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ABSTRACT
Membership Inference Attacks (MIA) aim to infer whether a target
data record has been utilized for model training or not. Prior at-
tempts have quantified the privacy risks of language models (LMs)
via MIAs, but there is still no consensus on whether existing MIA
algorithms can cause remarkable privacy leakage on practical Large
Language Models (LLMs). Existing MIAs designed for LMs can be
classified into two categories: reference-free and reference-based
attacks. They are both based on the hypothesis that training records
consistently strike a higher probability of being sampled. Never-
theless, this hypothesis heavily relies on the overfitting of target
models, which will be mitigated by multiple regularization methods
and the generalization of LLMs. The reference-based attack seems
to achieve promising effectiveness in LLMs, which measures a more
reliable membership signal by comparing the probability discrep-
ancy between the target model and the reference model. However,
the performance of reference-based attack is highly dependent on a
reference dataset that closely resembles the training dataset, which
is usually inaccessible for the practical scenario. Overall, existing
MIAs are unable to effectively unveil privacy leakage over practical
LLMs that are fine-tuned on private datasets and overfitting-free.

To address these limitations, we propose aMembership Inference
Attack based on Self-calibrated Probabilistic Variation (SPV-MIA).
Specifically, recognizing that memorization in LLMs is inevitable
during the training process and occurs before overfitting, we in-
troduce a more reliable membership signal, probabilistic variation,
which is based on memorization rather than overfitting. Further-
more, we introduce a self-prompt approach, which constructs the
dataset to fine-tune the reference model by prompting the target
LLM itself. In this manner, the adversary can collect a dataset with a
similar distribution from public APIs. Extensive experiments across

four representative LLMs and three datasets demonstrate that CPV-
MIA can improve the attack performance in AUC by about 23.6%
when compared with the best baseline.

KEYWORDS
Membership Inference Attacks; Large Language Models; Privacy
and Security

1 INTRODUCTION
Large language models (LLMs) have been validated to have the abil-
ity to generate extensive, creative, and human-like responses when
provided with suitable input prompts. Both commercial LLMs (e.g.,
ChatGPT [45]) and open-source LLMs (e.g., LLaMA [60]) can easily
handle various complex application scenarios, including but not lim-
ited to chatbots [17], code generation [61], article co-writing [23].
Moreover, with the pretraining-finetuning paradigm gradually be-
coming the mainstream pipeline in the field of LLMs, small-scale
organizations and even individuals can use private datasets to fine-
tune over pre-trained models for downstream applications [38],
which further enhances the influence of LLMs.

However, while we enjoy the revolutionary benefits raised by
the popularization of LLMs, we also have to face the potential pri-
vacy risks associated with LLMs. Existing work has unveiled that
the privacy leakage of LLMs can exist in almost all stages of the
LLM pipeline [48]. For example, poisoning attacks can be deployed
during pre-training, distillation, and fine-tuning [28, 62]. Moreover,
data and model extraction attacks can be conducted through infer-
ence [7, 18]. Among these attacks, fine-tuning is widely recognized
as the stage that is most susceptible to privacy leaks since the rel-
atively small and often private datasets used for this process [69].
Therefore, this paper aims to uncover the underlying privacy con-
cerns associated with fine-tuned LLMs through an exploration of
the membership inference attack (MIA).
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(a) Performance w.r.t training phase, where
memorization is a stage inevitable and arises
before overfitting
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Figure 1: Attack performances of the reference-based MIA
(LiRA [39, 41]) and reference-free MIA (Neighbour At-
tack [36]) are unsatisfying against LLMs in practical scenar-
ios, where LLMs are in the memorization stage and only
domain-specific dataset is available. (a) Existing MIAs are
unable to pose privacy leakages on LLMs that only exhibit
memorization. (b) Reference-based MIA shows an exponen-
tial decrease in performance when the similarity between
the reference and training datasets declines.

MIA is an adversary model that categorizes data records into
two groups: member records, which have been used in the training
dataset of the target model, and nonmember records, which belong
to a disjoint dataset [55]. MIAs have been well studied in classic
machine learning tasks, such as classification, and reveal significant
privacy risks [21]. Recently, some contemporaneous works attempt
to utilize MIAs as techniques for evaluating the privacy risks of
language models (LMs). For example, Mireshghallah et al. [39] first
introduce a reference-based attack, Likelihood Ratio Attacks (LiRA),
onMasked LanguageModels (MLMs), which measure the calibrated
likelihood of a specific record by comparing the discrepancy on
the likelihood between the target LM and the reference LM. Fol-
lowing this concept, Mireshghallah et al. [41] further adapt LiRA
for analyzing memorization in Causal Language Models (CLMs).
Moreover, Mattern et al. [36] claim that training a reference model
requires access to a reference dataset that has a similar distribution
as the training set of the target model, and it is almost unrealistic in
practical scenarios. Therefore, they design a reference-free attack
known as the Neighbour Attack to compare the discrepancy in like-
lihood between the target sample and its neighbour samples, which
avoids the requirement of reference models. However, these meth-
ods heavily rely on several over-optimistic assumptions, including
assuming the overfitting of target LLMs [36] and having access
to a reference dataset from the same distribution as the training
dataset [39, 41]. As a result, it remains inconclusive whether these
MIAs can cause significant privacy breaches in practical scenarios.

As illustrated in Fig. 1, it respectively utilizes LiRA [41] and
Neighbour Attack [36] to represent reference-based and reference-
free MIAs and evaluate them from two perspectives. Firstly, as
shown in Fig. 1(a), two target LLMs are fine-tuned over the same
pre-trained model but stop before and after overfitting, and the
reference LLMs are fine-tuned on a different dataset from the same
domain. We can observe that existing MIAs cannot effectively cause
privacy leaks when the LM is not overfitting. This phenomenon is
addressed by the fact that the membership signal proposed by ex-
isting MIAs is highly dependent on overfitting in target LMs. They

assume the member records tend to have overall higher probabili-
ties of being sampled than non-member ones, which only satisfied
overfitting models [10]. Secondly, as shown in Fig. 1(b), it validates
LiRA and Neighbour Attack with three reference datasets from dif-
ferent sources, i.e., the dataset with the identical distribution with
the member records (identical-distribution), the dataset of the same
domain with the member records (domain-specific), and the dataset
irrelevant to the member records (irrelevant). For the Neighbour
Attack, which is a reference-free attack, the attack performance is
consistently low and independent of the source of the reference
dataset. For LiRA, the attack performance will exponentially de-
cline as the similarity between the reference dataset and the target
dataset declines. Thus, the reference-based MIA can not pose crit-
ical privacy leakage on LMs since a similar dataset is usually not
available to the adversary model.

In this work, to address the aforementioned two limitations of ex-
isting works, we propose a Membership Inference Attack based on
Self-calibrated Probabilistic Variation (SPV-MIA) composed of two
according modules. First, instead of utilizing probabilities of target
records as membership signals, we opt to identify member records
based on memorization. Memorization is a more common phenome-
non in machine learning models, which has been verified inevitable
for models to arrive optimal [14]. Besides, prior work demonstrates
that memorization will exist before overfitting in LLMs [59], which
further improves the potential of memorization being a reliable
membership signal. As existing study reveal that memorization will
arise as an increased tendency in probability distribution around
the member records [10], we proposed a probabilistic variation met-
ric that can detect local maxima points via second partial derivative
test [56] instantiated by a paraphrasing model. Second, although
existing reference-based MIAs are challenging to reveal actual pri-
vacy risks, they demonstrate the significant potential of achieving
higher privacy risks with the reference model. Therefore, we design
a self-prompt approach to extract the reference dataset by prompt-
ing the target LLMs themselves and collecting the texts generated.
This approach allows us to acquire the significant performance
improvement brought by the reference model while ensuring the
adversary model is feasible on the practical LLMs.

Overall, our contributions are summarized as follows:

• We demonstrate that detecting memorization is of great
value on MIAs against overfitting-free LLMs and design
a novel membership signal that detects the essential char-
acteristics of member records memorized by LLMs by the
second partial derivative test.

• We propose a self-prompt approach that collects reference
datasets by prompting the target LLMwith short text chunks,
which will have the closely resemble distribution as the fine-
tuning dataset. In this manner, the reference model fine-
tuned on the reference dataset can significantly improve the
attack performance without any unrealistic assumptions.

• We conducted extensive experiments to validate the effec-
tiveness of SPV-MIA. The results suggest that SPV-MIA
unveils significantly higher privacy risk across multiple
fine-tuned LLMs and datasets compared with existing MIAs
(about 23.6% improvement in AUC across four representa-
tive LLMs and three datasets).
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2 PRELIMINARIES
Before delving into the technical details, we would like to introduce
the Causal Language Models (CLMs) as the most representative
LLMs and present a formal definition of the black-box threat model
adopted in this work. Besides, the key notations used in this paper
are summarized in the Appendix. A.1.

2.1 Causal Language Models
Since Causal LanguageModels (CLMs) such as GPT [50, 63], LLaMA
[60] and Falcon [3] have achieved the dominant position among
LLMs with various architectures, we select CLMs as representative
LLMs in this work. For a given text record 𝒙 , it can be split into a
sequence of tokens

[
𝑡0, 𝑡1, · · · , 𝑡 |𝒙 |

]
with variable length |𝒙 |. CLM

is an autoregressive language model where the model estimates the
probability of the next token in a sequence given the previous to-
kens. Concretely, given the previous tokens 𝒙<𝑖 = [𝑡0, 𝑡1, · · · , 𝑡𝑖−1],
CLM aims to predict the conditional probability 𝑝𝜃 (𝑡𝑖 | 𝒙<𝑖 ). Dur-
ing the training process, CLM calculates the probability of each
token in a text with the previous tokens, then factorizes the joint
probability of the text into the product of conditional token pre-
diction probabilities. Therefore, the model can be optimized by
minimizing the negative log probability, which can be formulated
as follows:

LCLM = − 1
𝑀

𝑀∑︁
𝑗=1

��𝒙 ( 𝑗 ) ��∑︁
𝑖=1

log𝑝𝜃
(
𝑡𝑖 | 𝒙 ( 𝑗 )<𝑖

)
, (1)

where𝑀 denotes the number of training text records. In the process
of generation, CLMs can generate coherent words by predicting
one token at a time and producing a complete text using an autore-
gressive manner. Moreover, the pretraining-finetuning paradigm is
proposed to mitigate the uncountable demands of training an LLM
for a specific task [38]. This paradigm shifts to training an LLM
on a shared pre-training task and then fine-tuning it to massive
downstream tasks. Beiside, Multifarious parameters-efficient fine-
tuning methods (e.g., LoRA [20], P-Tuning [33]) are introduced to
further decrease consumption by only fine-tuning limited model
parameters [11]. In this work, we focus the privacy risks in the
fine-tuning phase, since the fine-tuning datasets are usually private
and with smaller scales [69].

2.2 Threat Model
In practical applications, small companies or individuals can fine-
tune public pre-trained LLMs on their private datasets for specific
downstream tasks [38]. In this work, we consider an adversary who
aims to infer whether a specific text record was included in the
fine-tuning dataset of the target LLM. There are two mainstream
scenarios investigated by previous MIA research: white-box MIA
and black-box MIA. White-box MIA assumes full access to the raw
copy of the target model, which means the adversary can touch and
modify each part of the target model [44]. In contrast, for a black-
box scenario, the adversary only approved to acquire the response
results (e.g. generated texts, log probabilities) by requesting the
provided service API [53], which is more realistic and aligned with
practical application circumstances. Thus, we adopt the black-box
scenario for evaluating existing works and our proposed method,

where the adversary only receives response dictionaries from API
via request texts. In more strict scenarios, only a total irrelevant
dataset is available.𝐷 is a dataset collected for a specific task, which
can be separated into two disjoint subsets: 𝐷mem and 𝐷non. The
target LLM 𝜃 is fine-tuned on 𝐷mem, and the adversary has no prior
information about which data records are utilized for fine-tuning.
Different from existing reference-based attacks [36, 64] require a
reference from the identical distribution of training dataset, we
reasonably assume that the attacker can only obtain a reference
dataset 𝐷refer from the same domain (inferring by the task) to fine-
tune the reference model. An adversary algorithmA is designed to
infer whether a text record 𝒙 (𝑖 ) ∈ 𝐷 belong to the training dataset
𝐷mem:

A
(
𝒙 ( 𝑗 ) , 𝜃

)
= 1

[
𝑃

(
𝑚 ( 𝑗 ) = 1|𝒙 ( 𝑗 ) , 𝜃

)
≥ 𝜏

]
, (2)

where𝑚 ( 𝑗 ) = 1 indicates that the record 𝒙 ( 𝑗 ) ∈ 𝐷mem , 𝜏 represents
the threshold, and 1 denotes the indicator function.

3 METHODOLOGY
As demonstrated in Fig. 2, we propose a novel MIA framework
against fine-tuned LLMs utilizing a calibrated probabilistic variation
metric, where a paraphrasing model is introduced for assessing the
probabilistic variation metric with regard to a text record, as well
as a self-prompt reference model for calibrate this metric.

3.1 Framework
Model loss is the most widespread and straightforward metric
adopted by existing MIA algorithms against machine learning
model [6, 34]. As formulated in Eq. 1, the objective of an LLM
is to maximize the joint probability of the text in the training set,
which can also be interpreted as the negative of the loss. Therefore,
some contemporaneous works employ the joint probability of the
target text being sampled as the signal to evaluate the member-
ship [2, 39, 41]. Since some records are inherently over-represented,
which means even non-member records can achieve high proba-
bility in the data distribution [64]. Therefore, some works further
calibrate the probability signal by comparing it with a benchmark
value measured by respective methods [36, 39, 41, 64]. Overall, the
existing attack framework can be summarized as:

A𝑒𝑥𝑖𝑠𝑡 (𝒙 , 𝜃 ) = 1 [Δ𝑝𝜃 (𝒙 ) ≥ 𝜏]
= 1

[
𝑝𝜃 (𝒙 ) − 𝑝 (𝒙 ) ≥ 𝜏

]
,

(3)

where Δ𝑝𝜃 (𝒙 ) is the calibrated joint probability of target text 𝑥 ,
𝑝𝜃 (𝒙 ) denotes the probability measured on the target model 𝜃 , and
𝑝 (𝒙 ) represents the benchmark probability.

However, the signal proposed by the existing attack framework
is not reliable, which can be interpreted from two perspectives. First,
the confidence of the probability signal is notably declined when
the target model has not experienced overfitting, which guarantees
the joint probabilities are higher on member texts [10]. Besides, in
the fine-tuning phase of LLMs, regularization strategies are widely
adopted to prevent overfitting [49, 58], andmeanwhile obfuscate the
probability as a metric for MIA. Second, the benchmark probability
usually measured on a reference model [39, 41], which has the
potential to offset the over-represented statuses of data records if
the reference model can be trained on a dataset closely resemble the



Wenjie Fu et al.

Target LLM

Self-Prompt
Reference LLM

Reference
Dataset

Probabilistic Variation AssessmentScoringPerturbation Calibration

The unemployment rate
dropped to 8.2% last
month, but the economy
only added 120,000 jobs.

The employment rate
dropped to 8.2% last
month, as the economy
has added 120,000 jobs.

The unemployment rate
dropped to 8.2% this
month, but the government 
only added 120,000 jobs.

Paraphrasing
LLM

Target Text Record

Paraphrased Text Record

Paraphrased Text Record

Member:

Non-Member:

True

False

?

Self-prompt

Figure 2: The overall workflow of SPV-MIA, where includes the probabilistic variation assessment via paraphrasing model and
the probabilistic variation calibration via self-prompt reference model.

training dataset 𝐷mem. Nevertheless, it is almost unrealistic for an
adversary to obtain such a dataset, and adopting a compromising
dataset will introduce noise to the benchmark probability.

In contrast to overfitting, memorization has been verified as an
inevitable phenomenon for achieving optimal generalization on
machine learning models [15], and it will exist before overfitting
in LLMs [59]. Therefore, it will naturally be a more reliable signal
for detecting member text. Memorization in generative models
will cause member records to have a higher probability of being
generated than neighbour records in the data distribution [10].
This principle can be shared with LLMs, as they can be considered
generation models for texts. Thus, we suggest designing a more
promising membership signal that can measure a value for each text
record to identify whether this text is located on the local maximum
in the sample distribution characterized by 𝜃 . For convenience, we
denote this signal as probabilistic variation 𝑝𝜃 (𝒙 ), representing the
status of probabilistic variation in the local domain, and we assume
the lower of 𝑝𝜃 (𝒙 ) means the more probable of the text record 𝒙
locates on the local maximum. The probabilistic variation 𝑝𝜃 (𝒙 )
can be estimated as:

𝑝𝜃 (𝒙 ) = F
(
𝜃, 𝒙, {�̃�𝒏}𝑁𝑛=1

)
, (4)

where F is the function to estimate 𝑝𝜃 (𝒙 ) and {�̃�𝒏}𝑁𝑛=1 denotes a
set of paraphrased texts of the original target text 𝒙 . Furthermore,
we consider a reference model 𝜙 fine-tuned on a similar dataset as
the target model 𝜃 , which is utilized as a benchmark to calibrate
the probabilistic variation measured on the target model. Formally,
our proposed attack framework can be formulated as:

A𝑜𝑢𝑟 (𝒙 , 𝜃, 𝜙) = 1
[
Δ𝑝𝜃,𝜙 (𝒙 ) ≤ 𝜏

]
= 1

[
𝑝𝜃 (𝒙 ) − 𝑝𝜙 (𝒙 ) ≤ 𝜏

]
,

(5)

where 𝑝𝜃 (𝒙 ) and 𝑝𝜙 (𝒙 ) are probabilistic variations of the text
record 𝒙 measured on the target model 𝜃 and the reference model 𝜙
respectively. Thus, the lower value of Δ𝑝𝜃,𝜙 (𝒙 ) indicates that the
text record 𝒙 with higher potential locates on the local maximum,
and more probably drawn from the training set.

To implement our proposed adversary model into practical LLMs,
we propose an attack framework with two tightly coupled mod-
ules. The workflow of our framework is depicted in Fig. 2, where
we first adopt a paraphrasing model to generate paraphrased text

close to the target text in the probability distribution for calcu-
lating probabilistic variations. Then, we introduce a self-prompt
approach for collecting reference datasets by prompting the target
LLM itself, which can be conducted without the prior knowledge of
training dataset𝐷𝑚𝑒𝑚 . The reference LLMwill be fine-tuned on the
reference dataset, which will serve as a calibrator of probabilistic
variations.

3.2 Probabilistic Variation Assessment via
Paraphrasing Model

As we discussed before, member records typically lie in the domains
of local maxima of the probability function 𝑝𝜃 (·) parameterized by
LLMs. Besides, the log probability can be easily obtained from the
response results of LLMs [46]. Therefore, a conceptually defined
membership signal called "probability variation" is used to detect
local maxima. In mathematics, the second partial derivative test
is an approach in multivariable calculus commonly employed to
ascertain whether a critical point of a function is a local minimum,
maximum, or saddle point. In the context of our task that detects
maximum points, where the hessian matrix is negative definite, i.e.,
all the directional second derivatives are negative. Thus, we define
the probabilistic variation mentioned in Eq. 5 as the expectation of
the directional second derivative:

𝑝𝜃 (𝒙 ) := E𝒛
(
𝒛⊤𝐻𝑝 (𝒙 ) 𝒛

)
, (6)

where 𝐻𝑝 (·) is the hessian matrix of the probability function 𝑝𝜃 (·).
Then, we further approximate the above expression with the sym-
metric form:

𝒛⊤𝐻𝑝 (𝒙 )𝒛 ≈
𝑝𝜃 (𝒙 + ℎ𝒛) + 𝑝𝜃 (𝒙 − ℎ𝒛) − 2𝑝𝜃 (𝒙 )

ℎ2
, (7)

where requires ℎ → 0, and 𝒛 can be interpreted as kind of "noise".
Thus, 𝒙 ± ℎ𝒛 can be considered as adjacent text records of 𝒙 in the
data distribution. For simplification, we assume the distribution of
"noise" 𝒛 is symmetric and omit ℎ, then we can reformulate Eq. 6
as follows:

𝑝𝜃 (𝒙 ) = E𝒛 (𝑝𝜃 (𝒙 + 𝒛)) − 𝑝𝜃 (𝒙 )
= E�̃�∼𝑞 ( · |𝒙 ) (𝑝𝜃 (�̃� )) − 𝑝𝜃 (𝒙 ) .

(8)

where 𝑞(· | 𝒙 ) is a paraphrasing model that gives a distribution
over �̃� , slightly paraphrase the original text 𝒙 and maintain the
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semantics and grammar (as Eq. 7 requires ℎ → 0, which means the
paraphrasing should be modest).

Based on the aforementioned discussions, and inspired by De-
tectGPT [42], we adopt a mask-filling model to serve as the para-
phrasing model 𝑞𝜓 (· | 𝒙 ), which is parameterized by𝜓 . Specifically,
a mask-filling model such as T5 [51] aims to predict masked to-
kens within the input sequence. Thus, it is better at understanding
context and relationships between words in a sequence, making
it suitable for generating adjacent texts within the data manifold.
Consequently, we randomly mask out 15% words in each target
text, then employ T5-base to fill in and generate semantically coher-
ent sentences. In this manner, we can sample a set of paraphrased
texts with the of 𝑁 . Subsequently, the probabilistic variation can
be estimated as:

𝑝𝜃 (𝒙 ) =
1
𝑁

𝑁∑︁
𝑛

𝑝𝜃 (�̃�𝑛) − 𝑝𝜃 (𝒙), (9)

where �̃�𝑛 ∼ 𝑞𝜓 (· | 𝒙 ). Accordingly, 𝑝𝜃 (𝒙 ) is negative (i.e. lower)
with higher probability for text 𝒙 drawn from the training set
𝐷𝑚𝑒𝑚 .

3.3 Probabilistic Variation Calibration via
Self-prompt Reference Model

Watson et al.[64] has suggested that infer the membership of a
record by thresholding on a predefined metric (e.g. confidence [54],
loss [68], and gradient norm [44]) will cause a high false posi-
tive rate (FPR). Since several non-member records may have high
probabilities of being classified as member records simply because
they are inherently over-represented in the data manifold. In other
words, the metric estimated on the target model is inherently bi-
ased and has a high variance, which leads to a significant overlap
in the metric distributions between members and non-members,
making them more indistinguishable. To mitigate this phenome-
non, Watson et al.[64] propose difficulty calibration as a general
approach for extracting a much more distinguishable membership
signal, which can be adapted to most metric-based MIAs by con-
structing their calibrated variants [39, 39, 64]. Concretely, difficulty
calibration assumes an ideal reference dataset 𝐷refer drawn from
the identical distribution as the training set 𝐷mem of the target
model 𝜃 , and trains an ideal reference model 𝜙 with a training
algorithm T . Then, it fabricates a calibrated metric by measuring
the discrepancy between metrics on the target model and reference
model, and this can offset biases on membership signals caused by
some over-represented records. The calibrated metric is defined as:

Δ𝑚(𝒙) =𝑚𝜃 (𝒙) − E𝜙←T (Drefer ) [𝑚𝜙 (𝒙)], (10)

where Δ𝑚(𝒙) is the calibrated version of metric,𝑚𝜃 (𝒙) and𝑚𝜙 (𝒙)
are metrics measured on target and reference models, respectively.

The metric, probabilistic variation we present, is fundamentally
characterized by probabilities, which can be interpreted as losses
of LLMs. Consequently, the probabilistic variation is likely to be
biased as well. Based on the aforementioned discussion, we natu-
rally consider using difficulty calibration to fine-tune a reference
model that acts as a metric benchmark. However, the practical
deployment of this kind of attack is limited to the strong and ar-
guably unrealistic assumption that the adversary has the approval

to collect a disjoint reference dataset from the same distribution
as the training dataset. Since the dataset used for fine-tuning an
LLM is usually highly private and hard to extract prior knowledge.
Therefore, existing work considers just utilizing the pre-trained
model as the reference model [39]. In the practical scenario, at most,
we can only obtain open-source datasets from the same domain
or even irrelevant datasets. However, existing study have verified
that adopting reference models trained on these datasets can not
provide a satisfying attack performance [36].

We notice that LLMs possess revolutionary fitting and general-
ization capabilities, enabling them to generate a wealth of creative
texts. Therefore, LLMs themselves have the potential to depict the
distribution of the fine-tuning data. Thus, we consider a self-prompt
approach that collects the reference dataset from the target LLM
itself by prompting it with few words. Concretely, we first col-
lect a set of text chunks with an equal length of 𝑙 from a public
dataset from the same domain, where the domain can be easily
inferred from the task of the target LLM (e.g., An LLM that serves
to summary task has high probability using a summary fine-tuning
dataset). Then, we utilize each text chunk of length 𝑙 as the prompt
text and request the target LLM to generate text. All the generated
text can form a dataset of size 𝑁 , which is used to fine-tune the
proposed self-prompt reference model 𝜙 over the pre-trained model.
Accordingly, we can define the calibrated probabilistic variation as:

Δ𝑝 (𝒙 ) = 𝑝𝜃 (𝒙 ) − 𝑝𝜙 (𝒙 ) , (11)

where 𝑝𝜃 (𝒙 ) and 𝑝𝜙 (𝒙 ) are probabilistic variations measured over
the target model and the self-prompt reference model.

Furthermore, in some challenging scenarios where acquiring
domain-specific datasets is difficult, our self-prompt method can
still effectively capture the underlying data distribution, even when
using completely unrelated prompt texts. The relevant experiments
will be conducted and discussed in detail in Sec. 4.3.2.

4 EXPERIMENTS
In this section, we evaluate the attack performance of SPV-MIA
across three datasets over four LLMs, and compare it with five
state-of-the-art MIAs against LLMs. The overall results validate the
generic vulnerability of existing LLMs attacked by answering the
following research questions:

• Dose SPV-MIA outperform the state-of-the-art MIAs?
• How does the quality of the reference model affect attack

performance?
• What is the influence of different fine-tuning techniques on

SPV-MIA?
• Can the existing privacy protection algorithm defend against

attacks from SPV-MIA?

In addition, we also report the performance gain provided by each
module via ablation study and investigate the influence of hyper-
parameters.

4.1 Experimental Settings
In this subsection, we give a brief introduction of experimental
settings, including the datasets, target LLMs and baselines. The
implementation details can be found in Appendix A.2.
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Table 1: AUC for detecting member texts from four LLMs across three datasets for SPV-MIA and five previously proposed
methods. Bold and Underline respectively represent the best and the second-best results within each column (model-dataset
pair).

Method Wiki AG News Xsum
GPT-2 GPT-J Falcon LLaMA Avg. GPT-2 GPT-J Falcon LLaMA Avg. GPT-2 GPT-J Falcon LLaMA Avg.

Loss Attack 0.614 0.577 0.593 0.605 0.597 0.591 0.529 0.554 0.580 0.564 0.628 0.564 0.577 0.594 0.591
Neighbour Attack 0.647 0.612 0.621 0.627 0627 0.622 0.587 0.594 0.610 0.603 0.612 0.547 0.571 0.582 0.578
DetectGPT 0.623 0.587 0.603 0.619 0.608 0.611 0.579 0.582 0.603 0.594 0.603 0.541 0.563 0.577 0.571
LiRA-Base 0.710 0.681 0.694 0.709 0.699 0.658 0.634 0.641 0.657 0.648 0.776 0.718 0.734 0.759 0.747
LiRA-Candidate 0.769 0.726 0.735 0.748 0.744 0.717 0.690 0.708 0.714 0.707 0.823 0.772 0.785 0.809 0.797
Our 0.975 0.929 0.932 0.951 0.938 0.949 0.885 0.898 0.903 0.909 0.944 0.897 0.918 0.937 0.924

4.1.1 Datasets. Our experiments utilize six different datasets across
multiple domains and LLM use cases, where we employ three
datasets as the private datasets to fine-tune the target LLMs, and the
remaining datasets as the public datasets from the exact domains.
Specifically, we use the representative articles on Wikitext-103
dataset [37] to represent academic writing tasks, news topics from
the AG News dataset [71] to represent news topic discussion task,
and documents from the XSum dataset [43] to represent the article
writing task. Besides, we utilize Wikicorpus [52], TLDR News [25],
and CNNDM [19] datasets to respectively represent as the publicly
accessible dataset from the same domain for each task.

4.1.2 Target Large Language Models. To obtain a comprehensive
evaluation result, we conduct our experiments over four well-
known and widely adopted LLMs as the pre-trained models with
different scales from 1.5B parameters to 7B parameters:

• GPT-2 [50]: It is a transformer-based language model released
by OpenAI in 2019, which has 1.5 billion parameters and is capa-
ble of generating high-quality text samples.

• GPT-J [63]: It is an open-source LLM released by EleutherAI in
2021 as a variant of GPT-3. GPT-j has 6 billion parameters and is
designed to generate human-like with appropriate prompts.

• Falcon-7B [3]: Falcon is a family of state-of-the-art LLMs cre-
ated by the Technology Innovation Institute in 2023. Falcon has
40 billion parameters, and Falcon-7B is the smaller version with
less consumption.

• LLaMA-7B [60]: LLaMA is one of the most state-of-the-art
LLM family open-sourced by Meta AI in 2023, which has outper-
formed other open-source LLMs on various NLP benchmarks. It
has 65 billion parameters and has the potential to accomplish
advanced tasks, such as code generation. In this work, we utilize
the lightweight version, LLaMA-7B.

4.1.3 Baselines. We choose six MIAs designed for LMs to compre-
hensively evaluate our proposed method, including three reference-
free attacks and one reference-based attack with one variant.

• Loss Attack [68]: A standard metric-based MIA that distin-
guishes member records simply by judging whether their losses
are above a preset threshold.

• Neighbour Attack [36]: The Neighbour Attack avoids using a
reference model to calibrate the loss scores and instead utilizes
the average loss of plausible neighbor texts as the benchmark.

• DetectGPT [42]: A zero-shot machine-generated text detection
method. Although DetectGPT is specially designed for LLMs-
generated text detection, but has the potential to be adapted for
identifying the text utilized for model training.

• Likelihood Ratio Attack (LiRA-Base) [41]: A reference-
based attack, which adopts the pre-trainedmodel as the reference
model to calibrate the likelihood metric to infer membership.

• LiRA-Candidate [41]: A variant version of LiRA, which utilizes
a publicly available dataset in the same domain as the training
set to fine-tune the reference model.

4.2 Comparision with Baselines
As shown in Table. 1, we first summarize the AUC scores [5] for
all baselines and SPV-MIA against four LLMs across three datasets.
Furthermore, we present receiver operating characteristic (ROC)
curves for SPV-MIA and the top-three best baselines on LLaMAs in
Appendix A.3 for a more comprehensible presentation. Then, we
can draw the following conclusions by analysing these results:

• SPV-MIA consistently outperforms all baseline methods
over all LLMs with different architectures and fine-tuning
datasets: SPV-MIA achieves the best overall attack performance
with the highest average AUC of 92.4% over all scenarios. Fur-
thermore, compared to the most competitive baseline, LiRA-
Canididate, SPV-MIA has improved the AUC of the attack by
30%, even LiRA-Canididate assumes full access to the auxiliary
dataset while SPV-MIA only needs some short text chunks from
this dataset.

• The overwhelming superiority of SPV-MIA compared with
LiRA-Candidate demonstrates the significance of our pro-
posed self-prompt reference model: SPV-MIA and LiRA-
Candidate both rely on the dataset from the same domain as the
target LLM, which means they share the same prior informa-
tion to fine-tune a reference model. However, with our proposed
self-prompt approach, the reference model can learn more knowl-
edge about the data distribution and serves as a more reliable
calibrator.

• The underwhelming attack performance of previous MIAs
reveals their inability to be effectively applied to practical
LLMs: Most baseline, especially reference-free attack methods,
yield a low AUC, which is only slightly better than random
guesses. Furthermore, their performances on larger-scale LLMs
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are worse. This phenomenon verifies the claim that existing
MIAs designed for LMs can not handle LLMs with large-scale
parameters.

• The privacy risk caused by MIAs on LLMs is positively
correlated with the overall NLP performance of the model
itself: We found that MIAs against LLMs with similar scales like
GPT-J, Falcon, and LLaMA exhibit improved attack performance
as the target model performance increases. We interpret this
phenomenon as follows: LLMs with stronger overall NLP perfor-
mance have better learning ability, which means they are more
likely to memorize records from the training set. Besides, MIAs
fundamentally leverage the memorization abilities of machine
learning models, making superior models more vulnerable to
attacks.

4.3 How MIAs Rely on Reference Model Quality
In this work, a key contribution is introducing a self-prompt ap-
proach for constructing a dataset to fine-tune the reference model,
which aims to improve the quality of the reference model to serve
as a calibrator. Therefore, we design the experiments to verify the
effectiveness of the self-prompt approach. Moreover, we investigate
in detail how the quality of the reference model affects the attack
performance of MIA from four aspects.

4.3.1 Source of Reference Dataset. In real-world scenarios, based
on different prior information, adversaries can obtain datasets from
different sources to fine-tune the reference model. We categorize
them into three types based on their relationship with the fine-
tuning dataset of the target model and sort them in ascending
order of difficulty in acquisition: 1) Irrelevant dataset, 2) Domain-
specific dataset, and 3) Identical distribution dataset. Besides,
the dataset extracted by the self-prompt approach is denoted as
4) Self-prompt dataset. We evaluate the AUC of SPV-MIA on the
aforementioned four data sources with LLaMA as the representative
LLM and the results are summarized in Fig. 3(a). The experimental
results indicate that the performance of the attack shows a notice-
able increase along the Irrelevant, Domain, and Identical datasets.
This suggests that using a reference dataset that is more similar to
the target dataset can enhance the quality of the reference model.
Additionally, AUC scores on self-prompt reference datasets are only
marginally below Identical datasets. It verifies that our proposed
self-prompt method can effectively leverage the creative generation
capability of LLMs, approximate sampling text records indirectly
from the distribution of the target training set.

4.3.2 Source of Self-prompt Texts. As mentioned earlier, the self-
prompt dataset is constructed by using text chunks from the domain-
specific dataset to prompt target LLMs and then collecting the
generated texts. These prompting text chunks are typically only a
tiny fraction of the entire dataset, and thus can be collected with
less cost. Compared with using domain-specific text chunks for
prompting, we also evaluate the self-prompt approach with irrele-
vant and identical-distribution text chunks. As shown in Fig. 3(b),
the AUC score increases with the relevance of the prompt texts,
which aligns with the experimental results in Sec. 4.3.1. However,
the self-prompt method demonstrates much lower dependence on
the source of the prompt texts. We found that even when using
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Figure 3: The performances of SPV-MIA on LLaMA while
utilizing different reference datasets sources and prompt
texts sources, respectively.

completely unrelated prompt texts, the performance of the attack
only experiences a slight decrease. This phenomenon indicates that
the self-prompt method we proposed has a high degree of versatility
across adversaries with different prior information.
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Figure 4: The performances of SPV-MIA on LLaMA while
utilizing different prompt text lengths and different scales
of reference dataset.

4.3.3 Length of Self-prompt Texts. In the previous experiments,
we evaluated the performance of the self-prompt approach over
different prompt text sources. However, in real-world scenarios,
the amount of text that adversaries can obtain may vary, leading
to variations in the length of the prompt texts. Therefore, we are
considering a set of experiments to evaluate the attack performance
across different prompt text lengths with regard to each prompt text
source. The experiments are deployed over the LLaMA fine-tuned
on the AG News dataset, and we set four different prompt text
lengths: 8, 16, 32, and 64. The results are presented in Fig. 4, where
we have discovered that texts from different sources exhibit varying
trends in terms of the change in attack performance with respect
to text length. Specifically, when sampling prompt texts from the
identical dataset, the attack performance increases with the length
of the prompt texts. When sampling from the domain dataset, the
performance initially increases and then decreases with the text
length. When using prompt texts sampled from an unrelated data
distribution, the performance of the attack actually decreases with
longer prompt texts. Therefore, we recommend setting smaller text
lengths to allow LLMs to generate samples that are close to data
distributions of training sets, unless adversaries can directly sample
texts from the same data distribution as the training set.
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Table 2: AUC of SPV-MIA across LLaMAs fine-tuned with
different fine-tuning techniques over three datasets.

Target Model LoRA Prefix Tuning P-Tuning (IA)3

# Parameters (M) 33.55 5.24 1.15 0.61
Wiki 0.951 0.943 0.922 0.914

Ag News 0.903 0.897 0.879 0.873
Xsum 0.937 0.931 0.924 0.911

Table 3: Results ofAblation Study onGPT-J and LLaMAacross
three datasets.

Target Model Wiki AG News XSum
GPT-J LLaMA GPT-J LLaMA GPT-J LLaMA

w/o PVA 0.901 0.913 0.864 0.885 0.873 0.919
w/o PVC 0.648 0.653 0.632 0.641 0.653 0.661
SPV-MIA 0.929 0.951 0.885 0.903 0.897 0.937

4.3.4 Scale of Self-prompt Reference Dataset. In practical applica-
tion scenarios, the public API provided by LLMs often limits the
request rate to prevent malicious abuse [47]. This means that in
some strict scenarios, the scale of the dataset obtained through
prompting may be limited. Therefore, we investigate the perfor-
mance of SPV-MIA under different scales of self-prompt reference
datasets: 1,000, 2,000, 5,000, and 10,000 samples, as shown in Fig 4.
Clearly, as the scale of the dataset decreases, the performance of
the attack also tends to decrease to some extent. However, we have
noticed that this decrease is gradual, even with only 1,000 samples,
the attack performance decreases by only about 10% compared with
10,000 samples. Thus, SPV-MIA can be applied for LLMs with strict
usage limitation protocols.

4.4 Impact of Fine-tuning Methods
As mentioned earlier, the fine-tuning algorithm in most of the
experiments in this work is set to LoRA by default. However, with
the pretraining-finetuning paradigm gradually gaining dominance
in the field of LLMs, various Parameter-Efficient Fine-Tuning (PEFT)
techniques have emerged [22]. Therefore, in order to evaluate the
impact of different PEFT techniques on MIAs, we evaluate our
proposed method with LLaMAs fine-tuned with different PEFT
techniques. Specifically, we choose LoRA [20], Prefix Tuning [31],
P-Tuning [33] and (IA)3 [32] as four representative PEFT techniques,
which have been widely adopted. Then, we present the number of
trainable parameters as well as the AUC score of SPV-MIA across
three datasets in the Table. 2. We can conclude that the risk of MIAs
against LLMs is positively correlated with the number of trainable
parameters during the fine-tuning process. We hypothesize that
this is because as the number of trainable parameters increases, the
model retains more complete memory of the training set samples,
making it more vulnerable to attacks.

4.5 Ablation Study
In the previous experiments, we have validated the superiority of
our proposed SPV-MIA over existing algorithms, as well as its ver-
satility in addressing various challenging scenarios. However, the
specific contributions proposed by each module we proposed are
still unknown. In this subsection, we conduct an ablation study to

Table 4: The performance of SPV-MIA against LLMs fine-
tuned with DP-SGD w.r.t different noise magnitudes 𝜎𝑙 .

Privacy Budget 𝜖 1 2 4 + inf
Wiki 0.785 0.832 0.875 0.951

AG News 0.766 0.814 0.852 0.903
Xsum 0.771 0.827 0.867 0.937
Avg. 0.774 0.824 0.865 0.930

audit the performance gain provided by the two proposed modules.
Concretely, we respectively remove the probabilistic variation as-
sessment (PVA) and probabilistic variation calibration (PVC) that
we introduced in Sec. 3.2 and Sec. 3.3. The results are represented in
Table 3, where each module contributes a certain improvement to
our proposed method. Besides, the PVC approach seems to play a
more critical role, which can still serve as a valid adversary without
the PVA. Thus, in practical scenarios, we can consider removing
the PVA to reduce the frequency of accessing public APIs.

4.6 Defending against MIAs
As privacy risks emerge from various attacks, including data ex-
traction attack [7], model extraction attack [18], and membership
inference attack [36, 55, 67], the research community actively pro-
motes defendingmethods against these attacks [24, 40]. DP-SGD [1]
is one of the most widely adopted defense methods based on dif-
ferential privacy [13] to provide mathematical privacy guarantees.
Through DP-SGD, the amount of information the parameters have
about a single data record is bound. Therefore, the privacy leaked
from the target model will not exceed the upper bound, regardless
of how many outputs we obtain from the target model. Specifically,
DP-SGD is realized by adding noise to the clipped gradients:

�̃�𝑡 ←
1
𝐿

(∑︁
𝑖

clip
(
𝒈𝑡 (𝑥𝑖 ) ,𝐶

)
+ N

(
0, 𝜎2𝐶2𝑰

))
, (12)

where 𝐶 is the clipping norm, 𝜎 denotes the noise scale, and 𝐿 rep-
resents the group size. We follow the same manner as the existing
study [30] and train LLaMA with DP-Adam on the aforementioned
three datasets. The results are summarized in Table. 4, where demon-
strate DP-SGD can reduce the privacy risk with a certain. However,
an excessively high privacy budget can lead to a performance degra-
dation of the LLM. Under a moderate privacy budget, SPV-MIA still
poses a significant risk of privacy leakage.

5 RELATEDWORKS
5.1 Large Language Models
In the past year, large language models (LLMs) have dramatically
improved performances on multiple natural language processing
(NLP) tasks and consistently attracted attention in both academic
and industrial circles [38]. The existing LLMs primarily fall into
three categories: causal languagemodeling (CLM) (e.g. GPT), masked
language modeling (MLM) (e.g. BERT), and Sequence-to-Sequence
(Seq2Seq) approach (e.g. BART). Among these LLMs, CLMs have
achieved the dominant position with the exponential improvement
of model scaling [72]. Therefore, we select CLM as the representa-
tive LLM in this work for evaluation. As LLMs can absorb extensive
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knowledge from pre-trained on large-scale corpora, they have the
potential to serve as area experts via fine-tuning on specific domains
[11]. Thus, LLMs are of great value for massive applications across
multiple domains, such as finance [65], education [9], healthcare
[66] and scientific research [57]. The widespread usage of LLMs
has led to much other contemporaneous work on quantifying the
privacy risks of LLMs [36, 42, 48]. Some preliminary works attempt
to capture sensitive information, such as telephone numbers and
postcodes, via elaborately designed prompting [29, 48]. In this work,
we audit privacy leakages of LLMs through distinguishing whether
or not a specific data record is used for fine-tuning the target LLM.

5.2 Membership Inference Attack
Membership inference attack (MIA) was firstly introduced in ma-
chine learning models by Shokri et al. [55], which aim to estimate
the probability of a specific data sample was utilized in the train-
ing set of a machine learning model. Initially, following Shokri
et al., most of the work was focused on the most common classifi-
cation tasks in machine learning [6, 8, 34]. With the rapid develop-
ment of other machine learning tasks, such as recommendation and
generation tasks, MIAs against these task-specific models became
a research direction of great value, and have been well investi-
gated [12, 16, 70]. Meanwhile, the chatbot ChatGPT released by
OpenAI has propelled the attention towards LLMs to the peak over
the past year, which promotes the study on MIA against language
models (LMs). Mireshghallah et al. [39] proposed the first MIA, Like-
lihood Ratio Attack (LiRA), against MLMs via adopting pre-trained
models as reference model. Following this study, Mireshghallah
et al. [41] further adapted LiRA for CLMs. Furthermore, Mattern
et al. [36] pointed out the unrealistic assumption of a reference
model trained on similar data, then substitute it with a neighbour-
hood comparison method. However, there is still a gap for MIAs
against LLMs. Although MIAs against LMs have been studied by
several works, the attack performance of existing MIAs in regard to
LLMs that with large-scale parameters and pre-trained on tremen-
dous corpora is still not clear. Therefore, we evaluate previous MIAs
on LLMs in practical scenarios, and reveal that they are impractica-
ble on LLMs due to their strict requirements and over-optimistic
assumptions. Then, we propose a Membership Inference Attack
based on Self-calibrated Probabilistic Variation (SPV-MIA), which
disclose significant privacy risks on practical LLM applications.

6 CONCLUSION
In this paper, we reveal the unsatisfying performances of existing
MIA methods against LLMs for practical applications and interpret
this phenomenon from two perspectives. First, existing MIAs heav-
ily rely on overfitting in the target LLM, which is usually avoided
before releasing LLM for public access. Second, reference-based
attacks seem to pose impressive privacy leakages by comparing
the sampling probabilities of the target record between target and
reference LLMs, but the inaccessibility of the appropriate reference
dataset will be a big obstacle to deploying it in practice. To address
these limitations, we propose a Membership Inference Attack based
on Self-calibrated Probabilistic Variation (SPV-MIA), where we in-
troduce a more reliable membership signal based on memorization
rather than overfitting, then we propose a self-prompt approach to

extract reference dataset from LLM itself in a practical manner. We
conduct substantial experiments to validate SPV-MIA with state-of-
the-art baselines across multiple representative LLMs. The results
represent the superiority of SPV-MIA over all baselines and verify
its effectiveness in extreme conditions.
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A APPENDIX
A.1 Notations of This Work

Table 5: Notations and descriptions.

Notation Description
𝒙 A specific data record.

�̃�𝑛
A paraphrasing text record of the target text record
𝒙 .

𝐷mem The training dataset utilized for LLM fine-tuning.
𝐷non A disjoint dataset from the training dataset.

𝐷refer
The reference dataset that collected for fine-tuning
reference LLM.

𝑚 ( 𝑗 )
The membership of the data record 𝒙 ( 𝑗 ) , 1 represents
member, whereas 0 represents non-member.

𝜃
The parameters of the target large language model
(LLM).

𝜙 The parameters of the reference LLM.
𝜓 The parameters of the paraphrasing LLM.

A (𝒙 , 𝜃 ) The adversary algorithm for MIA.

𝑝𝜃 (𝒙 )
The probability of text record 𝒙 being sampled by the
generative model 𝜃 .

𝑝𝜃
(
�̃�𝑛

) The probability of paraphrasing text �̃�𝑛 being sam-
pled by the generative model 𝜃 .

Δ𝑝𝜃 (𝒙 ) The calibrated probability of text record 𝒙 .

𝑝𝜃 (𝒙 )
The probabilistic variation of 𝒙 measured on the tar-
get LLM 𝜃 .

𝑝𝜙 (𝒙 )
The probabilistic variation of 𝒙 measured on the ref-
erence LLM 𝜙 .

Δ𝑝𝜃,𝜙 (𝒙 )
The calibrated probabilistic variation of 𝒙 measured
on both the target LLM 𝜃 and the reference LLM 𝜙 .

𝑞𝜓 ( ·, 𝒙 )
The paraphrasing function parameterized by the para-
phrasing LLM𝜓 .

𝑁 The query times for estimating 𝑝𝜃 (𝒙 ) .

A.2 Detailed Information for Reproduction
For each dataset, we pack multiple tokenized sequences into a sin-
gle input, which can effectively reduce computational consumption
without sacrificing performance [27]. Besides, the packing length is
set to 128 tokens. Then, we use 10,000 samples for fine-tuning over
pre-trained LLMs and 1,000 samples for evaluation. The detailed
information of datasets is summarized in Tab. 6. For each target
LLM, we let it fine-tuned with the training batch size of 16, and
trained for 10 epochs. The learning rate is set to 0.0001. We adopt
the AdamW optimizer [35] to achieve the generalization of LLMs,
which is composed of the Adam optimizer [26] and the L2 regu-
larization. For GPT-2, which has a relatively small scale, we adopt
the full fine-tuning, which means all parameters are trainable. For
other LLMs that are larger, we utilize a parameter-efficient fine-
tuning method, Low-Rank Adaptation (LoRA) [20], as the default
fine-tuning method. For paraphrasing text, we follow the setting
in DetectGPT [4] randomly mask 15% tokens within a text and
generate 20 paraphrased texts for each target text record. For the
reference LLM fine-tuned with our proposed self-prompt approach,

we utilize the domain-specific data as the default prompt text source.
Then, we collect 10,000 generated texts from target LLMs with an
equal length of 128 tokens to construct reference datasets. We fine-
tune the reference LLM for 4 epochs and the training batch size of
16.

A.3 Supplementary Experiments Results
As a supplement to the main experimental results represented in
Tab. 1, we further provide the raw ROC curve for a more compre-
hensive presentation in Fig. 5.
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Figure 5: ROC curves of SPV-MIA and the top-three best
baselines on LLaMAs fine-tuned over three datasets.
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Table 6: Detailed split and other information of datasets.

Dataset Relative Datasets Target Model Reference Model
Domain-specific Irrelevant # Member # Non-member # Member # Non-member

Wikitext-103 Wikicorpus AG News 10,000 1,000 10,000 1,000
AG News TLDR News Xsum 10,000 1,000 10,000 1,000
Xsum CNNDM Wikitext-103 10,000 1,000 10,000 1,000


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Causal Language Models
	2.2 Threat Model

	3 Methodology
	3.1 Framework
	3.2 Probabilistic Variation Assessment via Paraphrasing Model
	3.3 Probabilistic Variation Calibration via Self-prompt Reference Model

	4 Experiments
	4.1 Experimental Settings
	4.2 Comparision with Baselines
	4.3 How MIAs Rely on Reference Model Quality
	4.4 Impact of Fine-tuning Methods
	4.5 Ablation Study
	4.6 Defending against MIAs

	5 Related Works
	5.1 Large Language Models
	5.2 Membership Inference Attack

	6 Conclusion
	References
	A Appendix
	A.1 Notations of This Work
	A.2 Detailed Information for Reproduction
	A.3 Supplementary Experiments Results


