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Abstract—Most existing recommender systems leverage user behavior data of one type only, such as the purchase behavior in
E-commerce that is directly related to the business Key Performance Indicator (KPI) of conversion rate. Besides the key behavioral
data, we argue that other forms of user behaviors also provide valuable signal, such as views, clicks, adding a product to shopping carts
and so on. They should be taken into account properly to provide quality recommendation for users. In this work, we contribute a new
solution named short for Neural Multi-Task Recommendation (NMTR) for learning recommender systems from user multi-behavior data.
We develop a neural network model to capture the complicated and multi-type interactions between users and items. In particular, our
model accounts for the cascading relationship among different types of behaviors (e.g., a user must click on a product before purchasing
it). To fully exploit the signal in the data of multiple types of behaviors, we perform a joint optimization based on the multi-task learning
framework, where the optimization on a behavior is treated as a task. Extensive experiments on two real-world datasets demonstrate that
NMTR significantly outperforms state-of-the-art recommender systems that are designed to learn from both single-behavior data and
multi-behavior data. Further analysis shows that modeling multiple behaviors is particularly useful for providing recommendation for

sparse users that have very few interactions.

Index Terms—Multi-behavior recommendation, collaborative filtering, deep learning

1 INTRODUCTION

N online information systems, users interact with a system

in a variety of forms. For example, in an E-commerce web-
site, a user can click on a product, add a product to shopping
cart, purchase a product and so on.

In traditional recommender systems, only user-item inter-
action data of one behavior type is considered for collabora-
tive filtering, such as the purchase behavior in E-commerce
and the rating behavior on movies [1], [2]. While it is particu-
larly useful to optimize a recommender model on the data
that is directly related to the business KPI, the other forms of
behaviors should not be neglected, since they also provide
valuable signal on a user’s preference.
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Existing approaches for multi-behavior recommendation
can be divided into two categories. The first category is based
on collective matrix factorization (CMF) [3], [4], [5], [6],
which extends the matrix factorization (MF) method to
jointly factorize multiple behavior matrices. In MF, a user (or
an item) is described as an embedding vector to encode her
preference (or its property), and a user-item interaction is
estimated as the inner product of the user embedding and
item embedding. To correlate MF on multiple behavior
matrices, it is essential to share the embedding matrix of enti-
ties of one side (e.g., items), and let the entities of the other
side (e.g., users) learn different embedding matrices for dif-
ferent types of behaviors.

The second category approaches the problem from the
perspective of learning [7], [8]. To learn recommender mod-
els from the (implicit) data of interactions, it is natural to
assume that a user’s interacted items should be more prefer-
able over the non-interacted items. Bayesian Personalized
Ranking (BPR) [1] is a representative method that imple-
ments the assumption of relative preference; it is then
extended to address multi-behavior recommendation [7] by
enriching the training data of relative preference from the
multi-behavior data.

Despite effectiveness, we argue that existing models for
multi-behavior recommendation suffer from three limitations.

e Lack of behavior semantics. Each behavior type has its
own semantics and contexts, and more importantly,
there exist strong ordinal relations among different
behavior types. For example, the behaviors may rep-
resent the action sequence of a user on a product: click
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is not likely to happen after add-to-cart; add-to-cart
behavior is not likely to happen after a purchase.
Moreover, the semantics make some intermediate
feedback rather meaningful, such as the products
that are viewed but not purchased. However, existing
models have largely ignored the semantics of differ-
ent behavior types.

e  Unreasonable embedding learning. The CMF paradigm
needs to enforce the entities of one side (either users or
items) have different embedding matrices for different
types of behaviors. From the perspective of represen-
tation learning and interpretation of latent factor mod-
els [9], [10], this setting is unreasonable. Specifically, a
user’'s embedding vector represents his/her inherent
interests and multiple behaviors with one item always
happen in a short period. Therefore a user’s embed-
ding vector should remain unchanged when the user
performs different types of behaviors on one item; and
similarly for the item side. Only the interaction func-
tion [2] should be changed when predicting a user’s
different types of behaviors on an item.

o Incapability in modeling complicated interactions. Exist-
ing methods largely rely on MF to estimate a user’s
preference on an item. In MF, the interaction function
is a fixed inner product, which is insufficient to model
the complicated and multi-type interactions between
users and items. This is also a major reason why these
CMF methods need to enforce entities of one side to
have different embedding matrices for predicting dif-
ferent types of behaviors; otherwise, the model could
not make distinct predictions for different behavior
types.

To address the above mentioned limitations in multi-
behavior recommendation, we propose a new solution named
Neural Multi-Task Recommendation (NMTR). Briefly, our
method combines the recent advance of neural collaborative
filtering with multi-task learning to effectively learn from
multiple types of user behaviors. Specifically, we separate the
two components of embedding learning and interaction as
advocated by the neural collbaborative filtering (NCF) [2]
framework. We then design that 1) a user (and an item) has a
shared embedding across multiple types of behaviors, and 2)
a data-dependent interaction function is learned for each
behavior type. Through this way, we address the inherent
limitations of CMF methods and make the model more suit-
able for learning from behaviors of multiple types.

Moreover, to incorporate the behavior semantics, espe-
cially the ordinal relation among behavior types, we relate
the model prediction of each behavior type in a cascaded
manner. To be specific, assuming we have two form of
behaviors, view and purchase, which form a natural ordinal
relation: view — purchase. We enforce that the prediction
of a high-level behavior (i.e., purchase) comes from the pre-
diction of the low-level behavior (i.e., view). Through this
way, we can capture the underlying semantics that a user
must view a product in order to purchase it.

To summarize, the main contributions of this work are as
follows.

e We propose a novel neural network model tailored to
learning user preference from multi-behavior data.
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The model shares the embedding layer for different
behavior types, and learns separate interaction func-
tion for each behavior type.

e To capture the ordinal relations among behavior
types, we propose to correlate the model prediction
of each behavior type in a cascaded way. Further-
more, we train the whole model in a multi-task man-
ner to make full use of multiple types of behaviors.

e To demonstrate the effectiveness of our proposal, we
implement three variants of NMTR using different
neural collabrative filtering models as the interaction
function. Extensive experiments on two real-world
datasets show that our method outperform best
existing methods by 6.08 and 30.76 percent on the
hit-ratio effect for two datasets, respectively. Further
studies demonstrate the effectiveness of the multi-
task learning manner.

The remainder of the paper is as follows. We first formalize
the problem and introduce some preliminaries in Section 2.
We then present our proposed method in Section 3. We con-
duct experiments in Section 4, before reviewing related work
in Section 5 and concluding the paper in Section 6.

2 PRELIMINARIES

We first formulate the problem to solve in this paper. Then
we recapitulate the neural collaborative filtering tech-
nique [2]. Lastly, we introduce collective matrix factorization,
a prevalent solution for multi-behavior recommendation.

2.1 Problem Formulation

In recommender systems, there typically exists a key type of
user behaviors to be optimized, which we term it as the target
behavior. For example, in an E-commerce site, the target
behavior is usually purchase, since it is directly related with
the conversion rate of recommendation and is the strongest
signal to reflect a user’s preference. Traditional collaborative
filtering techniques [1], [11] focus on the target behavior only
and forgo other types of user behaviors such as views, clicks,
etc., which are readily available in the server logs. The focus
of this work is to leverage these other types of user behaviors
to improve the recommendation for the target behavior.

Let {Y!, Y% ..., Y®} denote the user-item interaction
matrices for all the R types of behaviors. Each interaction
matrix is of size M x N, where M and N denote the number
of users and items, respectively. Since in real-world applica-
tions, most user feedback are in the implicit form [1], [12], we
assume that each entry of a interaction matrix has a value of
1or0:

T 17
Yui = 07
D

As we have discussed in the introduction, many user behav-
ior types in real-world applications follow an ordinal (or
sequential) relationship. Without loss of generality, we
assume that the behavior types have a total order and sort
them from the lowest level to the highest level: Y' — Y?*. ..
— Y, where Y" denotes the target behavior to be opti-
mized. Since the target behavior typically concerns the con-
version rate, we regard it as having highest priority.

if w has interacted with ¢ under behavior r;
otherwise.
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The problem of multi-behavior recommendation is then
formulated as follows.

Input: The user-item interaction data of the target behav-
ior Y¥, and the interaction data of other behavior types
{YLv? . YR

Output: A model that estimates the likelihood that a user
u will interact with an item ¢ under the target behavior.

After obtaining the predictive model, we can use it to
score all items for a user u, and select the top-ranked items
as the recommendation results for u.

2.2 Neural Collaborative Filtering (NCF)

NCF is generic neural network framework for performing
collaborative filtering (CF) on single-behavior data [2]. It
applies a representation learning view [13] for CF, represent-
ing each user (and item) as an embedding vector. To predict
a user’s preference on an item, it feeds their embeddings into
aneural network

Q’ui = f@(puvql‘e))a (2)

where p, and q; denote the embedding vector for user u and
item 4, respectively; fo denotes the neural network with
parameters ®, which is also called as the interaction function,
since it is responsible for learning the interaction between
user embedding and item embedding to obtain the prediction
score. The model parameters of NCF can be learned in an
end-to-end fashion. Specifically, the authors opt to optimize a
pointwise log loss, where the positive instances are the entries
of value 1 (aka., observed entries) in the user-item interaction
matrix Y# and the negative instances are randomly sampled
from the entries of value 0 (aka., missing data).

The matrix factorization model can be seen as the special
case of NCF—by specifying the interaction function fe as an
inner product, NCF exactly recovers MF. As such, under the
NCF framework, MF can be interpreted as using a fixed,
data-independent interaction function. As demonstrated in
the NCF paper and its follow-up work [14], using such a
fixed interaction function is suboptimal and can be improved
by learning the interaction function from data. It is this evi-
dence that motivates us to develop neural network models
to address the multi-behavior recommendation task.

In the NCF paper, the authors present three instantiations
of NCF, namely, GMF, MLP and NeuMF. Briefly, GMF gen-
eralizes MF by defining fg as an element-wise product layer
followed by a weighted output layer. MLP employes multi-
layer perceptron above the concatenation of p, and q;
to learn the interaction function. The best performance is
achieved by NeuMF, which concatenates the element-wise
product layer of GMF and the last hidden layer of MLP, feed-
ing it to a weighted output layer to obtain the prediction
score. Our NMTR uses NCF as a building block, and as such,
any design of fg can be used as a component to learn the
interaction function for one behavior type in our method.

2.3 Collective Matrix Factorization

CMF s originally proposed to factorize multiple data matrices
that have certain common entities [3]. For example, it can be
used to factorize user-movie and movie-genre matrix, where
movies are the common entities of the two data matrices.
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Fig. 1. lllustration of our proposed NMTR model.

The idea is to correlate the multiple factorization processes by
sharing the embeddings of common entities.

Nevertheless, in multi-behavior recommendation, both
sides of entities are shared in data matrices of different behav-
ior types. Directly applying CMF will fail to produce different
predictions for different behavior types. To address this prob-
lem, Zhao et al. [6] proposed to share the item embedding
matrix for all behavior types, allowing a user to learn differ-
ent embedding vectors for different behavior types. To be
specific, the objective function to optimize is as follows:

R M N

SIS e - e’ 3)

r=1 u=1 i=1

min
P, s

where ¢, denotes the importance of the entry 3. in factori-
zation, q; denotes the embedding vector for item ¢ that is
shared by all behavior types, and p], denotes the embedding
vector for user ¢ in reconstructing the behaviors of the rth
type. Note that we have omitted the L, regularization term
for clarity.

As argued earlier in the introduction, this setting is irra-
tional and non-interpretable as a latent factor model. Specif-
ically, an embedding vector for a user encodes his/her
latent interest, which should remain unchanged when the
user seeks items of interest to consume at a particular time.
Moreover, other potential limitations of existing CMF meth-
ods include the use of a fixed interaction function of inner
product, and the use of squared regression loss for optimi-
zation, which may be suboptimal for item recommendation
with implicit feedback [1], [2].

3 METHODS

Fig. 1 illustrates our proposed NMTR model. Given a user-
item pair (u, i) as the input, the model aims to predict the like-
lihood that u will perform a behavior (of any of the R types)
i}

Our NMTR method is featured with four special designs:

on item 7, represented as the output of {7, 72, . .-

e  Shared embedding layer. To make it reasonable under
the paradigm of representation learning, we share the
embedding layer of users and items for the modeling
of all behavior types.

e  Separated interaction function. We learn different
interaction functions for predicting the behaviors
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of different types. This is achieved by using the
expressive NCF unit for each type of behaviors.

e  Cascaded predictions. To capture the ordinal relations
among behavior types, we correlate the predictions
of different behavior types through cascading.

e  Multi-task learning. To optimize the cascaded archi-
tecture, we simultaneously train the predictive mod-
els for all behavior types by performing multi-task
learning.

In what follows, we present our method by elaborating

the above four designs.

3.1 Shared Embedding Layer

In order to make our proposed model extensible, we apply
one-hot encoding to encode the input of user ID and item ID.
One advantage is that it can be easily extended to incorporate
other features of a user and an item (e.g., user demographics
and item attributes), if they are available in the applica-
tion [12]. Let v¥ and v/ denote the one-hot feature vector for
user v and item . Then the embedding layer is defined as a
linear fully connected layer without the bias terms

T U T .1
Py =P Vi A= Vi, 4)

where P and Q are the user embedding matrix and item
embedding matrix, respectively. When only the ID feature
is used to describe a user (or an item), P and Q are of the
size M x E and N x E, respectively, where E denotes the
embedding size; and p, and q; are essentially the u—th and
i—th row vector of P and Q, respectively.

It is worth noting that NMTR has only one embedding
layer in the lower part of the model, which is to be used for
the prediction of all behavior types in the upper part.
Although there are some works modeling dynamic inter-
ests [15], [16], [17] with dynamic user embeddings, in our
task it is better to use static embeddings for users. In fact, dif-
ferent with these works studying user dynamic intention in a
long period, we focuses on modeling users multiple types of
interactions on one item, which always happen in a relatively
shorter time period. Based on this design, we can interpret
the model under the paradigm of representation learning,
where p, and q; are the latent features to be learned to repre-
sent user v and item 7, respectively.

3.2 Separated Interaction Function

Above the embedding layer is the hidden layers that model
the interaction between p, and q; to obtain the prediction
score. Since we need to predict the likelihood of multiple
behavior types with the same input, it is essential to learn a
separated interaction function for each type. Let fi denote
the interaction function for the rth type of behaviors with
parameters ©, which outputs the likelihood that u will per-
form a behavior of the rth type

:1}27 = G(f(c)(pu,qu)), (5)

where o denotes the sigmoid function converting the output
to a probability. A good design of f; is to have the ability and
sufficient flexibility to learn the possible complicated patterns
(e.g., collaborative filtering and others) in user behaviors. To
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achieve this, we consider the three neural network units pro-
posed in the NCF paper [2]:

e  GMF generalizes MF by allowing different dimensions
of the embedding space to have different weights. To
be specific, it first uses an element-wise product to get
an interacted vector, and then project the vector to an
output score with a weight vector

fg“[F(Puv q,) =h’(p, ©®q), ©

where h € R¥*! denotes the learnable weight vector.
The parameters of the GMF unit are Oy = {h}.

e MLP applies a multi-layer perceptron on the concate-
nation of p, and q; to learn the interaction function
in a hierarchical and non-linear manner

21 = ReLU(W, [p“] Fby),

2

z;, = ReLU(Wz; 1 +bp),
fgjLP(pun q1) = hTZL’ (7)

where L denotes the number of hidden layers in the
multi-layer perceptron, W, and b,, denote the weight
matrix and bias vector for the xth hidden layer, and
z, are the intermediate neurons. By default, the recti-
fier unit (ReLU) is used as the activation function for
the hidden layer, which is beneficial to build deep
models. The parameters of the MLP unit are © ,p =
{hv {W-T}.qlclzlv {bz}le}'

e NeuMF combines the advantage of the linear GMF
with the nonlinear MLP to learn the interaction
function

NeuM u® i
fé\)“MF(pu,qi)IhT{p . } ®

where z; indicates the last hidden layer of MLP,
as have been defined in Equation (7). The z; is
concatenated with p, ©® q; as the hidden layer of
NeuMF, which is then projected to a score through the
weighted vector h € R***!_ In the original design of
NeuMF, the authors used different embedding layers
for GMF and MLP. While in our method, we have
only one set of embeddings for users and items. As
such, we tweak the NeuMF unit by sharing the embed-
ding layer of GMF and MLP.

Note that any of the three units can be used to model for
behaviors of any type, and the optimal setting may depend
on the dataset. We will empirically evaluate the performance
of three NCF choices and their impact on our NMTR method
in Section 4. There are many other possible designs for the
NCF units, such as placing more layers above the hidden
layer of NeuMF to thoroughly merge GML and MLP, among
others [12], [14]. Since the focus of this paper is not to develop
new NCF units for interaction learning, we leverage existing
ones as the building block for our NMTR model.

3.3 Cascaded Predictions

Typically there are certain ordinal relations among behavior
es in a real-world application, such as a user must view
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a product (i.e., click the product page) before she can purchase
it. The existence of such relations implies that the predictive
models for different behavior types should be related with
each other, rather than being independent. To encode the
sequential effect, we enforce that the prediction on a behavior
type lies in the predictions of the precedent behavior types.
Formally, we cascade the predictions of different behaviors as

gfl - (yzu +f()(pu7q7)+bR)

where b denotes the bias of item ¢ in the data of the rth
behavior type, and fj denotes the interaction function for
the rth type of behaviors, which can be any of the three NCF
units as introduced before. The item bias term can capture
some discrepancy effects in different types of behaviors, for
example, some items are likely to be clicked by users (e.g.,
products on campaign) but less likely to be purchased. More-
over, some previous work has demonstrated that incorporat-
ing item bias is more effective than incorporating user bias
for learning from single-behavior implicit feedback [11].

A graphical illustration of our cascading design' can be
found in the top part of Fig. 1. Such a design is particularly
useful for predicting the preference of inactive users that have
few data on the target behavior. Typically, the data of low-
level behaviors (e.g., clicks) is easier to collect and has a larger
volume than the target behavior (e.g., purchases). By basing
the prediction of target behavior on its precedent types of
behaviors, we can achieve better prediction when the target
behavior data of a user is insufficient to estimate f£ well.

3.4 Multi-Task Learning

As we have a dedicated model for each type of behaviors and
the models follow a cascading prediction, it is intuitive to
tram models separately by following the order of g, 72, . . .,
9. Since these models share the same embedding layer and
the final recommendation is based on the last target model
9, this way can be seen as pre-training the embedding layer
of the target model using other types of behaviors. We argue
that such a sequential training manner does not make full
use of the multi-behavior data, since it only uses precedent
models to improve the next model while there is no benefit
for the precedent models. A better solution could be to let the
models reinforce each other.

In contrast to training the models separately, multi-task
learning (MTL) is a paradigm that performs joint training on
the models of different but correlated tasks, so as to obtain a
better model for each task [18]. The intuition for our design
of cascaded predictions is that, if we can obtain improved
models for other types of behavior, the model for the target
behavior can also be improved. As such, we opt for MTL that

1. Note that we assume that the behaviors can form a full-order cas-
cading relationship, while in real world the relationship might be more
complicated. For example, there is no sequential relation between shar-
ing a product to social network and adding it to cart by nature. Techni-
cally speaking, we can adapt to such partial-order relation by sorting
the behaviors by their strength in reflecting user preference. We leave
this exploration as future work.
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trains all models simultaneously, where the model learning
for each behavior type is treated as a task.

Objective Function. Following the probabilistic optimiza-
tion framework [2], we first define the likelihood function
for a single behavior type as

P. = H Ui H (1—yg

(ug)ey, (u,i)ed,

where Y denotes the set of observed interactions in behav-
ior matrix Y", and ), denotes negative instances to be sam-
pled from the unobserved interactions in Y". We then get
the joint probability for multiple types of behaviors as

R
P:HPr H H i H (1= Gy,)-

r=1 r=1 (u,i)ey; (ui)eY,

an

Taking the negative logarithm of the joint probability, we
obtain the loss function to be minimized as

R
*Z/\r Z log g.. + Z log (1
r=1

(ug)€Y; (u) €Yy

=) | (12)

where we additionally include the term ), to control the influ-
ence of the rth type of behaviors on the joint training. This is a
hyper-parameter to be specified for different datasets, since
the importance of a behavior type may vary for problems of
different domains and scales. We additionally enforce that
S A = 1tofacilitate the tuning of these hyper-parameters.

Directly optimizing this joint loss function will update the
parameters of models for multiple behavior types together.
As such, a better embedding learned from a gradient step of
the data of one type will benefit the learning of other types.

Training. Since our model is composed of nonlinear neural
networks, we optimize parameters with stochastic gradient
descent (SGD), a generic solver for neural network models.
As most machine learning toolkits (e.g., TensorFlow, Theano,
PyTorch etc.) provide the function of automatic differentia-
tion, we omit the derivation of the derivatives of our model.
Instead, we elaborate on how to form a mini-batch to facilitate
faster training, since modern computing units like GPU and
CPU provide acceleration for matrix-wise float operations.

To generate a mini-batch, we first sample a user-item pair
(u,4) such that user u has at least one observed interaction on
item ¢ (regardless of the behavior type). We then inspect the
interactions of the (u, i) pair—for each observed interaction,
we sample a negative instance from v's unobserved interac-
tions of the behavior type. As an example, if the sampled
(u,4) pair has an interaction in the 1st behavior and 2nd
behavior, we get two positive training instances y.; and y?;;
we then sample two items ¢ and s that v did not interact
under first two behaviors, respectively, to get two negative
instances y!, and y?,. We iterate the above sampling step
until the desired size of a mini-batch is reached.

Note that we empirically find that sampling multiple
negative instances to pair with a positive instance in a mini-
batch can improve the performance. This finding has been
reported before in optimizing neural recommender models
with log loss on single-behavior data [2], [19]. As such, in
our experiments, we allow a flexible tuning of the negative
sampling ratio.
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TABLE 1
Statistics of our Evaluation Datasets
Dataset User# Item# Purchase# Cart# View#
Beibei 21,716 7,977 295,622 642,622 2,412,586
Tmall 15,670 9,076 136,648 - 813,396

4 EXPERIMENTS

In this section, we conduct extensive experiments on two real-
world datasets to answer the following research questions:

e RQI: How does our proposed NMTR perform as com-
pared with state-of-the-art recommender systems that
are designed for learning from single-behavior and
multi-behavior data?

e RQ2: How do the key hyper-parameters affect
NMTR’s performance, and how is the effectiveness of
our designed multi-task learning for the task?

e RQ3: Can NMTR help to address the data sparsity
problem, i.e., improving recommendations for sparse
users with fewer interactions of the target behavior?

In what follows, we first describe the experimental settings,
and then answer the above three research questions.

4.1 Experimental Settings
4.1.1 Datasets and Evaluation Protocol

We experimented with two real-world E-commerce datasets
that contain multiple types of user behaviors including pur-
chases, views, adding to carts, etc.

e  Beibei Dataset®. This dataset is collected from Beibei,
the largest E-commerce platform for maternal and
infant products in China. We sampled a subset of
user interactions that contain views, adding to carts
(abbreviated as carts), and purchases within the time
period from 2017/06/01 to 2017/06/30.

e  Tmall Dataset®. This is the dataset released in [JCAI-15
challenge,* which is collected from Tmall, the largest
business-to-consumer E-Commerce website in China.
It records two types of user behaviors, views and pur-
chases, within the time period from 2014/05/01 to
2014/11/30.

For both datasets, we merged the duplicated user-item
interactions by keeping the earliest one; the rationality here
is to test the performance of a method in recommending
novel items that a user did not consume before. Moreover,
we focused on users with more than one type of behavior.
After the above pre-processing steps, we obtained the final
evaluation datasets, the statistics of which are summarized
in Table 1. For these two datasets, there exist strict cascading
relationships. For example, in Beibei dataset, a user must
click first before adding to cart, and must add to cart first
before purchasing. In the evaluation stage, given a user in
the testing set, each algorithm ranks all items that the user
has not interacted before. We applied the widely used
leave-one-out technique to obtain the training set and test

2. https:/ /www.beibei.com
3. https:/ /www.tmall.com
4. https:/ /tianchi.aliyun.com/datalab/dataSet.htm?id=5
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set, which means for every user, there is a test item her has
not interacted with. We then adopted two popular metrics,
HR and NDCG, to judge the performance of the ranking list:

e HR@K: Hit Ratio (HR) measures whether the test
item is contained by the top-K item ranking list (1 for
yes and 0 for no).

e NDCG@K: Normalized Discounted Cumulative Gain
(NDCG) complements HR by assigning higher scores
to the hits at higher positions of the ranking list.

4.1.2 Baselines

We compared the performance of our proposed NMTR with
9 baselines, which can be divided into two groups based on
whether it models single-behavior or multi-behavior data.
The compared single-behavior methods are introduced as
follows.

BPR [1] Bayesian Personalized Ranking is a widely used
pairwise learning framework for item recommendation
with implicit feedback. Same as the original paper, we used
BPR to optimize the MF model.

NCF [2] Neural Collaborative Filtering is a neural frame-
work to learn interactions between the latent features of
users and items. As we employed three NCF methods,
named GMF, MLP and NeuMF to learn the interaction func-
tion for each behavior type, we evaluated how the three
methods perform for single-behavior data. The second
group of five compared methods that can leverage multiple
types of behavior data are as follows.

CMF [6] As have described in Section 2.3, CMF decom-
poses the data matrices of multiple behavior types simulta-
neously. We adapted the method by sharing the user
embeddings for factorizing different interaction matrices of
various types of behaviors. As our datasets are implicit
feedback, we further augmented the method by sampling
negative instances in the same way as our NMTR.

MC-BPR [7] Multi-Channel BPR [7] is the state-of-the-art
solution for multi-behavior recommendation. It adapts the
negative sampling rule in BPR to account for the levels of
user feedback in multi-behavior data. For example on the
Tmall dataset that has two behavior types—purchase and
view, to generate a negative sample for a purchase interac-
tion, it assigns different probabilities for sampling from 1)
items that are viewed but not purchased, and 2) items that
are not viewed. We tuned the probability distribution for
sampling and reported the best results.

MC-NCF Since Multi-Channel BPR is a generic learning
method that is applicable to any differentiable recom-
mender model, we replaced the basic MF model in it with
state-of-the-art NCF models, and named this extension as
MC-NCEF. That is, we optimized the three NCF models with
the Multi-Channel BPR learner, and named the respective
methods as MC-GMF, MC-MLP and MC-NeuMF.

4.1.3 Parameter Settings

We implemented our NMTR® and baseline methods in Ten-
sorFlow.® Since we have three choices of NCF units as the

5. We release our implementation along with datasets at https://
github.com/fiblab
6. https:/ /www.tensorflow.or
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interaction function, we name the respective methods as
NMTR-GMF, NMTR-MLP and NMTR-NeuMF. We randomly
selected a training instance for each user as the validation set
to tune hyper-parameters. For all methods, we set the
embedding size to 64, a relatively larger number that
achieves good performance on our datasets. For CMF, one
important hyper-parameter is the weight of different behav-
ior types in the joint loss. We tuned the weight for each
behavior in [0, 0.2, 0.4, 0.6, 0.8, 1]. To be specific, the weight
for each behavior represent the influence of each interaction
matrix on the collective matrix factorization task. For MC-
methods, we carefully tune the sampling distribution follow-
ing the original paper. For neural network models, we initial-
ized their parameters using the method proposed in [20].
For models that have multiple hidden layers, i.e., MLP,
MC-MLP, NMTR-MLP, NeuMF, MC-NeuMF and NMTR-
NeuMF, we employed a tower structure for the hidden
layers same as [2], and tuned the number of layers from 1 to
5. We set the negative sampling ratio as 4 for all methods, an
empirical value that shows good performance. We tried two
SGD-based optimizers, Adam [21] and Adagrad [22], and
tuned the learning rate for each optimizer in [0.001, 0.005,
0.01, 0.02, 0.05]. Moreover, we applied L, regularization to
all methods to prevent overfitting.

4.2 Performance Comparison (RQ1)

We first compare the top-K recommendation performance
with state-of-the-art methods. We investigate the top-K per-
formance with K setting to [50, 80, 100, 200]. Note that for a
user, our evaluation protocol ranks all unobserved items in
the training set [11]. Though this all-ranking protocol can be
very time-consuming, the obtained results are more persua-
sive than ranking a random subset of negative times only
(e.g., as have done in [2]). In this case, small values of K will
make the results have a large variance and unstable. As such,
we report results of a relatively large.” We report the best
parameter setting for our proposed NMTR methods in
Table 2.

Table 3 shows the performance of HR@K and NDCG@K
for our three NMTR methods, five multi-behavior recom-
mendation methods, and four single-behavior methods.
From the results, we have the following observations:

e NMTR achieves the best performance. Our proposed
NMTR methods obtain the best performance in terms
of HR@K and NDCG@K as compared to all baselines.
The one-sample paired t-tests indicate that all
improvements are statistically significant for p < 0.05.
Among the three NMTR methods, NMTR-GMF and
NMTR-NeuMF are better than NMTR-MLP, which
verifies the effectiveness of the element-wise operator
in learning the user-item interaction function.

Compared with the best single-behavior baseline
NeuMF, NMTR outperforms it by 9.01 percent in HR
and 6.72 percent in NDCG on the Beibei dataset; and

7. There is another reason to choose a relatively larger . In practical
recommender systems, the procedure of item recommendation is typi-
cally divided into two stages [23]: candidate selection and re-ranking.
Since collaborative filtering methods are typically applied in the first
stage to retrieve a few hundreds of relevant items, a larger K to evalu-
ate CF methods is more reasonable.
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TABLE 2

Best Parameter Settings of our Proposed NMTR Methods

for Top-K Recommendation

Dataset Parameter NMTR-GMF NMTR-MLP NMTR-NeuMF
Optimzer Adagrad Adagrad Adagrad
L Learning rate 0.01 0.01 0.01
Beibei  Number of layer - 3 3
Loss coefficient  [1/3,1/3,1/3] [1/3,1/3,1/3] [1/3,1/3,1/3]
Regularization [0,1e-5] [0,1e-5] [0,1e-5]
Optimzer Adagrad Adagrad Adagrad
Learning rate 0.01 0.01 0.05
Tmall Number of layer - 3 3
Loss coefficient [0.4,0.6] [0.5,0.5] [0.4,0.6]
Regularization term [0,5e-5] [0,1e-5] [0,0]

the improvements are 13.04 percent in HR and 9.91
percent in NDCG on the Tmall dataset. Compared
with MC-NeuMF, which extends NeuMF on multi-
behavior data with the Multi-Channel BPR [7], NMTR
obtains an improvement in HR of 6.08 and 10.23 per-
cent on Beibei and Tmall, respectively. In addition, we
can observe that MF based methods (CMF, MC-BPR
and BPR), achieve the worst performance on the Beibei
dataset, which has more complicated and richer
behaviors than the Tmall dataset. This confirms the
incapability of MF in modeling complicated interac-
tions between users and items, being inferior to the
multi-layer neural networks.
NMTR is a better framework than MC. For each NCF
model, we find that optimizing it under our NMTR
framework outperforms optimizing it under the
Multi-Channel BPR framework. Specifically, NMTR-
NeuMF outperforms MC-NeuMF by 6.08 percent on
Beibei dataset and 30.76 percent on Tmall dataset in
HR@100. Thus, we can conclude that NMTR performs
better than the MC framework in adapting a single-
behavior recommender model for multiple behaviors.
To better understand the difference between two
frameworks, we present the training loss and the test-
ing performance in each training iteration in Fig. 2 (for
Beibei) and Fig. 3 (for Tmall). In our NMTR frame-
work, the training loss is defined as the joint loss in
multi-task learning, which is a combination of the pre-
diction loss of behaviors of multiple types. We can
observe that, for both datasets, although training loss
of NMTR is the highest, it essentially demonstrates
the best generalization performance. For the Beibei
dataset, we find that the HR score of MC-NeuMF
starts to decrease after 40 iterations, even though the
Lo regularization and dropout have been adopted.
Note that in Table 3, we have reported the peak per-
formance of each baseline evaluated per iteration
(such a setting is to fully explore the potential of all
methods). Even so, our NMTR still outperforms MC-
NeuMF by 6.08 percent in HR@100 and 5.70 percent
in NDCG@100. However, on the Tmall dataset, in
which only two behaviors are available and the data is
of a smaller scale, MC-NeuMF fails to utilize the view
behavior to improve the performance (i.e., underper-
forms NeuMF). In contrast, our NMTR-NeuMF out-
performs NeuMF by 30.76 percent in HR@100 and
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TABLE 3
Top-K Recommendation Performance Comparison on the Beibei and Tmall Datasets (K is Set to 50, 80, 100, 200)
Beibei Dataset

Group Method HR@50 NDCG@50 HR@80 NDCG@80 HR@100 NDCG@100 HR@200 NDCG@200
NMTR-GMF  0.2050 0.0590 0.2721 0.0688 0.3119 0.0741 0.4543 0.0961
Our NMTR Model NMTR-MLP  0.1928 0.0560 0.2690 0.0676 0.3188 0.0762 0.4732 0.0967
NMTR-NeuMF 0.2079  0.0609  0.2689  0.0683 0.3193 0.0760 0.4766 0.0971
CMF 0.1596 0.0481 0.2377 0.0606 0.2829 0.0663 0.4191 0.0850
] ) MC-BPR 0.1743 0.0503 0.2299 0.0604 0.2659 0.0647 0.3852 0.0786
Multi-behavior MC-GMF 0.1822  0.0508  0.2425  0.0611 0.2975 0.0690 0.4262 0.0891
MC-MLP 0.1810 0.0534 0.2342 0.0598 0.2810 0.0684 0.4116 0.0834
MC-NeuMF 02014  0.0577 02522  0.0669 0.3010 0.0719 0.4300 0.0897
BPR 0.1199 0.0348 0.1686 0.0419 0.2002 0.0463 0.3039 0.0624
Sinele-behavior GMF 0.1792 0.0475 0.2555 0.0608 0.2920 0.0665 0.4090 0.0828
& MLP 0.1711 0.0483 0.2383 0.0459 0.2679 0.0617 0.3947 0.0792
NeuMF 0.1828 0.0573 0.2559 0.0668 0.2929 0.0714 0.4078 0.0852

Tmall Dataset

Group Method HR@50 NDCG@50 HR@80 NDCG@80 HR@100 NDCG@100 HR@200 NDCG@200
NMTR-GMF  0.0778 0.0250 0.1042 0.0293 0.1196 0.0314 0.1751 0.0390
Our NMTR Model NMTR-MLP  0.0734 0.0251 0.0884 0.0277 0.0982 0.0290 0.1672 0.0338
NMTR-NeuMF 0.0854 0.0315 0.1045 0.0347 0.1169 0.0366 0.1668 0.0428
CMF 0.0738 0.0234 0.0940 0.0269 0.1085 0.0287 0.1565 0.0359
) . MC-BPR 0.0674 0.0218 0.0928 0.0260 0.1072 0.0282 0.1597 0.0357
Multi-behavior MC-GMF 0.0653 0.0243 0.0778 0.0258 0.0846 0.0264 0.1084 0.0294
MC-MLP 0.0617 0.0195 0.0784 0.0219 0.0868 0.0228 0.1122 0.0238
MC-NeuMF  0.0711 0.0296 0.0820 0.0311 0.0894 0.0320 0.1172 0.0359
BPR 0.6666 0.0200 0.0926 0.0240 0.1058 0.0263 0.1647 0.0342
Sinele-behavior GMF 0.0742 0.0271 0.0927 0.0295 0.1027 0.0306 0.1407 0.0355
& MLP 0.0666 0.0194 0.0824 0.0220 0.0905 0.0233 0.1194 0.0273
NeuMF 0.0760 0.0299 0.0925 0.0321 0.1013 0.0333 0.1383 0.0377
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TABLE 4
Average Training Time of One Epoch of NeuMF, MC-NeuMF
and NMTR-NeuMF on Two Datasets

Dataset NMTR-NeuMF# MC-NeuMF# NeuMF#
Beibei 204.4s 472 4s 101.9s
Tmall 91.5s 73.1s 88.0s

14.37 percent in NDCG@100, which are very signifi-
cant improvements. We also present the average
training time per epoch of three models in Table 4 and
we can find our proposed NMTR framework’s effi-
ciency is acceptable.

o The performance on multiple behaviors are relevant to that
on single behavior. No matter which framework is cho-
sen, NMTR or MC, we can observe that the perfor-
mance of the multi-behavior setting is relevant to that
of single-behavior. This is because that they use the
same set of CF functions, which on the other hand
implies that the performance on multi-behavior data
maybe limited by the choice of the CF function. An
empirical evidence is that NMTR-MLP performs the
worst among the three NMTR methods, which can be
caused by the poor performance of MLP in modeling
CF effect (in single-behavior data). In addition, for
some metrics, such as HR@50 and NDCG@50 on both
dataset, and HR@80 and NDCG@80 on Tmall dataset,
NMTR-MLP and NMTR-GMF are outperformed by
some baseline methods such as MC-NeuMF. It can be
explained that MC-NeuMF’s relatively better perfor-
mance is due to NeuMF's best performance compared
all single-behavior methods. Therefore, our NMTR-
NeuMF achieves better performance than MC-NeuMF
on these metrics. Moreover, another important finding
is that auxiliary behaviors could adversely degrade
the performance without a proper modeling. An evi-
dence can be found in the results of the Tmall dataset,
where the methods under the MC framework fail to
improve the performance in general.

To summarize, the extensive comparison on two real
datasets verify that our proposed NMTR solution can effec-
tively leverage multiple types of behaviors to improve the
recommendation performance, i.e., our model outperforms
the best baseline method by 6.08 and 30.76 percent on two
datasets, respectively.

4.3 Impact of Auxiliary Behaviors

and Parameters (RQ2)

In order to understand how auxiliary behavior data affect the
recommendation performance, we choose the Beibei dataset
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for further investigation since it has more types of behaviors.
Since the motivation of multi-behavior recommendation is
to utilize interaction data of other types of behaviors to help
improving recommendation quality on target behavior, we
investigate how the data quality of auxiliary behaviors
affects our NMTR model’s performance. An intuitive experi-
mental setting is that to random sample auxiliary behaviors
for our utilized two datasets while keeping target behaivor
(i.e., purchase) intact. Table 5 shows the performance of dif-
ferent combinations of behavioral data. There are four sam-
pling rules for obtaining a subset. For example, (Purchase,
50 percent view) means that intact purchase records are kept
and half records of view behavior are randomly selected to
be kept for each user. As mentioned above, when investigat-
ing top-K performance, K=100 is a reasonable setting. Thus,
here we evaluated the performance via two metrics: HR@100
and NDCG@100. We tuned hyper-parameters, with a similar
way as Section 4.1, to report the best performance for various
subsets of interaction data. From the results, we have the fol-
lowing two observations.

First, adding views data leads to better performance than
adding carts data. The main reason is probably that the cart
data contains too similar signal with the purchase data and
provides fewer new signal on user preference. Specifically, a
purchase record is often accompanied by a carting record. On
the contrary, the view behaviors provide some useful inter-
mediate feedback such as, viewed and not bought, which can
effectively improve the learning on binary implicit feedback.

Second, by using only 50 percent of the cart and view
interactions, we find that the performance is worse than the
previous two experiments. Specifically, the performance of
(Purchase, 50 percent Carting) is worse than only using pur-
chase, while (Purchase, 50 percent View) is better than only
using purchase. There are two major reasons. On one hand,
view is the weakest signal to reflect user preference and the
total number of views is very large, making the missing of
part of view data is acceptable. Therefore, missing of some
view records shall not affect the result too much. On the
other hand, random missing of carts records can bring
some noises, as cart behavior is very similar with the pur-
chase behavior, and this validates the hypothesis in [24]:
those missing records of some behaviors are more likely
taken as negative value rather than missing value by model.

In order to understand how hyper-parameters impact the
performance, we focus on the coefficient in the joint loss func-
tion of MTL, ),, since it controls the weight of each type of
behavior and is a key parameter of our method. There are
three and two behavior types for Beibei and Tmall, respec-
tively. For the Beibei dataset, there are three types of behav-
iors (view, cart and purchase), which means there are three

TABLE 5
Performance of NMTR Model with Different Combination of Interaction Data on the Beibei Dataset
Beibei Dataset

Interaction Subset (Purchase, Carting) (Purchase, View) (Purchase, 50% Carting) (Purchase, 50% View)
Performance HR@100 NDCG@100 HR@100 NDCG@100 HR@100 NDCG@100 HR@100 NDCG@100
NMTR-GMF 0.2979 0.0705 0.3029 0.0726 0.2947 0.0701 0.2953 0.0698
NMTR-MLP 0.2770 0.0670 0.3140 0.0741 0.2726 0.0654 0.3058 0.0725
NMTR-NeuMF 0.2882 0.0691 0.3147 0.0743 0.2778 0.0676 0.3107 0.0737
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loss coefficients A;, A2 and A3, respectively. Note that A+
A2 + A3 = 1, we tune the three coefficients in [0,3,2,2,2,2 1]
and plot the performance of HR@100 in Figs. 4a, 4b and 4c.
When A; and )\, are given, then value of )3 is determined.
Therefore each block represents a setting of A,. And in these
three figures, darker blocks means better performance. Simi-
larly, for the Tmall dataset, there are only two types of behav-
iors (view and purchase), so there are two coefficients:
A1 + A2 = 1. We tune A; from 0 to 1 with step size 0.1 and plot
the HR@100 performance in Fig. 4d. For both datasets, the
best performance of the NMTR methods are achieved at
almost the same setting, (2/6,2/6,2/6) for the Beibei dataset
and about(0.4, 0.6) for the Tmall dataset, which verifies that it
is not so independent on the utilized CF unit. For Beibei data-
set, in Figs. 4a, 4b and 4c, upper-right blocks are rather shal-
low since they represent a relatively small A3 which is the
coefficient of purchase behavior. However, for Tmall dataset,
in Fig. 4d, a relatively low coefficient of purchase behavior
outperforms that of view behavior. We argue that it is due to
size difference of auxiliary behavioral data in two datasets.
Furthermore, as mentioned in Section 3.4, we utilize multi-
task learning rather than sequential learning to optimize our
proposed model. Then to study how multi-task learning out-
performs the intuitive sequential learning in optimizing the
cascaded prediction models, we compare the performance of
the two training methods in Table 6. Here we still adopt

TABLE 6
Performance Comparison of Sequential Training and
Multi-Task Learning on the Beibei and Tmall Datasets

Dataset Beibei Tmall
Performance HR@100 NDCG@100 HR@100 NDCG@100
NMTR-GMF 0.3119 0.0741 0.1196 0.0314
Sequential-GMF 0.2730 0.0672 0.0913 0.0290
NMTR-MLP 0.3188 0.0762 0.0982 0.0290
Sequential-MLP 0.2663 0.0692 0.0856 0.0226
NMTR-NeuMF 0.3193 0.0760 0.1169 0.0366
Sequential-NeuMF  0.2704 0.0658 0.0946 0.0304
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Fig. 5. Performance of NeuMF, MC-NeuMF, CMF, MC-BPR and
NMTR-NeuMF on users with different number of purchase records.

HR@100 and NDCG@100 as evaluation metrics. For the
sequential learning, we feed the cascaded CF units for each
behavior type with separated samples following the order of
behaviors. We can find that training in the sequential manner
achieved worse performance, which verified the effective-
ness of our proposed multi-task training component.

In summary, our NMTR incorporates the semantics of
different behavior interactions and capture the ordinal rela-
tions among them. In addition, coefficient \,, as a significant
hyper-parameter in our NMTR model, is independent with
CF unit. Furthermore, multi-task training is demonstrated
to far better than sequential training.

4.4 Impact of Data Sparsity (RQ3)

Data sparsity is a big challenge for recommender systems
based on implicit feedbacks [11], [25], and multi-behavior
recommendation is a typical solution of it. Thus, we study
how our proposed NMTR model improves the recommen-
dation for those users having few records of target behavior.
Specifically, we divided all users of the Beibei dataset into
several groups according to the number of purchase records:
[5-8, 9-12, 13-16, 17-20, > 20]. In each group, the number of
users are in the range of 4,000 to 5,000, which eliminates the
randomness of experimental results. For each group, we
compare the performance of our methods with baseline
methods. For NMTR and MC models, we only plot the most
competitive ones, NMTR-NeuMF and MC-NeuMF, for clar-
ity; for baselines for single-behavior data, we also only plot
the best one, NeuMF.

The results are shown in Fig. 5. From the results, we can
observe that when the user purchase data becomes sparser, the
recommendation performance of NMTR-NeuMF decreases
slower than other methods. Especially for NDCG, from fifth
to first user group, NMTR-NeuMF is decreased by 27.56 per-
cent while MC-BPR and MC-NeuMF is decreased by 40.09
and 38.62 percent. Furthermore, even in the first user group
with only 5-8 purchase records, our NMTR still keeps a good
recommendation performance of 0.027 for HR@100 and 0.07
for NDCG@100, which outperforms the best baseline by
11.23 and 15.35 percent, respectively. As a result, the perfor-
mance gap between NMTR and other methods becomes
larger when data become sparser. Since NMTR model learns
the other type of behaviors in a reasonable way, it can
achieve a good performance for users with sparse interac-
tions. As a summary, we conclude that our proposed
NMTR model solves data sparsity problem efficiently to
some extent.

In conclusion, we conduct extensive experiments on two
real-word datasets, which verifies that our proposed NMTR
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model outperform existing recommendation methods. Fur-
ther studies demonstrate our model can alleviate data spar-
isty problem efficiently.

5 RELATED WORK

5.1 Multi-Behavior Recommendation

In today’s online information systems, user can interact with
a system in multiple forms. There are many works [26], [27]
analyzing and modeling such multiple types of behaviors.
Lo et al. [26] studied the influence of click and save behavior
on the final purchase decision via case study. Moe et al. [28],
Dong et al. [27] and Lee et al. [29] utilized various time-
evolving behavioral features to predict purchase behaviors.
Olbrich et al. [30] and Yehezki et al. [31] proposed to extract
features from user clickstreams to help predict purchase.
These works verify the effectiveness of other types of behav-
iors to help model the target behavior. Multi-behavior based
recommendation aims to leverage the behavior data of other
types to improve the recommendation performance on the
target behavior. Matrix factorization, a prevalent method for
single-behavior based recommendation [1], [11], has been
adapted to the multi-behavior scenario. Ajit et al. [3] first
proposed a collective matrix factorization model (CMF) to
simultaneously factorize multiple user-item interaction
matrices with sharing item-side embeddings across matrices.
Some other works extended the CMF to handle datasets of
multiple user behaviors [5], [6]. Zhe et al. [6] considered dif-
ferent behaviors in online social network (comment, re-
share, and create-post), while Artus ef al. [5] extended CMF
with sharing user-side embeddings in recommendation
based social network data. On the other hand, some works
approach multi-behavior recommendation from the per-
spective of learning [7], [8], [32], [33]. Babak et al. [7] pro-
posed an extension of Bayesian Personalized Ranking [1], as
Multi-channel BPR, to adapt the sampling rule from different
types of behavior in training of standard BPR. Qiu et al. [8]
proposed an adaptive sampler for BPR considering co-
occurrence of multiple feedbacks while Guo et al. [32] pro-
posed to sample unobserved items as positive items based
on item-item similarity, which is calculated by multiple
types of feedbacks. Ding et al. [33] developed a margin-based
pairwise learning framework when view-data is available.
As discussed in the introduction, these existing models suf-
fer from several limitations, which are addressed by our neu-
ral network-based solution NMTR.

5.2 Neural Network Based Recommendation
Salakhutdinov et al. [34] proposed a Restricted Boltzmann
Machines to predict explicit ratings, which was the first to
apply neural network to recommender system. Recently, lots
of works utilize neural network to extract the auxiliary infor-
mation and features in recommender system, such as tex-
tual [35], [36], [37], [38], [39], visual [40], [41], audio [42], [42]
and video [43]. Rather than these other side features, some
other works make use of recurrent neural network to model
temporal features in recommender system [44], [45], [46], [47].
More recently, He et al. [2] proposed a neural network
architecture for collaborative filtering, named Neural Col-
laborative Filtering, which learns the user-item interaction
function using neural networks. It has been extended to
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adapt to different recommendation scenarios [12], [48]. For
example, Wang et al. [12] applied NCF to model user-item
interaction in both information domain and social domain,
and Chen et al. [48] combined NCF with attention mechanism
to recommend videos and images. Recently, inspire the advan-
ces in graph representation learning, some works [49], [50],
[51] utilize graph neural network [52] for recommendation
tasks. Our work extends the architecture of NCF to a multi-
task learning framework, which aims to solve the problem of
learning recommender systems from multi-behavior data.

5.3 Multi-Task Learning for Recommendation

In multi-task learning (MTL) framework, various related
tasks can share common representations, while training in
parallel. Traditional multi-task learning works are mainly
based on matrix regularization [18], [53] and neural-based
approach [54], [55]. To the best of our knowledge, [56] is the
first work to apply multi-task learning to recommender sys-
tem, which built a MTL framework to limit the similarity
between users and similarity between items. Bansal et al. [57]
proposed a gated-recurrent-units based MTL network which
share the embedded representation of texts and output per-
sonalized text for different users. In contrast, our work
adapts MTL our task to effectively learn from multiple user
behaviors.

6 CONCLUSION AND FUTURE WORK

In this work, we designed a recommendation system to
exploit multiple types of user behaviors. We proposed a neu-
ral network method named NMTR, which combines the
recent advances of NCF modeling and the efficacy of multi-
task learning. We conducted extensive experiments on two
real-world datasets and demonstrated the effectiveness of our
NMTR method on multiple recommender models. This work
makes the first step towards understanding how to integrate
the rich semantics of users” multiple behaviors into recom-
mender systems. With increasing kinds of user behaviors on
the Web, we believe multi-behavior recommendation is an
important topic and will attract more attention in the future.

As for future work, we will perform online evaluation of
our NMTR method through A/B tests, and focus more on
the practical issues of online learning and incremental learn-
ing. On the other hand, we will study multi-behavior rec-
ommendation in the scenarios that user behaviors cannot
form a full-order cascading relation. These behaviors not
only contain the normal interactions between users and
items, but may also include social interactions among users,
such as sharing, following, etc. It is interesting to investigate
how to integrate these heterogeneous kinds of user behav-
iors into a unified recommendation framework. Lastly, we
will study time-aware models to capture the evolution of
user preference in multi-behavior recommendation, espe-
cially for capturing dynamic user interests with RNN-based
or other models for better recommendation.
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