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ABSTRACT
Traditional session-based recommendation (SBR) utilizes session
behavior sequences from anonymous users for recommendation.
Although this strategy is highly efficient, it sacrifices the inher-
ent semantic information of the items, making it difficult for the
model to understand the true intent of the session and resulting
in a lack of interpretability in the recommended results. Recently,
large language models (LLMs) have flourished across various do-
mains, offering a glimpse of hope in addressing the aforementioned
challenges. Inspired by the impact of LLMs, research exploring
the integration of LLMs with the Recommender system (RS) has
surged like mushrooms after rain. However, constrained by high
time and space costs, as well as the brief and anonymous nature
of session data, the first LLM recommendation framework suitable
for industrial deployment has yet to emerge in the field of SBR.

To address the aforementioned challenges, we have proposed
the LLM Integration Framework for SBR (LLM4SBR). Serving as
a lightweight and plug-and-play framework, LLM4SBR adopts a
two-step strategy. Firstly, we transform session data into a bimodal
form of text and behavior. In the first step, leveraging the inferential
capabilities of LLMs, we conduct inference on session text data from
different perspectives and design the component for auxiliary en-
hancement. In the second step, the SBRmodel is trained on behavior
data, aligning and averaging two modal session representations
from different perspectives. Finally, we fuse session representations
from different perspectives and modalities as the ultimate session
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representation for recommendation. We conducted experiments on
two real-world datasets, and the results demonstrate that LLM4SBR
significantly improves the performance of traditional SBR mod-
els and is highly lightweight and efficient, making it suitable for
industrial deployment.
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1 INTRODUCTION
The 21st century is an era of information explosion. Recently, Rec-
ommender systems (RS) [14, 27] have received widespread attention
from industry and academia as a crucial tool to solve information
overload. To achieve personalized and accurate recommendations,
RS usually uses the user’s personal information and historical behav-
ior records to model user portraits. As both user privacy concerns
and businesses’ demands for accurately capturing user dynamic
intent continue to escalate, research on Session-based Recommen-
dation (SBR) [15, 41] has become a crucial aspect of RS, which only
relies on the behavior sequence generated by the user within the
session time tomodel, and does not require user profiles. Traditional
SBR research [2, 15, 31, 37, 41] is based on the ID-based (behavior-
based) recommendation paradigm. After encoding the items into
one-hot features, methods such as Markov chains [29], recurrent
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neural networks (RNN) [28], graph neural networks (GNN) [32],
etc., are employed to model anonymous session sequences.

While traditional recommendation methods can efficiently and
accurately model collaborative information, they often overlook
semantic information in interaction behavior, such as item name,
price, etc. Particularly in SBR, where sequence lengths are typically
short and data sparsity is high, and the SBR model uses one-hot
encoding of the item ID to represent the item, which results in
a serious lack of correlation between items. Consequently, solely
modeling sparse behavioral information is insufficient for under-
standing users’ true intent. Semantic information, unlike interaction
information, inherently possesses similarities and correlations be-
tween items. For example, if a user clicks on "iPhone 15," "running
shoes," "iPhone 14," "milk," and "skirt," solely modeling behavior
might mistakenly prioritize the last few clicks, such as "milk" and
"skirt," in determining session intent. However, leveraging semantic
information, we can analyze that the user in the current session is
likely more interested in the Apple product series. Therefore, if we
can appropriately infer semantic information within the session, we
can better understand the true intent behind the session sequence.

With the strong debut of large language models (LLMs) [1, 3,
35, 46], it has not only shaken the entire field of natural language
processing (NLP) [5], but also caused turmoil in various fields, and
the RS is no exception. LLMs trained on large-scale corpora exhibit
robust language comprehension abilities as well as a certain de-
gree of logical reasoning capability. LLMs like GPT-4 are capable
of handling complex tasks and engaging in dialogues, inspiring
researchers in RS to envision new directions for the future devel-
opment of RS. But how should RS be combined with LLM? This is
the issue that RS researchers are most concerned about. Recently,
there has been a proliferation of work exploring the combination
of RS and LLM. Some works [6, 11] take advantage of LLM by con-
verting tasks in RS into language understanding or language gen-
eration tasks in NLP, through pre-training, fine-tuning, etc. Some
researchers [7, 13, 17] have applied LLM to different recommenda-
tion system processes to explore LLM’s ability to encode features,
sort, and score. The above attempts to combine RS with LLM have
achieved many encouraging results, but they are not suitable for
SBR. SBR combined with LLM has the following difficulties:

• LLM hallucinations are more likely to occur. The sequence
length in SBR is typically short, and access to users’ personal
information is unavailable. When the information available to
the LLM is very limited, the LLM may not be able to generate
valid answers or may generate false items that exceed the item
set returned.

• A "repeater" problem occurred when fine-tuning LLM. Ses-
sion data is typically augmented through sequence splitting, re-
sulting in datasets containing numerous similar sessions. Con-
sequently, fine-tuning LLMs may lead to instances where the
model excessively duplicates input text or repetitively repeats
the same sentences when generating responses.

• Training and inferring consume a lot of resources. LLM is
complex in calculation takes up a lot of GPU memory, and takes
a long time to infer. The recommendation task pursues real-time
performance, so LLM-based RS models are difficult to implement
in industrial practice.

To address these difficulties, we propose a lightweight and ef-
fective LLM-enhanced framework framework (LLM4SBR) for SBR.
The framework comprises two distinct stages, intent inference and
representation enhancement. In the intent inference stage, our
framework employs LLM as the inference engine. We guide LLM
in inferring through carefully crafted prompts from different per-
spectives. The intent localization module is crafted to eliminate
hallucinations and semantically enhance the reasoning results. Sub-
sequently, these refined outcomes are encoded into an embedded
form and stored in external files. Moving on to the representation
enhancement stage, the traditional SBR model simultaneously loads
interaction data in ID format and intention inference data in text
format. On one hand, the SBR model models conversation repre-
sentations from different perspectives based on interaction data,
while on the other hand, it parses text data into embedded forms.
Subsequently, alignment and uniformity of session embeddings and
inference embeddings are performed separately for each perspec-
tive. Finally, all embeddings from all perspectives are fused as the
ultimate session representation for prediction.

We summarize significant contributions as follows:
• We are the first to propose an LLM enhancement framework for
SBR. We divide the LLM inference and SBR model training into
two stages. The LLM inference results are saved in an external file
in advance, ensuring that GPU usage and training time during
training depend only on the SBR model.

• We proposed an intent localization module, which addresses hal-
lucinations and enhances semantic aspects in the preliminary
results of LLM inference. In addition, We achieve a finer-grained
modal alignment by performing alignment and uniformity be-
tween embeddings from different perspectives, facilitating the
effective integration of interaction ID information and textual
information.

• Experiments on two real-world datasets show that our proposed
framework LLM4SBR can be applied to most current SBR models
and achieve substantial performance improvements.

2 RELATEDWORK
2.1 Session-based Recommendation
In the field of SBR, the available information is very limited, con-
sisting only of interaction data within the session. Therefore, the
focus of SBR research lies in how to effectively model interaction
behavior and learn session preferences. Based on different modeling
emphases, we can broadly categorize SBR methods into two types:
traditional SBR methods and methods focusing on modeling item
transition relationships.

In traditional SBR methods, S-POP [2] recommends based on
the most popular items, and Item-KNN [8] calculates item simi-
larity based on historical behavior to recommend similar items.
As Markov chains exhibit advantages in modeling sequential data,
FPMC [31] captures data sequence information and user preferences
by combining first-order Markov chains with matrix factorization.
In the SBR methods based on deep learning, inspired by the field of
NLP, GRU4Rec [15] proposed for the first time to use of the recur-
rent neural network (RNN) to simulate user preference changes in
behavioral sequence data. Based on this research, Stamp improved
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performance by introducing an attention mechanism to make pref-
erences more targeted. NARM [19] uses the attention network to
capture users’ short-term interests and long-term dependencies.

As GNN shows its prowess in various fields, SBR researchers
have found that by constructing session data into the form of graphs,
they can better capture the complex transformation relationships
between items and greatly improve recommendation performance.
SR-GNN[41] is the first model to represent sequences in the form of
session graphs, utilizing gated graph neural networks as encoders.
GC-SAN [43], an upgraded version of SR-GNN, incorporates atten-
tion mechanisms to make session representations more targeted.
GCE-GNN [39], HADCG [33], MSGAT [30] and KMVG[4] construct
multiple graphs with different structures, simultaneously consider-
ing both local item collaborations and global session collaboration
relationships. In addition, DHCN [42], HL[38], and HIDE [24] cap-
tures the complex high-order miscellaneous information of the
items by building the hypergraph.

Although the aforementioned SBR methods have achieved good
performance, they solely rely on modeling the interaction infor-
mation of sessions, thus lacking effective utilization of semantic
information embedded within the sequences.

2.2 Recommender System with LLM
Generative dialogue models represented by ChatGPT have caused a
stir in research in various fields. According to how LLM participates
in the recommendation system, we simply divide it into LLM as
Recommender and LLM-enhanced Recommender.

2.2.1 LLM as Recommender. The model of LLM as Recommender
realizes the transformation from the ID paradigm to the modal
paradigm by converting the recommendation task into a task in
natural language processing.

The M6-Rec [6] model extends the pre-trained language model
M6 [25] by transforming recommendation tasks into either lan-
guage understanding or language generation tasks. It establishes a
unified foundational recommendation model to reduce downstream
tasks’ dependence on data. Shijie Geng et al. [11] proposed the P5
paradigm, which enables predictions in a zero-shot or few-shot
manner by providing adaptive personalized prompts tailored to
different users. This approach reduces the need for fine-tuning.
Wang-cheng Kang et al. [17] evaluated the performance of LLMs
of different sizes (250M - 540B parameters) in zero-shot, few-shot,
and fine-tuning scenarios to explore the extent to which LLM un-
derstands user preferences based on the user’s previous behavior.
Sunhao Dai et al. [7] enhance the recommendation capabilities of
ChatGPT by combining ChatGPT with traditional information re-
trieval (IR) ranking functions. GPT4Rec [20] first generates queries
based on a language model, and then optimizes product retrieval
separately through a search engine, addressing optimization from
two aspects. VIP5 [12] explores a multi-modal base model of the
P5 recommendation paradigm that considers both visual and tex-
tual modalities. Zhu Sun et al. [34] proposed the PO4ISR model
of SBR, which promotes LLM to continuously reflect and update
the results from the perspective of real-time optimization prompts
to improve the accuracy of recommendations. Agent4Rec [47] uti-
lizes a generative agent empowered by LLM to simulate and infer
personalized user preferences and behavioral patterns. The core of

the above method is to enhance recommendation performance by
improving LLM’s adaptability to recommended data and reasoning
capabilities.

Although these methods have made breakthrough progress in
zero-shot, few-shot, and interpretability aspects, they suffer from
drawbacks such as high fine-tuning costs and difficulty in capturing
specific fine-grained behavioral patterns. Consequently, they face
challenges in being deployed in industrial applications.

2.2.2 LLM-enhanced Recommender. LLM-enhanced RS treats LLM
as a tool to enhance the performance of recommendation models.
The large-model recommendation framework proposed by Wei-
wei et al. [40] leverages graph-enhanced strategies based on LLM
to enhance RS, addressing challenges posed by data sparsity and
low-quality side information in RS. Chat-Rec [10] integrates tra-
ditional RS with conversational AI like ChatGPT, eliminating the
need for training to gain a deep understanding of user preferences
through LLM’s comprehension of dialogue context. CTRL [22] re-
gards the original table data and the corresponding text data as two
different modalities, and uses the collaborative CTR model and the
pre-trained language model respectively for feature extraction, and
adjusts the knowledge of the two modalities through comparative
learning. LlamaRec retrieves candidates based on user interaction
history through a sequence recommendation model. Candidates
and historical records are designed as textual prompts, with the
output of LLM transformed into a ranked probability distribution.
E4SRec [23] is a solution that combines sequence recommendation
with LLMs. It takes only ID sequences as input and ensures efficient
controllable generation by predicting all candidate sequences at
each forward pass. The above method has made us realize the po-
tential of integrating LLM with RS and how a two-stage framework
can better balance efficiency and performance compared to an end-
to-end framework. Jesse Harte et al. [13] devised three strategies
for leveraging LLM, and found that using embeddings initialized
with LLM significantly enhances the performance of sequence rec-
ommendation models. This inspires us about the importance of
textual semantics.

The above methods explore the effectiveness of LLM in RS from
different perspectives. Compared to the "LLM as Recommender"
approach, they have greatly improved performance and efficiency.
However, these methods do not fully leverage and integrate textual
and interaction information, and they are not applicable to SBR
scenarios with short sequences and no user information.

Considering aspects such as performance, efficiency, and hallu-
cinations of LLMs, effectively integrating LLM with traditional RS
models remains a challenging issue. In comparison, our framework
is the first plug-and-play LLM framework designed for SBR. It effec-
tively addresses several aspects mentioned above and better meets
real-world industrial demands.

3 METHODOLOGY
The overall architecture of LLM4SBR is depicted in Figure 1. This
section will introduce the problem definition and the specific im-
plementation details of each module in turn.
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Figure 1: LLM4SBR framework diagram. LLM4SBR is a two-stage framework. In the first stage—the Intent Inference Stage,
LLM makes initial inferences based on prompts from different perspectives (long-term and short-term). Subsequently, the
intent localization module is utilized to eliminate hallucinations and enhance semantics in the inference results, with the
embeddings of the results stored in an external file as text data. Then, in the second stage—Representation Enhancement
Stage—interaction data and text data are synchronously loaded into the model. Traditional SBR models are used to model the
interaction data to obtain local and global session representations. Meanwhile, we parse the inference embeddings stored in
text format for each perspective and restore them to tensor form for subsequent computations. After aligning and uniforming
session representations and inference representations of the same perspective, all representations are fused into the final
session representation for prediction.

3.1 Problem Formulation
The objective of SBR is to predict the next interaction item ex-
pected to occur in the current session history of an anonymous
user. Here, we provide the problem definition inmathematical terms.
Each data entry in the dataset represents a session sequence. Let
the collection of all sessions be denoted as S = {𝑠1, 𝑠2, · · · , 𝑠𝑚},
where𝑚 is the total number of sessions. The item set is the sum-
mary of items that have appeared in all sessions, which we define
as I = {𝑖1, 𝑖2, · · · , 𝑖𝑛}, where 𝑛 is the total number of items in
the set. We represent the t-th session 𝑠𝑡 in the dataset as 𝑠𝑡 =

{𝑖𝑡,1, 𝑖𝑡,2, · · · , 𝑖𝑡,𝑘 , · · · , 𝑖𝑡, |𝑠𝑡 | }, where |𝑠𝑡 | is the length of the current
session, and 𝑖𝑡,𝑘 ∈ I represents the 𝑘-th clicked item in the current
session 𝑠𝑡 . Based on the above symbols and descriptions, we define
the modeling goal of session 𝑠𝑡 as predicting the click of the |𝑠𝑡 |+1th
item based on the historical behavior records of 𝑠𝑡 .

3.2 Intent Inference Stage
3.2.1 Prompt Design. At the current stage, the logical reasoning
ability of LLM is limited. To achieve more accurate inference, we
introduce perspective-limiting qualifiers as auxiliary, enabling LLM

to speculate on existing items in a sequence from a specific per-
spective rather than directly predicting using LLM.

Specifically, in our prompt design, we utilize the perspective-
limiting qualifiers based on commonly used behavioral modeling
perspectives in SBR (long-term and short-term). By artificially set-
ting them, we decompose the text inference task into finer-grained
perspective inference subtasks, thereby maximizing the utilization
of LLM’s reasoning capabilities. It is worth noting that the per-
spective settings are not fixed and can be freely added or removed,
endowing the framework with scalability.

The specific prompt design is illustrated in Figure 2, where we
denote perspective-limiting qualifiers with blue color. A prompt
consists of three parts: [background prompt, item name se-
quence, and task prompt ]. Some studies [16, 21] suggest that ID
information helps LLM distinguish between different items more
accurately. Inspired by this, we incorporate corresponding ID infor-
mation after the item names in the prompt design. Therefore, we
present the prompt template as follows:
"The order in which users click on items is as follows:
1. ItemName_ItemID



LLM4SBR: A Lightweight and Effective Framework for Integrating Large Language Models in
Session-based Recommendation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Figure 2: Illustration of the design of prompts.

· · ·
N. ItemName_ItemID
Please guess an item that the user is interested in in the (perspective-
limiting qualifiers). (Only output the item name without any expla-
nation.)"

3.2.2 LLM Inference. To enhance the effective utilization of se-
mantic information and understand the genuine intent of sessions,
we leverage the contextual understanding and logical reasoning
capabilities of LLMs to achieve intent inference from different per-
spectives.

In the aspect of selecting largemodels, we have chosen the Qwen-
7B 1 model as the inference model after comprehensive considera-
tion of LLM’s inference capability, adaptability to both Chinese and
English languages, and model parameter count. It is worth noting
that here, the LLM is interchangeable. LLMs with more parameters
and stronger reasoning capabilities can produce more accurate in-
ference results. We adopt the form of question and answer, input
different perspective prompts as questions to the LLM, and then
the LLM returns its inferring results according to the prompts. In
addition, to standardize the answers of the LLM, we specially mark
"(Only output the item name without any explanation.)" in the
prompts.

3.2.3 Intent Localization. To assist LLM in eliminating halluci-
nations and achieving and achieving semantic enhancement, we
designed the intent localization module. Although in most cases,
the LLM inference result is an accurate item name, sometimes it
may be just a vague item category or key project term. In rare cases,
a reasonable inference result may not be obtained. The red portion
in Figure 3 illustrates the initial inference results of LLM.

Inspired by the RAG retrieval model [18], addressing hallucina-
tions in LLM requires providing relevant external knowledge to
LLM. The text retrieval scheme of the RAG model is usually based

1https://github.com/QwenLM/Qwen

Figure 3: The result of intent localization module.

on the similarity of text embeddings, so we first encode all inference
results and the text of the item set into embedding forms using a
pre-trained BERT model [9]2.

𝐸infer = Bert(Textinfer), (1)

𝐸item = Bert(Textitem), (2)

where 𝑒infer, 𝑒item ∈ R𝑑𝑡𝑒𝑥𝑡 .
Then, we compute the cosine similarity scores between each

inference result and all item embeddings. Utilizing text embedding
similarity, we select the Top-𝑓 most similar actual items from the
item set, where 𝑓 is a hyperparameter that controls the number
of semantically similar items to be filtered. We multiply the em-
beddings of selected items by their corresponding similarity scores
and then sum them up to obtain the inference result of the LLM.
Figure 3 illustrates the comparison of inference results before and
after using the intent localization module. Finally, the inference
results from each perspective undergo hallucinations removal and
semantic enhancement through this module. To reduce unnecessary

2https://huggingface.co/bert-base-uncased
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computation time in the next stage, we store the adjusted results’
embeddings in an external file.

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑒𝑖infer

⊺
𝑒
𝑗

item

∥𝑒𝑖infer∥∥𝑒
𝑗

item∥
, (3)

ℎinfer =
𝑓∑︁
𝑗=1

exp(𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦)∑𝑓

𝑗=1 exp(𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦)
𝑒
𝑗

item, (4)

where 𝑒𝑖infer ∈ 𝐸infer is the text embedding of the inference result
and 𝑒𝑖item ∈ 𝐸item is the text embedding of the item name.

3.3 Representation Enhancement Stage
After the intent inference stage, we move into the representation
enhancement phase. In this stage, the SBR model processes be-
havioral modeling data and parsed inference data. Subsequently,
the alignment and uniformity of session embeddings and infer-
ence embeddings are conducted separately for each perspective.
Ultimately, all perspective inference embeddings are fused with
session embeddings to form the final session representation used
for prediction.

Most of the state-of-the-art (SOTA) models in RS are currently
based on the item-ID paradigm. Although this paradigm may sacri-
fice semantic information, its performance and efficiency are un-
deniably superior. There is still a long way to go to subvert the ID
paradigm. [45] Therefore, we opt to model user behavior based on
the item-ID paradigm while simultaneously injecting multimodal
information for supplementary enhancement. The SBR model in
the framework is interchangeable. In the subsequent experimental
section, we also test the performance after replacing SR-GNN with
other SBR models.

3.3.1 SBR Modeling. In this section, we use the SBR model to
model interactive information in conversation sequences and learn
user behavior preferences. The SBR model here can be replaced
arbitrarily. Given that SR-GNN [41] stands as one of the classic
models in SBR, and the state-of-the-art (STOA) models in SBR pre-
dominantly rely on GNN, this model holds significant importance.
Therefore, we primarily select it as the prototype SBR model within
the framework for the experimental segment. Specifically, SR-GNN
constructs session data into a session graph, where each node in
the graph represents a unique item in the session. It utilizes GGNN
to learn node features, then takes the last clicked item in the ses-
sion as the local embedding of the session. It aggregates all node
information and utilizes a soft attention mechanism to represent
global preferences.

𝐻 𝑙𝑡 , 𝐻
𝑔
𝑡 = SBR-Model(I𝑡 ), (5)

where I𝑡 ⊆ I represents the set of items interacted with in session
at time 𝑡 . 𝐻 𝑙𝑡 , and 𝐻

𝑔
𝑡 represent the local embedding and global

embedding of session 𝑡 respectively.

3.3.2 Text Embeddings Parsing. In the intent inference stage, we
save the inference results’ embeddings in an external file. Therefore,
we need to read out the embeddings of the inference, then parse and
restore them into tensor form, followed by performing dimension
alignment.

𝐻infer =𝑊1 (Parse(𝐻 str
infer)) + 𝑏1 (6)

Here,𝑤1 ∈ R𝑑×𝑑𝑡𝑒𝑥𝑡 is the weight matrix, and 𝑏1 ∈ R𝑑 is the bias
term. 𝐻 str

infer represents the inference embeddings stored as strings,
and Parse denotes the conversion between strings and embeddings
using the "𝑎𝑠𝑡 .𝑙𝑖𝑡𝑒𝑟𝑎𝑙_𝑒𝑣𝑎𝑙" function.

3.3.3 Representation Alignment and Fusion. The SBR model mod-
els interaction information within sessions, while LLM employs its
knowledge to infer the textual content corresponding to sessions.
Although both have the same goal, they are not in a unified embed-
ding space. To better integrate embeddings and enhance session
representation quality, we incorporate DirectAU [36] for alignment
and uniformity of representation.

L𝑎 = E
(𝑖𝑛𝑓 𝑒𝑟,𝑡 )∼𝑠𝑒𝑠𝑠

| | ˜
ℎ
𝑝

infer − ℎ̃
𝑝
𝑡 | |

2 (7)

L𝑢 = log 𝑒−2 | |
˜

ℎ
𝑝

infer−
˜

ℎ
𝑝

infer′
| |
2

/2 + log 𝑒−2 | |ℎ̃
𝑝

𝑡 −
˜
ℎ
𝑝

𝑡
′ | |

2

/2 (8)
where L𝑎 denotes alignment loss function and L𝑢 denotes unifor-
mity loss function. For each perspective (long-term, short-term), we
separately compute the alignment loss between the inference repre-
sentation and session representation under that perspective, as well
as the uniform loss within each inference representation and each
session representation. ℎ𝑝infer and ℎ

𝑝
𝑡 represent the inference repre-

sentation and session representation, respectively, corresponding
to the session 𝑡 under the same perspective.

Then, we fuse the session representations from different perspec-
tives and modalities into the final session representation.

𝐻𝑠𝑒𝑠𝑠 =𝑊2 [𝐻 𝑙𝑡 ;𝐻
𝑔
𝑡 ;𝐻

lt
infer;𝐻

st
infer], (9)

where𝑊2 ∈ R𝑑×4𝑑 is a weight matrix. 𝐻 𝑙𝑡 is the local preference
representation obtained in the SBR model, where the local prefer-
ence embedding is simply defined as the last clicked item. 𝐻𝑔𝑡 is the
global embedding obtained by the SBR model, which is obtained
by the soft attention mechanism. For details, please see SR-GNN
[41]. Additionally, 𝐻 st

infer and 𝐻
lt
infer represent the short-term and

long-term perspective text embeddings of LLM inference, respec-
tively. From this, the four embeddings are compressed into the same
embedding space through a linear layer.

3.3.4 Prediction and Optimization. By taking the item of the ses-
sion representation and the item representation, scores for each
candidate item are obtained. Then, the softmax function is applied
to obtain the model’s predicted values 𝑌 .

𝑦𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (ℎ𝑇𝑠𝑒𝑠𝑠𝑣𝑖 ), (10)

where 𝑦𝑖 represents the probability that each item in the itemset
becomes the next item in the current session. The loss function for
SBR tasks is defined as the cross-entropy between the predicted
values and the ground truth, as shown below:

L𝑟 = −
𝑛∑︁
𝑖=1

𝑦𝑖𝑙𝑜𝑔(𝑦𝑖 ) + (1 − 𝑦𝑖 )𝑙𝑜𝑔(1 − 𝑦𝑖 ), (11)

where 𝑦 is the one-hot encoding vector of the ground truth item.
Ultimately, the joint learning loss function is composed of both

the recommendation loss function and the auxiliary task (alignment
and uniformity) loss function.

L = L𝑟 + 𝜏 (𝐿𝑎 + 𝐿𝑢 ) (12)
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Table 1: Statistics of the utilized datasets.

Datasets Train Test Clicks Items Avg.len.
Beauty 158,139 18,000 198,502 12,101 8.66
ML-1M 47,808 5,313 987,610 3,416 17.59

where 𝜏 controls the proportion of auxiliary tasks.

4 EXPERIMENTS
4.1 Experimental Settings
4.1.1 Datasets. We initially hoped to validate the performance us-
ing commonly used datasets in SBR, as they are more representative.
Unfortunately, we couldn’t find any session datasets that provide
both interaction ID sequences and item name information. Taking
this into consideration, we opted for Beauty3 and MovieLens-1M
(ML-1M)4 datasets, which are the closest in format. The details
of these two datasets are shown in Table 1. For both datasets, we
adhere [19, 41] to removing sessions with a length of 1 and items
that appear fewer than 5 times across all sessions.
• Beauty dataset comprises evaluations and ratings from users
on various beauty products. We treat all ratings sequences from
a single user as a session sequence. We enhance the dataset
using the commonly employed sequence segmentation method
[19, 26, 41] in SBR. For instance, consider an original session 𝑠 =
[𝑖𝑡,1, 𝑖𝑡,2, · · · , 𝑖𝑡,𝑛]. After segmentation by sequence, we obtain
( [𝑖𝑡,1], 𝑖𝑡,2), ( [𝑖𝑡,1, 𝑖𝑡,2], 𝑖𝑡,3), · · · ,( [𝑖𝑡,1, 𝑖𝑡,2, · · · , 𝑖𝑡,𝑛−1], 𝑖𝑡,𝑛).

• ML-1M dataset consists of over 1 million ratings from more
than 6, 000 users on over 4, 000 movies. Considering our research
question, we partition the movie rating data of the same user in
this dataset into multiple session sequences using a 10-minute
interval as the splitting point.

4.1.2 Evaluation metrics. In terms of the evaluation indicators used
in the experiment, We chose the most commonly used ones in SBR
tasks: Precision (P)@𝐾 and Mean reciprocal rank (MRR)@𝐾 . After
referring to the classic work [39, 42] in recent years, we set the
length of the candidate set@𝐾 to 5, 10, and 20, which is the most
meaningful for comparison.

4.1.3 Parameter Settings. All experimentswere conducted onNVIDIA
A100 GPUs. For fairness in performance comparison, the optimizer
used throughout the experiments was unified as Adam with a learn-
ing rate of 0.001, decayed by 0.1 every three epochs, and an 𝐿2
penalty set to 10−5. For the SBR model involved in the experiments,
the batch size is 100 and the dimension size is 100. 𝜏 is set to 0.1. We
initially set the hyperparameter 𝑓 in the intent localization module
to 5, and subsequent hyperparameter experiments 4.4 will discuss
the optimal value. We followed the optimal parameter settings as
published in their paper for the remaining parameters.

4.2 Performance Experiment and Analysis
In this section, we mainly compare the performance of the SBR
model and the corresponding SBR model applying the LLM frame-
work under different Top-𝐾 .
3https://jmcauley.ucsd.edu/data/amazon/links.html
4https://grouplens.org/datasets/movielens/

4.2.1 Backbone. To validate the effectiveness of the framework,
we selected four classic models from SBR to replace the SBR model
in the framework and compared the performance between each
pair. The introduction of the SBR models is as follows:
• SR-GNN [41] is the first model to construct data into session
graphs, utilizing GGNN to capture complex transition relation-
ships among items.

• TAGNN [44] adds a target-sensitive attention mechanism based
on SR-GNN.

• GCE-GNN [39] constructs session graphs and global graphs
respectively, and learns relevant information from the item level
and session level.

• 𝑆2-DHCN [42] uses hypergraph convolution to learn high-order
relationships in item sequences, and uses self-supervised learning
to alleviate the data sparse problem of hypergraphs.
The comparison results of the overall performance experiments

are shown in Table 2. We record the performance with K set to 5, 10,
20. It is worth noting that in the evaluation system of RS, smaller
𝐾 values are more significant. From the results displayed in Table
2, we draw the following observations:
• LLM4SBR significantly improves backbone performance.
In the models enhanced through the LLM framework, all demon-
strate performance improvement. This confirms that the text
representations derived from LLM inference contain rich and
valuable information, which can greatly help the SBR model
understand the potential intention of the conversation data.

• LLM4SBR has a greater improvement for smaller 𝐾 values.
For example, LLM4SBR (TAGNN) improved the P@5 index of
the two data sets by 27.28% and 107.5% respectively. We believe
this is due to the semantic enhancement achieved by LLM4SBR
during the intent localization stage, where it utilizes 𝑓 similar
semantic items. Consequently, it results in more accurate pre-
dictions for the top few items in the predicted candidate set. We
also observe slight decreases in performance for 𝑆2-DHCN and
GCE-GNN on a few metrics (𝑃@20 and 𝑀𝑅𝑅@20) after inte-
grating with the framework. We posit that when the original
SBR model already effectively models the data, enhancing the
inference information through the intent localization module
may introduce noise. Compared to the improvement magnitude,
the decrease is very slight. Moreover, since noise issues can be
effectively controlled by adjusting the hyperparameter 𝑓 in the
intent localization module, the negative impact can be almost
negligible.

• LLM4SBR can compensate for poor modeling caused by a
lack of interactive information. GCE-GNN captures effective
information at both the item and session levels by construct-
ing global graphs and session graphs simultaneously, due to the
model’s complex computations, in scenarios with limited data
volume, it becomes challenging for this model to learn effec-
tive session representations. LLM4SBR (GCE-GNN) showed the
greatest improvement, especially on the ML-1M dataset, P@5,
P@10, and P@20 increased by 37.59%, 96.2%, and 128.54% respec-
tively. We attribute this to the effective text information obtained
from LLM inference, which compensates for the information
scarcity in GCE-GNN’s session modeling, allowing it to achieve
better performance. In addition, The architectures of SR-GNN
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Table 2: Performance comparison experimental results (%).

Dataset Beauty ML-1M
Model 𝑃@5 𝑃@10 𝑃@20 𝑀𝑅𝑅@5 𝑀𝑅𝑅@10 𝑀𝑅𝑅@20 𝑃@5 𝑃@10 𝑃@20 𝑀𝑅𝑅@5 𝑀𝑅𝑅@10 𝑀𝑅𝑅@20
SR-GNN 6.30 10.02 14.86 3.18 3.70 3.99 4.29 8.64 13.01 2.16 3.09 3.19

LLM4SBR(SR-GNN) 7.58 11.29 16.30 4.34 4.62 5.00 7.38 11.52 17.54 4.06 4.55 5.26
SR-GNN Improv. 20.31% 12.67% 9.69% 36.47% 24.86% 25.31% 72.02% 33.33% 34.82% 87.96% 47.25% 64.89%

TAGNN 6.12 10.06 15.23 3.10 3.63 3.97 3.60 6.19 10.28 1.77 2.15 2.23
LLM4SBR(TAGNN) 7.79 11.79 16.76 4.39 4.78 5.05 7.47 12.33 18.60 4.03 4.79 4.87
TAGNN Improv. 27.28% 17.19% 10.04% 41.61% 31.68% 27.20% 107.5% 99.19% 80.93% 127.68% 122.79% 118.38%

GCE-GNN 6.39 8.93 12.38 3.97 4.30 4.54 5.16 6.85 9.67 3.18 3.41 3.60
LLM4SBR(GCE-GNN) 7.75 12.48 18.08 3.91 4.41 4.80 7.10 13.44 22.10 3.14 3.63 4.21
GCE-GNN Improv. 21.28% 39.75% 46.04% -1.51% 2.56% 5.73% 37.59% 96.20% 128.54% -1.25% 6.45% 16.94%

𝑆2-DHCN 7.14 11.97 17.54 2.97 3.61 3.99 8.35 14.55 23.38 3.66 4.51 5.09
LLM4SBR(𝑆2-DHCN) 7.77 11.85 17.48 4.26 4.79 5.15 9.54 15.31 22.67 5.13 5.91 6.40
𝑆2-DHCN Improv. 8.82% -1.00% -0.34% 43.43% 32.68% 29.07% 14.25% 5.22% -3.03% 40.16% 31.04% 25.73%

* We highlight the best performance values for each metric in bold and underscore the best values within the backbones.

and TAGNN are based on directed session graphs, utilizing GNN
to capture complex transition relationships between items. How-
ever, limited by the number of layers in GNNs, both of these
models struggle to effectively capture useful information from
long-term items. After adding LLM4SBR, both of the above two
models have achieved substantial performance improvements.
Inference information from a long-term perspective solves the
problem of insufficient capture of long-term dependencies in the
model.
In conclusion, the effectiveness of the LLM4SBR framework is

undeniable. As a plug-and-play framework, it significantly enhances
the prediction accuracy of traditional SBR models.

4.3 Ablation Experiment and Analysis
To examine the necessity and relative importance of the long-term
and short-term inference perspectives, we designed two variants:
LLM4SBR w/o Long and LLM4SBR w/o Short. LLM4SBR w/o Long
indicates inference without considering the long-term perspective,
retaining only the short-term perspective. Conversely, LLM4SBR
w/o Short retains only the long-term perspective and removes
the short-term perspective during inference. We compared the
performance of these two variants with the whole performance
and visualized the comparison as a bar chart to clearly illustrate
the differences between them.

Through observation and analysis of Figure 4, we summarized
the following conclusions:
• Both long-term and short-term perspectives are necessary.
Because the whole framework represented by the blue column
in the figure shows the best performance on both datasets. This
demonstrates the need to leverage LLM for separate perspective
inference, removing any perspective will result in a performance
loss.

• The contribution of long-term and short-term perspec-
tive inference varies across the two datasets. In Beauty, the
framework relies more on the information provided by the short-
term perspective, as discarding the inference results of the short-
term perspective would lead to a greater performance drop. Con-
versely, in Ml-1M, it’s the opposite; the framework relies more
on the inference results of the long-term perspective. Through
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Figure 4: Inference perspective ablation experiment results

discussion and analysis, we attribute this performance differ-
ence to the length of the dataset sessions. Session intent in short
sequences is usually relatively stable, and the intent is mainly
reflected in the last few clicks. This underscores the increased
importance of accurately modeling short-term interests in short-
session scenarios. However, as the session length increases, the
session intent is influenced by various factors, thereby increasing
the importance of long-term dependency relationships within
the session. Finally, we believe that considering the inference
results of multiple perspectives simultaneously can enhance the
stability of the framework’s performance, making it adaptable to
datasets with varying session lengths.
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Table 3: The result of space occupation experiment

Model Occupies video memory (M)
Dataset Beauty ML-1M
SR-GNN 1,314 1,224

LLM4SBR(SR-GNN) 1,330 1,304

4.4 Hyperparameter Experiment and Analysis
In this section, we discuss the hyperparameter 𝑓 set within the
intent localization module. This hyperparameter is designed to
eliminate hallucination and enhance semantics in the preliminary
inference results of LLM, using a candidate set of items with similar
semantics. The hyperparameter 𝑓 is configured to control the range
of selecting items with similar semantics. The value of 𝑓 is set to 0,
1, 3, and 5, and we discuss four scenarios accordingly: (1) directly
utilizing the inference results of LLM, (2) eliminating hallucina-
tion using the most similar item, (3) eliminating hallucination and
enhancing semantics using the Top-3 most similar items, and (4)
eliminating hallucination and enhancing semantics using the Top-5
most similar items.

The experimental results are shown in Figure 5. Firstly, across
all three plots, although the optimal hyperparameter values differ
for each plot, we can see that the performance is consistently the
worst when 𝑓 = 0. We believe this is logical and demonstrates
the necessity of the intent localization module in the framework.
If the results of LLM inference are not processed, hallucinations
occurring in some session data may lead to a decrease in the overall
framework performance. Taking a closer look at the local details,
in Figures 5a and 5b, the performance peaks when 𝑓 = 1, with 𝑃@5
and 𝑃@10 being 7.69 and 11.48 respectively. However, in Figure
5c, a notable peak is observed when 𝑓 = 3, achieving the best
performance with 𝑃@20 is 18.56. When the value of 𝐾 is relatively
small (𝐾 = 5, 𝐾 = 10), the performance is best when 𝑓 = 1. We
believe this is because utilizing multiple similar items for semantic
enhancement of intent may introduce noise, thereby leading to
a slight performance decrease. As the value of 𝐾 increases, the
performance of the 𝑓 = 3 and 𝑓 = 5 becomes similar, both surpass
𝑓 = 1. This suggests that introducing multiple similarly named
items appropriately can increase the diversity of candidate items
while enhancing performance.

In summary, values of 𝑓 ranging from 1 to 5 are all effective.
Depending on the requirements for different values of 𝐾 , selecting
different values of 𝑓 can better leverage the module’s effectiveness.

4.5 Space Occupation Experiment and Analysis
Recommendationmodels based on LLMoften require a large amount
of videomemory. To explore the spatial effectiveness of the LLM4SBR
framework, we recorded thememory usage of SR-GNN and LLM4SBR
(SR-GNN).

The results are shown in Table 3, the memory usage rates of the
two are very close. Through the two-stage strategy, LLM inference
is performed only once in the first stage, and then the inference
results are stored in an external file. During the second stage of SBR
model training, the memory consumption is limited to the origi-
nal SBR model, the ID sequence data, and the pre-stored inference

embeddings, significantly reducing memory usage. Additionally,
since the second stage only requires parsing the stored inference
embeddings into tensors, its increased time complexity is𝑂 (1), the
model’s time complexity mainly depends on the original SBR model.
Taking into account time and space factors, the LLM4SBR frame-
work we proposed can be implemented in industrial environments.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we explore the feasibility of combining LLM with
SBR models while considering both effectiveness and efficiency. In
short sequence data, LLM can infer preferences directly leveraging
its language understanding capability without fine-tuning. This
approach is more efficient in utilizing information compared to
encoding text data into embeddings for training, and it allows us
to place LLM and SBR in separate stages, greatly reducing training
costs. Regarding the LLM hallucination, we found that it can be
corrected through the similarity of text embeddings, and enhance-
ment with similar samples can improve the diversity of inference
results to a certain extent.

In addition, we propose a scalable two-stage LLM enhancement
framework (LLM4SBR) tailored for SBR. Specifically, in the semantic
reasoning phase, we utilize LLM as the inference engine, designing
prompt-guided inference processes from different perspectives and
leveraging an intent localization module to eliminate LLM halluci-
nations and achieve semantic enhancement. In the representation
enhancement stage, we perform fine-grained alignment and uni-
formity of text embeddings and session embeddings from different
perspectives. This effectively facilitates the fusion of representa-
tions from different modalities, thereby enhancing the final session
representation. Extensive experiments have demonstrated the effec-
tiveness of the LLM4SBR framework, which significantly enhances
most SBR models while also improving model interpretability and
enhancing the diversity of candidate selection.

For future work, we will continue exploring whether adding
additional LLM inference perspectives can yield greater benefits, as
well as assessing the effectiveness of utilizing LLM Agent for logical
reasoning. In addition, we also want to explore the application of
other downstream tasks combined with LLM. Finally, we hope for
this work to open up new avenues in SBR research, accelerating
deeper exploration into the integration of LLM with RS.
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