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ABSTRACT

Most existing recommender systems leverage users’ complete orig-
inal behavioral logs, which are collected from mobile devices and
stored by the service provider and further fed into recommendation
models. This may lead to a high risk of privacy leakage since the
recommendation service provider may be trustless. Despite many
research efforts on privacy-aware recommendation, the problem of
building an effective recommender system completely preserving
user privacy is still open.

In this work, we propose a general framework named differen-
tially private local collaborative filtering for recommendation. The
designed workflow consists of three steps. First, for accumulated
behavioral logs saved on users’ devices, a differentially private
protection mechanism is adopted to help obfuscate the real interac-
tions before reporting them to the server. Second, after collecting
all obfuscated records from all users, the server runs an estimation
model to calculate similarities between each pair of items. This
step requires no user-relevant data, and thus it does not introduce
any auxiliary privacy risk. Last, the server sends the estimated
user-irrelevant item-similarity matrix to each user device, and the
recommendation results are inferred locally based on item simi-
larities with each user’s locally stored original behavioral data. To
verify our method’s efficacy, we conduct extensive experiments on
two real-world datasets, demonstrating that our proposed method
achieves the best performance compared with the state-of-the-art
baselines. We further demonstrate that our method still works well
under various privacy budgets.
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1 INTRODUCTION

Recommender system, which is a typical personalized service nowa-
days, strongly relies on users’ personal behaviors, such as review,
click log, etc., for feeding algorithms. Specifically, recommendation
engines estimate users’ preferences from the collected personal
data and generate candidates for users’ future consumption. Thus,
there is a commonly accepted paradigm that these raw data is fully
accessible for the service provider taking charge of the recommen-
dation engine. On the other side, highly private user information
(e.g., health condition, political inclinations, etc.) may be extracted
or inferred from collected personal data [4, 28]. As a result, the
current paradigm for recommendation is faced with a high risk of
user privacy leakage.

To address this, researches [3, 7, 20, 21, 25, 27, 28, 30, 35, 41]
proposed the task of privacy-preservation recommendation. Among
them, many works [3, 7, 28, 35] regard the recommender side as
trusted and only preserve user data from being attacked by the third
party. This is not reasonable, especially considering the recent news
that Facebook is reported to leak user data1. Based on this, privacy-
preserving recommendation should consider the recommender as
a potential attacker. There are two categories of solutions. The first
category [25, 30] is based on the data protection mechanism, which
adds noise to the raw user data, and only the perturbed data is
reported to the server. The second category [20, 21, 41] approaches
the problem with decentralized matrix factorization. That is, server
and client, i.e., user, communicate with latent representation or
gradient, and with multiple times of parameter updates, users can
learn their embeddings without sending raw data outside.

Despite their effectiveness, we argue that the existing two cate-
gories models still suffer from three major limitations:

• Cannot handle implicit data. For data-protection based meth-
ods, they usually focus on rating data (1-5 rating of movies, for
example) or data with special forms (such as trajectory data with
GPS coordinates). For decentralized matrix factorization, most
researches also only focus on rating data. However, these kinds
of data are not universal. For example, there is prevalent implicit
behavioral data in today’s online systems, which is the most
widely used data for training recommendation models.

• Privacy leakage in recommendation results. In data protec-
tionmethods, recommendation results are calculated at the server
side and then sent to each user’s devices later. As the recommen-
dation results are an estimation for future behaviors, similar to
true behaviors, these estimated behaviors can also be exploited
to infer sensitive information.

1https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html
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• High communication and computation cost. In decentral-
ized methods, there are frequent data transferring and local com-
puting for decentralized methods, which make it not so realistic
to utilize these methods in real-world applications.

In this paper, we approach this unsolved task of designing a
privacy-preserving recommendation for implicit feedbacks with
high application value. We summarize the key challenges as follows.

• Protection mechanism for binary data with privacy guar-

antee. Different from rating or attributes, interaction data is
in the binary form and there is no explicit meaning. With only
two kinds of data form, it is challenging to develop a method to
protect the binary data with privacy guarantee.

• Learning from protected binary data is difficult. It is hard
to extract useful predictive signals from a protected data with
binary form, since 0 and 1 have totally opposite meaning.

• Recommendation with low computation and communica-

tion cost. As user device’s computation and communication
resources are limited, it is challenging to design a recommenda-
tion model with few data or parameter change between server
and device.

To address the above-mentioned challenges, we design a novel
general framework of differential private collaborative filtering
for implicit feedback. We adopt a widely used privacy criterion,
differential privacy [10] in data collection, and each user only re-
ports protected data to the server. We design a novel estimation
method to infer the item similarity from the protected data, serv-
ing as the parameter of our item-based recommendation model.
Finally, item similarity is sent back to the device and combined
with locally stored data to generate recommendation results based
on item-based collaborative filtering. This step only requires few
computation resources, addressing another key challenge.

To summarize, the main contributions of this work are as follows.

• We propose a novel and general framework for different private
collaborative filtering for implicit feedback. Under differential
privacy, privacy leakage is bounded with a strict guarantee. In
addition, this framework only relies on the interaction data and
can be applied to various recommendation scenarios.

• We developed an effective method for extracting item similarity
as the predictive signal from the differentially privately protected
data. Then we combine this signal with locally stored user raw
data to do local collaborative filtering for recommendation.

• We conduct extensive experiments on two real-world datasets
in typical recommendation scenarios where exist high risks of
privacy leakage. Experimental results demonstrate our proposed
DPLCF can effectively outperform the state-of-the-art methods
while protecting user privacy. Further studies show that our
method can still work well for different noise levels.

The remainder of this paper is as follows. We first formulate the
research problem in Section 2. We then elaborate on our proposed
method in Section 3.2. We conduct experiments in Section 4, before
reviewing related work in Section 5. Lastly, we conclude this paper
in Section 6.

2 PRELIMINARIES

We first formulate the problem to solve in this paper and then
recapitulate differential privacy, a widely used privacy protection
mechanism.

2.1 Problem Formulation

Collaborative filtering based recommendation is based on the basic
assumption that users with similar past behaviors will have similar
behaviors in the future [36]. Implicit feedbacks [33] refer to the
interactions between user and item, which are implicit, such as a
click or not. Let 𝑀 and 𝑁 denote the number of users and items,
respectively, we denote the user-item matrix R ∈ R𝑀×𝑁 with a
binary value at each entry defined as follows,

𝑟𝑢𝑖 =

{1, if 𝑢 has interacted with 𝑖;

0, otherwise.
(1)

The task of collaborative filtering from implicit feedbacks is to
obtain a model estimating the likelihood that a user 𝑢 will interact
with an item 𝑖 with the input R ∈ R𝑀×𝑁 .

Existingmethods [19, 24, 33] follow a paradigm that all feedbacks
are collected and uploaded to the server and then a model-based
or memory-based CF model is deployed at the server to perform
recommendation. We argue it is not reasonable since the service
provider is not reliable. Thus, the problem of privacy-preserving
collaborative filtering for implicit feedbacks requires that the user’s
true data can only be stored at the user’s own device. Furthermore,
the recommendation results reflect the user’s future behaviors to
some extent, and therefore the recommendation procedure (gen-
erating results) can also only be conducted at the user side. Last,
massive computation, such as mining and extracting CF signal,
must be centrally performed at the server only, as the computation
resources at the user side are quite limited, and distributed compu-
tation has high communication requirements between server and
clients.

In brief, the objective of our task is to obtain a model estimat-
ing the likelihood that a user 𝑢 will interact with an item 𝑖 with
following rules:

• Rule 1: Users’ true historical interactions can only be stored at
users’ devices locally.

• Rule 2: Users’ uploaded data should be protected under the
differential privacy guarantee.

• Rule 3: Users’ recommendation results can only be inferred at
users’ devices locally.

2.2 Differential Privacy

Differential privacy [10] is originally designed to protect each indi-
vidual’s data when releasing aggregated information of a database.
A fundamental requirement of differential privacy is that the query
of the aggregated information is negligibly affected when a single
user’s data is modified. Specifically, give two adjacent databases 𝐷
and 𝐷 ′, among which there is only one different value of a single
individual, the probability that a query returns the same amount
for these two databases should be within a bound of 𝜖 . To achieve
differential privacy, a typical solution is to add controlled random
noise, such as a noise drawn from Laplace distribution to the query
output. The most significant advantage of differential privacy is
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that a mechanism can be proven to be differentially private inde-
pendently from any side information that the adversary attacker
might possess.

There is an equivalent criterion for differential privacy [12].
Given 𝐷 and 𝐷 ′, if a mapping function𝑀 satisfies that the output
of the𝑀 , with the database as the input, belongs to a certain subset
of the range of𝑀 , formulated as follows,

𝑃𝑟 [𝑀 (𝐷) ∈ 𝑆]

𝑃𝑟 [𝑀 (𝐷 ′) ∈ 𝑆]
≤ 𝑒𝜖 ,∀𝑆 ∈ 𝑅𝑎𝑛𝑔𝑒 (𝑀), (2)

then the mapping function𝑀 satisfies differential privacy.
In the scenario where the recommendation service provider is

not reliable, or the user does not agree with providing own histor-
ical behavior for penalization, a data collection method based on
differential privacy can decouple data collection and recommen-
dation. To be specific, although the service provider (adversary
attacker) has some prior knowledge, the privacy leakage is strictly
bounded by differential privacy.

3 SYSTEM OVERVIEW AND METHOD

3.1 System Overview

To preserve user data fundamentally to build a recommender sys-
tem, we propose a novel design of the framework of differentially
private collaborative filtering for implicit feedbacks when the rec-
ommender is not trusted. In our framework, we integrate the ad-
vantages of two mainstream privacy-preserving solutions, data pro-
tection [25, 30] and decentralized recommendation [20, 21, 27, 41].
Specifically, it can be divided into three steps, as illustrated in Fig-
ure 1.

3.1.1 Data Collection. At the first step shown in Figure 1, for
each user, we adopt a random perturbation step as the data protec-
tion mechanism. Take user 𝑢 as an example, we apply a random
function 𝑓 on each user’s historical behaviors y𝑢 = { 𝑗 |𝑦𝑢 𝑗 = 1}
to obtain obfuscated images ŷu = 𝑓 (y𝑢 ). Here we use differential
privacy as the guarantee to ensure privacy is protected when an
attacker wants to infer whether an uploaded interaction is real or
fake.

Input: Original user-item historical behaviors y𝑢

Output: Obfuscated user-item historical behaviors ŷ𝑢

3.1.2 Data Exploitation. At the second step, the server collects
obfuscated interactions from each user and merges them into an
obfuscated interaction matrix 𝑅2. With the collected matrix, we
develop an effective estimation model to exploit the noisy data and
extract useful predictive signals. Shortly, in this step, we obtain
model parameters that can be used to generate recommendation
results.

Input: Obfuscated user-item interaction matrix 𝑅.
Output: Parameters of a recommendation model.

3.1.3 Recommendation. At the third step, as mentioned above,
recommendation results, to some extent, is the estimation for users’
future behaviors. Thus, we abandon the traditional manner that
the server generates recommendation results centrally, and we
send the learned model parameters to each user. Then each user’s
device uses the locally stored raw behavioral data as the input of
the recommendation model, and further, obtain the predicted score
for each item candidate.

Input: Parameters of a recommendation model and the original
user-item historical behaviors y𝑢 .

Output: Locally generated recommendation results for each
user 𝑅𝑒𝑐𝐿𝑖𝑠𝑡 (𝑢).

3.2 The Proposed Method

Under the proposed general framework, we propose a method
DPLCF, composed of three phases, namely obfuscated reports up-
loading, item-based neighborhood finding, and local recommenda-
tion computing.

3.2.1 Obfuscated Reports Uploading (Client Side). Recommender
systems rely on users’ historical behavior for interest estimation.
In traditional settings, users’ devices upload users’ true behaviors
without any processing [34]. Here we replace the direct upload-
ing with an obfuscated version. Since implicit feedbacks only have
binary values, existing methods for adding continuous noise on
rating data [30] cannot be used in our task. To protect the discrete

2Note that ŷ𝑢 is the transpose of the 𝑢-th row of �̂�
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behavioral data, we adopt a random bit flipping technique under
the differential privacy guarantee.

Given the historical interaction record of user 𝑢, denoted as
𝑅 [𝑢,:] , which is a 𝑁 -dimension bit vector, each user needs to upload

an obfuscated image 𝑅 [𝑢,:] . For each bit 𝑅𝑢𝑖 in the bit vector, if it’s
1, we maintain its original value with probability 𝑝 and flip it with
probability 𝑝 = 1 − 𝑝; for 0, we flip it with probability 𝑞, and with
probability 𝑞 = 1 − 𝑞 we maintain its original value as 0. Namely,
given a random variable 𝑟 sampled from the uniform distribution
U[0, 1], we have

𝑅𝑖 𝑗 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if 𝑟 ≤ 𝑝 and 𝑅𝑖 𝑗 = 1;
0, if 𝑟 > 𝑝 and 𝑅𝑖 𝑗 = 1;
0, if 𝑟 > 𝑞 and 𝑅𝑖 𝑗 = 0;
1, if 𝑟 ≤ 𝑞 and 𝑅𝑖 𝑗 = 0.

(3)

This flipping mechanism is presented at the top of Figure 2.
From Theorem 3.1 of [38], this random bit flipping mechanism

satisfies 𝜖-differential privacy for the criteria in (2) with
𝑝
𝑞 ≤ 𝑒𝜖 .

Note that here the privacy is defined for the existence of every in-
teraction record. According to the definition of differential privacy,
the presence of the absence of a single interaction record would not
have a huge impact on the output of this mechanism [10]. Every
user adopted this technique to derive an obfuscated bit vector. Then
the obfuscated report is uploaded to the server.

3.2.2 Item-based Neighborhood Finding (Server Side). With each
user reporting the obfuscated historical behaviors, these noisy vec-
tors can be merged at the server to build a noisy interaction matrix.
Traditional latent factor models, such as probabilistic matrix factor-
ization [24] , Bayesian personalized ranking [33], or neural matrix
factorization [19], use a vector in latent space to represent each
user’s interests. However, the learning of user vectors is highly sen-
sitive to each data sample (i.e. interaction) [45]. Since the collected
matrix at the server has been processed by the random flipping,
there is a lot of false negative or false positive sample, which largely
worsens the learning procedure of latent factor models. On the other
hand, the locally stored user vector cannot be further utilized after
the user side receives the user embedding sent from the server side.
In short, the traditional factorization model for implicit data can-
not address the challenge in learning from the obfuscated binary
interaction matrix.

To learn from the obfuscated interaction matrix, we address the
challenges from another perspective. Since the recommendation
is performed in each user’s device locally, we utilize item-based
collaborative filtering [36] to serve as the model for the server side.
To be more precise, the key part of the item-based CF model is to get
the similarity score for each item pair; then, the item-similarity can
be combined with user history to trigger the recommendation list
(historical interacted items can serve as the item-to-item trigger).
We propose an estimation-based method to distill useful similarity
signals as much as possible.

Given 𝑉𝑖 = 𝑅 [:,𝑖 ] , i.e. the 𝑖-th column of the real interaction
matrix, recall that the Jaccard similarity between item 𝑖 and 𝑗 can
be calculated as follows,

𝑠𝑖𝑚(𝑖, 𝑗) =
|𝑉𝑖 ∩𝑉𝑗 |

|𝑉𝑖 ∪𝑉𝑗 |
. (4)

Therefore, the key of estimating item similarities is about providing
an accurate estimation model for the cardinality of set 𝑉𝑖 ∩ 𝑉𝑗
and 𝑉𝑖 ∪ 𝑉𝑗 . Take two obfuscated images 𝑉1 and 𝑉2 as examples,
which are derived from raw bit vectors𝑉1 and𝑉2 using the random
flipping mechanism, we denote the number of position 𝑠 where
𝑉1 [𝑠] = 𝑖 and 𝑉2 [𝑠] = 𝑗 for 𝑖, 𝑗 ∈ {0, 1} by 𝑛𝑖 𝑗 , and similarly𝑚𝑖 𝑗

for its counterpart of obfuscated records 𝑉1 and 𝑉2. Following the
manner in [38], the cardinality of set union and intersection can be
estimated using a mean-field model as follows,

⎡⎢⎢⎢⎢⎢⎢⎣

𝐸 (𝑚00)

𝐸 (𝑚01)

𝐸 (𝑚10)

𝐸 (𝑚11)

⎤⎥⎥⎥⎥⎥⎥⎦
= 𝐴

⎡⎢⎢⎢⎢⎢⎢⎣

𝑛00
𝑛01
𝑛10
𝑛11

⎤⎥⎥⎥⎥⎥⎥⎦
, (5)

where

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑞2 𝑝𝑞 𝑝𝑞 𝑝2

𝑞𝑝 𝑞𝑝 𝑝𝑞 𝑝𝑝
𝑞𝑝 𝑝𝑞 𝑞𝑝 𝑝𝑝
𝑞2 𝑝𝑝 𝑞𝑝 𝑝2

⎤⎥⎥⎥⎥⎥⎥⎦
. (6)

By taking the inversion of the matrix, we can derive four unbi-
ased estimators for 𝑛𝑖 𝑗 as follows,

⎡⎢⎢⎢⎢⎢⎢⎣

𝑛00
𝑛01
𝑛10
𝑛11

⎤⎥⎥⎥⎥⎥⎥⎦
= 𝐴−1

⎡⎢⎢⎢⎢⎢⎢⎣

𝑚00
𝑚01
𝑚10
𝑚11

⎤⎥⎥⎥⎥⎥⎥⎦
. (7)

Recall that the length of every bit vector is𝑀 (i.e., number of users),
𝑛00 has the following relationship with |𝑉1 ∪𝑉2 |,

𝑛00 = 𝑀 − |𝑉1 ∪𝑉2 | . (8)

Then |𝑉1 ∪𝑉2 | can be estimated as,

�|𝑉1 ∪𝑉2 | = 𝑀 − 𝑛00 . (9)

Meanwhile,𝑛11 directly serves as an estimator of |𝑉1∩𝑉2 | as follows,

�|𝑉1 ∩𝑉2 | = 𝑛11 . (10)

After obtaining the similarity matrix, the neighborhood can be
easily computed by finding items with top-K highest similarity
values. Then the server broadcasts the neighborhood of each item
(with corresponding similarity values) to every user.

Recall that given a privacy budget 𝜖 , only the ratio
𝑝
𝑞 is decided

as 𝑒𝜖 . To find the exact values of 𝑝 and 𝑞, another condition is still
required. One solution taken by most related works is using sym-
metric flipping, where 𝑝 = 1 − 𝑞. The word “symmetric” indicates
that the probability of flipping an “1” to a “0” is the same as that
in the reverse way. In this way, the inversion of matrix 𝐴 is also
symmetric and easy to calculate.

Another solution is about using asymmetric flipping, where
𝑝 ≠ 1 − 𝑞. Although 𝑝 can take any arbitrary value among [ 12 , 1]
theoretically, it is not always easy to derive a neat analytical solution
of 𝐴−1. Therefore, here we consider an extreme case where 𝑝 = 1,
and consequently, 𝑞 = 𝑝

𝑒𝜖 . It still satisfy 𝜖-differential privacy for
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the criteria in (2). Then 𝐴−1 can be easily calculated as follows,

𝐴−1 =
1

1 − 𝑞

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1−𝑞 0 0 0

0 1 0 0
0 0 1 0

−
𝑞2

1−𝑞 0 −𝑞 1 − 𝑞

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

Both two kinds of flipping manners satisfy the differential pri-
vacy and the choice can be considered as a hyper-parameter, of
which the optimal setting may be different for different datasets.
We name the method with asymmetric flipping as DPLCF-AP and
the method with symmetric flipping as DPLCF-SP.

3.2.3 Local Recommendation Computing. After the server ob-
tains the item-item similarity matrix at the second stage, then at the
third stage of our proposed framework, recommendation results
are calculated locally to protect the privacy further. For each user,
the true interaction history is stored in the user device, and receive
an item-item similarity matrix.

We first find the neighborhood KNN( 𝑗) for every item 𝑗 by fil-
tering out number_of_neighbour items with top highest similarity
𝑠𝑖𝑚( 𝑗, ·). Then the score of a candidate 𝑖 is derived as a weighted
sum of interaction records within the neighborhood,

𝑠 (𝑢, 𝑖) =
∑

𝑗 ∈KNN(𝑖)

𝑠𝑖𝑚(𝑖, 𝑗) · 𝑅𝑢 𝑗 , (12)

where 𝑠𝑖𝑚(𝑖, 𝑗) is the similarity measure between item 𝑖 and 𝑗 ,
which can be cosine similarity, Jaccard similarity, or others. In this
paper, we use Jaccard similarity as the similarity metric, so that the
estimation model in the second stage can be directly utilized.

3.2.4 Complexity Analysis. For the user side, the local device is
involved in Step 1 and Step 3. For the first step, the computation
complexity and communication cost of data protection are linear
with the interaction number of each user; for the third step, the
computation complexity is O(𝑙𝑜𝑔(𝑁 ) ∗number_of_neighbour). The
server side is involved in Step 2. At this step, the computation
complexity is O(|𝑅 |), linear with the number of all interactions.

For decentralized algorithms, one primary concern is the com-
munication efficiency across clients or between clients and servers,
since high time delay will cause bad user experience and algorithms’
low performance. In our proposed solution, there is one uploading
and one downloading procedure for the whole recommendation,
which is far more efficient than some existing decentralized meth-
ods which require multiple times’ data or model update. Another
concern is the computation consumption at local devices since the
computational ability of users’ devices is always limited. In our
proposed DPLCF, this key limitation is well addressed.

4 EXPERIMENTS

We conduct experiments on two real-world datasets to answer the
following research questions.

• RQ1: How does our proposed method perform compared with
the state-of-the-art recommendation methods?

• RQ2: How does the noise level in data protection affect our
proposed method and other methods?

• RQ3: How do the hyper-parameters affect recommendation per-
formance for our proposed method?

Table 1: Statistics of the datasets

dataset #Users #Items #Interactions Sparsity

AppUsage 871 1,682 51,935 96.455%
MovieLens 74,529 9,953 18,848,812 97.459%

In what follows, we first describe the experimental settings and
then answer the above three research questions.

4.1 Experimental Settings

4.1.1 Datasets and Evaluation Protocol. We experimented with
two real-world datasets from themostmainstream recommendation
services.

• AppUsage Dataset. This dataset is the record of users’ mobile
App usage, released in [44]. Each entry in this record contains
an anonymized user identification, timestamps, and an ID of the
used mobile App. This dataset is quite suitable for our task since
App usage data is private for users, and a lot of App service
providers collect such data for personalized recommendations.

• MovieLensDataset.This is a famous publicmovie rating dataset3.
Although ratings of movies are typically considered insensitive,
they may be exploited to infer some sensitive information such as
health condition and political inclinations [4]. Since the original
MovieLens-20M dataset is quite large, to fit it into the memory,
we only retain users and items with at least 60 interaction records.
We convert each rating into an interaction to build an implicit
feedback dataset.

The statistics of final evaluation datasets are summarized in
Table 1. In the evaluation stage, given a user in the testing set,
each algorithm ranks all items that the user has not interacted with
before. We applied the widely used leave-one-out technique [18, 19]
to obtain the training set and test set. Specifically, for each user,
choose the last-interacted item as the test item. We then adopted
two popular metrics, HR and NDCG, to judge the performance of
the ranking list:

• HR@K: Hit Ratio (HR) measures whether the test item is con-
tained by the top-K item ranking list (1 for yes and 0 for no).

• NDCG@K: Normalized Discounted Cumulative Gain (NDCG)
complements HR by assigning higher scores to the hits at higher
positions of the ranking list.

4.1.2 Baselines. We compared our method with four baselines,
which can be divided into two groups according to whether the
recommendation manner is centralized or decentralized.

The first group consists of decentralized methods, for which
prediction scores are calculated in the user side when obtaining
recommendation results.

• LCF-AP This is a noise-unaware method, that removes the esti-
mation part in our DPLCF-AP model. In other words, it directly
calculates the item similarity with obfuscated interaction data
as [36].

• LCF-SP This is a noise-unaware method when we set 𝑝 = 1 − 𝑞
in Eqn (3). The 0-to-1 and 1-to-0 flipping is symmetric, and we
name it as LCF-SP (local collaborative filtering with symmetric

3https://grouplens.org/datasets/movielens/
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flipping). That is, it removes the estimation part in our DPLCF-SP
model.

For the second group, we use state-of-the-art matrix factorization
models, BPR [33] and GMF [19], as the centralized recommendation
methods to compare with. For these two methods, data is merged
in the server, and recommendation results are generated centrally.
Thus, they cannot completely protect user privacy.

• BPR-MF [33] Bayesian personalized ranking formatrix factoriza-
tion (BPR-MF) is the state-of-the-art model matrix factorization
method for implicit feedback. It utilizes a pairwise loss function
to maximize the margin between positive samples and negative
samples.

• GMF This is one of three variants proposed in [19], which ex-
tends traditional matrix factorization by utilizing a vector to
assign various weights to different dimensions before adopting
the inner product.

We also report the recommendation performance of ItemCF [36]
without protectionmechanism in data collection, which can achieve
the upper-bound performance of item-based collaborative filtering.
Thus, we name it LCF-UB.

It is worth mentioning that existing recommendation methods
with privacy-preserving data collection [25, 30] cannot be compared
in this paper, as these works are only suitable for rating data or
data in some special forms.

4.1.3 Parameter Settings. We choose the size of the neighbor-
hood as 10 for the AppUsage dataset and 20 for MovieLens dataset
considering the scale of these two datasets. Although further fine-
tuning of this parameter can improve these models’ overall perfor-
mances, the optimal choice varies with different amounts of privacy
budget and diverse application scenarios.

For two traditional centralized models, BPR-MF and GMF, we
tune the hyper-parameters, including learning rate, regularization
term, and number of latent factors through cross-validations. The
grid search range for the optimal learning rate is [0.001, 0.0005, 0.0001],
together with [0.001, 0.0001, 0] for regularization term and [4, 8, 16]
for the number of latent factors. The batch size and the negative
sampling ratio are fixed as 1024 and 4, respectively, which are com-
mon settings in existing researches [19, 33].

4.2 Performance Comparison (RQ1)

We first compare the top-𝐾 recommendation performance with the
baselines. We investigate the top-𝐾 performance with setting 𝐾
from 2 to 10, as we found results are not so stable when setting 𝐾 to
1. Note that we sampled 99 unobserved items for each interaction to
build the ranking list, which is a widely accepted setting [19]. This
operation makes the values of the performance metric of different
datasets more friendly.

We present the performance in Table 2, 3, 4 and 5 for our DPLCF
methods and baseline methods. All results are calculated as the
averaged values of repetitive experiments. From the results, we
have the following observations:

• DPLCF achieves the best performance.Our proposed DPLCF
method obtains the best performance in terms of HR@K and
NDCG@K as compared to all baselines. The one-sample paired
t-tests indicate the all improvements are statistically for 𝑝 < 0.05,

which makes sure these results are reliable. For the AppUsage
dataset, with asymmetric flipping, our DPLCF-AP can achieve the
best performance compared with baselines. Specifically, DPLCF-
AP can outperform the best baseline LCF-AP by 2.74% to 6.18%
in HR and 1.61% to 3.56% in NDCG. For the MovieLens dataset,
with symmetric flipping, our DPLCF-SP can achieve the best
performance compared with baselines. Specifically, DPLCF-SP
can outperform the best baseline LCF-AP by 1.04% to 14.77%
in HR and 6.82% to 15.49% in NDCG. In short, for the utilized
datasets, choosing a proper flipping manner can obtain the best
performance.

• Choosing asymmetric or symmetric noise is determined

by the dataset As we can observe, DPLCF-AP performs best
on the AppUsage dataset, and DPLCF-SP performs best on the
MovieLens dataset. This can be explained that datasets’ charac-
teristics play significant roles, including scale, sparsity, etc. For
the AppUsage dataset, the interaction is sparser, which means
users’ positive records are fewer. Thus, an asymmetric noise that
does less damage to positive records is a better flipping manner.

• Traditional centralizedmethod is not suitable for our task.

For BPR-MF and GMF, which are two widely-used competitive
matrix factorization models, the recommendation performances
are very poor at the AppUsage dataset. For MovieLens datasets,
as there are too many samples in the merged protection interac-
tion matrix, we do not report the results after struggling with
the tunning for a long time. Note that this is also a severe short-
coming since the complexity of these centralized methods is
highly related to the number of positive records. Thus, when
we use privacy-protection mechanisms to generate many fake
positive records, these methods have very low application value
due to the efficiency limit. On the other side, as mentioned before,
the centralized recommendation manner for BPR-MF and GMF
still suffers from privacy concerns, even if the data for training
BPR-MF or GMF has been protected with differential privacy.
This is because the recommendation results reflecting user in-
terests are accessible for the server while our proposed DPLCF
perform recommendation locally. The server side only possesses
a user-irrelevant item-similarity matrix.

• Privacyhas a various influence onutility for different datasets

As for experimental results in Table 2, 3, 4 and 5, we set the noise
level 𝜖 to 1.0, which is a widely used value in researches on differ-
ential privacy. However, with different characteristics of datasets,
such as various long-tail effects among different datasets, the
utility with 𝜖 = 1.0 is diverse. We can observe that for the Moive-
Lens datasets, the performance gap between the optimal method
without any privacy protection and our DPLCF is small. For the
AppUsage dataset, the gap is relatively large, and other privacy-
preserving methods are the same. The relatively large gap does

not mean a failure of our DPLCF since users’ data is collected
privately, and recommendation results are inferred locally. This
interesting phenomenon shows how data characteristics influ-
ence the trade-off between privacy and utility, and we leave it as
future work.
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Table 2: HR Performance comparison among methods on AppUsage dataset

TopK 2 3 4 5 6 7 8 9 10
LCF-UB 0.5885 0.6989 0.7609 0.7977 0.8195 0.8414 0.8586 0.8655 0.8713
BPR-MF 0.2241 0.2621 0.2966 0.3356 0.3552 0.3839 0.4138 0.4483 0.4770
GMF 0.2218 0.2667 0.3092 0.3368 0.3644 0.3966 0.4230 0.4414 0.4678

LCF-AP 0.3345 0.3897 0.4368 0.4678 0.4977 0.5207 0.5471 0.5609 0.5839
LCF-SP 0.3080 0.3655 0.4080 0.4368 0.4747 0.4977 0.5207 0.5333 0.5517

DPLCF-AP 0.3448 0.4138 0.4517 0.4874 0.5184 0.5437 0.5621 0.5770 0.5943

DPLCF-SP 0.2264 0.2609 0.2851 0.2977 0.3149 0.3299 0.3425 0.3575 0.3747

Table 3: NDCG Performance comparison among methods on AppUsage dataset

TopK 2 3 4 5 6 7 8 9 10
LCF-UB 0.5172 0.5724 0.5991 0.6134 0.6211 0.6284 0.6339 0.6359 0.6376
BPR-MF 0.1949 0.2138 0.2287 0.2438 0.2508 0.2603 0.2698 0.2801 0.2885
GMF 0.1930 0.2154 0.2337 0.2444 0.2542 0.2649 0.2733 0.2788 0.2865

LCF-AP 0.3039 0.3315 0.3518 0.3638 0.3745 0.3821 0.3905 0.3946 0.4013
LCF-SP 0.2792 0.3079 0.3263 0.3374 0.3509 0.3585 0.3658 0.3696 0.3749

DPLCF-AP 0.3088 0.3433 0.3596 0.3734 0.3844 0.3929 0.3987 0.4032 0.4081

DPLCF-SP 0.2103 0.2276 0.2380 0.2428 0.2490 0.2540 0.2580 0.2625 0.2674

Table 4: HR Performance comparison among methods on MovieLens dataset

TopK 2 3 4 5 6 7 8 9 10
LCF-UB 0.4675 0.5695 0.6431 0.7006 0.7446 0.7804 0.8081 0.8318 0.8505
LCF-AP 0.3662 0.4454 0.5060 0.5541 0.5935 0.6280 0.6563 0.6806 0.7030
LCF-SP 0.3661 0.4430 0.4999 0.5440 0.5802 0.6096 0.6354 0.6577 0.6763

DPLCF-AP 0.3513 0.4274 0.4880 0.5351 0.5757 0.6126 0.6424 0.6711 0.6962
DPLCF-SP 0.4203 0.5003 0.5559 0.5969 0.6271 0.6520 0.6716 0.6877 0.7000

Table 5: NDCG Performance comparison among methods on MovieLens dataset

TopK 2 3 4 5 6 7 8 9 10
LCF-UB 0.4122 0.4633 0.4950 0.5172 0.5329 0.5448 0.5536 0.5607 0.5661
LCF-AP 0.3234 0.3629 0.3891 0.4077 0.4217 0.4332 0.4421 0.4494 0.4559
LCF-SP 0.3241 0.3625 0.3871 0.4041 0.4170 0.4268 0.4349 0.4417 0.4470

DPLCF-AP 0.3110 0.3491 0.3752 0.3934 0.4079 0.4201 0.4296 0.4382 0.4454
DPLCF-SP 0.3735 0.4135 0.4374 0.4533 0.4641 0.4724 0.4786 0.4834 0.4870

4.3 Impact of Noise Level (RQ2)

In the above experiments, we set the noise level of differential
privacy, 𝜖 , to 1.0. To understand how the noise level affects the
recommendation performance, we choose the AppUsage dataset
for further investigation. We choose two widely accepted values of
𝐾 = 5 and 10, to present the ranking performance of our methods
and baseline methods. We set the range of 𝜖 to a range from 0.5 to
1.0 with a step size of 0.1. We present the experimental results in
Figure 3, respectively. From the results, we can observe that our
DPLCF always achieves the best performance on all top-K metrics
for different 𝜖 among two datasets. As for the most widely used
range, 0.5 to 1.0, of 𝜖 , DPLCF’s recommendation performance is
steadily better than other methods. When the noise level becomes
extremely large (corresponding to a very small 𝜖 , such as 0.5), there

is a performance decrease in HR@10. We analyzed the obfuscated
data and found that when setting 𝜖 to 0.5, the reported protected
data contains a very large number of items for each user. This
makes users’ reported records lose diversity. It further makes the
estimated item-similarity not so accurate, which causes the per-
formance to decrease. Nevertheless, our method still achieves the
best performance under other metrics. It is also worth mentioning
that metrics with smaller topK are more significant, and NDCG is
a more strict metric compared with HR.

In summary, with a reasonable and acceptable range of 𝜖 , from 0.5
to 1.0, our DPLCF can steadily outperform other baseline methods,
verifying its effectiveness in real-world applications.
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Figure 3: Top-K recommendation performance comparison on the AppUsage dataset (K is set to 5 and 10 and 𝜖 is set to 0.5 to
1.0).

Table 6: (a) NDCG@5 Performance comparison among methods on MovieLens dataset with different neighbor size (b)

NDCG@10 Performance comparison among methods on MovieLens dataset with different neighbor size

(a)

#Neighbor 20 30 40 50
LCF-AP 0.4077 0.4170 0.4212 0.4245
LCF-SP 0.4041 0.4156 0.4195 0.4262

DPLCF-SP 0.4533 0.4517 0.4500 0.4491

(b)

#Neighbor 20 30 40 50
LCF-AP 0.4559 0.4666 0.4717 0.4755
LCF-SP 0.4470 0.4612 0.4666 0.4751

DPLCF-SP 0.4870 0.4872 0.4861 0.4859

4.4 Impact of Hyperparameters (RQ3)

To understand how hyper-parameters impact the performance, we
focus on the number of neighbors in item-based collaborative filter-
ing. We choose MovieLens dataset and present the recommendation
performance setting the number from 20 to 50. The NDCG@5 and
NDCG@10 recommendation results are shown in Table 6. From
the results, we can observe that our DPLCF-SP can achieve the best
performance for all settings. Note that in the stage of local recom-
mendation, a larger number of neighbor means higher computation
cost. Considering this stage’s computation is employed in users’
devices, the results that our DPLCF-SP can achieve a large perfor-
mance improvement, further verify its effectiveness in a real-world
scenario.

In conclusion, we conduct extensive experiments on two real-
world datasets, verifying that our proposed DPLCF can outperform
existing methods while protecting user privacy when choosing a
proper flipping manner. Further studies demonstrate our model still
works well for different noise levels.

5 RELATEDWORK

5.1 Privacy-preserving Recommendation

Recommender systems are with a close relation to users’ personal
information or demographics. Some early researches [1, 11] have
shown that those user preferences not so sensitive, such as ratings
of movies or App usage records, can still be utilized to infer sensitive
information, such as health condition or political inclinations. This
drives the rapid development of privacy-preserving recommenda-
tion. Generally speaking, existing researches can be categorized
into two groups according to whether the recommender is trusted
or not.

Trusted Recommender For privacy-preserving recommenda-
tion of which the recommender itself is trusted, the adversary is
defined as the attacker who wants to infer private user informa-
tion from the released model (user embedding, for example) or
recommendation results. For protecting the trained model, some
works introduced privacy-preserving mechanism in training mod-
els [7, 17, 26, 28, 46, 47]. Chen et al. [7] presented an MF based
model which splits latent user vectors into local and global parts
to protect user privacy in the task of point-of-interest recommen-
dation. Mcsherry et al. [28] introduced differential privacy during
the training of the MF model via adding noise to latent factors.
For the latter, some works applied protection mechanism to final
recommendation results [3, 35]. Riboni et al. [35] proposed the use
of differential privacy to extract statistics about users’ preferences
and then provided recommendation from those statistics. Berlioz et
al. [3] applied perturbation to MF’s output, the recommendation
results, to meet the criterion of differential privacy.

Distrusted Recommender For the privacy-preserving recom-
mendation of which the recommender is not trusted, the recom-
mendation service provider is regarded as the potential attacker.
Thus, the problem is to keep the raw user data not accessible for
the recommender. There are two types of solutions to this problem
in existing researches. There are works [25, 30] adopting protection
mechanism when collecting data for recommendation. Li et al. [25]
studied privacy-preserving data collection for point-of-interest rec-
ommendation. The authors first transformed the raw user trajectory
into a bipartite graph and then extracted the association matrix to
inject carefully calibrated noise to meet differential privacy. This
matrix is further used for recommendation. Plat et al. [30] proposed
to adopt data disguising for each user’s rating data before uploading
to the server. Then the disguised rating data is merged at the server
for SVD-based recommendation. However, these researches only
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take rating data or data in particular form into consideration. In
other words, these methods cannot be applied to implicit feedback
data.

Another solution is to perform decentralized recommendation.
Unlike in a centralized recommendation of which the user side only
provides data, decentralized recommendation works in a coopera-
tive manner (user-server or multiple users). There are some works
utilizing distributed matrix factorization [16] to perform decentral-
ized recommendation [20, 21, 27, 41]. User privacy is protected to
some extent, with only transferring gradient or parameter between
the user and the server side. However, this distributed MF based
methods are only suitable for rating data. Recently, Chen [8] defined
the decentralized recommendation as a task of federated learning.
That is, each user is considered as a federation not willing to share
raw data but to hope to benefit from others. A meta-learning based
method is utilized to solve the task. In this paper, we only use CF
data, and this method can not be applied as it relies on attributes to
transfer knowledge across federations.

Federated learning [23, 37] is a machine learning technique al-
lowing multiple clients (so-called federation) take participants in
the model training stage without directly sharing data. However,
it is required in federated learning that there are some homoge-
neous attributes across these clients’ data. In our task for a privacy-
preserving recommendation for implicit data, for each client, only
discrete interaction data is used for recommendation. Such discrete
0/1 data is hard to transfer knowledge across clients and there-
fore, we federated learning based methods cannot be applied in
our task. There are also some works [14, 15] study a similar prob-
lem, privacy-preserving cross-domain recommendation, of which
multiple service providers share data to enhance recommendation.

In our paper, we also follow the more strict assumption that
the recommender is not trusted. We use differential privacy for
protecting data and decentralized recommender manner for further
protecting privacy. In short, our model is featured with advantages
of two mainstream privacy-preserving recommender systems with
distrusted recommenders.

5.2 Differentially Private Data Collection

Differential privacy is widely used in data collection. Different
from the application in data release [6, 9, 39], applying differential
privacy to data collection aims to protect each user’s data, rather
than in an aggregated manner. Some works combine differential
privacy with location privacy to collect user’s location data while
preserving privacy [2, 5]. Some other works proposed to utilize
differential privacy to crowd-sourcing [13, 40] and data with more
complicated form [42, 43]. There are some works extending data
collection into data sharing across multiple data owners with the
help of differential privacy [29, 32].

Local differential privacy (LDP) [17, 22, 31], is a differential pri-
vacy protocol used to collect user data. Readers may confuse LDP
with our proposed framework, especially the data collection step.
Actually, our framework belongs to DP-based models rather than
LDP-based ones. To be precise, LDP aims to preserve user privacy
by reducing the impact of the participation of a certain user. It usu-
ally requires more effort to provide a privacy guarantee for users
with many interaction records. Different from this, our proposed

model aims to reduce the impact of a certain interaction. In the
recommendation task, removing the effects of all records from a
user is too harsh, making it impossible to provide personalized
recommendations. Therefore, we adopt the DP-based notation to
preserve data utility as much as possible.

6 CONCLUSION

In this paper, we present a new privacy-preserving solution for
building recommendation for implicit collaborative filtering, which
considers the privacy issue in both data collection and recommen-
dation results inferring. We conduct extensive experiments on
two real-world datasets, demonstrating that our proposed DPLCF
method can improve the recommendation performance almost on
all the metrics while preserving user privacy. To the best of our
knowledge, this is the first work to approach a general privacy-
preserving recommendation framework for implicit feedbacks with
a differential privacy guarantee, considering both privacy-preserving
data collection and privacy-preserving decentralized recommenda-
tion.
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