incorporated into recommender systems. However, most of the existing approaches model geographical impact in an implicit way, in

which geographical information is encoded as auxiliary vectors for learning unified representations of users and POIs. Following this

paradigm, the embedding of POIs can not reflect geographical similarity directly; thus, an explicit modeling approach is needed as

geography is of great importance in POI recommendation. To address challenges in disentangling geographical effect, we proposed a

disentangled representation learning method named DIG (short for Disentangled embedding of user Interest and POIs’ Geographical

information). Aiming at decoupling the geographical factor and the user interest factor thoroughly, we first proposed a geo-constrained

negative sampling strategy, which helps to find reliable negative samples for the two factors. Second, a geo-enhanced soft-weighted

loss function was proposed to quantify the trade-off between the two factors in loss computation. Extensive experiments have been

conducted on two real-world datasets, and results have demonstrated the significant improvement of DIG at 3:92% � 20:32% on recall,

and 2:53% � 11:48% on hit ratio, compared with other state-of-the-art approaches.

Index Terms—Disentangled embedding, geographical effect, graph neural networks, point-of-Interest recommendation

Ç

1 INTRODUCTION

IN recent years, location-based social networks (LBSN)
have appeared and entered into our daily life, benefiting

from the prevalence of mobile networks and the conve-
nience of mobile terminals. Various Point-of-Interest (POI)
recommendation approaches have been proposed to
enhance user experience and produce more commercial
profits, such as [1], [2], [3], [4], [5], [6], [7], [8].

However, the geographical information of POIs distin-
guishes POI recommendation from traditional recommen-
dation scenarios. Specifically, geographical attributes of
POIs add constraints to interactions between users and

POIs [9], [10], [11], [12], [13], [14]. Unlike interactions (click,
add to cart, buy, etc.) between users and commodities on
E-Commerce platforms, the check-in behavior of users
requires extra cost, and the consumed time varies due to
the geographical distance between the user’s current loca-
tion and the location of a target POI. Besides, neighbor-
hood influence works as an uncontrollable variable in POI
recommendation. Taking the restaurant recommendation
as an example, a driving user is more likely to prefer res-
taurants closer to a spot with parking space. Therefore,
POIs such as parking lots and restaurants in the same
region can influence each other. However, even the same
POI influences its neighbors differently, and the neighbor-
hood of different POIs varies greatly. Moreover, the impact
on the neighbors also decreases as distance increases [3],
[15]. Thus, the influence from the neighborhood of POIs is
non-negligible in POI recommendation, and should be cap-
tured well in the representation learning process for per-
formance improvement.

In this paper, we aim to provide an approach that can
model geographical attributes of POIs explicitly, while pre-
vious studies [1], [2], [3], [4], [15], [16], [17], [18] only model
the geographical factor in an implicit way. We classify exist-
ing methods into three categories to explain the major draw-
back. The first category utilizes geographical information in
a regularization-based way, in which geographical informa-
tion is not encoded by latent vectors but is used to form
extra regularization terms [1]. The second category learns
latent vectors for geographical information, but either these
latent vectors work as hidden vectors for a unified represen-
tation [3], [15], or is optimized by the fusion of user interest
and geography, etc., [4], [16], [17]. The last category, which
uses separate embedding space to encode geographical
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information, [2], [18], still belongs to the implicit paradigm
for two reasons. First, the representations in geographical
space are pre-computed by using coordinates of POIs and
check-in frequencies of users and are fixed during optimiza-
tion, which can lead to sub-optimal performance. Second,
the use of check-in frequency, which is closely associated
with user interest, mingles user interest with geography
again. Therefore, the drawback of modeling geographical
information in POI recommendation is obvious, and
approaches of explicit modeling are required.

To avoid rough fusion of the geographical factor with
other non-geographical factors, we adopt a disentangled
representation learning approach in which separate sub-
spaces are explicitly learned for different factors (e.g., inter-
est and geographical factors). There are two significant chal-
lenges in disentangling geographical effects, and they are
summarized as follows.

� Distinguishing geographical factor from non-geographical
factors. Geographical factor is often deeply fused
with non-geographical factors like user interest in
POI recommendation. For example, a driving user
may visit a shopping mall with an underground
parking lot multiple times, while never visiting
another mall without parking places. In this situa-
tion, we can not judge whether the latter one is less
attractive or not, as the parking lot is an important
and uncontrollable variable. Therefore, it is challeng-
ing to achieve disentanglement of the geographical
factor and other factors.

� Trade-off between geographical factor and non-geo-
graphical factors. As mentioned, different embedding
spaces are used for different factors in the disen-
tangled embedding learning process. Therefore,
how to balance representations of different spaces in
loss computation is a challenging problem, as con-
tributions of different factors vary in different
interactions.

To address the challenges mentioned above, we propose
a disentangled approach named DIG, namely, Disengled
user Interest factor and POIGeographical factor for POI rec-
ommendation. To be specific, representations of users and
POIs are obtained by concatenating representations from
two separate spaces, and a geo-constrained negative sam-
pling strategy is proposed to generate representative nega-
tive samples that can balance different spaces. Moreover,
a geo-enhanced soft-weighted loss function is designed to
estimate the weights of loss.

To summarize, our major contributions are listed below:

� We propose a novel disentangled representation
learning approach that clearly models the user inter-
est factor and POI geography factor, the two deeply
fused factors in POI recommendation.

� We also propose a geo-constrained negative sam-
pling strategy and a geo-enhanced soft-weighted
loss function, which distill POI geographical infor-
mation to assist disentanglement.

� Extensive experiments are conducted on two real-
world LBSN datasets, and our proposed model out-
performs the state-of-the-art algorithms. In addition,

experimental results demonstrate the effectiveness
of disentanglement in improving representation
learning.

Moreover, since real-world recommender systems can
always be split into matching, ranking, and re-ranking
stages [19], [20], [21], our proposed method, DIG, focuses
on the matching stage specifically. During this stage, recom-
mender systems will select dozens of candidates from the
item set accurately. In addition, the interest factor men-
tioned in this paper is a broad concept, which is similar
to [11]. Specifically, user preferences are grouped into two
parts: the geographical part and the non-geographical part.
We name the former part the geographical factor, which
is tightly associated with users’ tolerance of travel time.
Similarly, we name the latter part interest factor, including
properties of users, the popularity of POIs, etc. Extensive
experimental results have demonstrated that our DIG
decouples these two factors effectively. The rest of this
paper is organized as follows. We first formulate the stud-
ied problem in this paper in Section 2. We then describe our
proposed DIG method in Section 3, following which we
present the experimental results in Section 4. We then
review the related work in Section 5 and discuss three
important questions about the concepts and the scope of
this paper in Section 6. Finally, we conclude this paper in
Section 7.

2 PROBLEM FORMULATION

In this section, we formulate the POI recommendation prob-
lem to solve in this paper. Notations frequently used in this
paper are listed in Table 1.

Given M users and N POIs, let U denote the user set and
I the POI set. For a specific user u, Iþu indicates POIs visited
by user u, and I�u indicates those unvisited ones. ðxi; yiÞ
denotes the latitude and longitude of POI i; i 2 I . The goal
of recommender system is to generate candidate sets Cu ¼

TABLE 1
Notations Frequently Used in This Paper

Notations Descriptions

j � j The cardinality of a set
h�i Inner product
U; I The set of users, POIs
Iþu ; I

�
u POIs visited by user u, POIs not visited by user u

Uþ
i ; U

�
i Users who visited POI i, users who didn’t visit

POI i
Cu Candidate set for user u
O Triplet set of ðu; i; jÞ; u 2 U; i 2 Iþu ; j 2 I�u
U; I Embedding of all users, all POIs
~u;~i Embedding of user u, POI i
di; dg Dimension of interest space, geography space
ni; ng The number of negative samples
~uint;~iint Sub-vectors of user u, POI i in interest space
dm Distance margin used in negative sampling
mf Distance expanding margin used to enlarge dm
~ugeo;~igeo Sub-vectors of user u, POI i in geography space
M;N The number of users, POIs
xi; yi Latitude and longitude of POI i
dði; jÞ Geographical distance between POI i and POI j
L Loss function
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fjjj 2 I�u g; 8u 2 U for each user by utilizing user embedding
U ¼ ½~u1; ~u2; . . . ; ~uM � and POI embedding I ¼ ½~i1;~i2; . . . ;~iN �,
which are optimized by using interaction data between
users and POIs. To be specific, Cu; 8u 2 U is generated by
calculating inner product between user ~u and POIs ~i,
where i 2 I�u . Cu consists of POIs with top-K largest inner
product values, where K is the predefined size of the can-
didate set.

3 METHODOLOGY

In this section, we present the proposed model DIG in detail
in five parts:

� the disentangled embedding layer, which describes
disentanglement within each layer;

� the information propagation layer, which depicts
how information propagates on a graph;

� the prediction layer that calculates scores between
user-POI pairs using disentangled embedding;

� the geo-constrained negative sampling strategy,
which helps disentanglement by curriculum learn-
ing under geographical constraints;

� the geo-enhanced soft-weighted loss function, which
distills geographical information to balance user
interest factor and geographical factor in final
prediction.

The first four components are illustrated in Fig. 1, in
which the yellow color indicates representations of interest
factor, and the green color indicates representations of the
geographical factor. When inputting geographical data and
user-POI interactions into DIG, disentangled embedding of
users and POIs will first be initialized in the disentangled
layer. Then, embedding will be optimized by a GNNmodel,
and information is propagated on a user-POI bipartite
graph in the information propagation layer. Ultimately, rec-
ommended candidates will be generated in the prediction

layer by ranking the inner product of a specific user and all
un-visited POIs.

3.1 Disentangled Embedding Layer

As we want to learn disentangled representation for user
interest factor and POI geographical factor, two separate
spaces are used to model these two factors, respectively.
Following disentangled models in [22], [23], [24], embed-
ding of user i is obtained by concatenation as follows:

~ui ¼ ½~uinti jj~ugeo
i �; i ¼ 1; . . . ;M; (1)

where ~uint
i 2 Rdi , indicates the sub-vector of interest space

for user i, and ~ugeo
i 2 Rdg indicates its sub-vector of geo-

graphical space. jj denotes vector concatenation operation.
Similarly, the embedding of POI k is defined as:

~ik ¼ ½~iintk jj~igeok �; k ¼ 1; . . . ; N; (2)

where~iintk 2 Rdi , and~igeok 2 Rdg . Therefore, the embedding of
all users can be represented as follows,

U ¼ ½UintjjUdis�; (3)

and the embedding of all POIs as follows:

I ¼ ½IintjjIdis�; (4)

where U 2 RðdiþdgÞ�M; I 2 RðdiþdgÞ�N .
Note that U and I are optimized in an end-to-end fashion

in DIG. Traditional recommender approaches like MF [25]
and NCF [26] feed interactions of user-item pairs in the
representation learning process, in which only first-order
connectivity is utilized. In contrast, the embedding of users
and POIs are optimized by propagating them on the user-
POI interaction graph. In this way, more representative
embedding can be obtained as high-order connectivity is
also used during representation optimization [27].

Fig. 1. An illustration of our DIG model (best view in color). The model input is made up of two parts: user-POI interaction data and geographical data.
Taking these data as input, DIG’s disentangled embedding layer can generate disentangled components for the interest factor (yellow color) and geo-
graphical factor (green color), respectively. These disentangled embeddings will be optimized in the Information Propagation Layer, leveraging both
user-POI bipartite graph structure and geographical constraints. After convergence, the candidate set of each user is generated by ranking the
matching scores between user embeddings and all un-visited POIs’ embeddings.
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3.2 Information Propagation Layer

As users who visit a POI can be regarded as the feature of
that POI, and POIs that are visited by a user can be treated
as the user’s feature [27], embedding propagation is con-
ducted by aggregating feature vectors from the directly con-
nected users or POIs over the user-POI interaction graph.
Following [27], information aggregation of interest repre-
sentation in layer lþ 1 can be defined as:

~uintðlþ1Þ ¼
X

i2Iþu

1ffiffiffiffiffiffiffiffi
jIþu j

p ffiffiffiffiffiffiffiffiffiffi
jUþ

i j
p ~iintðlÞ; (5)

~iintðlþ1Þ ¼
X

u2Uþ
i

1ffiffiffiffiffiffiffiffiffiffi
jUþ

i j
p ffiffiffiffiffiffiffiffi

jIþu j
p ~uintðlÞ; (6)

where Uþ
i indicates users that have visited POI i, and sym-

metric normalization term 1ffiffiffiffiffiffi
jIþu j

p ffiffiffiffiffiffiffi
jUþ

i
j

p follows the design of

[28]. Moreover, self-connection is excluded as [29] does.

Similarly, information aggregation of geographical
embedding in layer lþ 1 is computed as:

~ugeoðlþ1Þ ¼
X

i2Iþu

1ffiffiffiffiffiffiffiffi
jIþu j

p ffiffiffiffiffiffiffiffiffiffi
jUþ

i j
p ~igeoðlÞ; (7)

~igeoðlþ1Þ ¼
X

u2Uþ
i

1ffiffiffiffiffiffiffiffiffiffi
jUþ

i j
p ffiffiffiffiffiffiffiffi

jIþu j
p ~ugeoðlÞ; (8)

In addition, user embedding, POI embedding of layer l is
obtained as:

UðlÞ ¼ ½Uint ðlÞjjUgeo ðlÞ�; IðlÞ ¼ ½Iint ðlÞjjIgeo ðlÞ�: (9)

As illustrated in Fig. 1, first-order proximity is preserved
by aggregating information from the directly connected
neighbors, and high-order proximity can be captured via
traversing through multiple layers of the model.

3.3 Prediction Layer

After propagating with L layers, we obtain user embedding
f~uð1Þ; . . . ; ~uðLÞg and POI embedding f~ið1Þ; . . . ;~iðLÞg. Follow-
ing [29], linear operation instead of concatenation is lever-
aged. The final user embedding and POI embedding are
computed as:

~u ¼ 1

Lþ 1
~uð0Þ þ~uð1Þ þ � � � þ~uðLÞ

� �
; (10)

~i ¼ 1

Lþ 1
~ið0Þ þ ~ið1Þ þ � � � þ ~iðLÞ

� �
; (11)

where ~uð0Þ and~ið0Þ are generated by model initialization.
Finally, inner product, a widely used user-item interac-

tion function [23], [27], [29], is conducted to compute the
score between user-POI pair ðu; iÞ as follows:

ŷui ¼ h~u;~ii: (12)

Note that the higher the score ŷui is, the more likely that
user uwill visit POI i.

3.4 Negative Sampling Strategy

After describing the whole architecture of model DIG, the
key design, geo-constrained negative sampling strategy,
which can help to distinguish interest space and geographi-
cal space, is presented in this part. Negative sampling is
widely used in the optimization process, since it can save
time overhead and storage overhead while guaranteeing
representative representation learning. However, utilizing a
random sampling strategy only is not enough for disentan-
glement representation learning. That is, all negative sam-
ples are treated equally without differentiating interest
factor and geographical factor. Since interactions between
different user-POI pairs can be dominated by different fac-
tors, it is reasonable to choose representative negative sam-
ples for these two factors, respectively. However, it is
impractical to divide a negative sample into the interest
side or geographical side totally in the POI recommendation
scenario. To address this challenge, a geo-constrained nega-
tive sampling strategy is proposed, which is composed of
two parts, the geo-constrained sampling part and the ran-
dom sampling part. Moreover, curriculum learning is used
for learning accurate representations of interest space.

Geo-constrained Sampling Part
This design is inspired by an intuitive idea that un-vis-

ited POIs, which are near a specific user’s visited areas, are
not visited because of the influence of the interest factor
rather than the geographical factor. Following this intuitive
but reasonable idea, inference is made via leveraging
geographical prior information, and triplet set O1 is spe-
cially sampled to benefit user interest space. O1 is defined
as follows:

O1 ¼ fðu; i; jÞju 2 U; i 2 Iþu ; j 2 I�u ; dði; jÞ < dmg; (13)

where dm indicates distance margin, ensuring that negative
samples in O1 locate in the nearby regions with positive
items. Triplet set O1 is necessary for distinguishing interest
factor and geographical factor, and experiment results will
be shown in Section 4.4.2 to demonstrate its necessity.

Random Sampling Part. Although random sampling only
is not enough for the disentangled representation learning
process, without it can also lead to sub-optimal embedding
learning. That is due to the fact that random sampling
can cover the distribution of all the facts. Similar to Equa-
tion (13), triplet set O2 from the random sampling part is
defined as:

O2 ¼ fðu; i; jÞju 2 U; i 2 Iþu ; j 2 I�u g; (14)

Curriculum Learning. Inspired by curriculum learning [30],
which first feeds easy training data to the model and then
gradually increases the difficulty, the area of regions valid
forO1 is enlarged gradually in the training process. As men-
tioned that nearby POIs should contribute more to interest
space, the curriculum learning is implemented via the fol-
lowing steps: (1) dm is initialized with a small value, which
returns negative examples that benefit interest space with
higher confidence; (2) keep dm for several epochs, get triplets
from both O1 and O2, and feed them into DIG to optimize
both interest representations and geography representations;
(3) after several epochs, dm will be expanded by a preset
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expanding factormf ; (4) repeat (2) and (3) until an early stop
is triggered.

3.5 Optimization

After O1 and O2 are defined, parameter optimization with
our proposed negative sampling strategy will be described
in the following part. In this section, we will explain how
disentangled representations of users and POIs are obtained
via loss computation and gradient backward.

3.5.1 Choice of Weights Estimation Function f

Before diving into the details of loss computation, we will
first explain how we select weights estimation function f ,
which balances loss optimization in interest space and geo-
graphical space ultimately. As weights of user interest fac-
tor and geographical factor vary greatly in encouraging
check-in behaviors of users, it is critical to estimate the
weights to ensure reasonable loss computation in different
spaces. Recall that the interest factor should dominate the
decision of user u in a small region where dði; jÞ is small, i 2
Iþu , j 2 I�u . Therefore, we hope fðdði; jÞÞ ! 0 when
dði; jÞ ! 0. But for un-visited POI j with very large dði; jÞ,
fðdði; jÞÞ should satisfy fðdði; jÞÞ / dði; jÞ. Moreover, the
range of fðdði; jÞÞ is ½0; 1Þ when dði; jÞ ranges from 0 to þ1.
Last but not least, fðdði; jÞÞ must be differentiable for all
dði; jÞ2½0;þ1Þ. Combining the above aspects, fðdði; jÞÞ is
computed as follows:

fðdði; jÞÞ ¼ tanhð�dði; jÞÞ; (15)

where � is a hyper-parameter, and can be tuned easily dur-
ing the experiment process.

3.5.2 Soft-Weighted Loss Computation in Sub-Spaces

As weights of the two mingled factors can be estimated by
using f in the negative sampling process, we then propose
the soft-weighted loss function to compute loss during opti-
mization. For the purpose of learning model parameters,
Bayesian personalized ranking (BPR) [31] loss is widely
used in POI recommendation scenario [32]. It is computed
as follows:

BPRð~u;~i;~jÞ ¼ �
X

ðu;i;jÞ2O
lnsðh~u;~ii � h~u;~jiÞ; (16)

where O denotes triplet set generated by negative sampling,
s denotes sigmoid function, and h�; �i indicates the inner
product of two vectors. Our proposed soft-weighted loss
function weights BPR loss of interest space and BPR loss of
geographical space according to the intuition: interest repre-
sentations can dominate the user decision process in a small
region, while geographical representations contribute more
to remote POIs. Consider an extreme situation in which
there are two next-door POIs, j1; j2, which are unvisited by
user u. As they are next-door POIs, dðj1; j2Þ can be regarded
as 0. In addition, they share the same neighborhood. Thus,
~jgeo1 should be similar to ~jgeo2 , and whether user u will check
in j1 or/and j2 is depending on how much ~jint1 or/and ~jint2

match with ~uint. That is why we think interest representa-
tions should dominate the decision process within small
regions. For unvisited POI j far from all positive POIs in Iþu ,

the geographical factor should play a more important role
than the interest factor, as previous research has found that
remote places will be checked in with low probability for
the unbearable time cost on the way [9], and users tend to
visit POIs close to their checked-in POIs in history [33]. That
is why we assume the geography factor should impact
more on remote decision making.

Therefore, the geo-enhanced soft-weighted loss function
is computed as follows:

Lint ¼ ð1�fðdði; jÞÞ � BPRð~uint;~iint;~jintÞ; (17)

Lgeo ¼ fðdði; jÞÞ � BPRð~ugeo;~igeo;~jgeoÞ; (18)

where f is the soft-weighted function, balancing user inter-
est factor and POI geography factor under the geographical
constraint dði; jÞ.

Note that the triplet set O used in approach DIG is the
union of O1 and O2. Although interest space benefits more
from O1, O2 is not absent from calculating Lint. It is the
same with O2 and Lgeo. During the experiments, the size of
the two triplet sets subjects to jO1j : jO2j ¼ di :dg. Therefore,
both interest space and geographical space can receive bal-
anced information after deploying our negative sampling
strategy, and effective optimization process is guaranteed.

3.5.3 Loss Computation in the Total Space

Since the ranking layer of DIG uses the embedding of total
space, the main task should be predicting user-POI interac-
tion based on the embedding after concatenation. Therefore,
BPR optimization should also be computed using the total-
size embedding ~u;~i;~j for each triplet ðu; i; jÞ in addition to
the soft-weighted loss function used to compute Lint and
Lgeo. Let Ltotal denotes BPR loss of ð~u;~i;~jÞ, the loss is com-
puted as:

Ltotal ¼ BPRð~uintjj~ugeo;~iintjj~igeo;~jintjj~jgeoÞ; (19)

and illustrated in Fig. 2, the final loss function used in DIG
is computed as:

L ¼ Ltotal þ a � Lint þ b � Lgeo; (20)

where a and b are hyper-parameters. Since estimating user
check-in behavior using the embedding of the total space is
the main task, we set 0 < a < 1; 0 < b < 1 during the
training process. By tuning a and b, embedding of interest
space and geographical space will also be optimized via
geographical prior knowledge.

Fig. 2. An illustration of loss computation in DIG. The total losses consist
of loss from the interest space, loss from the geographical space, and
loss from the total space.
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DIG decouples interest factor and geographical factor
from user-POI interaction data and geographical data
(longitude and latitude of POIs, distances between POIs)
effectively via deploying modules mentioned above. Once
auxiliary data, such as customized user options, is available,
DIG can model them by adapting model input and disen-
tangled embedding layer.

4 EXPERIMENTS

Extensive experiments have been conducted on two real-
world datasets to evaluate our proposed approach, DIG.
We aim to answer four research questions as follows.

� RQ1: As DIG disentangles user interest factor and
geographical factor for POI recommendation, how
does DIG perform when compared with the state-of-
the-art recommendation algorithms?

� RQ2: How to demonstrate the disentanglement of
user interest factor and geographical factor?

� RQ3: How does our proposed geo-constrained nega-
tive sampling strategy benefit the disentanglement
representation learning?

� RQ4: Since two explicable factors are decoupled in
DIG, which factor is more important, the interest fac-
tor or the geographical factor?

4.1 Experimental Settings

4.1.1 Datasets

Two real-world public datasets, Yelp1 and Gowalla,2 are
used in our experiments, which provide user-POI check-in
data, check-in time, and coordinates of POIs. We filter out
users with less than 10 POIs in the two datasets, and reserve
POIs with more than 10 users in Yelp and users with more
than 15 users in Gowalla. The whole dataset is split to train-
ing set, validation set, and testing set with the ratio of 7:1 :2
and is kept the same for all baselines. Statistics of these two
datasets are shown in Table 2.

4.1.2 Evaluation Metrics

To compare the recommendation performance of different
approaches, we choose to rank all items instead of generat-
ing a sampled subset [23], [27]. In other words, all the unvis-
ited POIs I�u will be taken into account when a model is
generating recommendation candidate set Cu for all users.
Although this operation costs more time, the results are
more reliable [36]. Two widely used top-K evaluation met-
rics [24], [37], Recall and Hit Ratio (HR) are adopted in the
evaluation phase. Let T u indicate the test positive set of
user u, and Recall@K and HR@K are computed as follows:

Recall@K ¼ 1

jUj
X

u2U

jT u \ Cuj
jT uj

; (21)

HR@K ¼ 1

jUj
X

u2U

1 jT u \ Cuj > 0ð Þ
jT uj

; (22)

where 1 is the indicating function, returning 1 when T u \
Cu 6¼ f and 0 otherwise. Since only the first few POIs in can-
didate sets can be exposed to users with high probability, K
is set to small numbers 3; 5; 10; 15 in the evaluation phase
following existing works [15], [34], [35].

4.1.3 Baselines

We compare the performance of DIG with multiple state-of-
the-art approaches. These approaches include geography-
related methods and a newly published disentangled repre-
sentation learning method.

� MF-BPR [31] This model uses BPR loss to compute a
pairwise loss function, and tries to complete empty
entries of the user-item interaction matrix by com-
puting the inner product of the corresponding user
vector and item vector, which are learned using non-
empty entries. This model can be very competitive
when feeding in enough negative samples during
our experiments.

� APOIR-G [4] APOIR is composed of a generator that
generates candidates of POIs for each user, and a dis-
criminator which evaluates candidates from the gen-
erator. The reward of this generating adversarial
network is computed from social information and
geographical information. By training the generator
and discriminator together, it can achieve good per-
formance in POI recommendation. To keep the com-
parison fair, we simplify APOIR to APOIR-G by
removing the social-related part in reward computa-
tion and replacing GRU units with an MF-based
representation learning module.

� STGCN-G [38] STGCN is a GNN-based POI recom-
mendation approach, which encodes geographical
information and timeline into GNN architecture.
POIs are first mapped into different regions leverag-
ing the geohash function while 24 time-bins are used
to encode time information. Different spatial-tempo-
ral types are assigned with different edge types on
the graph. To keep the comparison fair, we simplify
STGCN to STGCN-G by removing the time module.

� AutoInt [39] AutoInt first maps both numerical fea-
tures and categorical features into the same low-
dimension space. Afterward, a multi-head neural
network with a self-attentive design is deployed for
the purpose of learning the high-order feature inter-
actions of input features. Following [38], [40], we
transform geographical information into regions via
the geohash function.

� xDeepFM [41] This model combines a compressed
interaction network with a classical deep neural net-
work. During experiments, geographical informa-
tion is encoded in the same way as AutoInt.

� GCN [28] This is a spectral GCN approach, introduc-
ing a propagation rule for neural networks which

TABLE 2
Basic Statistics of Two Datasets

Dataset # Users # POIs # Records Sparsity

Yelp 30,887 18,995 860,888 99.85%
Gowalla 22,224 18,442 701,500 99.82%

1. https://www.yelp.com/dataset/
2. http://snap.stanford.edu/data/loc-gowalla.html

7888 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 8, AUGUST 2023

Authorized licensed use limited to: Tsinghua University. Downloaded on July 31,2023 at 12:42:13 UTC from IEEE Xplore.  Restrictions apply. 



can be operated on graphs. Fast approximate convo-
lutions are achieved via Chebyshev polynomials.
Therefore, it is applied for fast and scalable node
classification problems by learning node embedding
on the graph.

� GCMC [42] This model uses GCN encoder [28] to
learn user embedding and item embedding, which
transforms the interaction matrix completion prob-
lem to edge prediction on a user-item bipartite
graph. However, only the similarity between con-
nected nodes can be captured in GCMC.

� NGCF [27] This model encodes high-order CF signals
by propagating messages between users and items
over the bipartite graph. Nonlinear activation func-
tions and embedding transformation matrices in
GCN are reserved during propagation across layers.

� LightGCN [29] This model reserves neighborhood
aggregation in GCN, but discards all nonlinear acti-
vation functions and weighting matrices. After this
simplification, one-hop similarity and multi-hop
similarity are captured well, and notable perfor-
mance promotion is achieved.

� DGCF [23] This disentangled embedding approach
decouples four inexplicable factors for POI recom-
mendation, where each factor corresponds to a chunk
of embedding. Model parameters are optimized
using BPR loss optimization and L2 norm regulariza-
tion. Despite the good performance it achieves, the

interpretability of disentanglement over POI datasets
is weak.

4.1.4 Hyper-Parameter Settings

We implement our DIG model in Pytorch. The total embed-
ding size of DIG remains the same with all baselines (i.e.,
di þ dg ¼ 128) as in [23]. In this way, the model size of DIG
is identical to MF, LightGCN, and DGCF, but is lighter
than other baselines. Thus fair performance comparison is
guaranteed [24]. All models are optimized with Adam opti-
mizer [43]. As for hyper-parameters, learning rate is
searched in f10�4; 10�3; 10�2; 10�1g, and the number of
layers is tuned amongst f1; 2; 3; 4g for GCN based model.
The number of negative samples is set equivalent, and posi-
tive check-ins are blocked during the negative sampling
process for all methods in Table 3. In addition, negative
sampling in DIG also observes jO1j : jO2j¼di : dg¼32 : 96.

4.2 Performance Comparison (RQ1)

Extensive experiments have been conducted to explore how
disentangled embedding in DIG can improve the effective-
ness of representation learning, and the best average perfor-
mance is reported in Tables 3 and 4. In Table 3, we compare
DIG with state-of-the-art approaches (mostly GNN-based
approaches) on both Yelp and Gowalla. In Table 4, we com-
pare DIG with state-of-the-art methods specific for POI

TABLE 3
Performance Comparison on the Yelp and Gowalla Datasets Where topK = 3, 5, 10, 15

Yelp Dataset

Group Method Recall@3 HR@3 Recall@5 HR@5 Recall@10 HR@10 Recall@15 HR@15

Baselines APOIR-G 0.00934 0.04076 0.01460 0.06187 0.02692 0.10733 0.03782 0.14576
STGCN-G 0.01020 0.04562 0.01628 0.07126 0.02820 0.11769 0.03989 0.15890
Auto-Int 0.00105 0.00550 0.00174 0.00903 0.00351 0.01748 0.00530 0.02561
xDeepFM 0.00250 0.01246 0.00383 0.01930 0.00682 0.03367 0.00949 0.04510
MF-BPR 0.03144 0.14134 0.04566 0.18878 0.07294 0.26684 0.09486 0.32066
GCN 0.01832 0.07926 0.02797 0.11611 0.04884 0.18858 0.06590 0.24178
GCMC 0.01908 0.08337 0.02878 0.12109 0.04974 0.19266 0.06882 0.25240
NGCF 0.02517 0.10516 0.03787 0.15123 0.06334 0.23422 0.08717 0.30298
DGCF 0.02954 0.12010 0.04369 0.16949 0.07259 0.25998 0.09486 0.32066
LightGCN 0.03266 0.13566 0.04809 0.18867 0.07846 0.27955 0.10368 0.34436

Our Model DIG 0.03557 0.15123 0.05168 0.20475 0.08335 0.29375 0.10913 0.35688
% Improvement - 8.91 11.48 7.47 8.52 6.23 5.08 5.26 3.64

Gowalla Dataset
Group Method Recall@3 HR@3 Recall@5 HR@5 Recall@10 HR@10 Recall@15 HR@15

Baselines APOIR-G 0.01605 0.07379 0.02497 0.10759 0.04400 0.17472 0.06072 0.22620
STGCN-G 0.01367 0.06520 0.02044 0.09526 0.03511 0.15398 0.04876 0.20329
Auto-Int 0.00446 0.02249 0.00683 0.03406 0.01238 0.06052 0.01763 0.08383
xDeepFM 0.01470 0.07132 0.02150 0.10088 0.03437 0.15348 0.04482 0.19402
MF-BPR 0.04479 0.21384 0.06345 0.28033 0.09817 0.38427 0.12521 0.45178
GCN 0.02560 0.12424 0.03727 0.17355 0.06056 0.26117 0.07883 0.32019
GCMC 0.02606 0.12873 0.03798 0.17900 0.06153 0.26731 0.08117 0.32928
NGCF 0.04070 0.18774 0.05729 0.25010 0.08937 0.35468 0.11685 0.42886
DGCF 0.04282 0.19749 0.05988 0.26389 0.09194 0.36669 0.11750 0.43829
LightGCN 0.04498 0.20929 0.06351 0.27841 0.09830 0.38706 0.12679 0.45970

Our Model DIG 0.04840 0.22707 0.06783 0.29612 0.10435 0.40395 0.13176 0.47132
% Improvement - 7.60 8.49 6.19 6.36 5.63 4.36 3.92 2.53

(The best performance is reported in bold fonts.)
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recommendation that consider geographical information.
The observations are listed as follows.

� DIG outperforms all baselines in all cases. As shown in
Table 3, DIG improves Recall@3 and HR@3 over
LightGCN by 8:91%; 11:48% on Yelp and 7:60%; 8:49%
on Gowalla. Therefore, the impact of disentanglement
in improving representation learning is remarkable.
The notable improvements on small K values can
improve the user experience greatly because users
tend to focus on the first few recommended items
in most cases. Thus incorporating disentanglement
into POI recommender systems is challenging but
promising. Moreover, Table 4 shows the perfor-
mance comparison between DIG and state-of-the-art
geo-based POI recommendation approaches. As the
Yelp dataset is exactly the same as the GPR [35]
paper used, the results in [35] are directly used.
Embedding size of DIG is set as 32 (the same size
as used in Table 4), where di ¼ 8; dg ¼ 24. As
reported in Table 4, DIG outperforms all the geo-
based approaches. In addition, although GPR dis-
tills information from geography together with time
information, DIG outperforms GPR at Recall@20 by
20.32% and Recall@50 by 10.58%.

� Leveraging geographical information is hard. Most geo-
graphical based approaches, such as IRenMF [17],
GeoMF [18], GeoIE [3] etc., don’t achieve good per-
formance on Yelp. APOIR-G does not achieve good
performance, and this may result from removing
social information in its reward computation pro-
cess, which is critical in GANs. We try our best to
implement them by ourselves, but we cannot obtain
promising results. In summary, modeling geographi-
cal information in implicit ways is hard to guarantee
good performance.

� GNN-based models are powerful. NGCF, DGCF, and
LightGCN outperform most geo-based information
in most cases as reported. Although these models
leverage user-POI interaction only, the rule of infor-
mation propagation between users and POIs help
them perform well.

� Disentanglement of explicable factors is more powerful.
Since DGCF shows weaker performance in all cir-
cumstances when it is compared with DIG, the
advantage of decoupling interpretive factors is obvi-
ous. The number of intents is set to 4 in DGCF, which

is consistent with the published best parameter for
POI recommendation in [23]. This comparison also
demonstrates the effectiveness of explicable disen-
tanglement in representation learning.

4.3 Hyper-Parameters Study

In this part, the effects of hyper-parameters, especially those
hyper-parameters specially designed for disentanglement,
are investigated. We start by exploring the impact of layer
number of DIG, and then we investigate the influence of
dimension combination of disentanglement. Moreover, the
effects of margin and region expanding factors are also ana-
lyzed. Finally, how a and b influence disentanglement bal-
ance and how � affects the soft-weighted loss function is
studied.

Effect of Depth. To investigate how DIG is affected by the
number of layers, the depth of DIG is searched in the range
of f1; 2; 3; 4g to verify whether a deeper network can ensure
better performance.As it is shown in Fig. 3, increasing layer
number L from 1 to 2 for the 128-dim DIG model brings sig-
nificant gain, but only negligible improvement when chang-
ing L from 2 to 3. Slightly worse performance is observed
when comparing cases of L ¼ 4 and L ¼ 2. Moreover, train-
ing time and the number of parameters of DIG will increase
when stacking more layers. Therefore, we choose L ¼ 2 for
DIG in this paper.

Effectofa;b; �. To study how a and b influence loss bal-
ance in Equation (20) and how � affects soft-weighted loss
function computation,we search a and b together in the range
of f0; 1e�4; 1e�3; 1e�2; 1e�1g in a grid-search way, and tune �
among f 1

20 ;
1
15 ;

1
10 ;

1
5g. Note that the bigger � is, the smaller the

area in which the user interest factor dominates should be. It
is found that � ¼ 1

10workswell on two datasets. Table 5 shows
the details ofmodel performance on dataset Yelp at Recall@15
when tuning a and b. In summary, 1) keeping a constant,
larger b (b ¼ 0:1 or 0:01) will result in performance drops; 2)
keeping b constant, larger a will lead to significant perfor-
mance improvement; 3) the best performance is found with
experiment setting a ¼ 0:1;b ¼ 0:0001. Here, the influence of

TABLE 4
Performance Comparison With Geo-Based Models on Yelp

Meodels Recall@5 Recall@10 Recall@20 Recall@50

IRenMF [17] 0.02564 0.04923 0.06872 0.13590
GeoMF [18] 0.02718 0.05077 0.06974 0.14513
Rank-GeoMF [16] 0.02821 0.05179 0.07179 0.15538
Geo-Teaser [34] 0.02615 0.02779 0.04974 0.08205
GeoIE [3] 0.03282 0.05538 0.07590 0.15897
APOIR [4] 0.03538 0.06103 0.08359 0.16564
GPR [35] 0.03897 0.06410 0.08871 0.17231
DIG 0.04042 0.06633 0.10674 0.19054
Improvement % 3.73 3.48 20.32 10.58

(The best performance is reported in bold font.)

Fig. 3. Impact of model depth of DIG on Yelp and Gowalla.
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b is not only associated with its absolute value, but is also
associated with the absolute values of gradients. Thus, small
b is also effective and necessary. In addition, when imple-
menting DIG in other datasets, these three hyper-parameters
can be tuned in the samewaymentioned above.

Dimension Combination. Existing disentangled representa-
tion learning approaches keep embedding size equivalent for
each factor decoupled in their work. As factors in previous
works are inexplicable in most scenarios, varying embedding
sizes for different factors may only increase the workload on
the parameter-tuning process. But it is unfair to keep embed-
ding size equivalent in our proposed method, because the
two interpretive factors, the user interest factor and POI geo-
graphical factor, might need different dimensions to achieve
effective encoding. This is straightforward due to the different
amounts of information carried by these two factors, and the
factor with more information certainly deserves encoding
with a higher dimension. Motivated by this, we search the
space of different dimension combinations in this work. In
addition, to keep the comparison in Table 3 fair, we hold di þ
dg ¼ 128. Different dimension combinations of ½di; dg� are
tried while other parameters remain the same. Fig. 4 showed
the best dimension combination is ½32; 96�.

Margin and Expanding Factor. In order to investigate
how margin dm and region expanding factor mf affect the

performance, experiments are conducted and repeated to
report average performance, as shown in Fig. 5 and Tables 6
and 7. Although it seems hard to determine the initial value
of dm and the expanding factor mf during the adaptive neg-
ative sampling process, experiments have demonstrated
these two hyper-parameters are easily tuned. During the
experiments, we found dm ¼ 4 km is a good initialization
for Yelp dataset, while dm ¼ 2 km is a good initialization
for Gowalla dataset (shown in Fig. 5). Besides, mf ¼ 1:1
is also a good choice when tuned in the range of f1:1;
1:2; 1:3; 1:4; 1:5g (shown in Tables 6 and 7). During training,
dm is expanded after every 8 epochs, where dm ¼ dm �mf .
Best performances are found with m < 10 km in most
cases. Therefore, concerns about dmmax is not necessary.

4.4 Ablation Study

In this section, two groups of experiments are executed and
reported. The first group of experiments is designed to dem-

TABLE 5
Recall@15 of DIG With Grid-Search of a;b on Yelp

Recall@15 a ¼ 0 a ¼ 0:0001 a ¼ 0:001 a ¼ 0:01 a ¼ 0:1

b ¼ 0 0.09703 0.10334 0.10871 0.10773 0.10660
b ¼ 0:0001 0.10805 0.10809 0.10897 0.10887 0.10913
b ¼ 0:001 0.10728 0.10593 0.10761 0.10680 0.10742
b ¼ 0:01 0.09067 0.09071 0.08976 0.09198 0.08851
b ¼ 0:1 0.09418 0.09546 0.09460 0.09393 0.09349

(The best values: a ¼ 0:1;b ¼ 0:0001.)

Fig. 4. Performance over Yelp and Gowalla when different dimension combinations are used. The dimension of total embedding is fixed as 128, and
the best performance is achieved when the dimension of interest space is 32 on both datasets.

Fig. 5. Effects of dm (initialized margin in negative sampling process) on
Yelp and Gowalla.
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onstrate the effectiveness of disentanglement, while the
second group of experiments is designed to evaluate the
effectiveness of the proposed negative sampling strategy.

4.4.1 Effectiveness of the Disentanglement (RQ2)

Although DIG proves its superiority via the notable perfor-
mance improvement on the two real-world public datasets,
compared with the state-of-the-art approaches, there is still
one important question that remains to be answered. How
can we demonstrate the effectiveness of disentanglement?
To answer this question, we designed nearby-region rank-
ing evaluations for further demonstration. To be specific,
areas are circled with the radius of r ¼ 1; 2; 3; 4; 5 km, and
centers are the locations of positive items in T u; 8u 2 U . T u

in Equations (21) and (22) are no longer chosen from I�u , but
is from the subset of fjjj 2

S
i2T u

dði; jÞ < r; j 2 I�u g. Dur-
ing the evaluation phase, the first 32-dim vectors taken from
LightGCN, named LGN-32, are compared with the 32-dim
interest representations and the 96-dim geographical repre-
sentations of DIG, which are named DIG-Int, DIG-Geo,
respectively. This nearby-region evaluation is designed to
check whether interest representations of DIG can dominate
users’ decision-making in nearby areas.

The observations from Fig. 6 are as follows:

� DIG-Int outperforms DIG-Geo and LGN-32 in all
cases, showing its leading role in small regions
when geographical influence can be regarded the
same or only change a little. This result is consistent
with our expectation of well-decoupled interest
representations.

� DIG-Geo performs worst in all cases on Gowalla and
in most cases on Yelp. The incapability of achieving
accurate prediction in small regions relying on
geography representations, is desirable indeed. The
96-dim representations taken out from DIG per-
forms worse than the 32-dim representations from
LightGCN in most case, implying the fact that the
interest factor has hardly been captured in it.

� The consistent results on Yelp and Gowalla prove
the effectiveness of disentanglement between user
interest factor and POI geography factor in our pro-
posed model.

4.4.2 The Effectiveness of Negative Sampling

Strategy (RQ3)

To demonstrate the effectiveness of negative sampling strat-
egy proposed in this paper, ablation study is conducted

by removing O1 in Equation (13) and O2 in Equation (14)
alternately.

According to the results shown in Tables 8 and 9, dis-
carding triplet set O2, which is generated by random sam-
pling, can greatly damage model performance. This is not
surprising as random sampling helps nodes in the user-POI
bipartite graph to reserve global similarity. Although the
impact of O1 is not significant under all evaluation metrics
on Yelp and Gowalla, it is indispensable in improving user
experience due to the 4.5% gain on Yelp and 7.29% gain on
Gowalla at Recall@3.

4.5 Analysis of Geographical Factor and Interest
Factor (RQ4)

As two interpretable factors are disentangled in this work,
one question arises naturally, which factor is more impor-
tant in POI recommendation? Previous studies have found
the significant impact of geographical factor [1], [3], [15],
[18]. The best dimension combination is di ¼ 32; dg ¼ 96,
and it is consistent with the results of previous works, for
higher dimensions implying a more important role played
by the geography factor in POI recommendation. Combined
with the results of nearby area evaluation, we can draw the
conclusion that geographical factor contributes more in the
concatenation embedding space, while user interest factor
dominates check-in behaviors of users within small areas,
where geographical constraint can be negligible.

5 RELATED WORK

5.1 Point-of-Interest Recommendation

Geographical information of POIs plays an important role
in POI recommendation. It has been found that users will
visit the neighborhoods of their visited POIs with a higher
probability [18], [44], [45]. Therefore, many approaches
have been proposed, and they can be classified into two
groups according to how they model geographical influ-
ence. The first group models geographical impact via self-
defined quantitative calculation rules. Specifically, [1] pro-
posed a way of calculating geographical-related score
(added to the final prediction score) using the physical dis-
tance between visited POI and unvisited POI pairs, and
integrated geographical scores of all such pairs to assist
recommending candidates generation. Similarly, SAE-
NAD [46] introduced a Gaussian radial basis function ker-
nel together with inner product operations for distance
modeling, inspired by the skip-gram model [47]. More-
over, [4] designed a generative adversarial network (GAN)
and incorporated geographical information into the reward

TABLE 6
Effects ofmf (Margin Expanding Factor Which Controls

Negative Sampling Process) on Yelp Dataset

mf Recall@3 HR@3 Recall@5 HR@5 Recall@10 HR@10

1.1 0.03474 0.14677 0.05027 0.19884 0.08120 0.28671
1.2 0.03358 0.14042 0.04898 0.19220 0.07957 0.28224
1.3 0.03314 0.13877 0.04867 0.19173 0.07960 0.28298
1.4 0.03345 0.13973 0.04910 0.19307 0.07958 0.28206
1.5 0.03295 0.13770 0.04849 0.19130 0.07833 0.28018

TABLE 7
Effects ofmf (Margin Expanding Factor Which Controls

Negative Sampling Process) on Gowalla Dataset

mf Recall@3 HR@3 Recall@5 HR@5 Recall@10 HR@10

1.1 0.04840 0.22707 0.06783 0.29612 0.10435 0.40395
1.2 0.04727 0.22255 0.06624 0.29277 0.10280 0.40045
1.3 0.04652 0.21730 0.06545 0.28706 0.10189 0.39735
1.4 0.04593 0.21541 0.06508 0.28574 0.10086 0.39330
1.5 0.04638 0.21750 0.06541 0.28753 0.10120 0.39636
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computation process. Besides, GeoMF [18] and GeoMF++
[2] captured geographical influence via their self-defined
rules, which leveraged both user check-in frequency and
spatial distances between POIs. Despite the effectiveness of
these models, the fusion of geographical factor with other
factors (such as user preference reflected by visiting fre-
quency, or friendships between users), can lead to sub-
optimal representation learning. In contrast, the second

group utilized latent vector/space for geographical influence
modeling. For instance, GeoIE [3] utilized a latent vector space
to model the POI in-going influence and out-going influence
based on geographical distance, while Geo-ALM [5], another
GAN-based POI recommendation approach, was proposed
with a latent space to learn region similarity. Although all the
above-mentioned works have exploited how to leverage geo-
graphical information in POI recommendation, the final

Fig. 6. Recommendation performance comparison of nearby-region evaluation over different region radius. Candidate set of each user is generated
among those un-visited POIs which are near to his/her interacted POIs, constrained by the given radius of regions. Performance of DIG-Int is com-
puted by using the 32-dim interest embedding of our DIG, DIG-Geo by the 96-dim geographical embedding of our DIG, while LGN-32 is computed
using the first 32-dim embedding of [29].
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representation learning was optimized by considering multi-
ple factors together. Thus, they only modeled geography in
an implicit way.

5.2 Graph Neural Networks for Recommendation

Another research line is graph neural networks (GNN),
which have shown their superiority over different recom-
mendation tasks. With the strong power of learning repre-
sentations, GNN has been widely applied in recommender
systems [26], [28], [48], [49], [50]. First, GCN [28] demon-
strated its efficiency on the semi-supervised node classi-
fication task by using the information propagation rule
between neighbors on the graph. Then, GraphSAGE [48]
used aggregators to learn node features from its neighbor-
hood, and its model layers could also help to capture graph
structure. Subsequently, NGCF [27] was proposed, incorpo-
rating high-order collaborative signals by multi-hop mes-
sage propagation between users and items on the graph.
For the purpose of implementing GNN models over large-
scale datasets and online recommendation systems, PinS-
AGE [49] proposed a new sampling strategy, which sam-
pled a fixed-size neighborhood and computed different
importance scores by random walk. Meanwhile, SGCN [50]
simplified GCN [28] by choosing linear activation functions
and collapsing weighting matrices of different layers to one
weighting matrix. Moreover, LightGCN [29] only reserved
neighborhood aggregation to enable information propa-
gated over bipartite graph structure. Although non-linearity
and extra weighting matrices were all discarded, LightGCN
obtained remarkable performance improvement over two
real-world public datasets. In our work, we leveraged the
information propagation rule used in LightGCN [29], and
extended its architecture to the disentangled representation
learning process.

5.3 Disentangled Embedding for Recommendation

Disentangled embedding has first shown its superiority
in computer vision area, such as [51], [52], [53]. For
instance, [54] and [55] learned disentangled components
according to different categories, [56] emphasized different
viewpoints, and [57] captured different components in vid-
eos via disentanglement. One earlier work, DisenGCN [22],
disentangled node embedding in the graph by deploying
their proposed neighborhood routing mechanism to the
GCN model, and the convergence of neighborhood routing
was proved theoretically. Subsequently, this representation
learning paradigm was explored in recommendation sce-
narios [23], [24], [58] as robust embedding of users and/or
items could improve performance in recommendation.
Moreover, DGCF [23] decoupled different intent factors and
added an independence regularization module to guarantee

the disentanglement. Despite the novelty and effectiveness
of existing approaches, most of them suffered from lacking
convinced interpretability of decoupled factors. In other
words, although the core of disentangled embedding was to
decouple different factors, most of the existing methods
treated the number of factors K as a hyper-parameter,
which made those factors physically inexplicable. Specifi-
cally, MacridVAE [58] manually interpreted different fac-
tors on a shopping dataset, but no similar analysis was
reported over movie-related datasets. Differently, DICE [24]
successfully disentangled two explicable factors, the user
interest factor, and the conformity factor. However, its
framework could not handle the unique geographical fea-
tures of POI recommendation. Contrasting with existing
methods, we explored different embedding sizes to develop
the disentangling approach in POI recommendation. More-
over, the disentanglement of user interest factor and
geographical factor was physically explicable, which also
distinguished our method from the existing work.

6 DISCUSSIONS

More Auxiliary Data. Real-world recommender systems may
describe the properties of POIs, including brands, catego-
ries, etc., which can serve as auxiliary data for improving
recommendation. These customized options are helpful in
recommender systems, and they can provide a better user
experience. However, such customized-options data is not
available in public datasets, including the Yelp dataset and
the Gowalla dataset. If such filter data is available, our DIG
can also use it. Specifically, such auxiliary data can be used
in the embedding layer of DIG by the projection of corre-
sponding embedding matrices. Moreover, designing DIG as
a two-factor disentangled model (decouples user interest
and geography in POI recommendation) is motivated by
two reasons as follows. (1) Geographical information of
POIs (longitude and latitude) affect user behavior greatly,
as shown in existing works of POI recommendation [3],
[18], [32], [35]; (2) Geographical information is available in
most datasets, compared with properties of POIs and cus-
tomized filters.

The Relation Between Geography-Aware Preference and Inter-
est-Aware Preference.Users can make decisions based on
many aspects, such as timeline, the actual properties of the
POI, the user’s property, etc. In this paper, we divide user
preferences towards these aspects into two parts, the geo-
graphical part and the non-geographical part (we name it as
interest). In other words, the interest factor mentioned in our
paper is presumed to have a broader scope. It is worth men-
tioning that there is a similar definition in Section 2.3 of [11].

The Geographical Factor in POI Recommendation. There are
many situations in which people might choose longer-

TABLE 9
Effect of Negative Sampling Strategy on Gowalla

O Recall@3 HR@3 Recall@5 HR@5 Recall@10 HR@10

O1 0.04334 0.20674 0.06106 0.27190 0.09336 0.37308
O2 0.04511 0.21150 0.06397 0.28112 0.09844 0.38808
O1 [ O2 0.04840 0.22707 0.06783 0.29612 0.10435 0.40395

TABLE 8
Effect of Negative Sampling Strategy on Yelp

O Recall@3 HR@3 Recall@5 HR@5 Recall@10 HR@10

O1 0.01995 0.08231 0.02940 0.11640 0.04815 0.17807
O2 0.03323 0.13853 0.04866 0.19088 0.07851 0.27965
O1 [ O2 0.03474 0.14677 0.05027 0.19884 0.08120 0.28671
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distance travels. However, from the perspective of visiting
probability, short-distance POIs are preferred. Previous
works [3], [18], [32], [35] have reached a consensus that
users tend to visit nearby areas with a higher probability.
As the first law of geography stated [12], “everything is
related to everything, but near things are more related than
distant things.” In other words, nearby unvisited POIs will
be visited with a higher probability, and remote POIs with a
lower probability.

7 CONCLUSION AND FUTURE WORK

In this work, we proposed DIG, a GNN-based disen-
tangled representation learning approach for POI recom-
mendation task, which has successfully disentangled
the user interest factor and POI geographical factor. The
disentanglement is ensured by deploying our proposed
geo-constrained negative sampling strategy and the geo-
enhanced soft-weighted loss function to DIG during
training. We also conducted extensive experiments on
two real-world LBSN datasets, Yelp and Gowalla, sets,
and the results have demonstrated the superiority of DIG.
Besides, despite the effectiveness of our proposed DIG
working as a two-factor disentangled model, it should be
extended to a multi-factor disentangled model to incorpo-
rate temporal influence, etc.

In the future, we will exploit the multi-factor disen-
tangled representation learning model in POI recommenda-
tion scenario, which will take side information such as
timeline, user hobbies, etc. into consideration for the pur-
pose of understanding user preference better as well as gen-
erating more accurate recommendation.
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