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ABSTRACT
Recently multi-modal recommender systems have been widely ap-
plied in real scenarios such as e-commerce businesses. Existing
multi-modal recommendation methods exploit the multi-modal
content of items as auxiliary information and fuse them to boost
performance. Despite the superior performance achieved by multi-
modal recommendation models, there’s currently no understanding
of their robustness to adversarial attacks. In this work, we first
identify the vulnerability of existing multi-modal recommenda-
tion models. Next, we show the key reason for such vulnerability
is modality imbalance, i.e., the prediction score margin between
positive and negative samples in the sensitive modality will drop
dramatically facing adversarial attacks and fail to be compensated
by other modalities. Finally, based on this finding we propose a
novel defense method to enhance the robustness of multi-modal
recommendation models through modality balancing. Specifically,
we first adopt an embedding distillation to obtain a pair of content-
similar but prediction-different item embeddings in the sensitive
modality and calculate the score margin reflecting the modality vul-
nerability. Then we optimize the model to utilize the score margin
between positive and negative samples in other modalities to com-
pensate for the vulnerability. The proposed method can serve as a
plug-and-play module and is flexible to be applied to a wide range
of multi-modal recommendation models. Extensive experiments on
two real-world datasets demonstrate that our method significantly
improves the robustness of multi-modal recommendation models
with nearly no performance degradation on clean data.
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1 INTRODUCTION
Recent years have witnessed the wide application of multi-modal
recommendation in many real-world scenarios such as micro-video
platforms[23, 24, 32] and e-commerce businesses[4, 22, 27]. Differ-
ent from traditional recommendation mainly utilizing historical
interactions to predict user preference[16, 19, 36], multi-modal
recommendation methods introduce rich item-side multi-modal
content information (i.e., visual, acoustic, and textual features) to
gain more informative user and item representations[35, 38, 39, 44].
Existingmulti-modal recommendationmethodsmainly concentrate
on the fusion strategies to get the multi-modal feature and how
to integrate multi-modal information with the recommendation
framework. Up to now, there have been many efficient methods
achieving remarkable recommendation performance, among which
the supervised-learning methods incorporating Graph Neural Net-
works (GNNs) show great success in modeling interactions between
users and itemswithmulti-modal information[2, 35, 38, 39]. Besides,
there have been self-supervised learning approaches proposed to
learn user and item representations by exploring the underlying
relations between different modalities[31, 41, 46].

Nevertheless, existing methods including both supervision man-
ners commonly concentrate on how to utilize different modality in-
formation to enhance recommendation performance, while paying
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less attention to their adversarial robustness, i.e., whether multi-
modal recommendation models can be easily fooled by slight per-
turbations of the multi-modal input content. Investigation into this
issue is imperative and inspiring to develop more reliable real-world
recommender systems. Although the robustness of recommender
systems is a widely discussed topic, most works focus on study-
ing the robustness of collaborative filtering-based recommendation
models[5, 7, 34] and visual content-based models[1, 25, 29]. So far
there’s no understanding of the adversarial robustness of multi-
modal recommendation models, which is actually unforeseeable
due to the complex relation between different modalities.

To tackle this problem, in this work, we first identify the vulnera-
bility of existing multi-modal recommendation models by injecting
slight adversarial perturbations into the multi-modal input features.
The attacking results demonstrate that multi-modal recommenda-
tion models without any defense will suffer a great performance
decrease under attack. Next, we explore the reason behind the vul-
nerability of these models and reveal that the imbalance of score
margin from different modalities under attacks is the key reason
for the vulnerability. Specifically, we find that the score margin
between positive and negative samples in certain modality (e.g.,
the visual modality) will drop fiercely, showing high sensitivity to
the adversarial attacks. By comparison, some other modalities are
less sensitive to the attack (e.g., the textual modality), however, the
limited score margin in these modalities can not compensate for
the large score drop in the sensitive modality, which we callmodal-
ity imbalance. Therefore, although multi-modal recommendation
models possess rich modality information to make predictions, they
still fail to defend against adversarial attacks due to the issue of
modality imbalance. Finally, based on our finding we propose a
novel defense method to enhance the robustness of multi-modal
recommendation models through modality balancing. To be spe-
cific, we first conduct an embedding distillation to obtain a pair of
content- similar but prediction-different item embeddings in the
sensitive modality and calculate the score margin which reflects
the modality vulnerability. Then we optimize the model to enlarge
the score margin between positive and negative samples in other
modalities to compensate for the margin mentioned above, thus
achieving modality balancing. In this way, we can obtain a robust
and performance-maintained model, superior to conventional ad-
versarial training methods which improve adversarial robustness
but sacrifice much more clean performance. Furthermore, as a plug-
and-play module, the proposed defense method is model-agnostic
and flexible to be applied to the mainstream multi-modal recom-
mendation models. To sum up, the contributions of this work can
be summarized as follows:
• We reveal the key reason for the vulnerability of multi-modal
recommendation models as modality imbalance, and system-
atically evaluate the adversarial robustness of the mainstream
multi-modal recommendation models.
• We propose a novel defense method enhancing the robustness of
multi-modal recommendation models through modality balanc-
ing. The method is model-agnostic and convenient to be applied
to the mainstream multi-modal recommendation models.
• Extensive experiments on two real-world datasets verify the
effectiveness of ourmethod in boostingmodel robustness without
sacrificing the performance on clean test data.

2 RELATEDWORK
2.1 Multi-modal Recommendation
Themulti-modal recommendationmethods incorporatemulti-modal
features with traditional collaborative filtering signals to learn bet-
ter representations of users and items. Previous works such as
VBPR[15] utilize Matrix Factorization to deal with the combination
of multi-modal information and id embeddings. With the rapid
development of deep learning, many techniques are integrated
into the multi-modal recommendation models, such as Variational
Autoencoder[33, 43] and Graph Neural Networks[6, 9, 10, 37]. For
example, ADDVAE[33] exploits the disentangled representations
to learn better user preference which might be influenced by dif-
ferent hidden factors. MMGCN[39] firstly utilizes the Graph Con-
volutional Network to learn the representation in each modality
and then fuse multi-modal representations with the id embedding
to obtain the final representation. In addition to the supervised
learning methods above, self-supervised learning approaches are
explored to further enhance supervision signals[31, 41]. For ex-
ample, SLMRec[31] introduces self-supervised learning tasks such
as feature drop and feature masking to generate different views
of items and utilizes contrastive learning in the model training.
Existing multi-modal methods commonly concentrate on better
utilization of multi-modal information but lack consideration of
the model robustness.

2.2 Robustness of Recommender Systems
Recommender systems can be vulnerable when the model inputs
(e.g. user profile and item content) are injected with the hand-
engineered[13, 20] or automatically optimized perturbations[8, 21,
25, 30]. For example, Tang et al.[30] design an effective transfer-
based poisoning attack against recommender systems by injecting
fake user behaviors into the inputs. Accordingly, there are many
works aiming to defend recommender systems against adversarial
attacks[3, 17, 29, 42]. For example, He et al. propose to improve the
robustness of the BPR method by conducting adversarial training.
Tang et al.[29] firstly concentrate on the robustness of multimedia
recommender systems facing untargeted adversarial examples and
introduce adversarial training to enhance model robustness, but
only visual modality is used in the experiments. Besides, it only
considers some simple methods such as VBPR[15] and MF-BPR[28],
not covering advanced multi-modal recommendation methods. To
sum up, existing defense methods are mainly based on adversarial
training, which produces perturbations against the model itself and
forces the model to defend them. However, adversarial training
often leads to obvious performance drops on clean testing data. By
comparison, our defense method could improve model robustness
and maintain the normal performance on clean data simultaneously.

3 ADVERSARIAL VULNERABILITY ANALYSIS
In this section, we first describe how we generate the adversarial
perturbations for the multi-modal input features in Section 3.1, and
the results indicate that the multi-modal recommendation models
are vulnerable to adversarial attacks. In Section 3.2, we present
a fine-grained analysis of the reason why these models fail and
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Figure 1: The illustrative example of adversarial attacks
against multi-modal recommendation models (results from
GRCN). (a) Prediction score margin (between positive and
negative samples) before and after attack for different modal-
ities. (b) A real example from Baby dataset showing the pre-
diction score change of different modalities under attacks
(only the top 10 negative samples are shown).

reveal the key lies in the imbalance of score margin from different
modalities under attacks.

3.1 Adversarial Attack Method
Let 𝑓 : (𝑿 ,D) → 𝑦 denote a multi-modal recommendation model,
where 𝑿 = [𝑥𝑣, 𝑥𝑡 ] represents input features of visual and textual
modalities (here assuming that there are only these two modalities
without loss of generality),D = {(𝑢, 𝑖, 𝑗) |𝑢 ∈ U, 𝑖 ∈ I+𝑢 , 𝑗 ∈ I\I+𝑢 }
denotes all pairwise training instances, U, I, and I+𝑢 denote all
users, items and the interacted items of user 𝑢. The goal of the
adversarial attack is to decrease the model’s overall test perfor-
mance as much as possible. Considering almost all multi-modal
recommendation models take the content features as inputs, it’s
reasonable and convenient to apply perturbations 𝚫 = [Δ𝑣,Δ𝑡 ] to
the input multi-modal features 𝑿 at test time to conduct the attack:

𝑦
′
𝑢𝑖 = 𝑓 (𝑿 + 𝚫,D). (1)

In order to degrade the recommendation performance, we choose
to maximize BPR loss[28] as the optimizing objective to generate
adversarial perturbations for the input feature of each modality𝑚:

Δ∗𝑚 = argmax
Δ𝑚

L𝐵𝑃𝑅 = argmax
Δ𝑚

∑︁
(𝑢,𝑖, 𝑗 ) ∈D𝑡𝑒𝑠𝑡

−𝑙𝑛(𝜎 (𝑦
′
𝑢𝑖 − 𝑦

′
𝑢 𝑗 )),

where | |Δ∗𝑚 | | ≤ 𝜖𝑚,

(2)

where | | · | | denotes L2-norm, D𝑡𝑒𝑠𝑡 denotes all pair-wise test in-
stances, 𝜖𝑚 is the magnitude of perturbations for modality𝑚.

Here we borrow the idea of FGSM[12] attack to generate the
adversarial perturbations.We can obtain the solution for adversarial
perturbations as follows:

Δ𝑚 = 𝜖𝑚
Γ𝑚
| |Γ𝑚 | |

, where Γ𝑚 =
𝜕L𝐵𝑃𝑅
𝜕Δ𝑚

. (3)

Incidentally, we also try the original attack method in [12], which
only keeps the sign of the derivation, i.e., Δ𝑚 = 𝜖𝑚𝑠𝑖𝑔𝑛(Γ𝑚). How-
ever, we find it less effective than our solution on multi-modal
recommendation models. As a result, we finally choose Eq. (3) to
generate perturbations in our experiments.

3.2 Cause of Adversarial Vulnerability:
Modality Imbalance

We conduct extensive robustness evaluation using the above attack
method on existing five mainstream multi-modal recommenda-
tion models including both supervised learning and self-supervised
learningmethods: VBPR[15], MMGCN[39], GRCN[38], SLMRec[31]
and MMGCL[41]. All models show severe performance degrada-
tion with slight perturbations whose norm is no more than 5% of
the original input feature (i.e., 𝜖𝑚 = 0.05 ∗ ||𝑥𝑚 | |). For example,
Recall@20 drops from 0.632 to 0.300, and NDCG@20 drops from
0.0265 to 0.0114 for MMGCN on Baby dataset (the complete results
are shown in Table 2), showing severe adversarial vulnerability.

Aiming to reveal the reason why these models fail under attack,
we try to make an exploration of the change inside the models
caused by attacks. Since the performance degradation is closely
related to the score ranking between positive and negative samples,
we first analyze the change of score margin between positive and
negative samples under attacks. Considering multi-modal recom-
mendation models fuse prediction scores from different modalities
to make the final prediction (e.g., taking score addition when us-
ing embedding concatenation as the modality fusion strategy), we
analyze the score margin in each single modality and fused modal-
ity (results from GRCN) in Figure 1(a). The result shows that the
score margin of visual modality drops more fiercely than the tex-
tual modality, indicating higher sensitivity of the visual modality.
It can be imagined that the severe disruption in visual prediction
scores will overcome the correct prediction from the textual modal-
ity and lead to the failure of the model. We further verify this issue
through a real case from Baby dataset, in which (𝑢841, 𝑖916) is an
observed interaction. For the user 𝑢841, the visual prediction score
of the positive sample 𝑖916 drops from 2.299 to 0.145, and the textual
prediction score drops from 2.227 to 1.590 under attack, as shown
in Figure 1(b). Although the score of 𝑖916 in textual modality only
changes a little, its slight strength over negative samples can not
compensate for the large score drop in the visual modality, causing
the performance degradation. We name this kind of mismatch be-
tween prediction scores of different modalities under adversarial
attacks as modality imbalance and reveal it as a critical defect of
the adversarial robustness of multi-modal recommendation models.

4 THE PROPOSED DEFENSE METHOD
In this section, we will depict our proposed defense method against
multi-modal adversarial attacks. Based on the previous finding of
modality imbalance in existing multi-modal recommendation mod-
els under attack, we introduce a novel defense method called modal-
ity balancing. The overall idea is to compensate for the drastic score
drop of positive samples in the sensitive modality by enlarging the
score strength of positive samples in the insensitive modality, thus
keeping correct predictions. The overall framework is illustrated
in Figure 2, in which the first line shows the general pipeline of
multi-modal recommendation models, and the second line depicts
our defense treatments including two modules: sensitive-modal
embedding distillation and modality balancing. Note that here we
present our general framework based on Baby dataset consistent
with the previous analysis, i.e., regarding visual modality as the
sensitive modality and textual modality as the insensitive modality.
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Figure 2: Illustration of the proposed defense framework. The first line describes the general pipeline of multi-modal recom-
mendation models, consisting of three parts: unimodal encoding, multi-modal fusion and prediction. The second line depicts
our plug-and-play defense module including two steps: sensitive-modal embedding distillation and modality balancing.

4.1 Sensitive-modal Embedding Distillation
The robustness evaluation in Section 3 reveals that certain input
content features (e.g., visual features in Baby dataset) are highly
sensitive to additive noise, which is the main cause of adversarial
vulnerability of multi-modal recommendation models. Considering
the observation that only slight perturbations can destroy the pre-
diction results, it is expected that the intermediate embeddings are
sensitive to slight changes, i.e., similar embeddings will lead to to-
tally distinct prediction results. Here we use embedding distillation
to get pair-wise content-similar but prediction-different embed-
dings in the sensitive modality and use the prediction difference to
reflect the modality vulnerability.

Formally, for a training instance (𝑢, 𝑖, 𝑗), let 𝒆𝑣𝑢 = 𝑔𝑣𝑢 (𝑥𝑣), 𝒆𝑣𝑖 =

𝑔𝑣
𝑖
(𝑥𝑣), 𝒆𝑣𝑗 = 𝑔𝑣

𝑗
(𝑥𝑣) be the visual embedding of user𝑢, positive item

𝑖 and negative item 𝑗 obtained from the visual embedding encoder
𝑔𝑣 (·) (e.g., GNN). We will distill to get an adversarial embedding
𝒆𝑣
𝑖𝑎𝑑𝑣

which is close to 𝒆𝑣
𝑖
in the embedding space but shifts towards

the embedding of the negative item 𝒆𝑣
𝑗
as follows:

𝑥
′
𝑣 = argmin

𝑧
| |𝑔𝑣𝑖 (𝑧) − 𝑔

𝑣
𝑗 (𝑥𝑣) | |

2, 𝑠 .𝑡 . | |𝑧 − 𝑥𝑣 | |∞ ≤ 𝜖,

𝒆𝑣𝑖𝑎𝑑𝑣 = 𝑔𝑣𝑖 (𝑥
′
𝑣), (4)

where 𝑥
′
𝑣 is the optimized input visual feature to generate the ad-

versarial embedding, 𝜖 denotes the constraint of the input feature

norm change. This constrained optimization objective can then be
optimized using PGD[26] algorithm. In this way, the visual embed-
ding encoder will produce an adversarial embedding 𝒆𝑣

𝑖𝑎𝑑𝑣
for the

positive item 𝑖 which has similar content with the original visual
embedding 𝒆𝑣

𝑖
but its prediction score will shift towards the nega-

tive item 𝑗 for the user 𝑢. Such misalignment between the visual
content similarity and the prediction result shows the vulnerability
of visual modality.

4.2 Alleviating Vulnerability through Modality
Balancing

According to the analysis in Section 3, the prediction results in
the sensitive modality exhibit severe vulnerability (i.e., the large
score drop for positive samples), overcoming the correct results in
other modalities. This motivates us to enlarge the strength in the
insensitive modality, thus allowing for the severe disruption in the
sensitive modality. Specifically, we try to guide the score margin
between positive and negative samples in the insensitive modality
(i.e., textual modality) to become large enough to compensate for
the vulnerability in the sensitive modality (i.e., visual modality). For
each sampled training instance (𝑢, 𝑖, 𝑗), we use an auxiliary loss
functionL𝑏𝑎𝑙𝑎𝑛𝑐𝑒 to balance the score margin between positive and
negative samples in the insensitive modality and the score margin
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Algorithm 1 Modality-balancing training algorithm (here regard-
ing visual modality as the sensitive modality).

for 𝑏 = 1, 2, ..., 𝑏𝑎𝑡𝑐ℎ_𝑛𝑢𝑚𝑏𝑒𝑟 do
𝑠𝑎𝑚𝑝𝑙𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 = 0,L = L𝐵𝑃𝑅
while 𝑠𝑎𝑚𝑝𝑙𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 < 𝑁 do

(𝑢, 𝑖, 𝑗 )← Training instance random sampling
𝒆𝑣𝑢 , 𝒆

𝑣
𝑖
, 𝒆𝑣

𝑗
, 𝒆𝑡

𝑖
, 𝒆𝑡

𝑗
← Embedding lookup in different modalities

𝒆𝑣
𝑖𝑎𝑑𝑣
← Visual embedding distillation according to Eq. (4)

Calculate L𝑏𝑎𝑙𝑎𝑛𝑐𝑒 according to Eq. (5)
L = L + 𝜆L𝑏𝑎𝑙𝑎𝑛𝑐𝑒
𝑠𝑎𝑚𝑝𝑙𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑠𝑎𝑚𝑝𝑙𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 + 1

end while
Update model parameters according to loss function L

end for

between the distilled adversarial embedding and clean embedding:

𝑠𝑡𝑚𝑎𝑟𝑔𝑖𝑛 = 𝒆𝑡⊤𝑢 𝒆𝑡𝑖 − 𝒆
𝑡⊤
𝑢 𝒆𝑡𝑗 ,

𝑠𝑣𝑚𝑎𝑟𝑔𝑖𝑛 = 𝒆𝑣⊤𝑢 𝒆𝑣𝑖 − 𝒆
𝑣⊤
𝑢 𝒆𝑣𝑖𝑎𝑑𝑣 ,

L𝑏𝑎𝑙𝑎𝑛𝑐𝑒 =𝑚𝑎𝑥 (𝑠𝑣𝑚𝑎𝑟𝑔𝑖𝑛 − 𝑠
𝑡
𝑚𝑎𝑟𝑔𝑖𝑛, 0), (5)

where 𝒆𝑡𝑢 = 𝑔𝑡𝑢 (𝑥𝑡 ), 𝒆𝑡𝑖 = 𝑔𝑡
𝑖
(𝑥𝑡 ), 𝒆𝑡𝑗 = 𝑔𝑡

𝑗
(𝑥𝑡 ) are the textual em-

bedding of user 𝑢, positive item 𝑖 and negative item 𝑗 obtained
from the textual embedding encoder 𝑔𝑡 (·). Minimizing this objec-
tive will enlarge the score margin in the textual modality toward
being balanced with the score fluctuation in the sensitive visual
modality when the textual score margin is smaller. In this situation,
although the visual prediction score drops violently for positive
samples, the strength in the textual prediction score can still en-
sure positive samples rank ahead of negative samples. We combine
BPR loss with the balance loss through a coefficient 𝜆 to form the
final loss function used for model training. Besides, it’s worth not-
ing that our defense method is established on the general pipeline
of multi-modal recommendation models and is flexible to be ap-
plied to existing mainstream models. The overall process of fusing
our defense framework with multi-modal recommendation model
training is summarized in Algorithm 1.

4.3 Time Complexity Analysis
Here we analyze the complexity of our proposedmodality balancing
method and comparison with adversarial training. Let O𝑓 denote
the time complexity of forward propagation for prediction scores,
and O𝑏 denotes the time complexity of backward propagation. The
recommendation model itself will cost O𝑓 +O𝑏 . Modality balancing
will introduce an extra cost due to the generation of adversarial
embedding through a 𝑡-step PGD algorithm and another forward
propagation, whose cost is 𝑡𝛼 (O𝑓 +O𝑏 )+O𝑓 . The coefficient 𝛼 (< 1)
exists because the forward propagation is end with embedding
encoders, with no need to run the whole model. By comparison,
adversarial training requires running the whole model to obtain
adversarial features, whose time complexity is 𝑡 (O𝑓 + O𝑏 ) + O𝑓 .
Therefore, our proposed method has lower time complexity than
adversarial training under the same number of sampling instances.

Table 1: Statistics of the two experimental datasets.

Dataset #Users #Items #Interactions Sparsity
Baby 19,445 7,050 160,792 99.88%

Clothing 39,387 23,033 278,677 99.97%

5 EXPERIMENTS
To justify the superiority of our proposedmodality balancingmethod
and reveal the reasons for effectively improving robustness, we con-
duct extensive experiments to answer three research questions:
• RQ1: Does modality balancing outperform the existing adversar-
ial defense methods on multi-modal recommendation models?
• RQ2: How do different settings influence the effectiveness of
modality balancing?
• RQ3: Does modality balancing effectively address the score im-
balance between modalities under attacks?

5.1 Experimental Settings
5.1.1 Datasets. We use Amazon review[14] dataset for our experi-
mental evaluation. In this public dataset, both product descriptions
and corresponding images are available. We select two per-category
datasets1, i.e., Baby and Clothing to conduct experiments, which
are widely used in previous works[15, 29, 44, 46]. The details of
the two datasets are presented in Table 1. The two datasets include
both visual and textual content, specifically, the 4,096-dimensional
visual features and 384-dimensional textual features. The interac-
tion history of each user is randomly split into training, validation
and testing datasets with the ratio 8:1:1 following [35, 44, 46].

5.1.2 Compared Methods. Existing works commonly improve the
adversarial robustness of recommendation models through adver-
sarial training[17, 29, 40, 42]. Here we follow the implementation of
[29] which utilizes adversarial training to improve the robustness of
visual content-based recommendation models as an important base-
line, dubbed Adv training. Besides, considering directly dropping
the input of certain modalities (especially the sensitive modality)
will also help improve model robustness, we take each unimodal
feature as input respectively and form two baseline models, dubbed
Unimodal-visual and Unimodal-textual. The full multi-modal
model without any defense method is dubbed Multi-modal.

5.1.3 Evaluation Metrics. We regard all items that the user has
not interacted with as negative samples, and the interacted items
as positive samples. Then we employ the full-rank strategy based
on the prediction scores of recommendation models. Moreover,
we adopt Recall@K and Normalized Discounted Cumulative Gain
(NDCG@K) as the metrics and set K = 10, 20, which are widely
used in the research of recommendation[44, 45].

5.1.4 Implementation Details. For all models we fix the embed-
ding size to 64 for all models following existing works[38, 44, 46],
initialize the model parameters with the Xavier[11] method and
use Adam[18] as the optimizer. We carefully tune the learning rate,
regularization weight and other parameters following the original

1Datasets are available at http://jmcauley.ucsd.edu/data/amazon/links.html
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Table 2: Results of five models under two scenarios (clean and attack) on Baby dataset. The best and second-best results in each
scenario are highlighted in bold and underline, respectively.

Baby Clean Attack
Model Method Recall@10 Recall@20 NDCG@10 NDCG@20 Recall@10 Recall@20 NDCG@10 NDCG@20

MMGCN

Multimodal 0.0389 0.0632 0.0203 0.0265 0.0163 0.0300 0.0079 0.0114
Unimodal-visual 0.0341 0.0548 0.0174 0.0229 0.0022 0.0034 0.0011 0.0014
Unimodal-textual 0.0352 0.0589 0.0182 0.0243 0.0246 0.0423 0.0115 0.0160
Adv training 0.0331 0.0551 0.0167 0.0224 0.0214 0.0332 0.0122 0.0168

Modality balancing 0.0379 0.0618 0.0199 0.0257 0.0326 0.0514 0.0171 0.0223

VBPR

Multimodal 0.0418 0.0664 0.0223 0.0287 0.0135 0.0246 0.0064 0.0093
Unimodal-visual 0.0388 0.0619 0.0206 0.0263 0.0138 0.0256 0.0067 0.0097
Unimodal-textual 0.0394 0.0622 0.0210 0.0271 0.0079 0.0164 0.0035 0.0057
Adv training 0.0383 0.0605 0.0204 0.0269 0.0207 0.0357 0.0121 0.0165

Modality balancing 0.0401 0.0628 0.0215 0.0280 0.0295 0.0502 0.0148 0.0201

GRCN

Multimodal 0.0543 0.0854 0.0295 0.0375 0.0301 0.0510 0.0151 0.0204
Unimodal-visual 0.0489 0.0785 0.0268 0.0344 0.0315 0.0523 0.0167 0.0220
Unimodal-textual 0.0505 0.0805 0.0269 0.0346 0.0332 0.0545 0.0173 0.0233
Adv training 0.0502 0.0777 0.0267 0.0335 0.0319 0.0538 0.0170 0.0224

Modality balancing 0.0515 0.0822 0.0274 0.0352 0.0354 0.0602 0.0175 0.0239

SLMRec

Multimodal 0.0507 0.0745 0.0282 0.0341 0.0243 0.0378 0.0125 0.0159
Unimodal-visual 0.0427 0.0653 0.0230 0.0288 0.0217 0.0355 0.0113 0.0149
Unimodal-textual 0.0492 0.0718 0.0265 0.0330 0.0355 0.0547 0.0193 0.0242
Adv training 0.0491 0.0721 0.0271 0.0331 0.0356 0.0533 0.0186 0.0232

Modality balancing 0.0503 0.0736 0.0275 0.0335 0.0389 0.0590 0.0211 0.0262

MMGCL

Multimodal 0.0529 0.0801 0.0297 0.0367 0.0338 0.0510 0.0179 0.0223
Unimodal-visual 0.0435 0.0677 0.0243 0.0305 0.0381 0.0596 0.0215 0.0268
Unimodal-textual 0.0456 0.0723 0.0233 0.0299 0.0406 0.0628 0.0218 0.0278
Adv training 0.0474 0.0735 0.0253 0.032 0.0410 0.0637 0.0215 0.0274

Modality balancing 0.0518 0.0788 0.0284 0.0349 0.0468 0.0692 0.0252 0.0311

papers. In the adversarial attack phase, we set the maximum pertur-
bationmagnitude 𝜖𝑚 as 5% of the input feature norm for modality𝑚.
As for our defense method, we set the constraint of feature change
𝜖 when generating the adversarial embedding as 1, the steps 𝑡 of
PGD algorithm is set as 10, the coefficient 𝜆 controlling the ratio of
two loss terms is searched in {0.001, 0.01, 0.1, 1, 10}. The number of
training instances sampled for defense methods in each batch 𝑁 is
searched in {10, 20, 30, 50, 100}.

5.2 Performance Comparison (RQ1)
We conduct a systematic evaluation on the performance of different
defense methods on two scenarios (clean and attack) on five main-
stream multi-modal recommendation models including supervised
methods (VBPR[15], MMGCN[39], GRCN[38]) and self-supervised
methods (SLMRec[31], MMGCL[41]). The models will take original
multi-modal features as input in the clean scenario and perturbed
multi-modal features as input in the attack scenario. The results
on Baby and Clothing dataset are shown in Table 2 and Table 3,
respectively. From the results we have the following observations:
• Ourmodality balancingmethod almost consistently achieves
the highest adversarial robustness under attacks compared
with other defense methods. It can be observed that modal-
ity balancing gets superior defense performance compared with
widely-used adversarial training and unimodal models in the
attack scenario. Statistically, on Baby dataset, our modality bal-
ancing gets 21.01% improvement on Recall@10, 17.82% on Re-
call@20, 17.71% on NDCG@10 and 15.45% on NDCG@20 com-
pared with the best baseline. On Clothing dataset, our method
achieves 9.38% improvement on Recall@10, 8.97% on Recall@20,

8.89% on NDCG@10 and 9.01% on NDCG@20 compared with the
best baseline. As for other defense methods, adversarial training
can also improvemodel robustness under attacks, but it will cause
greater training difficulty because it produces stronger adversary
(i.e., the worst-case perturbations) for models to defend against
during training, leading to severe performance degradation. Sim-
ply dropping certain perturbed modality also outperforms the
original model under attacks but the defense effect is limited.
• Our modality balancing method has a much slighter influ-
ence on the performance in the clean scenario compared
with other defense methods. From the results, adversarial
training clearly degrades clean performance because it forces
the model to give correct predictions for the worst-case pertur-
bations, making the training process very hard. The unimodal
models also show a decrease in clean performance due to the
missing useful information in the dropped modality. By com-
parison, our modality balancing shows negligible impact on the
clean performance, achieving the second-best performance in
most cases. Statistically, compared with the original model (i.e.,
Multimodal), modality balancing only causes 2.93% performance
drop (in terms of Recall@20) on average on Baby dataset and
1.90% on Clothing dataset, which can be nearly overlooked com-
pared with other defense methods. The reason is that modality
balancing improves robustness by only adjusting the prediction
score distribution in different modalities while preserving full
utilization of multi-modal information.
• The modality sensitivity varies in different datasets. Ac-
cording to our observation, on Baby dataset, the visual modality
shows higher sensitivity than the textual modality. This can be
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Table 3: Results of five models under two scenarios (clean and attack) on Clothing dataset. The best and second-best results in
each scenario are highlighted in bold and underline, respectively.

Clothing Clean Attack
Model Method Recall@10 Recall@20 NDCG@10 NDCG@20 Recall@10 Recall@20 NDCG@10 NDCG@20

MMGCN

Multimodal 0.0211 0.0336 0.0108 0.0141 0.0053 0.0100 0.0025 0.0037
Unimodal-visual 0.0167 0.0281 0.0088 0.0117 0.0092 0.0156 0.0042 0.0062
Unimodal-textual 0.0181 0.0294 0.0093 0.0121 0.0085 0.0137 0.0039 0.0057
Adv training 0.0172 0.0283 0.0091 0.0119 0.0099 0.0187 0.0066 0.0094

Modality balancing 0.0206 0.0324 0.0103 0.0135 0.0102 0.0194 0.0064 0.0092

VBPR

Multimodal 0.0281 0.0415 0.0158 0.0192 0.0155 0.0249 0.0078 0.0102
Unimodal-visual 0.0276 0.0402 0.0152 0.0182 0.0161 0.0264 0.0086 0.0110
Unimodal-textual 0.0270 0.0395 0.0148 0.0181 0.0128 0.0201 0.0066 0.0084
Adv training 0.0254 0.0373 0.0134 0.0172 0.0172 0.0271 0.0088 0.0118

Modality balancing 0.0282 0.0414 0.0155 0.0189 0.0184 0.0291 0.0096 0.0127

GRCN

Multimodal 0.0428 0.0654 0.0231 0.0287 0.0233 0.0384 0.0118 0.0157
Unimodal-visual 0.0375 0.0568 0.0195 0.0243 0.0228 0.0376 0.0115 0.0153
Unimodal-textual 0.0401 0.0598 0.0211 0.0262 0.0239 0.0404 0.0121 0.0169
Adv training 0.0355 0.0517 0.0184 0.0242 0.0241 0.0407 0.0123 0.0172

Modality balancing 0.0419 0.0632 0.0220 0.0274 0.0282 0.0462 0.0145 0.0195

SLMRec

Multimodal 0.0433 0.0644 0.0233 0.0289 0.0167 0.0264 0.0085 0.0109
Unimodal-visual 0.0362 0.0544 0.0196 0.0242 0.0112 0.0183 0.0056 0.0074
Unimodal-textual 0.0422 0.0643 0.0229 0.0285 0.0133 0.0204 0.0063 0.0084
Adv training 0.0402 0.0604 0.0218 0.0259 0.0215 0.0347 0.0119 0.0148

Modality balancing 0.0423 0.0620 0.0231 0.0280 0.0248 0.0393 0.0138 0.0175

MMGCL

Multimodal 0.0430 0.0647 0.0234 0.0289 0.0315 0.0463 0.0173 0.0208
Unimodal-visual 0.0383 0.0585 0.0207 0.0258 0.0282 0.0416 0.0150 0.0184
Unimodal-textual 0.0346 0.0536 0.0188 0.0229 0.0245 0.0365 0.0134 0.0165
Adv training 0.0357 0.0524 0.0187 0.0246 0.0330 0.0488 0.0177 0.0214

Modality balancing 0.0436 0.0656 0.0236 0.0291 0.0345 0.0522 0.0185 0.0231
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Figure 3: Study of the effect of 𝜆 and 𝑁 on the model perfor-
mance in the clean and attack scenario on Baby dataset.

observed from the fact that Unimodal-textual shows higher ro-
bustness than Unimodal-visual in the attack scenario. Therefore,
we improve the score margin in the textual modality to com-
pensate for the vulnerability in the visual modality. While for
Clothing dataset, the textual modality is more sensitive than the
visual modality so we choose to enhance the visual prediction
score margin instead. Such variation reflects the challenge of
tackling the robustness issue of multimodal recommendation
models. Even so, our method can adaptively address the problem
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Figure 4: Study of the effect of 𝜆 and 𝑁 on the model perfor-
mance in the clean and attack scenario on Clothing dataset.

regardless of the relative vulnerability by enhancing the robust
modality to compensate for the vulnerable modality.

5.3 Hyper-parameter Study (RQ2)
In this section, we investigate the impact of the ratio of the two
loss terms 𝜆 and the number of sampled instances for modality
balancing in each batch 𝑁 on model performance in both clean
and attack scenarios. The results on Baby dataset and Clothing
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Figure 5: Study of the effect of 𝜖𝑚 on the performance of
GRCN and MMGCL in the attack scenario on Baby dataset.

dataset are shown in Figure 3 and Figure 4, respectively. Besides,
we test the performance of modality balancing with different attack
magnitudes 𝜖𝑚 and present the result in Figure 5.

Impact of 𝜆. We test the model performance in the clean and
attack scenario with varying 𝜆 in {0.001, 0.01, 0.1, 1, 10}. From
the results on two datasets, it can be observed there’s a trade-off
between the performance in the clean and attack scenario. All mod-
els commonly show decreasing clean performance and increasing
robustness under attacks with increasing 𝜆 from 0.001 to 1. The
phenomenon is reasonable since the optimization is gradually fa-
voring the modality balancing term aiming to enhance adversarial
robustness instead of clean performance.

Impact of 𝑁 .We test the model performance in the clean and
attack scenario with varying 𝑁 in {10, 20, 30, 50, 100}. On the two
datasets the clean model performance commonly drops with the
increasing 𝑁 . Larger 𝑁 means involving more users and items
in modality balancing, which might slightly influence the normal
training. At the same time, more balanced users and items usually
provide higher robustness. On Baby dataset, the robustness nearly
achieves the peak when 𝑁 = 30 for all models. As for Clothing
dataset, the highest robustness is obtained when 𝑁 = 10.

Impact of 𝜖𝑚 . In order to verify the generalization ability of our
method, we test the defense performance of our method and com-
pared baselines under different attack magnitudes. Specifically, we
vary the norm ratio of the perturbation and original feature for each
modality | |𝜖𝑚 | || |𝑥𝑚 | | in {2.5%, 5%, 7.5%, 10%}. The results of GRCN and
MMGCL on Baby dataset are shown in Figure 5. It can be observed
that modality balancing achieves the best defense performance
compared with other methods in all attack settings, which validates
the superior generalization capability of our method.

5.4 Effect of Modality Balancing (RQ3)
In this section, we study the effect of modality balancing on mod-
els to explain why it works for enhancing robustness. Here we
conduct a similar analysis as described in Section 3.2. Still taking
GRCN as an example, we analyze the score margin change of the
model trained with modality balancing in each single modality and
fused modality, as shown in Figure 6(a). Compared with the model
without modality balancing analyzed in Figure 1, it can be found
that the score margin in the textual modality gets strengthened
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Figure 6: The illustrative example of adversarial attacks
againstmodels withmodality balancing (results fromGRCN).
(a) Prediction score margin (between positive and negative
samples) before and after attack for different modalities. (b)
A real case showing the prediction score change of different
modalities under attacks.

and exceeds the visual modality, indicating the positive samples
have greater strength in the insensitive modality. In this way, it is
expected that the model can still make correct predictions relying
on the textual scores which are less affected by attacks. In order
to verify this, we then study the same case as in Section 3.2, i.e.,
(𝑢841, 𝑖916) from Baby dataset. To be specific, we observe the visual
and textual prediction scores of the positive sample 𝑖916 and the
top 10 negative samples before and after attacks, as presented in
Figure 6(b). The main difference with Figure 1(b) is that the overall
textual scores are ahead of visual scores. Although the visual score
of 𝑖916 still drops violently under attacks from 0.587 to 0.266, its
attacked textual score(i.e., 1.142) is much larger than the attacked
visual score and enough to compensate for the lag in the visual
modality. In general, the comparison between the model with and
without modality balancing demonstrates our modality balancing
method effectively addresses the critical threat to the robustness of
multi-modal recommendation models.

6 CONCLUSIONS
In this work, we conduct a systematical study on the adversarial
robustness of multi-modal recommendation models, which is vital
to ensure the reliability of these models in real-world applications.
We first conduct a robustness test for five mainstream models and
show they are vulnerable to slight perturbations on the multi-modal
input features. Next, we attribute the vulnerability to the modality
imbalance issue. Finally, to address this problem, we introduce a
sensitive-modal embedding distillationmodule andmodality balanc-
ing loss term to enhance the adversarial robustness. The proposed
method is flexible to be applied to various multi-modal recommen-
dation models and effective in boosting adversarial robustness with
nearly no performance decline on clean data.
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