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ABSTRACT
Understanding and characterizing the vulnerability of urban in-
frastructures, which refers to the engineering facilities essential
for the regular running of cities and that exist naturally in the
form of networks, is of great value to us. Potential applications
include protecting fragile facilities and designing robust topolo-
gies, etc. Due to the strong correlation between different topo-
logical characteristics and infrastructure vulnerability and their
complicated evolution mechanisms, some heuristic and machine-
assisted analysis fall short in addressing such a scenario. In this
paper, we model the interdependent network as a heterogeneous
graph and propose a system based on graph neural network with
reinforcement learning, which can be trained on real-world data,
to characterize the vulnerability of the city system accurately. The
presented system leverages deep learning techniques to under-
stand and analyze the heterogeneous graph, which enables us to
capture the risk of cascade failure and discover vulnerable infras-
tructures of cities. Extensive experiments with various requests
demonstrate not only the expressive power of our system but also
transferring ability and necessity of the specific components. All
source codes and models including those that can reproduce all
figures analyzed in this work are publicly available at this link:
https://github.com/tsinghua-fib-lab/KDD2023-ID546-UrbanInfra.
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1 INTRODUCTION
Urban infrastructure [6] refers to the engineering facilities essential
for the regular running of cities, including electricity supply, trans-
portation, and communication, etc. These urban infrastructures ex-
ist naturally in the form of networks, including electricity networks,
road networks, communication networks, etc. Further, various in-
frastructure networks are coupled and interdependent, forming a
typical system of interdependent networks [3, 4]. Moreover, cities
confront the danger of natural catastrophes such as earthquakes,
typhoons, and rainstorms, which often destroy functional units of
different urban infrastructures. Due to the interplay between differ-
ent infrastructures and their functional reliance, destruction often
extends beyond the affected area, leading to widespread paralysis
of urban infrastructure. This exacerbates the vulnerability of urban
infrastructures [3, 4]. Urban infrastructures are essential for the
proper functioning of various services in a city, including housing
and production, and are closely tied to the well-being of its citizens.
Therefore, gaining a profound understanding of the vulnerability
of urban infrastructure holds significant value.
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Figure 1: Illustration of our proposed system.

However, understanding and characterizing the vulnerability of
urban infrastructure is a difficult task. First, networks of different ur-
ban infrastructures exhibit diverse topological structures [9, 10, 28],
which differ in terms of cluster structure, cycle structure, degree
distribution, centrality, etc. The high-dimensional topological struc-
ture and the diverse topological features make it challenging for
knowledge-based expert systems [18] or feature engineering meth-
ods [1] to thoroughly characterize it, which is the first challenge.
Second, there is a strong correlation between these topological
characteristics and infrastructure vulnerability [5, 14]. The states
of different infrastructure networks have complicated evolution
mechanisms. For example, the evolution of vehicle distribution on
road networks is driven by the interaction between traffic control
signals and driver actions, while the evolution of the distribution of
power flow in electricity networks is driven by Ohm’s law. These
evolution mechanisms compound the functional dependencies of
the infrastructure network to exacerbate the higher-order prop-
agation effects of damage. How to model the complicated effect
of evolution mechanisms of urban infrastructures is the second
challenge.

In this paper, we focus on modeling the vulnerability of inter-
dependent networks composed of diverse urban infrastructures
using a data-driven approach. We develop a graph convolutional
neural network, which can efficiently and exhaustively extract the
topological features of each infrastructure network as well as the
topological features of the interdependency between them, via op-
timizing the loss function of graph reconstruction. Further, we
construct a simulator of the interdependent networks composed
of urban infrastructures and develop a reinforcement learning (RL)

module by interacting with it. This module deeply models the net-
work evolution mechanism by using the influence of damaged
functional units as a reward, which can accurately characterize the
vulnerability of the system.

The contributions of this work can be summarized as follows:
• We propose a graph convolutional neural network, which per-
forms a coupled graph construction through semi-supervised
embedding learning and can efficiently and exhaustively extract
the topological features of each infrastructure network as well
as the interdependency between them.

• We construct a reinforcement learning (RL) module, which makes
full use of diverse graph embeddings. It can discover a set of
vulnerable functional units of infrastructures in the specified
reward setting, thus accurately characterizing the vulnerability
of the system.

• Extensive experimental results show that our proposed model
can effectively characterize the vulnerability of the system while
interacting with an urban simulator. Specifically, the influence of
the damaged functional units selected by our proposed algorithm
significantly beat those of state-of-the-art algorithms.

2 PROBLEM STATEMENT
Starting from the basic interdependent network, we select two
closely connected infrastructure networks – road network [7] and
electricity network [29] from the city. The road network consists
of a multitude of roads and intersections, representing edges and
nodes, respectively. and the electricity network is a tree-like struc-
ture digraph composed of a large number of power stations at
different levels, such as 220 kV, 110 kV, and 10 kV power stations.
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Table 1: Notations.
Symbols Description

G = (V, E) Coupled graph G, whereV is the set of nodes and E is the set of edges

G𝑒 = (V𝑒 , E𝑒 ) Electric network G𝑒 , where V𝑒 is the set of power stations and E𝑒 is the set of wires

E ′
Set of interdependent directed edges

f𝑣 , h𝑖𝑣 , f𝑣 Initial, process and final embedding of node 𝑣

N(·) Set of neighbor nodes of given one

𝐿 Iteration number or depth of GNN

W𝑖 Weight matrix of graph neural network at depth 𝑖

G𝑛 , G𝑝 Negative graph and positive graph

S Set of states

A Set of actions

P(𝑠′ | 𝑠, 𝑎) Transition function, where 𝑠′ is the state at next step

R (𝑠, 𝑎) Reward function

𝛾 Discount factor

𝑣𝑘 ,𝑠𝑘 , 𝑟𝑘 Selected node, state and reward at step 𝑘

𝑄 (𝑠, 𝑣) Action-value function

𝑃 (𝑣𝑒 ,G𝑒 ) Function that can calculate the decreased power of G𝑒 after 𝑣𝑒 is damaged

𝐸 (𝑣𝑒 ,G) Function that returns a set of invalid traffic lights affected by damaged 𝑣𝑒

𝐴(𝑣𝑟 ,G𝑟 ) Function that can calculate the decreased value of connectivity of G𝑟 after 𝑣𝑟 is damaged

𝑎𝑒 , 𝑎𝑟 Weight coefficients of G𝑒 and G𝑟

These two networks are connected by traffic lights located at inter-
sections and low-level (10kV) power stations. In the road network,
the state of traffic lights directly affects the connectivity of the
road network. Specifically, if a traffic light stops working due to
damage or power failure, roads it connects will become chaotic
and even crowded, and more roads could be affected over time. As
for the electricity network, it transmits electricity level by level to
infrastructures of other networks. For instance, the failure of a 220
kV power station will cascade to 110 kV power stations, resulting
in the shutdown of certain 10 kV power stations, ultimately impact-
ing the functioning of traffic lights linked to those 10 kV power
stations. Therefore, there are three states for each infrastructure:
normal, damaged, and invalid, and "invalid" means that a node stops
working because the nodes it connected are damaged or invalid.

To represent the interdependent network, we consider a coupled
graph G = (V, E) that consists two different structural graphs:
the road network G𝑟 = (V𝑟 , E𝑟 ) and the electricity network G𝑒 =
(V𝑒 , E𝑒 ).V = V𝑟 ∪V𝑒 is the set of nodes, E = E𝑟 ∪E𝑒 ∪E ′

is the
set of edges, where E ′

= {𝑒𝑣𝑒 𝑣𝑟 ,∀𝑣𝑒 ∈ V𝑒 ,∀𝑣𝑟 ∈ V𝑟 } is the set of
interdependent directed edges between power stations and traffic
lights. A notation table is organized to make this paper easier to
understand shown in Table 1. We expect to discover a set of nodes
from the interdependent network as the vulnerable nodes, that once
they are damaged, the coupled graph will be greatly affected, where
"affected" depends on scene and purpose when making decisions.
For instance, if we pay more attention to the condition of road
network, the number of crowded roads can serve as the primary
indicator of "affected"; if we care more about the state of electricity
network, the power decrease in the grid could be the main indicator
of "affected".

3 THE PROPOSED SYSTEM
In the course of detecting the vulnerable nodes in the coupled
graph, based on the strong representation ability of graph neural
network (GNN) for graph-structured data and the ability of deep
reinforcement learning (DRL) to solve sequential decision-making
problem, we devise a new system to deal with this task. Figure 1
illustrates the architecture of our proposed system.

3.1 Coupled Graph Representation
We expect to take into account the direct and indirect information
of the graph while choosing nodes, but the state of the graph can
be very complex. Traditional methods[23, 37] usually use fixed
features to represent graphs, such as degree distributions, clustering
coefficients, and so on. Due to the complex evolutionary mechanism
of the coupled graph, these methods are not applicable to most
coupled graphs and perform poorly when they characterize the
graph’s structural information. Based on graph neural networks,
we leverage semi-supervised embedding learning [40] to obtain the
coupled graph embedding that could extract the node features and
graph topology in a low-dimensional embedding space.

3.1.1 Graph Construction. Given an urban interdependent net-
work consisting of an electricity network and a road network, we
represent it as a coupled graph G = (V, E) according to the pre-
vious setting. We map each node 𝑣 ∈ V to a initial d-dimensional
vectors f𝑣 and define a node embedding matrix F𝑣 = {f𝑣,∀𝑣 ∈ V} ∈
R𝑑×|V | as,

f𝑣 =

{
f𝑒𝑣 , if node 𝑣 ∈ V𝑒 ;
f𝑟𝑣 , if node 𝑣 ∈ V𝑟 .

(1)

Note that the initial embeddings f𝑒𝑣 and f𝑟𝑣 are pre-trained from the
respective graphs by the method described below, while the initial
embeddings of them are randomly set. To improve its characteriza-
tion ability, we use graph neural networks[13] to incorporate node
attributes and capture the coupled graph structural information
and other unseen data. On account of initial embeddings that have
already contained the information of subgraphs, we are able to
explore more information about the interdependent relationship in
the coupled graph.

3.1.2 Graph Neural Network. Graph G = (V, E) and initial
embeddings of all nodes {f𝑣,∀𝑣 ∈ V} are provided as input. Let 𝑙
denote the depth and h𝑙𝑣 ∈ R𝑑×1 denotes the embedding vector for
node 𝑣 at step 𝑙 , each node 𝑣 ∈ V aggregates the embeddings of its
immediate neighbor nodes,

{
h𝑙𝑢 ,∀𝑢 ∈ N (𝑣)

}
, into a single vector

h𝑙N(𝑣) ∈ R
𝑑×1, whereN(·) stands for the set of neighboring nodes.

Note that h0𝑣 is defined as the input features f𝑣 . The aggregation
process is shown as follows,

h𝑙N(𝑣) = AGG(
{
h𝑙𝑢 ,∀𝑢 ∈ N (𝑣)

}
), (2)

h𝑙+1𝑣 = 𝜎

(
W𝑙 ·MEAN(

{
h𝑙𝑣, h

𝑙
N(𝑣)

}
)
)
, (3)

where AGG is a summation function that aggregates information
from local neighbors [22], 𝜎 stands for the rectifier function ReLU,
MEAN is the mean function, and W𝑙

1 ∈ R𝑑×𝑑 is a weight matrix
to be learned at step 𝑙 + 1. By defining the depth or iterations
𝐿, we can get the final representation for all nodes at depth 𝐿,{
z𝑣 ≡ h𝐿𝑣 ,∀𝑣 ∈ V

}
, which contains 𝐿-order neighbor nodes’ infor-

mation.

3.1.3 Semi-supervised Embedding Learning. There are cascade
relationships between infrastructures that are not connected di-
rectly in the urban network, and the topology of a network implic-
itly reveal the signal of similarity and correlation among nodes,
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(a) Power Decrease of Electricity Network (b) ANC Decrease of Primary Road (c) ANC Decrease of Tertiary Road

(d) Reward Increase of Bigraph (e) Power Decrease of Bigraph’s Electricity (f) ANC Decrease of Bigraph’s Road

Figure 2: Performance of different methods on different networks.

which can be used as supervised signals to obtain the representa-
tion vectors. Therefore, the task can be treated as a link prediction
[16] problem, which aims to estimate the likelihood of the edges
between nodes, based on observed edges and attributes of nodes.
Then we take all of the edges in the graph as a positive set and
sample several edges that do not exist as a negative set, which
forms a positive graph G𝑝 and a negative graph G𝑛 , respectively.
To learn parameters of the aggregator function and weight matri-
ces

{
W𝑙 ,∀𝑙 ∈ {1, . . . , 𝐿}

}
via stochastic gradient descent, we firstly

define a link prediction function as follows,

S(Z𝑣,G) =
{
z𝑇𝑣 · z𝑢 ,∀𝑒𝑣𝑢 ∈ E

}
, (4)

which calculates the inner product of embedding vectors for two
nodes on each existing edge as predicted weight, on given graph G.
Then we apply a margin loss function [30] to the node embeddings
Z𝑣 as follows,
𝐽G (Z𝑣 ) = MEAN(max(0, 𝑀 − S(Z𝑣, G𝑝 ) + S(Z𝑣, G𝑛 ) ) + 𝜆 ∥Θ ∥2, (5)

where𝑀 is a constant parameter, the second term of the loss func-
tion performs 𝐿2 regularization where Θ stands for model parame-
ters and 𝜆 controls the penalty strength. For G𝑒 and G𝑝 , the weights
simply represent the presence or absence of edges, and for coupled
graph, G, weights are set to even indicate the type of the edges.
While unknown edges are predicted by the known edges, we can

obtain more superior embeddings for the interdependent network
with cascading relationships, through semi-supervised learning
[35].

3.2 Vulnerable Nodes Detecting
We obtain a coupled graph embedding matrix through a graph con-
volutional neural network, which can efficiently extract the topol-
ogy features of the interdependent network. To make full use of this
information, and find a set of vulnerable nodes in the network, we
construct a reinforcement learning module. Reinforcement learning
[31] is a sequential decision process where the agent is trained to
take optimal actions for different scenarios of an environment. We
formulate the RL problem as a Markov decision process (MDP),
which is defined by a tuple (S,A,P,R, 𝛾) with a set of states S, a
set of actions A, a reward function R (𝑠, 𝑎), the transition function
P(𝑠′ | 𝑠, 𝑎) and a discount factor 𝛾 , 𝑠, 𝑠′ ∈ S, 𝑎 ∈ A. P(𝑠′ | 𝑠, 𝑎)
governs the joint probability distribution 𝑝 (𝑠′ | 𝑠, 𝑎) of transition-
ing to new state 𝑠′ after taking action 𝑎 in state 𝑠 . Given a policy 𝜋
, which fully determines the agent’ behavior, the action-value func-
tion𝑄𝜋 (𝑠, 𝑎) is defined as the expected reward when starting from 𝑠 ,
taking action 𝑎, and following the policy 𝜋 . In our proposed system,
the action is to choose vulnerable nodes, the state is the residual
coupled graph being analyzed after chosen nodes are damaged and
the reward is the resulting weighted summation of cascade failure
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(a) Transferring Ability for Electricity Network (b) Transferring Ability for Primary Road (c) Transferring Ability for Coupled Network

Figure 3: Transferring ability for different Networks.

from the environment which represents the given interdependent
network.

3.2.1 Framework. Given the couple graph G = (V, E) and the
corresponding pre-trained node embeddings Z𝑣 ∈ R𝑑×|V | as the
input of our model, we expect to sequentially select 𝐾 vulnerable
nodes from the graph as output for a complete epoch. We use the
node embedding matrix Z𝑣 to represent the universal state 𝑠 of the
current network (environment), and the initial state can be defined
as the graph pooling, s1 = MEAN(Z𝑣) ∈ R𝑑×1. Then at each step 𝑘 ,
the agent selects a node 𝑣𝑘 ∼ 𝜋 (· | s𝑘 ) as the action, where 𝜋 is the
policy. At the same time, next state s𝑘+1 is calculated by removing
node 𝑣𝑘 as follows,

s𝑘+1 = MEAN(Z𝑣\ {𝑣1, . . . , 𝑣𝑘 }), (6)

where Z𝑣\ {𝑣1, . . . , 𝑣𝑘 , } is the residual node embeddings after re-
moving embeddings of nodes in the set {𝑣1, . . . , 𝑣𝑘 } ⊆ V . Then the
environment judges whether selected node 𝑣𝑘 is a power station or
a junction, and set it damaged in the urban network to obtain the
corresponding reward 𝑟𝑘 . The agent update its policy 𝜋 (𝑣𝑘 | s𝑘 )
with reward 𝑟𝑘 , and choose the next node 𝑣𝑘+1. Continue this pro-
cess until epoch ends, and a trajectory 𝜏 = (s1, 𝑣1, 𝑟1, . . . , s𝐾 , 𝑣𝐾 , 𝑟𝐾 )
is determined by the agent under the policy 𝜋 . The learning ob-
jective is to discover an optimal policy 𝜋∗ that can maximize the
total reward for this whole trajectory:

∑
𝑘≥1 𝛾

𝑘𝑟𝑘 . Based on Bellman
equation [31], the optimal action-value function 𝑄𝜋∗ (s, 𝑣) can be
derived as:

𝑄𝜋∗ (s, 𝑣) =
∑︁
s′∈S

𝑝
(
s′ | s, 𝑣

) [
R (𝑣) + 𝛾 max

𝑣′
𝑄∗ (s′, 𝑣 ′) ] , (7)

A common method of obtaining a new policy for an action-value
function is to adopt 𝜖-greedy policy [17], which means that the
agent either chooses the node with the highest value with proba-
bility 1 − 𝜖 or chooses a node randomly with probability 𝜖 . It has
been proved that the agent following 𝜖-greedy policy could obtain
the maximum total rewards when 𝑄𝜋 (𝑠, 𝑣) is optimal [32].

3.2.2 Value Network and Optimization. Owing to the agent’s
action that choosing a node at each step is discrete, and the action
space is extremely large we design our vulnerable nodes detecting

model inspired by Deep Q-Learning Network (DQN) algorithm
[26], which takes advantage of a convolution neural network to ap-
proximate the 𝑄𝜋 (s, 𝑣). To make full use of the convolution neural
network and structural information learned by the node embed-
dings Z𝑣 when choosing nodes, the action-value function 𝑄𝜋 (s, 𝑣)
are defined as follows,

𝑄𝜋 (s𝑘 , 𝑣𝑘 ;Θ) = MEAN((𝜃2 · (𝜎 (𝜃1 · Z𝑣)))𝑇 · [s𝑘 , . . . , s𝑘 ] |V | ), (8)

where 𝜃1 ∈ R2𝑑×𝑑 and 𝜃2 ∈ R𝑑×2𝑑 are the optimized parameters,
𝜎 stands for a rectifier function and [s𝑘 , . . . , s𝑘 ] |V | is a function
that concatenating s𝑘 for | V | times. At each step, 𝑄𝜋 (s𝑘 , 𝑣𝑘−1)
is used for the 𝜖-greedy selection of the next action 𝑣𝑘m, and the
agent stores the transition tuple (s𝑘 , 𝑣𝑘 , 𝑟𝑘 , s𝑘+1) into an experience
replay buffer, the size of which is 𝐸. The parameters Θ are trained
over tuples sampled uniformly from the reply buffer via stochastic
gradient to minimize the mean-squared loss descent :
𝐽𝑄 (Θ) = MEAN( ∥ (𝑟𝑘 + 𝛾 max

𝑣
�̂� (s𝑘+1, 𝑣; Θ̂) ) − 𝑄 (s𝑘 , 𝑣𝑘 ;Θ) ∥2 ) , (9)

where Θ̂ represent the parameters of the target net �̂� , which only
updates after several iterations by copying Θ of evaluation net 𝑄 .
This approach ensures a more stable and efficient training process.
Since the graph is extracted from real data, we obtain the reward 𝑟
by simulating the network changes after chosen nodes are damaged.
To detect the vulnerable infrastructures in the road network, given
the chosen node 𝑣𝑘 , reward 𝑟 is the weighted summation of the
decreased power of the electric network and decreased value of
connectivity of the road network. At step 𝑘 , the reward function
R(𝑣𝑘 ) are defined as follows,

R(𝑣𝑘 ) =
{
𝑎𝑒𝑃 (𝑣𝑘 ,G𝑒 ) + 𝑎𝑟𝐴(𝐸 (𝑣𝑘 ,G),G𝑒 ), if node 𝑣𝑘 ∈ V𝑒 ;

𝑎𝑟𝐴(𝑣𝑘 ,G𝑒 ), if node 𝑣𝑘 ∈ V𝑟 ;
(10)

where 𝑎𝑒 and 𝑎𝑟 are weight coefficients, 𝑃 (𝑣𝑘 ,G𝑒 ) is a function
that can obtain the decreased power of given electricity network
G𝑒 after power station 𝑣𝑒

𝑘
is damaged by Power Flow Calculation,

𝐸 (𝑣𝑘 ,G) is a function that returns a set of invalid traffic lights
affected by damaged power station 𝑣𝑒

𝑘
and 𝐴(𝑣𝑘 ,G𝑒 ) is a function

that can calculate the decreased value of connectivity of the road
network. We can set a reasonable reward by adjusting the weight
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coefficients, to detect the ideal vulnerable nodes on the coupled
graph.

4 EVALUATION
In this section, we aim to evaluate the proposed model with exten-
sive answers to the following research questions (RQs).
• RQ1: Could our proposed method achieve the best performance
compared with existing methods?

• RQ2: What about the transferability of our model? Specifically,
how about the model’s performance when transferred into a new
interdependent network?

• RQ3: What about the effectiveness of each component in the
proposed method?

• RQ4:Why can ourmethod find the vulnerable nodes in the graph?
What about the failure process in the interdependent network?

4.1 Experimental Settings
4.1.1 Experimental environment. For the single network, we

leverage the electricity network G𝑒 with 10,887 nodes and 11,438
edges, including different levels of power stations such as 550kV
and 220kV, and infrastructure such as traffic lights. In addition,
two different road networks—primary road G𝑟𝑝 with 1,035 nodes
and 1,161 edges, and tertiary road G𝑟𝑡 with 4,825 nodes and 5,025
edges included, are also applied the model introduced before to
choose vulnerable nodes, using metrics followed in Section 4.1.2.
For the interdependent network with 15,712 nodes and 21,191 edges,
representing the coupled electricity network and the tertiary road
we attack nodes consisting of two graphs, importing the basic rules
that once a power station fails, the corresponding traffic lights stop
working.

4.1.2 Metrics. We use the representative metrics to evaluate
the selection performance of the proposed model and the existing
method as follows.
• Electricity Network: To assess the impact on the electricity net-
work, we calculate the current power after each node is damaged
or disabled using flow calculation within the electricity network.

• Road Network: For the road network, we use ratio of connec-
tivity [11], which is defined as follows,

𝜎 (G) =
∑︁
𝐶𝑖 ∈G

𝛿𝑖 (𝛿𝑖 − 1)
2

, (11)

where𝐶𝑖 is the 𝑖th connected component in the current graph G,
and 𝛿𝑖 is the size of 𝐶𝑖 . Another metric for the road network is
the size of GCC, which refers to the giant connected component,
calculated by:

𝜎𝑔𝑐𝑐 (G) = max{𝛿𝑖 ;𝐶𝑖 ∈ G}. (12)

• Coupled Network For the coupled network, we use the reward
defined as the weighted summation of power or connectivity
decrease after each node is damaged in the electricity network
or road topology correspondingly, to jointly evaluate the perfor-
mance on two networks.

4.1.3 Baselines. We compare our proposed method with the
following competitive baselines.

• DE [19, 37]: Here we represent the degree of node 𝑣𝑖 as 𝑑𝑖 . This
method sorts the degree 𝑑𝑖 of each node 𝑣𝑖 in the graph and
chooses the greatest ten nodes to be removed sequentially.

• CI [27]: The Collective Influence (CI) measure is defined as the
product of the node’s reduced degree and the sum of the reduced
degrees of the nodes that are within a constant hop away from it.
This method is calculated by CI(𝑣) = (𝑑𝑣 − 1)∑𝑢∈N(𝑣) (𝑑𝑢 − 1),
for each node, which describes the proportion of other nodes
that can be reached from a given node, assuming the nodes with
higher CI values play more crucial roles in networks. The CI
method sequentially removes the node with the highest CI value
and recalculates the CI values of the remaining nodes for the rest
following operations.

• GDM [15]: Graph Dismantling with Machine Learning (GDM),
utilizes a supervised learning approach to dismantle the entire
network. To generate the training data and labels, we randomly
sample nodes from the complete set and classify them into pos-
itive and negative sets. We then calculate the ratio of nodes
belonging to the positive set for those that exist in both sets.
The pre-trained node embeddings obtained from a graph neural
network are used as inputs to a neural network, such as a Mul-
tilayer Perceptron (MLP), for the supervised learning process.
The neural network computes outputs for all nodes, which are
subsequently sorted in descending order to identify nodes for
removal as a comparison to our method.

4.2 Overall Performance Comparison (RQ1)
We first present the overall performance comparison in Figure
2. In figure (a)-(c) we demonstrate the testing results on single
networks including one electricity network and two road networks.
In figure (d)-(e) we demonstrate the testing results on coupled
network consisting of electricity network and tertiary road network.
Based on the results, we have the following observations.

• Performance varies by different baselines. Based on obser-
vations, we have noticed distinct performance differences among
various baselines when applied to single and coupled networks.
In the electricity network, CI identifies nodes as more vulnerable
compared to DE due to the clustering distribution of power sta-
tions. Specifically, a 110kV station typically has only one 220kV
upstream connection but multiple 10kV downstream connec-
tions. In contrast, DE performs better than CI in road networks,
specifically primary and tertiary roads, due to the degree homo-
geneity, where road nodes typically have one incoming and one
outgoing connection. Comparing the heuristic methods in the
coupled network, CI still outperforms DE. We have established a
cascade rule where a power station failure leads to the shutdown
of traffic lights supported by that station, resulting in congestion
and chaos. This demonstrates that power stations have a greater
influence in this coupled network. Regarding machine-assisted
analysis, the method works better than heuristic approaches in
road networks because it requires fewer enabled nodes to cover
a majority of nodes using a set of samples. However, in the elec-
tricity network and coupled network, sampling from such a large
number of nodes struggles to cover even half of the total nodes.
This poses a challenge due to the significant disparity between
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(a) Power Decrease of Electricity Network (b) ANC Decrease of Primary Road (c) ANC Decrease of Tertiary Road

(d) Reward Increase for Bigraph (e) Power Decrease in Bigraph’s Electricity (f) ANC Decrease in Bigraph’s Road

Figure 4: Ablation experiments for different networks.

the volume of testing data and the available training data, result-
ing in unsatisfactory performance.

• Our method achieves the best performance. In comparison
to heuristic methods and other learned machine approaches, our
method consistently identifies critical nodes to minimize the cur-
rent state and maximize the defined reward. By damaging fewer
than ten nodes out of a total of 10,887 in the entire graph, our
method reduces the electricity power to approximately 50% and
even lower in the case of road networks. The power decrease
achieved by our method is 50% lower than that of CI, the con-
nectivity obtained is approximately 75% lower in primary roads
and about 43% lower in tertiary roads compared to the best-
performing alternative methods. Additionally, the accumulated
reward in our process is approximately 37% higher than that of
the CI method.

• Our method gets the result fast. Our method efficiently sim-
ulates the entire environment and rapidly identifies vulnerable
nodes, yielding a stable and effective solution within approxi-
mately 500 epochs.

• Cascade failure exists. Cascade failure does exist between the
topology of interconnectedness between infrastructures.Without
prior knowledge, our method could understand and characterize
such a cascading rule driven by the data itself and model the com-
plicated effect of evolution mechanisms of urban infrastructures.

4.3 Study on Transferring Ability (RQ2)
As mentioned before, one of the primary purposes is to characterize
the vulnerability of the urban system to descend the influence of
damaged functional units in cities. However, inaccuracy is always
a property of real-world data and the infrastructures will also be
continuously built and renovated. Due to the time and computation
costs to re-train a new agent finding vulnerable nodes, we try to
get the node embedding that responds to the real-world fast and
accurately, and leverage the original parameters of value networks
to find nodes and protect the current system, to study the trans-
ferring ability of our framework [33]. The detailed setup of the
transferability experiments is provided in Appendix. The results
have been shown in Figure 3, figure (a)-(c) show the experimental
results on the electricity network, primary road, and coupled net-
work, respectively. CI can still find fragile nodes in the electricity
and road network. Compared with baselines methods on the new-
generated topologies, our transferring system still works better
than heuristic methods including DE and CI, obtaining about 46%
lower power decrease and 75% lower connectivity than the best
baseline correspondingly and reaching a plateau after a small set of
nodes damaging. In the coupled network, the total reward obtained
by our method is about 20 times the reward of DE and 3.4 times the
reward of CI. In conclusion, our method has very strong transfer-
ring ability and robustness enabling us to avoid huge costs of time
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and computation. In addition, the improvement is meaningful and
evident as urban infrastructures change rapidly in the real world
nowadays.

4.4 Ablation Study (RQ3)
In reinforcement learning, the agent’s objective is to maximize the
expectation of the total reward by exploring the environment and
taking appropriate actions. As reinforcement learning algorithms
become more powerful, agents can handle increasingly complex
environments. However, when dealing with heterogeneous graphs
consisting of different types of nodes and edges, the exploration-
exploitation process for the agent can become challenging. Our
hypothesis suggests that providing the agent with a confusing or
randomly generated environment, specifically random-generated
node embeddings, may result in a longer training process to find a
stable solution, and the obtained results may be unsatisfactory.

Using the same datasets and metrics as described in Section 4.2,
we compare the training duration and final results between our
RL agent trained with pre-trained node embeddings generated by
GNN and those generated randomly. The comparison is presented
in Figure 4, following the same layout as Figure 2. As indicated
in the dataset introduction, the performance of the GNN + RL ap-
proach outperforms the learning process in a random environment.
Notably, the performance gap between the two approaches is more
pronounced in the case of the coupled network compared to indi-
vidual networks. Additionally, the ablation study on the two road
networks shows a subtle difference since road structures are simpler
and more limited, allowing for similar performance when the train-
ing process is extensive. However, in the interdependent network
with multiple types of nodes and edges, learning valuable infor-
mation from random representations becomes challenging. This
results in poor performance during testing, where the total reward
plateaus and the metrics of the two interacting single networks
show a downward trend.

In conclusion, we have confirmed the validity of our assump-
tion. The inclusion of the GNN component in our framework is
essential and significantly enhances the performance of the agent
when dealing with graph environments, particularly heterogeneous
graphs.

4.5 Case Study (RQ4)
Figure 5 visualizes the effects of a series of node damages, displaying
three sets of images representing the pre-stage, middle stage, and
post-stage of identifying vulnerable nodes in the interdependent
network [39]. In the case of the electricity network (a)-(c), direct
destruction is denoted by green markers, while yellow markers rep-
resent indirect destruction. For the road network (d)-(f), light green
indicates direct road collapse, magenta represents roads affected by
ruined or non-functioning power stations, and red denotes roads
separated from the largest connected component after the series of
damages.

The impact of node selection in the electricity network is evi-
dently more pronounced in terms of both the extent of influence
and power decrease compared to the coupled network. For instance,
damaging two nodes in the single electricity network reduces the
power to approximately 6.5𝑒9, whereas in the coupled network,

the power remains above 7𝑒9 even after the same number of nodes
are damaged. However, when considering the connectivity in the
road network, the topological changes undergo a significant shift
as nodes in the electricity network are damaged. As the damage
continues, the coverage area of normally operating power stations
and the largest connected component become increasingly limited.
This demonstrates the existence of cascade failure and validates our
framework’s ability to accurately characterize the vulnerability of
urban infrastructures. Moreover, the number of directly collapsed
roads is considerably lower compared to those affected by the elec-
tricity network and subsequently isolated. This finding aligns with
our model’s performance, which shows that the electricity network
has a greater influence.

5 RELATEDWORK
5.1 Data science in urban infrastructure
Urban infrastructure, including road networks, communication
networks, electricity networks, etc., is one of the most important
elements in the city, and there are many applications for data-
driven urban computing research. The early efforts mainly focus
on the modeling or prediction of urban infrastructure. For road
networks, the existing works pay a lot of attention to the problem
of road traffic forcasting [8], road traffic analaysis [25], travel time
prediction [36], or using the road network to predict other elements
in the city such as air quality [38]. That is, the existing works are
still concentrated on one specific kind of infrastructure network,
ignoring the joint modeling of the interdependence relations among
different networks, which we aim to address in this work.

Despite the early efforts, the resilience and vulnerability of urban
infrastructure are less explored in the literature. In this work, we
approach the problem of finding the critical node in the interdepen-
dent infrastructure network, with extensive applications in the real
world.

5.2 Data-driven optimization on graph
Graphs widely exist in plenty of domains, such as social networks,
user-item graphs in recommender systems, road networks, etc.
The ubiquity of graphs makes the optimization task of graphs
an important problem in many real-world applications. The typi-
cal optimization problems include the traveling salesman problem
(TSP) [20], maximum independent set (MIS) [34], maximum cut
(MaxCut) [12], etc. However, despite their importance and wide
applications, these optimization problems are always NP-hard, lead-
ing to high-cost time complexity that is exponentially related to
the graph size. The traditional methods to address it are based on
heuristics guided by real-world experience from human experts.
However, although heuristic methods may not perform badly, they
still suffer from limitations, which can be resolved by data-driven
machine learning models [2]. First, the heuristic methods highly
rely on problem-specific designs, which will be challenging for new
scenarios. Second, the data-driven methods can extract useful fea-
tures or prediction signals that may be implicit and hard to explain,
making them less likely to be proposed by human experts. Khalil et
al. [21] proposed to learn graph states with graph neural networks
and greedily generate actions until the criteria are met, supporting
the data-driven solutions for Minimum Vertex Cover, Maximum
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(a) Pre-stage of Electricity Network (b) Mid-stage of Electricity Network (c) Post-stage of Electricity Network

(d) Pre-stage of Road Network (e) Mid-stage of Road Network (f) Post-stage of Road Network

Figure 5: Process of finding vulnerable nodes in interdependent network

Cut, and Traveling Salesman problems. Li et al. [24] propose to use
a graph convolutional network to predict whether a given vertex
belongs to the optimal set or not, converting the original problem
to a supervised-learning task. The authors further combine the
tree search method with the neural network module to ensure the
exploration ability of the approach.

Different from the existing works which only consider small
graphs, in this work, we approach a real-world problem in the urban
infrastructure with far larger graph and heterogeneous relations,
along with the complex environment.

6 CONCLUSION
Addressing the vulnerability of urban infrastructure interdependent
network, we propose a data-driven framework using graph neural
network and reinforcement learning to detect vulnerable nodes in
urban infrastructure networks. Requiring no prior expert knowl-
edge but just the connected relationships between different types
of nodes in the real world, it trains on the complicated network
quite efficiently. Thanks to the transferring ability and robustness
of our framework, we can ignore some slight perturbations in our
data and trust our model’s performance in terms of effectiveness.
Besides, our framework also illustrates the necessity of an explicit

representation for the complicated network. Our framework cap-
tures the risk of cascade failure and discovers vulnerable nodes in
real-world systems, which turns out to be dramatically useful in
protecting fragile nodes in urban infrastructure and designing more
robust topologies for cities.
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A APPENDIX
A.1 Setting for Transferablity Experiment
We create mask graphs to represent graphs with slight perturba-
tions. We maintain the same number of nodes but allow for changes
in edges, such as deletion and addition, in the electricity network,
primary road network, and coupled network. We then retrain the
new node embeddings using Algorithm 1 and feed them into the
value network of our primary agent to calculate the corresponding
metrics introduced in Section 4.1.2 during the node damaging pro-
cess. Finally, we compare the results with the baseline, including
CI and DE, on the newly generated topologies.

Algorithm 1 Retrain Progress for Mask Graph

Input: F𝑣 = {f𝑣,∀𝑣 ∈ V} ∈ R𝑑×|V | ; G𝑚𝑎𝑠𝑘 = (V, E);
Output: F𝑛𝑒𝑤𝑣 ∈ R𝑑×|V |

1: for epoch = 1→𝑀 do
2: embedding⇐ GNN(F𝑣,G𝑚𝑎𝑠𝑘 )
3: distant ⇐ dist(embedding, F𝑣)
4: reconstruction⇐ GNN(embedding, G𝑚𝑎𝑠𝑘 )
5: loss ⇐ reconstruction +𝐴× distant
6: loss ⇒ backward
7: end for
8: return embedding⇐ GNN(F𝑣,G𝑚𝑎𝑠𝑘 )
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