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Web systems that provide the same functionality usually share a certain amount of items. This makes it
possible to combine data from different websites to improve recommendation quality, known as the cross-

domain recommendation task. Despite many research efforts on this task, the main drawback is that they
largely assume the data of different systems can be fully shared. Such an assumption is unrealistic different
systems are typically operated by different companies, and it may violate business privacy policy to directly
share user behavior data since it is highly sensitive.

In this work, we consider a more practical scenario to perform cross-domain recommendation. To avoid
the leak of user privacy during the data sharing process, we consider sharing only the information of the item
side, rather than user behavior data. Specifically, we transfer the item embeddings across domains, making it
easier for two companies to reach a consensus (e.g., legal policy) on data sharing since the data to be shared
is user-irrelevant and has no explicit semantics. To distill useful signals from transferred item embeddings,
we rely on the strong representation power of neural networks and develop a new method named as NATR
(short for Neural Attentive Transfer Recommendation). We perform extensive experiments on two real-world
datasets, demonstrating that NATR achieves similar or even better performance than traditional cross-domain
recommendation methods that directly share user-relevant data. Further insights are provided on the efficacy
of NATR in using the transferred item embeddings to alleviate the data sparsity issue.
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1 INTRODUCTION

In the current Web ecosystem, it is common that some websites have a certain degree of homogene-
ity in their functionality and provided information. For example, there are many overlapped hotels
on Trip.com and Booking.com, overlapped movies on IMDb and Douban,1 and overlapped prod-
ucts on Amazon and eBay. From the perspective of building recommendation services, it means
that the models for such two homogeneous domains are dealing with many items that are the
same. This provides opportunities to improve the recommendation quality by enriching data. For
example, if domain A does not have sufficient data on some items (i.e., sparse or cold-start items)
while the other domain B does have, e.g., a movie first released in the US may have many rat-
ings on IMDb but not on Douban, then the recommendation for these items on domain A can be
potentially improved by integrating the data of domain B. The task of leveraging auxiliary data
from other domains to improve recommendation quality of the target domain is known as the
cross-domain recommendation [1–6].

Existing works on cross-domain recommendation have primarily focused on directly aggregat-
ing data from multiple domains [1–5]. In other words, these methods assume that during model
training of the target domain, user behavior data of other domains are directly accessible. For ex-
ample, the representative Collective Matrix Factorization (CMF) [3] method extends Matrix

Factorization (MF) by jointly learning user embeddings and item embeddings from the user–item
interaction matrix of multiple domains. Despite effectiveness, the assumption that user behavior
data can be fully shared across domains is questionable. Typically, different domains (websites) are
operated by different companies, and thus it is difficult to let them share user behavior data due to
the constraint of company policy.

In this work, we aim to provide a more realistic solution for cross-domain recommenda-
tion. To avoid any chance of leaking user privacy, we abandon the sharing of user-relevant
data, neither behavior logs nor demographic attributes. However, this will pose challenges to
transfer the collaborative filtering (CF) signal from one domain to another one, since CF
is typically modeled through mining user–item interaction data (e.g., user purchase and click
logs). To address this technical challenge, we propose to share the item embeddings, which are
learned by reconstructing the user–item interaction matrix. The advantages are two-fold: (1) item
embeddings can still encode certain CF signal by reflecting item similarities based on user be-
haviors (e.g., which items are frequently co-rated by users)2; and (2) item embeddings are la-
tent vectors that have no explicit semantics; as such, the risk of leaking user privacy can be
kept to a minimum, which makes it easier for two companies to reach a legal policy for data
sharing.3

Our proposed solution, which has three steps, is illustrated in Figure 1. In the first step, an
embedding-based recommender model , MF for example, is trained on the user–item interaction
matrix of the auxiliary domain to obtain item embeddings. In the second step, item embeddings
of the auxiliary domain are sent to the target domain; note that only the embeddings of over-
lapped items are necessary to be sent, which are subjected to the data-sharing policy between two
companies. Finally, the target domain trains a recommender model with the consideration of the
transferred item embeddings. The first two steps are straightforward to implement, and the main
challenges lie in how to design a model to effectively incorporate transferred item embeddings in
the last step. We summarize the key challenges as follows.

1Douban.com is a Chinese website that allows registered users to rate movies, music, books, and the like.
2A representative example of using the signal in item embeddings for recommendation is the item-based CF methods [7–9].
3https://www.nytimes.com/interactive/2018/06/03/technology/facebook-device-partners-users-friends-data.html.
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Fig. 1. Illustration of our solution for cross-domain recommendation without sharing user-relevant data.

—Unclear predictive signal of transferred item embeddings. It is unclear whether and
which transferred item embeddings contain useful signals in estimating a user’s preference
on an item in the target domain. Note that one motivation for conducting cross-domain
recommendation is to alleviate the data sparsity problem in the target domain. However,
the data sparsity problem may also exist in the auxiliary domain for some items, or the
other way round the data in the target domain is already sufficient and does not require the
extra supplement. As such, it is challenging to distill useful signal from the transferred item
embeddings and integrate them into the predictive model of the target domain.

—Varying importance of transferred item embeddings. As mentioned, the data of the
auxiliary domain is not oracle—it is likely that user behaviors on some items are sparse
and are insufficient to learn good embeddings for them. As such, it is a common case that
the quality of item embeddings varies, where items with many interactions may have good
quality and vice versa. Since it is already difficult to judge the quality of learned item em-
beddings for the auxiliary domain, it becomes even more challenging for the target domain
to utilize such unknown- and varied- quality item embeddings well.

—Embedding dimension discrepancy in latent space. The data for training in the two
domains may be of different scales and have different distributions. Therefore, the optimal
embedding size for the two domains may be different. As such, existing cross-domain rec-
ommendation solutions that perform regularization on embedding matrices will fail [10].
Moreover, even though we restrict their embedding sizes to be the same, the semantics of
their embedding dimensions are different and cannot be directly aligned.

To solve the above-mentioned challenges, we design a novel model named Neural Attentive-

Transfer Recommendation (NATR). Briefly, our proposed method relies on the strong represen-
tation power of neural networks and discriminative power of attention mechanisms to leverage the
transferred item embeddings. Specifically, we design (1) a domain-level attention unit to dynami-
cally adjust the importance of the predictive signal of the two domains; (2) an item-level attention
unit to determine which embeddings of transferred items are more useful in constructing user
representation for further prediction; and (3) a domain adaption layer to bridge the discrepancy
between the embedding space of the two domains. By tailoring our solution for addressing the
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highlighted challenges, our NATR method demonstrates its strong performance in cross-domain
recommendation, and meanwhile preserves user privacy during data sharing.

To summarize, the main contributions of this work are as follows.

—We present a new paradigm for cross-domain recommendation without sharing user-
relevant data, in which only item-side data can be shared across domains. To allow the
transferring of CF signal, we propose to share the item embeddings which are learned from
user-item interactions of the auxiliary domain.

—We propose a new solution NATR to resolve the key challenges in leveraging transferred
item embeddings. The two-level attention design allows NATR to distill useful signal from
transferred item embeddings, and appropriately combine them with the data of the target
domain.

—We conduct extensive experiments on two real-world datasets to demonstrate our proposed
method. More ablation studies verify the efficacy of our designed components and the utility
of transferred item embeddings in addressing the data sparsity issue.

The remainder of this article is as follows. Compared with the conference version [11], this
article goes much deeper both in technical contribution and experimental evaluation. We first for-
mulate the research problem in Section 2. We then elaborate our proposed method in Section 3. We
conduct experiments in Section 4, before discussing related work in Section 5. Lastly, we conclude
this article in Section 6.

2 PROBLEM FORMULATION

We first introduce some notations used in the article. We represent matrices, vectors, and scalars
as bold capital letters (e.g., X), bold lower letters (e.g., x), and normal lowercase letters (e.g., x ),
respectively. If not otherwise specified, all vectors are in a column form; XT denotes the trans-
pose of X. We use symbols σ , ReLU , and � to denote the siдmoid function, rectifier function, and
element-wise production operation, respectively.

2.1 Cross-domain Recommendation

A typical problem setting of cross-domain recommendation is leveraging the data from an auxiliary

domain to facilitate the recommendation quality in a target domain with overlapped items. In the
target domain, where M and N denote the number of users and items, respectively, we have a
user-item interaction matrix Yt ∈ RM×N with a binary value at each entry defined as,

yt
ui =

{
1, if u has interacted with i;

0, otherwise.
(1)

Similarly, in the auxiliary domain, we have another binary user–item interaction matrix Ya ∈
RK×L , where K and L are the number of users and items. Note that a portion of L items also
occurs in the target domain, which are named as bridge items. From the interaction matrices Yt

and Ya , the goal of cross-domain recommendation is to learn a predictive function to estimate the
likelihood that a given user u will interact with item i in the target domain.

2.2 Cross-domain Recommendation Without Sharing User-relevant Data

Distinct from the typical problem settings of cross-domain recommendation, we abandon the
direct sharing of user behavior data (the user–item interaction matrix Ya in the auxiliary
domain). This is because directly sharing user behavior data may violate the business privacy
policy of different companies operating the auxiliary and target domains. Instead, we propose
a solution that only transfers the embeddings of bridge items which are offline learned in the
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auxiliary domain, as illustrated in Figure 1. We define the transferred item embedding matrix

Qa = [qa
1 , . . . , q

a
N

] ∈ RD
′×N as,

qa
i =

{
q̃a

i , if item i is a bridge item;

0, otherwise;
(2)

where 0 ∈ RD
′

is an all-zero vector and q̃a
i ∈ RD

′
is the offline learned embedding of item i in the

auxiliary domain. It should be noted that we organize the transferred item embeddings in Qa in
the same order of item IDs in the target domain to enable looking up an item embedding with its
ID. Here we assume the availability of q̃a

i , i.e., the company operating the auxiliary domain has
employed an embedding-based recommendation system [12]. Note that the assumption is practical
since embedding-based recommendation solutions are widely applied in the industry [13, 14].

After introducing the transferred item embeddings Qa from the auxiliary domain, we formulate
the problem of cross-domain recommendation without sharing user-relevant data as follows.
Input: The user–item interaction data in the target domain Yt , and the transferred item embed-
dings Qa from the auxiliary domain.
Output: A predictive model to estimate the likelihood that a user u will interact with an item i
in the target domain. Specifically, taking u, i , and yt

u which is the interaction history4 of u in the
target domain, as input, the model has to predict,

ŷt
ui = f (u, i, yt

u ), (3)

where ŷt
ui ∈ [0, 1] denotes the probability of interaction between user u and item i .

After obtaining the predictive model, we can use it to score all items for a given useru, and select
the top-ranked (i.e., with higher interaction probability) items as the recommendation results for
u. It should be noted that there indeed exist user and item attributes in both the auxiliary and
target domains. However, to simplify the scenario of the cross-domain recommendation task, we
only emphasize the user–item interactions, which is a common setting of existing works [2, 10].

3 PROPOSED METHOD

To solve the problem of cross-domain recommendation without sharing user-relevant data, we rely
on the strong representation ability of neural networks and devise a new solution, named, NATR,
exploiting the transferred item embeddings. Figure 2 illustrates the architecture of our proposed
NATR model, which are made up of the following four layers.

—Transfer-enhanced Embedding Layer. We project sparse user and item representations
into dense vectors. A dimension-adaption module is adopted to solve the dimension dis-
crepancy problem of transferred item embeddings.

—Item-level Attentive Layer. To enrich user representations, we fuse the transferred em-
bedding of items a user interacted with to an additional user embedding with an item-level
attention unit to model the varying importance of items.

—Domain-level Attentive Layer. With consideration of the diversity across domains, we
make use of a domain-level attention unit to control the influence of predictive signals from
two domains.

—Prediction Layer. Finally, we utilize an inner-product model as the predictive function
since our work mainly focuses on devising a framework to exploit the transferred item
embeddings.

In the following, we elaborate on the details of the aforementioned four layers.

4Note that yt
u is the transpose of the u-th row of Qt .

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 1, Article 2. Publication date: June 2021.
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Fig. 2. The architecture of our proposed NATR model. Here we take the prediction of user–item pair (4, 2)
as an example; user 4 has interacted with item 1, 3, and 5 in the target domain; then we utilize qa

1 , qa
3 , and

qa
5 transferred from the auxiliary domain to assist predicting y42 in the target domain. Note that qa is the

only available auxiliary data in the target domain. Best view in color.

3.1 Transfer-enhanced Embedding Layer

Latent factor model (LFM) is one kind of general framework in collaborative recommender
systems, which associates each user and item with real-valued vectors. Considering that LFMs
have achieved success in a wide range of recommendation tasks [7, 15, 16], we project sparse user
and item representations into real-valued vectors. Specifically, we first encode user ID (u) and item
ID (i) into one-hot encodings as follows,

vU
u = one-hot(u), vI

i = one-hot(i ), (4)

where vU
u (vI

i ) ∈ RN is a vector with all zero values except the u-th (i-th) entry with value 1. We
then project the sparse one-hot encodings (vU

u and vI
i ) and multi-hot interaction history (yt

u ) to
local embeddings and transferred embeddings, respectively.

Local embeddings. To project the one-hot user (item) encoding, we employ an embedding layer,
which is defined as a fully connected layer without bias term as follows,

pu = PT vU
u , qi = QT vI

i , (5)

where P ∈ RN×D and Q ∈ RM×D are the parameters to be learned. The obtained embeddings pu

and qi ∈ RD are named as local embeddings since they are learned merely with information from
the target domain.

Transferred embeddings. In our problem, transferred embeddings of bridge items are the only
auxiliary data accessible in the target domain. From the perspective of representative learning,
there are two manners to leverage these item embeddings in collaborative filtering: user-based [15,
16] and item-based [7, 8]. Specifically, when predicting the probability that useru will choose item
i in the target domain, user-based CF means directly combining embeddings of i of two domains
to match pu while item-based manner means matching qi with transferred embedding of user’s
historically interacted items. There are two key aspects to make item-based manner a more con-
vincing choice. First, when item i is not a bridge item, user-based CF solution cannot bring any
help to prediction. Second, user-based CF can only distill implicit preferences while neglecting the
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explicit preferences of a user (i.e., the historically interacted items), while item-based CF can ex-
tract explicit preferences through leveraging transferred embeddings of bridge items and multi-hot
encoding of historical interactions to enrich user representation.

Therefore, we look up the transferred embedding qa
j from Qa for each item j with yt

u j = 1.
Note that qa

j will be an all-zero vector if item j is not a bridge item (see Equation (2) for details).
As mentioned above, there may exist the challenge of embedding dimension discrepancy across
two domains, i.e., D � D

′
, since the training data in two domains may be of different scale and

have different distributions. To solve this problem, we employ a fully-connected layer to adapt the
dimension of transferred embeddings, which is formulated as follows,

q
′
j =WT

0 qa
j + b0, (6)

where W0 ∈ RD
′×D and b0 ∈ RD are learnable parameters of mapping matrix and bias. Note that

W0 and b0 are the only parameters here as the transferred embedding matrix Qa is learned offline
in the auxiliary domain.

With the above neural components, we project the sparse one-hot and multi-hot encodings into
local user and item embeddings, pu and qi , and transferred item embeddings, {q′j |yt

u j = 1}. We
introduce our item-based CF solution of leveraging transferred item embeddings detailedly in the
following parts.

3.2 Item-level Attentive Layer

The key objective of embedding-based recommendation model is to capture relation between user
and item in the latent space [17], therefore it is critical to explicitly build the relation between
transferred item embeddings and local user embedding in our problem. As mentioned above, mo-
tivated by item-based CF [7, 8], which encodes the historical interaction behaviors of a user to
enrich the user representation, we fuse the transferred item embeddings {q′j |yt

u j = 1} into an ad-

ditional user embedding su . Besides historical interactions, su also contains CF signals transferred
from the target domain, which can further enhance user representation. Our first inspiration to
calculate su is average pooling, a widely used modeling component in neural networks, formulated
as follows,

su =

∑
{j |yt

u j=1} q
′
j

|yt
u |

, (7)

where |yt
u | is the l1-norm of vector yt

u , which equals to the number of items user u has interacted
with.

However, as mentioned above, there exists another key challenge of varying importance of em-

beddings. Considering that different interacted items have embeddings with varying quality and
varying importance to represent the preference of a given user, such naive operation may not
work well in the real scenario. Therefore, we apply a non-uniform coefficient when fusing the
transferred item embeddings:

su =

∑
{j |yt

u j=1} αuj q
′
j

|yt
u |

. (8)

To model the various item importance in a user-sensitive fashion, here we introduce attention
mechanism, which has achieved great success in recommendation tasks [8, 18]. Specifically, the
item-level attention unit learns a specific weight αuj for every transferred item embedding q

′
j

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 1, Article 2. Publication date: June 2021.
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according to the following formulation,

αuj =
eau j∑

{k |yt
uk
=1} eauk

,

auj = wT
1 ReLU (pu � q

′
j ) + b1, (9)

where w1 ∈ RD and b1 denote the weight matrix and bias of a fully connected layer. The input of
the item-level attention unit is the interaction between the user and target item, which makes the
learned attention score sensitive to the given user.

3.3 Domain-level Attentive Layer

After obtaining the local and additional user embeddings, our task become learning a prediction
function based on these three embeddings. Different from traditional recommendation models,
here we have an extra user embedding. To exploit two user embeddings, we fuse them into a unified

embedding. This is inspired by some cross-domain recommendation models [2, 19], which have
demonstrated that fusing embedding vector learned from multi-modal data is a simple yet effective
way to combine signals. Another option is to separately estimate the interaction probability with
the two embeddings and fuse the predictions (late fusion). Here we employ early fusion that merges
embeddings, allowing us to capture the interaction between two embeddings explicitly. The unified

embedding via fusion can be denoted as,

zu = βsi su + βpi pu , s .t ., βs + βp = 1, (10)

where βsi and βpi are learnable weights for su and pu , respectively. The aim of βsi and βpi is to
balance the information from auxiliary and target domain regarding the target item i . In other
words, these two weights are item-sensitive. We devise such design to address the key challenge
of unclear predictive signal which has been mentioned before. That is, in real scenario evaluating
different items needs varying amount of auxiliary information.

βsi =
ebsi

ebsi + ebpi
, βpi =

ebpi

ebsi + ebpi
,

bsi = w2ReLU (su � qi ) + b2, (11)

bpi = w2ReLU (pu � qi ) + b2,

where w2 ∈ RD and b2 are the parameters of the attention network. Note that the input of the
attention network is the interaction between user (su /pu ) and item embeddings, which enables
the learned attention scores to be sensitive to item i .

3.4 Prediction Layer

After the operation in aforementioned layer, our problem further turns to predict user interaction
with two embeddings: unified user embedding vector zu and item embedding vector qi . Here we
adopt a predictive function to estimate yt

ui which is the interaction probability between a given
pair of user and item (u, i). Since our work mainly focuses on a general framework for cross-
domain recommendation without sharing user-relevant data, we adopt a simple but widely-used
inner product model, to estimate the value of yt

ui , which is formulated as

ŷt
ui = σ (zu

T qi ), (12)

where σ is the sigmoid function. Note that this predictive function can be easily extended to more
complicated ones, such as the multi-layer perceptron in [20].

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 1, Article 2. Publication date: June 2021.
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To conclude, with three specially devised layers and a prediction layer, the aforementioned three
key challenges of our problem are addressed one by one.

3.5 Training

Objective Function. Following the probabilistic optimization framework [15, 20], we first define
the likelihood function for an implicit interaction as follows,

Pr =
∏

(u,i )∈Yt
+

ŷt
ui

∏
(u,i )∈Yt

−

(1 − ŷt
ui ), (13)

where Y+t denotes the set of observed interactions in interaction matrix of the target domain
Yt (entries with value of 1), and Yt

− denotes negative instances sampled from the unobserved
interactions in Yt (entries with value of 0). We further take the negative logarithm of the joint
probability, and obtain the loss function (a.k.a, logloss [21]), which is widely used to optimize
recommendation systems with implicit feedbacks [7, 16, 20], to be minimized as follows,

L = −��
�

∑
(u,i )∈Yt

+

log ŷt
ui +

∑
(u,i )∈Yt

−

log(1 − ŷt
ui )��

�
. (14)

To prevent over-fitting, we adopt l2 regularization on the parameters in the proposed neural model
and obtain the overall objective function,

Γ = L + λ
∑

Θ∈{P,Q,W0,b0,w1,b1,w2,b2 }
‖Θ‖2F . (15)

Mini-batch Training. We adopt stochastic gradient descent, a widely generic solver for neural
models, to optimize our proposed NATR model in the mini-batch mode. To construct a mini-batch,
we first sample a batch of historical user–item interaction pairs (u, i ). For each (u, i ), we then adopt
a negative sampling technique [16], which is widely used to handle implicit feedbacks in existing
researches [15, 20], to randomly select unobserved items {i′1, . . . i

′
n } for useru with a sampling ratio

of n. Note that some works [22] also proposed to optimize the recommendation model without
negative sampling. However, for our proposed model, negative sampling is a more suitable choice
for optimization. After the sampling, we obtain n triplets {(u, i, i′1), . . . , (u, i, i

′
n )} for each instance

in the batch. With the constructed mini-batch, we take a gradient step to minimize the objective
function.

3.6 Discussion

3.6.1 Potential Attackers. Here we discuss the potential privacy leakage if user embeddings are
shared. Our proposed framework, which avoids sharing user embeddings, can defend the attackers
that want to infer private information from the user embeddings. In fact, the attackers can reveal
two kinds of user privacy, interacted items, and user profiles. Specifically, for the first kind, a user
may do not want the target domain’s employees infer what he/she has purchased at the auxiliary
domain; for the second kind, a user may do not want the target domain’s employees to infer his
profiles such as age and gender. For the first kind of privacy leakage, an adversarial model can
be a recommendation model that tries to match user embeddings with item embeddings. For the
second kind of privacy leakage, an adversarial model can be a classification/clustering model that
assigns users to certain user profile categories.

It is worth mentioning that existing research based on differential privacy [23], k-
anonymity [24], or t-closeness [25] always provide theoretical privacy bounds. In this work, it
is hard to analyze the privacy bound of sharing embedding vectors directly, and thus we consider
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testing the impact on the defense to potential attackers as a feasible solution. We leave it as an
important future work.

3.6.2 Platform Privacy. In fact, this work’s target is to protect user privacy. The shared item
embeddings are low-dimensional representations, which implicitly encode items’ features. Some
platform-aware information can be inferred or partly inferred based on them. For example, the
overlap of products can be calculated. Another example is the embeddings may be used to pre-
dict product-related information. Luckily, compared with user privacy, such information is not so
critical and sensitive. Here we emphasize that: first, this work’s target is user privacy, which is an
important concern in existing cross-domain recommendation models; second, platform informa-
tion is partly leaked indeed, but it is not a big issue.

4 EXPERIMENTS

In this section, we conduct extensive experiments on two real-world datasets to answer the fol-
lowing research questions:

—RQ1: How does our proposed NATR model perform compared with the state-of-the-art
methods for cross-domain recommendation tasks?

—RQ2: Can the proposed NATR alleviate the data sparsity problem in the target domain?
—RQ3: What are the effects if we remove item-level and domain-level attention models in

our proposed NATR?
—RQ4: How does the quality of data in the auxiliary domain affect the recommendation

performance of our NATR model?
—RQ5: How about the recommendation performance when there are many non-overlapped

items?
—RQ6: How about the recommendation performance when we choose another kind of design

of attention module in NATR?

In what follows, we first describe the experimental settings and then answer the above six research
questions.

4.1 Experimental Settings

4.1.1 Datasets. We experiment with two real-world datasets that both contain implicit inter-
actions from two domains.

—ML-NF Dataset. MovieLens (ML) and Netflix (NF) are two popular platforms with movie
recommendation services, in which there are a large portion of overlapped movies. Here we
take ML and NF as the auxiliary and target domains (i.e., our target is to improve the recom-
mendation performance in NF), respectively. We obtain user–movie interactions in ML and
NF from two widely used public movie rating datasets.5,6 Note that we identify movies with
the same name in the two datasets as bridge items. Here we conduct whole-string matches
to avoid wrong matches as possible. By filtering bridge items and their associated ratings,7

we reserve 5,568 movies, 14,630 ML users, and 31,038 NF users in this dataset. Finally, we

5https://grouplens.org/datasets/movielens/.
6https://www.kaggle.com/laowingkin/netflix-movie-recommendation/data.
7To better evaluate the performance, we follow the setting of previous works [3, 26] and only reserve the bridge items (i.e.,
neglect items occurring only in one domain). However, our model is also suitable to perform recommendation for those
items not overlapped, which has been introduced in detail in Section 3.1, and we will evaluate this in Section 4.6.
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Table 1. Statistics of Our Evaluation Datasets.

Dataset Item#
Auxiliary Domain Target Domain
User# Rec# User# Rec#

ML-NF 5,568 31,038 2,269,179 14,630 152,206
TC-IQI 4,851 35,398 314,621 19,999 78,429

intentionally transform the rating data into binary (1/0 indicate whether a user has inter-
acted with an item or not) to fit the problem setting of implicit feedback [27].

—TC-IQI Dataset. This dataset is collected by [2] to evaluate cross-domain recommendation

performance of online video contents. In this dataset, there are historical interactions be-
tween users and videos from two mainstream video websites, iQiyi (IQI)8 and Tencent

Video (TC)9 in China. To investigate the performance of facilitating recommendation per-
formance in target domain via leveraging information from auxiliary domain, we regard
IQI (TC) as the target (auxiliary) domain since interactions in IQI are sparser. Similarly, we
filter bridge items via exact name matching across videos from these two domains, and only
reserve bridge items and interactions associated with them. Note that videos in this dataset
are professional production content widely available on multiple websites.

After the above preprocessing steps, we obtain two final datasets for performance evaluation, the
statistics of which are summarized in Table 1.

4.1.2 Evaluation Protocols. Following [20], we employ the widely used leave-one-out evalua-
tion protocol in the evaluation stage. Similar with [20, 28], given a user in the target domain, we
randomly sample 99 items that are not interacted by the user, and each method ranks one test item
among the 99 sampled items. We then adopt two metrics, HR and NDCG, which are widely used
in the literature of recommendation [20, 29], to report the ranking performance of each method:

—HR@K: Hit Ratio (HR) measures whether the test item is contained by the top-K item
ranking list (1 for yes and 0 for no).

—NDCG@K: Normalized Discounted Cumulative Gain (NDCG) extends HR by assign-
ing higher scores to the hits at higher positions in the ranking list.

It should be noted that we calculate HR@K and NDCG@K for each test user, and report the average
ones over the whole user set.

4.2 Performance Comparison (RQ1)

4.2.1 Baselines. We compare the performance of our proposed NATR with five baselines, which
can be divided into two groups: single-domain and cross-domain. Here single-domain methods refer
to those which are merely trained with data from the target domain, while cross-domain methods
jointly consider the data from both the target and auxiliary domains.

The compared single-domain methods are introduced as follows:

—PMF [16]. Probabilistic Matrix Factorization (PMF) is a MF-based model which exploits
negative sampling to handle implicit interaction data. It adopts logloss as the loss function
and samples several negative items with a ratio when a positive item is fed for training. We
tune the learning rate and regularizer and report the best testing performance.

8https://www.iqiyi.com.
9https://v.qq.com.
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—GMF. Generalized Matrix Factorization (GMF) is one of the variants of Neural Collab-
orative Filtering [20], which is the state-of-the-art solution for recommendation tasks with
implicit feedback. This method assigns various weights for different dimensions in the dot-
product prediction function, which can be regarded as a generalization of vanilla MF. We
optimize this model and tune its associated hyper-parameters similarly with the article.

—NGCF [30]. Neural Graph Collaborative Filtering (NGCF) is the new state-of-the-art
collaborative filtering model that adopts graph neural networks to extract high-order con-
nectivity on the user-item graph. We optimize this model and tune its associated hyper-
parameters following the original article.

—NATR-local. As mentioned in Section 3.1, our NATR model utilizes an item-based CF to
leverage transferred item embeddings. Therefore, it is still questionable whether the item-
based CF is the only component to improve performance while transferred item embeddings
do not help. To demonstrate the effectiveness of transferred embeddings, we degenerate the
NATR via adopting local item embeddings rather than transferred item embeddings in the
item-level attention unit. Therefore, it is a kind of single-domain method. We name it NATR-
local and tune it similarly with NATR to report the best performance.

The compared cross-domain baselines are as follows.

—CMF [3]. CMF decomposes the data matrices of multiple interactions simultaneously while
sharing embedding vectors of users or items. Here we factorize two interaction matrices
from two domains, sharing embedding vectors of those bridge items. We carefully tune the
weight of two domains, learning rate and regularizer to report the best performance. It is
worth mentioning that a recent study on cross-domain recommendation [2] proposed a
method named MPF, which adapted vanilla CMF to a special case where all users and items
are all overlapped across domains. Apparently, this special setting does not fit our problem,
of which only items can be overlapped, and thus regretfully, MPF cannot be adapted to our
task.

—ItemCST [10]. Coordinate System Transfer(CST) also assumes that both users and items
are overlapped and adds two regularization terms in objective functions. Specifically, the
two terms set constraints to the embedding distance in two domains for those overlapped
users or items. Thus, CST can be adapted to our problem by only reserving item-side reg-
ularization term in our task, and we name it as ItemCST. We tune the learning rate and
coefficient of regularization term to report the best performance.

To conclude, CMF is the state-of-art cross-domain recommendation method while fac-
ing a high risk of leaking user privacy since it assumes that all interaction data are fully
shared. ItemCST is an adapted method from CST, and as it only needs the transferred item
embeddings to compute the regularization term of item, it preserves user-relevant data.

We implement the baseline methods and our NATR model in TensorFlow.10 It should be noted
that we set the embedding size of all compared methods to be 64, which is a typical setting in
literature [7, 20]. Our primary experiments also demonstrate that 64 is an embedding size with
enough ability to represent the user and item.

4.2.2 Parameter Settings. To determine the optimal hyper-parameters of the method, we con-
struct a validation set via randomly selecting an interacted item for each test user, which has not
been selected as the test item. During the training phase, we intentionally set the negative sampling
ratio as 4 to construct mini-batches with the size of 256 as described in Section 3.5. To optimize the

10https://www.tensorflow.org.
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Table 2. Top-K Recommendation Performance Comparison on the ML-NF and TC-IQI Datasets

(K is set to 1, 2, 5, 10)

ML-NF Dataset

Group Method User-relevant Data HR(NDCG)@1 HR@2 NDCG@2 HR@5 NDCG@5 HR@10 NDCG@10

Cross Domain

NATR Preserved 0.1315 0.1976 0.1403 0.3776 0.2110 0.5781 0.2726

ItemCST Preserved 0.0795 0.1475 0.1005 0.3068 0.1670 0.4846 0.2228

CMF Shared 0.1023 0.1903 0.1283 0.3675 0.2025 0.5483 0.2593

Single
Domain

NATR-local Preserved 0.0947 0.1769 0.1253 0.3402 0.1894 0.5183 0.2440

PMF Preserved 0.0668 0.1162 0.0796 0.2721 0.1375 0.4494 0.1956

GMF Preserved 0.0706 0.1174 0.0816 0.2681 0.1410 0.4284 0.1918

NGCF Preserved 0.0961 0.1835 0.1284 0.3470 0.1875 0.5279 0.2461

TC-IQI Dataset

Group Method User-relevant Data HR(NDCG)@1 HR@2 NDCG@2 HR@5 NDCG@5 HR@10 NDCG@10

Cross Domain

NATR Preserved 0.2010 0.2660 0.2104 0.4513 0.2881 0.6035 0.3365

ItemCST Preserved 0.1161 0.2129 0.1445 0.4194 0.2309 0.6079 0.2904

CMF Shared 0.1649 0.3101 0.2101 0.4499 0.2668 0.6595 0.3326

Single
Domain

NATR-local Preserved 0.1677 0.2552 0.1776 0.4214 0.2412 0.5864 0.2948

PMF Preserved 0.0848 0.1238 0.0945 0.2291 0.1326 0.3309 0.1694

GMF Preserved 0.1584 0.2445 0.1729 0.4101 0.2425 0.6021 0.3029

NGCF Preserved 0.1692 0.2609 0.1772 0.4280 0.2485 0.5932 0.3095

NATR model, we employ the Adagrad optimizer and search its learning rate within {0.001, 0.002,
0.005, 0.01}. In addition, we tune the λ in Equation (15), which balances the loss and regularization
terms, in {1e-2, 1e-3, 1e-4,1e-5,1e-6}. As mentioned before, ItemCST and our NATR only rely on the
transferred item embeddings as auxiliary data, and in this article, without loss of generality, we
adopt PMF in the auxiliary domain and carefully tune its learning rate and regularizer to obtain
item embeddings.

We first compare the top-K recommendation performance with baseline methods. We investi-
gate the top-K performance withK setting to {1, 2, 5, 10}.11 As described in the evaluation protocols,
we test the performance of a ranking list with 100 items. As such, it is reasonable to choose a rel-
atively small K [20]. For every method, we carefully tune the hyper-parameters to report the best
performance. To make the results stable and convincing, for each experiment, we run five repet-
itive instances and report the average values. In Table 2, we report the top-K recommendation
performance for the two utilized real-world datasets. We compare our proposed NATR method
with three single-domain baselines and two cross-domain ones. From these results, we have the
following observations:

—NATR significantly improves recommendation performance in the target domain.

(1) For those single domain methods that are trained with only interaction data from the
target domain, the recommendation performance is relatively poor. PMF achieves the
worst performance, which can be explained as the limited representation ability of MF
model. (2) NATR-local, a degenerative model of the proposed NATR, outperforms PMF
and GMF w.r.t. all metrics on the ML-NF dataset and most metrics on the TC-IQI dataset,
which justifies the effectiveness of explicitly encoding users’ historical interactions. In
fact, this can be explained as the ability of the item-based CF component introduced in

11Note that HR@K equals to NDCG@K when setting K = 1.
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Fig. 3. Training loss and testing performance of NATR, ItemCST, and CMF in each iteration on ML-NF

Dataset.

Fig. 4. Training loss and testing performance of NATR, ItemCST, and CMF in each iteration on TC-IQI

Dataset.

Section 3.1. The item-based CF is still reserved, even if there is no shared embedding
from the auxiliary domain. In other words, those parameters can still be learned on the
target domain’s data and the item-based CF’s power still works. (3) Compared with PMF,
GMF, and NATR-local, the proposed NATR outperforms the best of them by 28.26% and
39.11% in HR@10 and NDCG@10 for ML-NF dataset and by 0.23% and 11.09% in HR@10
and NDCG@10 for TC-IQI dataset. The recently-proposed NGCF model achieves similar
performance with NATR-local on most metrics, while slightly outperforming NATR-local
on some metrics. Nevertheless, our NATR can still steadily outperform NGCF, which
demonstrates NATR’s effectiveness. We conduct the one-sampled paired t-tests, and we
always have p-value<0.05, which demonstrates the performance improvement is stable. It
demonstrates that leveraging the item embeddings from the auxiliary domain enhances the
recommendation quality in the target domain, which further indicates that the proposed
NATR is a promising solution for the cross-domain recommendation task.

—NATR performs even better than those cross-domain methods with the risk of

leaking user privacy. We can observe that our proposed NATR model achieves the best
performance compared to CMF and ItemCST regarding every evaluation metrics in the NF-
ML dataset. For HR@10 and NDCG@10, NATR outperforms the best of them by 18.94%
and 4.94%, respectively. We guess the reason for such results is that a joint training with
data from two domains (CMF and ItemCST) might distract the loss during the optimization
and converge at a status which balances the two domains rather than the optimal status
of the target domain. We leave further investigations at the future work. To further study
how these methods perform, we present the training loss and testing performance in each
interaction in Figure 3 (for ML-NF dataset) and Figure 4 (for TC-IQI dataset). For every
method in the two figures, we report the best parameter settings. For both datasets, all
methods achieve stable performance after about 50 iterations. With fine hyper-parameter

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 1, Article 2. Publication date: June 2021.



Cross-domain Recommendation with Bridge-Item Embeddings 2:15

Fig. 5. Performance of all methods on items with different number of interaction records on ML-NF dataset.

tuning to solve over-fitting, our proposed NATR can effectively outperform ItemCST and
achieve similar or even better performance than CMF.

—NATR effectively distills the CF signal encoded in transferred item embeddings.

NATR-local, a degenerative model of our proposed NATR, only utilizes interaction data
from the target domain without exploiting transferred item embddings. Specifically, it re-
places the transferred item embedding in NATR with local item embeddings. On the one
hand, the experimental results in Table 2 show that NATR-local achieves better performance
than GMF, a competitive method for single domain, demonstrating that taking the explicit
preferences of users into consideration can improve recommendation performance. On the
other hand, NATR outperforms NATR-local on two datasets, which means the combining
transferred embeddings are better than only a local CF solution on the target domain. This
confirms the utility of transferred item embeddings in encoding CF signal from the auxiliary
domain.

To summarize, these comparisons on two real-world datasets verify that our proposed NATR
model can effectively leverage transferred item embeddings to improve the recommendation per-
formance in the target domain.

4.3 Data Sparsity Problem (RQ2)

As mentioned in the introduction, one of the primary purposes for cross-domain recommendation
is to alleviate item data sparsity problem (i.e., items’ records are too few) in the target domain.
In particular, for those items with few interactions, of which the embeddings cannot be learned
well in the target domain itself, transferred embeddings from the auxiliary domain play a bigger
role. To study extensively how our proposed NATR model effectively helps to alleviate the item
data sparsity issue, we compare the recommendation performance for items with different levels
of sparsity.

Specifically, we divide the items into several groups according to the number of interaction
records in the training set. Note that each group has a similar number of items, which makes
the experimental results more reasonable. Then we apply the evaluation protocol, leave-one-out,
which is the same as the above experiments. For each item, its performance is defined as the
average of HR@10 and NDCG@10 when it is in the test set. We compare the proposed NATR
model with all five baseline methods in Figure 5. From the results, we can observe that when the
interaction records of an item become sparser, the recommendation performance will go worse.
For example, in the first group, of which each item has been interacted by only 1–10 users, the
best performance of those single-domain methods is about only 0.220 for HR@10 and 0.098 for
NDCG@10. Fortunately, with the help of the auxiliary domain, cross-domain methods can achieve
better performance for those sparse items. Out of these methods, our proposed NATR model can
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Table 3. Impact of Removing Attention Mechanism

Dataset ML-NF TC-IQI

Methods HR@10 NDCG@10 HR@10 NDCG@10
NATR 0.5781 0.2726 0.6035 0.3365

w/o Item-level Attention 0.5624 0.2655 0.5894 0.3146
w/o Domain-level Attention 0.5669 0.2722 0.5827 0.3204

achieve similar performance compared with CMF and better than ItemCST, which verifies that
NATR can serve as a competitive cross-domain recommendation method without sharing user-
relevant data.

In summary, our NATR model can improve recommendation performance effectively, no matter
the historical records of items are sparse or dense. For items with sparser records, the improvement
is more evident and meaningful.

4.4 Impact of Removing Attention Mechanism (RQ3)

In NATR, we utilize the attention mechanism to solve two primary challenges. First, a domain-level
attention unit is applied to distill useful signals from transferred item embeddings and integrate
them into the target domain. Second, an item-level attention unit is adopted to handle the vary-
ing importance of transferred item embeddings. An intuitive question is whether the designed
attention unit can really help in our model?

To answer it, we conduct experiments on two degenerative methods of NATR, in which two uti-
lized attention network components are replaced by the simple operation of pooling (i.e., average
summation), respectively. We adopt the same evaluation methods with the above experiments, and
the performance comparison on two datasets is shown in Table 3. We can observe that removing
either item-level attention or domain-level attention will make the recommendation performance
worse. Here we have also conducted the one-sampled paired t-tests and we always have the p-value
<0.05. This means the original NATR can steadily outperform the de-generated version with one
attention unit removed.

To conclude, the experimental results demonstrate the necessity of our two specially designed
attention units.

4.5 Impact of Data Sparsity Level in Auxiliary Domain (RQ4)

In our proposed framework of cross-domain recommendation without sharing user-relevant data,
the auxiliary domain plays an important role in providing latent embeddings for bridge items of two
domains. On the other hand, to some extent, the data sparsity of the auxiliary domain affects the
quality of those embedding vectors. To study whether our proposed NATR model still outperforms
CMF and ItemCST when the quality of embedding vectors is low, we conduct an experiment with
different data sparsity levels in the auxiliary domain.

We sample interaction data uniformly with sampling rate 40%, 60%, and 80% while keeping the
size of user set and item set unchanged. Similar with experiments in Section 4.2, we obtain item
embedding matrix through PMF with fine tuned parameters for these sampled datasets. Then, we
apply our proposed NATR model to perform a top-10 recommendation task in the target domain.
Note that for ItemCST and CMF, we also conduct experiments with sampled dataset in the auxiliary
domain, in a similar way with above experiments. We compare their performance in Table 4. We
also present the top-10 recommendation performance of PMF, when generating item embeddings
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Table 4. Impact of Data Quality in the Auxiliary Domain

Auxiliary(ML) Data
Methods

Target(NF)

Sampling Ratio HR@10 NDCG@10 HR@10 NDCG@10

40% 0.6603 0.3410
NATR 0.5086 0.2485

CMF 0.4508 0.1944
ItemCST 0.4326 0.1963

60% 0.7452 0.3906
NATR 0.5248 0.2666

CMF 0.4496 0.1939
ItemCST 0.4580 0.2094

80% 0.8428 0.4637
NATR 0.5689 0.2714

CMF 0.4505 0.1945
ItemCST 0.4637 0.2116

in the auxiliary domain, which represents the quality of the auxiliary data to some extent. From
the experimental results, we can have the following observations.

First, our proposed NATR model still outperforms the other two baseline methods, even when
auxiliary data is sparse. For HR@10, our proposed NATR model outperforms the best baseline
methods by 12.82%, 14.59%, and 22.69% for data ratio 40%, 60%, and 80%, respectively. According
to the statistics in Table 1, when only keeping 40% of the interaction data of the auxiliary domain,
both two domains’ data is sparse. It demonstrates that even the data quality is relatively low in the
auxiliary domain, NATR still can effectively extract useful information from the transferred item
embeddings and help to improve the recommendation performance in the target domain. Second,
we can observe for two feature-transferring based methods, ItemCST and NATR, the change of
performance is consistent with the trend of quality change of the auxiliary domain’s data. Specifi-
cally, a higher-quality item embedding can better improve recommendation in the target domain.
This verifies the primary motivation of this article, that item embeddings can encode certain CF
signals. On the contrary, CMF achieves a relatively steady performance.

To summarize, our proposed NATR solution still achieves a good enough performance when
the data of the auxiliary domain is sparse.

4.6 Impact of Non-Overlapped Items (RQ5)

In this article, we studied the problem of cross-domain recommendation under a widely accepted
paradigm that two domains share some overlapped items that serve as the bridge to transfer in-
formation across two domains. In real-world applications, not all items are shared by multiple
domains operated by different companies. In the aforementioned experiments, to clearly compare
our NATR with baseline methods, all items in the dataset are shared by two domains. Therefore,
it is essential to study whether our NATR still works or not when there are items only existing at
the target domain. In this section, to answer the question, we use the NF-ML dataset with further
constraints. To be specific, different from the aforementioned experiments that transfer all items’
embeddings, we set a ratio of non-overlapped items. In other words, if the ratio is set to 10%, then
90% of items in the target domain also exist in the auxiliary domain, and these items’ play the role
of the bridge. We conduct experiments on NF-ML dataset and present the top-K recommendation
performance of different ratio with a range of {5%, 10%, 20%, 40%}, in Table 5. From the results, we
can observe that with more non-overlapped items, the recommendation performance of NATR on
all metrics decrease slowly.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 1, Article 2. Publication date: June 2021.



2:18 C. Gao et al.

Table 5. Top-K Recommendation Performance on ML-NF Dataset with Different Ratio of Non-overlapped

Items (K is set to 1, 2, 5, and 10)

Ratio of
Non-overlapped

Items
HR@1(NDCG@1) HR@2 NDCG@2 HR@5 NDCG@5 HR@10 NDCG@10

5% 0.1302 0.1955 0.1390 0.3733 0.2089 0.5721 0.2701

10% 0.1271 0.1917 0.1357 0.3645 0.2056 0.5646 0.2644

20% 0.1224 0.1852 0.1341 0.3573 0.1978 0.5357 0.2569

40% 0.1193 0.1841 0.1292 0.3515 0.1942 0.5273 0.2493

Table 6. Top-K Recommendation Performance Comparison

of different Design of Attention Module (K is set

to 1, 2, 5, and 10)

NATR-DotAttn NATR-ConcatAttn
K HR@K NDCG@K HR@K NDCG@K

1 0.1315 0.1315 0.1280 0.1280
2 0.1976 0.1403 0.1965 0.1389
5 0.3776 0.2110 0.3771 0.2096

10 0.5781 0.2726 0.5715 0.2691

4.7 Impact of Design of Attention Module (RQ6)

In our proposed NATR, we adopt two-level attention mechanisms, and in both, there is an element-
wise product operation to combine two parts of embeddings. In fact, we have other choices, such
as the concatenation operation. In this section, we conduct experiments to study the recommen-
dation performance if we replace the element-wise product with concatenation. Here we name it
NATR-ConcatAttn and present the recommendation performance in Table 6. We can observe that
replacing the element-wise product with concatenation causes a very small drop in the perfor-
mance of top-K recommendation. This verifies that both two variants of attention are effective.
Besides, this small drop can be explained that the corresponding relation of each dimension in la-
tent space is lost when we use concatenation operation. Nevertheless, the strong power of neural
networks can still effectively learn the interaction of two vectors, making the performance still
good enough.

In conclusion, extensive experiments on two real-world datasets verify the efficacy of our pro-
posed model, and further studies demonstrate that our model can alleviate the data sparsity prob-
lem and achieve good performance when there are non-overlapped items. Moreover, the utility of
our specially designed attention network components is verified.

5 RELATED WORK

In this article, we propose a solution for cross-domain recommendation without sharing user-
relevant data based on neural networks. The closed related work can be divided into cross-domain
recommendation and neural network based recommendation.

Cross-domain Recommendation. To alleviate cold start and data sparsity issue, cross-domain
recommendation is a typical solution which takes data from multiple domains into considera-
tion [31]. With the help of the auxiliary domain, cross-domain recommendation methods can
achieve better performance (i.e. recommendation accuracy) than single-domain ones. Approaches
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of cross-domain recommendation can be broadly classified into two types: collaborative and
content-based.

Collaborative cross-domain recommendation refers to those approaches utilizing interaction
data (rating history, for example) from two domains. Ajit et al. [3] proposed an MF-based model,
CMF, which assumes a common global user factor matrix for all domains, and it factorizes ma-
trices from multiple domains simultaneously. Li et al. [32] proposed a model named Code Book
Transfer, which builds a matrix named codebook to represent cluster-level rating pattern, and this
codebook is shared by two domains. A recent study [2] considered a special task in which both
users and items are overlapped, and they proposed an MF-based model that assumes part of the
user embeddings and whole item embeddings are shared across domains. With a similar setting,
Man et al. [33] proposed a neural method that employs multi-layer perceptron to adapt user and
item embeddings between two domains. Pan et al. [10] utilize auxiliary interaction data with a reg-
ularization term concerned with overlapped user and item in objective function in the MF model.
Do et al. [34] discovered both explicit and implicit similarities from latent factors across domains
based on CMF. Another category of cross-domain recommendation models is content-based ones,
which sharing attributes of user or items from auxiliary domain [1, 35, 36]. Agarwal et al. [1] pro-
posed an MF-based model in cross-domain recommendation when multi-modal user profiles are
available. Elkahky et al. [35] transformed user profile and item attributes to dense vectors through
deep neural networks and matched them in latent space. Zhang et al. [36] utilize textual, structure,
and visual knowledge of items as the auxiliary domain to aid in building item embedding.

In this article, we focus on collaborative cross-domain recommendation with auxiliary inter-
action data, a widely used setting in literature. Specifically, our problem is a typical system-level
cross-domain recommendation task, where the same items are shared across domains, according
to the definition in two surveys [37, 38]. There is a common assumption in existing methods that
the whole interaction data can be fully shared across domains, which has the risk of leaking user
privacy since various domains may be operated by different companies. A very close related work
is [39], which studies protecting user privacy in the task of cross-domain location recommenda-
tion. However, this work is only applicable to location data, and it still transfers user-relevant data,
even if it has been perturbated by the protection mechanism. In this work, we advocate a more
realistic setting that only item-side data can be shared.

Neural Network Based Recommendation. Salakhutdinov et al. [40] proposed Restricted Boltz-
mann Machines to predict explicit ratings, which was the first work to apply neural networks to
recommender systems. Recently, similar to the research field of CV and NLP, neural networks have
achieved great success in recommender systems. In general, neural network-based recommenda-
tion can be divided into two categories. The first category of researches proposes to utilize neural
networks to learn the matching function between users and items. He et al. proposed a model
named neural collaborative filtering, which utilizes neural networks to replace the inner prod-
uct in MF. This is further extended [8, 41, 42] to more complicated neural interaction functions.
Tay et al. [29] approached the neural interaction function from another perspective and proposed
a relational-translation based neural match function. Sedhain et al. [43] first proposed to use au-
toencoder to extract CF signal, and recently it is extended by [44] with variational autoencoder.
Recently, inspired by the advances in graph convolutional network (GCN), some works [45,
46] proposed to model user interaction with graph and proposed GCN-based recommendation
methods.

The second category of neural-based recommendation methods takes advantage of neural net-
works’ strong power of extracting latent representation from complicated and complex data. There
are a series of neural-based extensions, such as DeepFM [47], AFM [48], and xDeepFM [49]
of factorization machine [50], that adopt neural network to capture feature interaction in the
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content-based recommendation. Besides, some works utilized neural networks to extract certain
auxiliary data, such as social network [51], textual data [52, 53], fashion data [54], knowledge
graph [55], sequential behavior [56, 57], and activity data [58].

In this article, we propose a novel neural model to solve the challenges of extracting useful
knowledge from item embedding of the auxiliary domain with the power of neural networks in
representative learning.

Privacy-preserving Recommendation. As one of the hottest personalized service in today’s on-
line systems, recommendation is close to users’ personal data such as demographics or behavioral
data. Current researches have shown that there is a high risk of leaking user privacy in traditional
recommender system since even though the collected preferences such as movie ratings are not
so sensitive, these can be utilized to infer sensitive user information [59, 60]. This concern pushes
forward the development of privacy-preserving recommendation. Some early approaches [6, 59,
61–63] assume that recommendation engine itself can be trusted and protect user privacy from
the attack of the third party. With such assumption, recommenders can collect users’ raw data;
and then a protection mechanism is applied to the learned recommendation model or generated
recommendation results as the third party may infer user interests with the released model or re-
sults. However, such an assumption is not so reasonable as the recommender may be not reliable.
Therefore, recent researches [64–69] pay more attention to propose privacy-preserving methods
for recommendation without trusting anyone. A major category of approaches [64–66] rely on
distributed MF to train an MF model in a decentralized manner, avoiding users uploading raw data
to the server. With exchanging gradient or parameter, the MF model can successfully converge, fit
data, and generate recommendation results. Another category of approaches for distrusted recom-
mender is to apply data protection mechanism during data collection [6, 67, 68]. With the mecha-
nism, some noise is added to the raw data, and the server can only access noisy data. Differential
privacy [23], which is a concept from the database community, is frequently used to provide pri-
vacy guarantee in these researches [6, 67, 70]. Following our previous work [11], in this article, we
approach the problem of protecting user privacy in the task of cross-domain recommendation.

Recently, Chen et al. [71] propose to introduce federated learning into recommendation. Feder-
ated learning is a kind of machine learning under a special setting that multiple federations jointly
participate in the learning procedure without sharing raw data. However, it is required in feder-
ated learning based recommendation that there is adequate context to make sure knowledge about
predictive signal can be shared or transferred across federations.

Different from existing methods, we propose to transfer user-irrelevant data, embedding of
bridge items, to share predict signal and improve recommendation performance.

6 CONCLUSION

In this work, we present a new cross-domain recommendation solution, which can avoid user pri-
vacy leakage by transferring only item embeddings from the auxiliary domain. To better exploit
the transferred item embeddings, we propose a neural network method named NATR, combin-
ing item-level and domain-level attention mechanisms to address the challenges in cross-domain
learning. We conduct extensive experiments on two real-world datasets, demonstrating that our
NATR method can improve the recommendation performance of the target domain by 18.94%. To
the best of our knowledge, this is the first work that concerns user privacy in cross-domain rec-
ommendation, and presents a sound solution to exploit the predictive signal without sharing any
user-relevant information.

There are three points about this work that we plan to address in future. First, although our
method has taken the dimensionality discrepancy into consideration via a dimension-adaption
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fully-connected layer, we only empirically verify its effectiveness when two domains have the
same embedding size. As such, we will study how different sizes of transferred embeddings would
affect the recommendation performance. Second, we will study how much private information,
including user interaction history and user profiles, a potential attacker can obtain if we share
user embeddings across two domains. This can provide more formal privacy analysis and further
support our motivation of avoiding sharing user embedding vectors.
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