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ABSTRACT
Consumption intent, defined as the decision-driven force of con-
sumption behaviors, is crucial for improving the explainability and
performance of user-modeling systems, with various downstream
applications like recommendation and targeted marketing. How-
ever, consumption intent is implicit, and only a few known intents
have been explored from the user consumption data in Meituan.
Hence, discovering new consumption intents is a crucial but chal-
lenging task, which suffers from two critical challenges: 1) how
to encode the consumption intent related to multiple aspects of
preferences, and 2) how to discover the new intents with only a
few known ones. In Meituan, we designed the AutoIntent system,
consisting of the disentangled intent encoders and intent discov-
ery decoders, to address the above challenges. Specifically, for the
disentangled intent encoders, we construct three groups of dual
hypergraphs to capture the high-order relations under the three
aspects of preferences and then utilize the designed hypergraph
neural networks to extract disentangled intent features. For the
intent discovery decoders, we propose to build intent-pair pseudo
labels based on the denoised feature similarities to transfer knowl-
edge from known intents to new ones. Extensive evaluations verify
that AutoIntent can effectively discover unknown consumption
intents. Moreover, experiments also demonstrate that AutoIntent
can effectively enhance the downstream recommendation.
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Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00
https://doi.org/10.1145/3534678.3539122

CCS CONCEPTS
• Information systems → Information systems applications;

KEYWORDS
Consumption Intents Discovery; Graph Neural Networks; Self-
supervised Learning; Disentangled Representation Learning

ACM Reference Format:
Yinfeng Li∗, Chen Gao†, Xiaoyi Du, Huazhou Wei, Hengliang Luo, De-
peng Jin, and Yong Li. 2022. Automatically Discovering User Consump-
tion Intents in Meituan. In Proceedings of the 28th ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining (KDD ’22), August 14–18,
2022, Washington, DC, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3534678.3539122

1 INTRODUCTION
Most existing models in industrial recommendation engines work
as a black-box, without explicit modeling of why a user behavior
occurs. To address it, a possible solution is to detect why a user
makes that decision, which can be defined as intent. For example,
in local life service platforms such as Meituan1, an intent of family
gathering may leads to a consumption behavior of movie ticket. In
other words, a consumption intent can be understood as a group or a
typical pattern of user consumption behaviors. Hence, consumption
intents can support many downstream applications, such as item
recommendation, target-user marketing, supply chain optimization,
etc. In the real-world scenarios of Meituan, practitioners can obtain
a small fraction of intents based on expert knowledge and user
reviews [28]. A user may have written a short review including
“family gathering” after a consumption behavior of movie ticket,
and then practitioners can obtain an intent label for that behavior.
However, the reviewing data is always sparse, and the behaviors
along with reviews only take a tiny percentage of all behaviors, as
revealed by industrial practice and academic datasets [25].

1https://about.meituan.com/en
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In this work, we approach the problem of intent discovery, which
aims to assign intent labels (known + new) for the unlabeled con-
sumption behavior data with a tiny fraction of labeled data. There
are two critical challenges when solving this problem.
• Consumption intent is related to multiple aspects of user
preferences (how to encode). Consumption is not only deter-
mined by users’ intrinsic preferences like price and brand but
also largely affected by spatial and temporal factors, especially
for local life service platforms like Meituan. For example, the
intent of family gathering tends to occur at night and not to occur
around the office area.

• Learning from the unlabeled data along with only a few
labeled data (how to discover). Since there is only a few labeled
data, the intent discovery problem is faced with the challenge of
transferring the knowledge of labeled data into unlabeled data
and extracting self-supervision signal from unlabeled data.
To address the above challenges, we propose a system named

AutoIntent (short for Automatically Consumption Intent Discov-
ery), consisting of two main parts, 1) disentangled intent encoders
and 2) intent discovery decoders. Specifically, we first construct
three groups of dual hypergraphs to represent the relations among
user intrinsic preferences, spatial factor, and temporal factor, re-
spectively. We then deploy a dual-hypergraph neural networks
model to extract high-order relations and obtain disentangled in-
tent representations. With the disentangled intent encoders, we
address the first challenge. As for the second challenge, we propose
to first warm up the intent discovery decoders with intent number
estimation and feature fine-tuning. We then propose to build intent-
pair pseudo labels based on the denoised feature similarities, which
can be regarded as a self-supervision signal. Finally, We design a
joint-learning framework to discover new intents, which can well
transfer knowledge from known intents to unknown ones. With
the discovered intents, we further explored the possible applica-
tions in Meituan. AutoIntent can serve as an essential component
in Meituan’s user-modeling system, with various downstream ap-
plications like recommendation and targeted marketing. Hence, we
deploy AutoIntent in the recommendation engine of the Meituan
APP to further verify the effectiveness of the AutoIntent system.
The contributions of this work can be summarized as follows.
• To the best of our knowledge, we take the pioneering step to
approach the problem of consumption intent discovery, which is
critical for various industrial user personalized services, such as
recommendation, targeting marketing, etc.

• We develop an AutoIntent system, which consists of two parts:
1) disentangled intent encoders to learn the disentangled
intent representations with and 2) intent discovery decoders
to discover the new intents with knowledge transfer.

• We evaluate our system on both intent discovery and downstream
recommendation tasks. Experimental results on two real-world
datasets verify that AutoIntent can effectively discover unknown
intents. The downstream evaluations further confirm that Au-
toIntent can enhance the recommendation in Meituan APP.

2 PROBLEM STATEMENT
The 𝑖-th record of user consumption behavior can be denoted as 𝑥𝑖 =
(𝑢𝑖 , 𝑙𝑖 , 𝑡𝑖 , 𝑐𝑖 ) , which means user 𝑢𝑖 bought the item with category
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Figure 1: Illustration of the intent discovery and its applica-
tions in Meituan.

𝑐𝑖 on location 𝑙𝑖 at time-slot 𝑡𝑖 , where 𝑢𝑖 , 𝑙𝑖 , 𝑡𝑖 , 𝑐𝑖 denote the user ID,
location ID, time-slot ID and item category ID, respectively. Let U,
L,T , C denote the sets of users, locations, time-slots and categories,
of which the sizes are denoted as 𝑁𝑈 , 𝑁𝐿 , 𝑁𝑇 , and 𝑁𝐶 , respectively.
As mentioned in the introduction, the user makes a consumption
behavior due to a specific intent. For each consumption behavior 𝑥𝑖 ,
we use 𝑦𝑖 to denote the associated intent. In real world, we can only
manually define a limited set of intents, with a small amount of
labeled consumption behaviors D𝑙 = {(𝑥𝑙

𝑖
, 𝑦𝑙
𝑖
) |𝑀
𝑖=1}, where 𝑦

𝑙
𝑖
∈ I𝑘

(I𝑘 denotes the known intents with 𝐾𝑘 classes). For the unlabeled
dataD𝑢 = {𝑥𝑢

𝑖
|𝑁
𝑖=1}, the intents ofD

𝑢 may belong to the unknown
intents I𝑢 or the known ones I𝑘 .

Given the user consumption dataD = D𝑙 ∪D𝑢 , intent discovery
aims to automatically cluster the unlabeled data D𝑢 into a num-
ber of intents classes (I𝑘 ∪ I𝑢 ) by transferring knowledge from
the labeled data D𝑙 . In other words, we assign each consumption
behavior a label from known intents I𝑘 or unknown ones I𝑢 .

3 THE AUTOINTENT SYSTEM
Figure 1 illustrates the intent discovery and its applications in
Meituan. In this section, we first introduce our proposed AutoIntent
model, and then introduce how to deploy it in the recommendation
engine of the Meituan APP. To address the challenges in the intro-
duction, we propose AutoIntent, illustrated in Figure 3 (a), which
consists of the following parts: 1) Disentangled Intent Encoders
to sufficiently model consumption intent in multiple aspects and
2) Intent Discovery Decoders to discover the new intents by
transferring knowledge from known intents to unknown ones.

3.1 Disentangled Intent Encoders
The user consumption behaviors in life-service platforms, such as
Meituan and Yelp, are driven by complex heterogeneous factors.
Specifically, user consumption intents are determined by the follow-
ing three key factors, 1) intrinsic preference2: the users preference
towards the attributes of the item such as taste, price, brand, etc.;
2) location-aware preference: the user may have location-related
consumption behaviors such as consuming quick food when the
user is around office building; 3) time-aware preference: the user’s
consumption behaviors are relevant to the time, such as consuming
at Bar at night.
2Note that we capture the intrinsic preference with the user-category (UC) relation in
the proposed AutoIntent system.
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Figure 2: The Construction of Dual Hypergraphs.

To sufficiently utilize the above three preferences, from the dis-
entangled view (ensuring we can learn three-aspect disentangled
representations of users), we decompose the quadruple user con-
sumption data into three types of bipartite relations, i.e. user-location
(UL), user-time (UT) and user-category (UC). For example, a user
consumption data 𝑥𝑖 = (𝑢𝑖 , 𝑙𝑖 , 𝑡𝑖 , 𝑐𝑖 ) contains three types of bipartite
relations, (𝑢𝑖 , 𝑙𝑖 ) for location preference, (𝑢𝑖 , 𝑡𝑖 ) for time preference,
and (𝑢𝑖 , 𝑐𝑖 ) for category preference. Given that the dual hyper-
graphs can naturally match the bipartite relations and have the bet-
ter capability on high-order relations than a normal graph, inspired
by the recent advances in dual-hypergraph based bipartite-relation
learning [36], we construct three groups of dual hypergraphs to
model the above bipartite relations.

3.1.1 Dual Hypergraphs Construction. Let {G𝐿
𝑈

= (U, E𝐿
𝑈
),G𝐿 =

(L, E𝐿)}, {G𝑇𝑈 = (U, E𝑇
𝑈
),G𝑇 = (T , E𝑇 )}, {G𝐶𝑈 = (U, E𝐶

𝑈
),G𝐶 =

(C, E𝐶 )} denote the dual hypergraphs groups to capture the bipar-
tite relations of user-location (UL), user-time (UT) and user-category
(UC), respectively. Note that the hypergraphs G𝐿

𝑈
,G𝑇
𝑈
,G𝐶
𝑈

share
the same node set U but have distinct hyperedges (E𝐿

𝑈
, E𝑇
𝑈
, E𝐶
𝑈
).

Then we elaborate on how to represent the bipartite relations
with dual homogeneous hypergraphs. Take user-category bipartite
relations in Figure 2 as an example, the user𝑢1 purchases items with
categories 𝑐1, 𝑐3, 𝑐4, which corresponds to a hyperedge {𝑐1, 𝑐3, 𝑐4} ∈
E𝐶 in G𝐶 . From the perspective of items, the item with category𝑐2
is bought by 𝑢2, 𝑢3, 𝑢4, which forms a hyperedge {𝑢2, 𝑢3, 𝑢4} ∈ E𝐶

𝑈

in G𝑈 . In this way, we construct the dual hypergraphs {G𝐶
𝑈
,G𝐶 }

to capture the UC bipartite relation. Similarly, we construct other
two groups of dual hypergraphs {G𝐿

𝑈
,G𝐿} and {G𝑇

𝑈
,G𝑇 } to model

the bipartite relations of UL and UT, respectively.
Hypergraph extends the concept of adjacency matrix in normal

graph to incidence matrix, H, to represent the connections among
more than two nodes. For the constructed homogeneous hyper-
graph G𝐶

𝑈
, each entry of the incidence matrix H𝐶

𝑈
∈ R |U |×|E𝐶

𝑈
| can

be defined as follows,

H𝐶𝑈 (𝑢, 𝑒) =
{
1 if 𝑢 is connected by 𝑒, 𝑒 ∈ E𝐶

𝑈
,

0 otherwise.
(1)

Further, we use diagonal matrices D𝐶
𝑈

∈ R |U |×|U | and B𝐶
𝑈

∈
R |E

𝐶
𝑈
|× |E𝐶

𝑈
| to represent the node degrees and hyperedge degrees,

whereD𝐶
𝑈
(𝑢,𝑢) = ∑

𝑒∈E𝐶
𝑈
H𝐶
𝑈
(𝑢, 𝑒) andB𝐶

𝑈
(𝑒, 𝑒) = ∑

𝑢∈U H𝐶
𝑈
(𝑢, 𝑒).

Obviously, we can easily generate the incidencematrix (H𝐿
𝑈
,H𝑇
𝑈
,H𝐿 ,

H𝑇 ,H𝐶 ) for other homogeneous hypergraphs (G𝐿
𝑈
,G𝑇
𝑈
,G𝐿,G𝑇 ,G𝐶 )

in a similar way.

3.1.2 Embedding Propagation on Dual Hypergraphs. With the
constructed dual hypergraphs, to learn representations that capture
the high-order relations, we propose hypergraph convolutional
layers based on the embedding propagation. Specifically, we first
introduce the embedding layer and then conduct the proposed joint
hypergraph convolution (Joint-HGC) for aggregation.

Embedding layer.We create four learnable embedding matrices
E𝑈 ∈ R |U |×𝑑 , E𝐿 ∈ R |L |×𝑑 , E𝑇 ∈ R |T |×𝑑 , E𝐶 ∈ R |C |×𝑑 for all the
users, locations, time-slots and item categories, where 𝑑 denotes the
embedding size. Note that G𝐿

𝑈
,G𝑇
𝑈
,G𝐶
𝑈
share the same nodes but

reveals completely different information and semantics (e.g. node
embeddings in G𝐿

𝑈
represent users’ location preference). Thus, we

further transform the original user embedding matrix E𝑢 into three
disentangled sub-spaces to represent users’ preferences on location,
time and item category, respectively. The above transformation
operation on user embedding matrix can be formulated as E𝑈 ,𝑠 =
E𝑈W𝑠 ∈ R𝑑×𝑑 , where 𝑠 ∈ {𝐿,𝑇 ,𝐶} andW𝑠 denote the sub-spaces
and transformation matrix in sub-space 𝑠 , respectively.

Joint HyperGraph Convolution (Joint-HGC).As for the dual
homogeneous hypergraphs constructed from bipartite relations,
an intuitive approach of representation learning is the traditional
hypergraph convolution networks [8]. However, although it can
capture the high-order relations among nodes in each hypergraph
(intra-graph view), it neglects the relations between dual hyper-
graphs (inter-graph view), which reveals the important interaction
information. For example, in the user-category (UC) relation, the
inter-graph propagation can directly fuse the user embedding and
category embedding from distinct hypergraphs (G𝐶

𝑈
,G𝐶 ) to natu-

rally capture the interaction relations. To address it, we combine
both the intra- and inter-graph propagation by the proposed Joint-
HGC. Given the dual hypergraphs {G𝑈 ,G𝑉 }, the aggregation of
Joint-HGC in the (ℓ + 1)-th layer can be formulated as follows,

X(ℓ+1)
𝑈

= D
− 1

2
𝑈

H𝑈 B−1𝑈 H⊤
𝑈D

− 1
2

𝑈
X(ℓ)
𝑈

+ B−1𝑉 H⊤
𝑉X

(ℓ)
𝑉
,

X(ℓ+1)
𝑉

= D
− 1

2
𝑉

H𝑉 B−1𝑉 H⊤
𝑉D

− 1
2

𝑉
X(ℓ)
𝑉︸                          ︷︷                          ︸

intra-graph

+B−1𝑈 H⊤
𝑈X

(ℓ)
𝑈︸        ︷︷        ︸

inter-graph

, (2)

whereH𝑈 ,D𝑈 ,B𝑈 ,X
(ℓ)
𝑈

andH𝑉 ,D𝑉 ,B𝑉 ,X
(ℓ)
𝑉

denote the incidence
matrix, node degree matrix, hyperedge degree matrix, and node
features of G𝑈 ,G𝑉 , respectively. Here we remove the nonlinear
feature transformations by following [14, 36].

Since D,B can be calculated with H, we simplify the formulation
Equation (2) by defined a function of Joint-HGC(·) as follows,

X(ℓ+1)
𝑈

,X(ℓ+1)
𝑉

= Joint-HGC(H𝑈 ,H𝑉 ,X(ℓ)
𝑈
,X(ℓ)
𝑉

) . (3)

Then the information aggregation on the three groups of dual
hypergraphs can be further formulated as follows,

E(ℓ+1)
𝑈 ,𝐿

, E(ℓ+1)
𝐿

= Joint-HGC(H𝐿𝑈 ,H𝐿, E
(ℓ)
𝑈 ,𝐿

, E(ℓ)
𝐿

),

E(ℓ+1)
𝑈 ,𝑇

, E(ℓ+1)
𝑇

= Joint-HGC(H𝑇𝑈 ,H𝑇 , E
(ℓ)
𝑈 ,𝑇

, E(ℓ)
𝑇

),

E(ℓ+1)
𝑈 ,𝐶

, E(ℓ+1)
𝐶

= Joint-HGC(H𝐶𝑈 ,H𝐶 , E
(ℓ)
𝑈 ,𝐶

, E(ℓ)
𝐶

),

(4)
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Figure 3: The General architecture of the proposed AutoIntent model (a) and the details of intent decoder (b).

where {H∗}, {E(ℓ)
∗ } (∗ represents subscript) denote the incidence

matrices and embedding features at ℓ-th layer. Note that we initial-
ize the node features at 0-th layer as E(0)∗ = E∗. After propagating
through 𝐿 layers, we combine the embeddings learned from each
layer with average pooling to obtain final embeddings E∗.

3.1.3 Intent Feature Generation. With the learned embeddings,
for each user consumption behavior 𝑥𝑖 = (𝑢𝑖 , 𝑙𝑖 , 𝑡𝑖 , 𝑐𝑖 ), we can gener-
ate the disentangled intent features z𝐿

𝑖
, z𝑇
𝑖
, z𝐶
𝑖
in the location-aware,

time-aware and category-aware spaces as follows,

z𝐿𝑖 = MLP𝐿 ( [e𝐿𝑢𝑖 , e𝑙𝑖 ]), z𝑇𝑖 = MLP𝑇 ( [e𝑇𝑢𝑖 , e𝑡𝑖 ]),

z𝐶𝑖 = MLP𝐶 ( [e𝐶𝑢𝑖 , e𝑐𝑖 ]),
(5)

where [] denote concatenation operation. Here MLP𝑠 and e𝑠𝑢𝑖 de-
note the multilayer perceptron and user embedding of 𝑢𝑖 in each
subspace 𝑠 ∈ {𝐿,𝑇 ,𝐶}, respectively, and e𝑙𝑖 , e𝑡𝑖 , e𝑐𝑖 denote the final
embedding of 𝑙𝑖 , 𝑡𝑖 , 𝑐𝑖 , respectively. In this way, we obtain the dis-
entangled intent encoders Φ𝑠 : 𝑥𝑖 ↦→ (𝑥𝑖 ) ∈ R𝑑 to generate intent
features z𝑠

𝑖
in each disentangled subspace 𝑠 .

3.1.4 Independence-constraint Loss. Since the disentangled in-
tent features should reflect different aspects of user preferences, we
add the independence constrain on them. Specifically, following the
recent advances of disentangled representation learning [34], we
regard the distance correlation of any two intent features among
three subspaces S = {𝐿,𝑇 ,𝐶} as an independence loss to ensure
independence, formulated as follows,

LIND =
1

𝑀 + 𝑁

𝑀+𝑁∑︁
𝑖=1

∑︁
𝑠,𝑠′∈S,𝑠≠𝑠′

dCov(z𝑠
𝑖
, z𝑠

′
𝑖
)√︃

dVar(z𝑠
𝑖
) · dVar(z𝑠′

𝑖
)
, (6)

where dCov(·) and dVar(·) denote the distance covariance and the
distance variance, respectively.

3.1.5 Encoder Pre-training. To enhance the supervision signal
in the feature learning, we conduct a pre-training based on the fact
that the observed behavior 𝑥𝑖 = (𝑢𝑖 , 𝑙𝑖 , 𝑡𝑖 , 𝑐𝑖 ) reflect the similarity
of embeddings of 𝑢𝑖 , 𝑙𝑖 , 𝑡𝑖 , and 𝑐𝑖 . Furthermore, we can use both the
labeled and unlabeled data for pre-training, and thus the represen-
tation learning can aid the knowledge transfer process from known

intents to unknown intents. Specifically, for each consumption be-
havior 𝑥𝑖 = (𝑢𝑖 , 𝑙𝑖 , 𝑡𝑖 , 𝑐𝑖 ), we first calculate the prediction score with
its disentangled intent features z𝑠

𝑖
, 𝑠 ∈ S = {𝐿,𝑇 ,𝐶}, denoted as,

𝑦 (𝑥𝑖 ) =
∑︁
𝑠∈S

𝑓 𝑠 (z𝑠𝑖 ), (7)

where 𝑓 𝑠 : R𝑑 ↦→ R denotes the score function in the disentangled
subspace 𝑠 . Then, we adopts BPR loss [29] to ensure that the the
observed behaviors can be assigned a higher score than the unob-
served ones when pre-train the encoders, formulated as follows,

LBPR =
1
|O|

∑︁
(𝑥𝑖 ,𝑥∗𝑗 ) ∈O

− ln𝜎 (𝑦 (𝑥𝑖 ) − 𝑦 (𝑥∗𝑗 ) ), (8)

where O = {(𝑥𝑖 , 𝑥∗𝑗 ) |𝑥𝑖 ∈ D, 𝑥∗
𝑗
∉ D} denotes the pairwise train-

ing set built with negative sampling, 𝜎 (·) is the sigmoid function.
Combining the BPR loss and independence loss, the loss function
in the pre-training stage can be formulated as follows,

LPRE = LBPR + 𝜆LIND, (9)

where 𝜆 denotes the hyperparameter to control the influence of
independence constraints among the disentangled intent features.

To sum up, we obtain the disentangled intent feature in each
aspect with the disentangled intent encoders to capture the user
preferences in distinct aspects.

3.2 Intent Discovery Decoders
To discover the new intents with only a small amount of labeled
data, we propose to transfer knowledge from known intents to
unknown ones with intent discovery decoders, which consist of
three stages, i.e., warm-up stage, main stage, and output stage.

3.2.1 Warm-up Stage. The warm-up stage includes a) intents
number estimation and b) feature fine-tuning on the labeled data.

a) Intents Number Estimation. In real-world business sce-
narios, we may not know the number of unknown intents in the
unlabeled user consumption data. Hence, we first propose a simple
yet effective method to estimate the number of intents. Given that
the designed intent encoders in section 3.1 have sufficiently capture
users’ core preferences in the disentangled aspects, we first gener-
ate intent features with the pre-trained intent encoders, denoted
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as z𝑖 =
∑
𝑠∈S z𝑠

𝑖
, where z𝑠

𝑖
is the intent feature of record 𝑥𝑖 in the

subspace 𝑠 . Then, following [39], we conduct k-means [24] on the
extracted intent features to estimate the intent number. Specifically,
we assign 𝐾 ′ (e.g., three times of the known intent classes 𝐾𝑘 ) as
the number of all intents (known and unknown) and cluster all
samples into 𝐾 ′ clusters with k-means. Similar to [39], we drop the
low confidence clusters (the size smaller than the expected cluster
mean size 𝑀+𝑁

𝐾 ′ ) and obtain the total intent number 𝐾 as follows,

𝐾 =

𝐾 ′∑︁
𝑖=1

𝛿 ( |𝑆𝑖 | ≥
𝑀 + 𝑁
𝐾 ′ ), (10)

where 𝛿 (·) is the indicator function (1 if condition satisfied else
0).𝑀 and 𝑁 denote the number of the labeled and unlabeled data,
respectively. In this way, we estimate the total intent number 𝐾
and the number of unknown intents 𝐾𝑢 = 𝐾 − 𝐾𝑘 .

After estimating the intent number in user consumption behavior
data, we will introduce how to discover the new consumption
intents. Since we do not reveal intent labels in the pre-training
stage (section 3.1.5), we first fine-tune the pre-trained encoders
with the labeled (known intents) data.

b) Feature fine-tuning.With the pre-trained intent encoder Φ𝑠
in the disentangled subspace 𝑠 , following [12], we further extent
it with a classification head 𝜂𝑠

𝑘
: R𝑑 ↦→ R𝐾

𝑘
(a linear layer with

softmax function) to learn a classifier for the 𝐾𝑘 known intents
in the subspace 𝑠 . Specifically, we first generate the disentangled
intent features 𝑧𝑠

𝑖
= Φ𝑠 (𝑥𝑖 ), 𝑠 ∈ S = {𝐿,𝑇 ,𝐶} for each consump-

tion behavior 𝑥𝑖 to capture the intent features that reveal distinct
aspects of user preferences. Then, we calculate the classification
probabilities in each disentangled subspaces as 𝜂𝑠

𝑘
(𝑧𝑠
𝑖
). Given that

user consumption intents may be more relevant to one or more
aspects among location-, time- and category-aware preferences, we
attentively fuse the classification probabilities in distinct disentan-
gled subspaces with typical attention modules [6, 42], and further
optimize the model with the cross-entropy (CE) loss as follows,

LFT = − 1
𝑀

𝑀∑︁
𝑖=1

𝑦𝑙𝑖 log[
∑︁
𝑠∈S

𝛼𝑠 · 𝜂𝑠
𝑘
(z𝑠𝑖 )],

𝛼𝑠 = softmax(q⊤z𝑠𝑖 ),

(11)

where 𝑀 and 𝑦𝑙
𝑖
denotes the number and the intent label of the

labeled data D𝑙 , respectively. q ∈ R𝑑 is the learnable attention
vector. Note that we froze the weights of encoders Φ𝑠 and only
update the parameters of classifiers (i.e. 𝜂𝑠

𝑘
and q) to avoid over-

fitting when fine-tuning on the labeled data D𝑙 .
After the feature fine-tuning, we next introduce how to transfer

knowledge from known intents to unknown ones.

3.2.2 Main Stage: Knowledge Transferring from Labeled Intents.
Once the intent encoder Φ𝑠 and the classifier for known intents 𝜂𝑠

𝑘
in each subspace 𝑠 has been well trained, we next introduce how to
discover the new intents by transferring knowledge from known
intents to unknown ones. Given that we have estimated the class
number of unknown intents𝐾𝑢 in section 3.2.1 a), similar to known
intents, we also extend the encoder Φ𝑠 with classification head
𝜂𝑠𝑢 : R𝑑 ↦→ R𝐾𝑢

for 𝐾𝑢 unknown intents. With the classifiers 𝜂𝑠
𝑘

(for known intents) and 𝜂𝑠𝑢 (for unknown intents), we can obtain the

final classifier 𝜂𝑠 = [𝜂𝑠
𝑘
, 𝜂𝑠𝑢 ] : R𝑑 ↦→ R𝐾 to classify any unlabeled

sample into 𝐾 intents (𝐾𝑘 known and 𝐾𝑢 unknown). Hence, the
problem turns to how to train the final classifiers 𝜂𝑠 with both the
labeled data D𝑙 and unlabeled data D𝑢 .

To address the above problem, we propose the intent-pair
pseudo-label learning for intent discovery, which consists of
two steps, a) label construction based on denoised similarity and b)
pseudo-label enhanced joint learning.

a) Label construction based on denoised similarity. The key
assumption of intent discovery is that the similar user consumption
behaviors on the Meituan platform should belong to the same
intent classes. Hence, similar to [12], we first define a relation
among pairs of unlabeled samples (𝑥𝑢

𝑖
, 𝑥𝑢
𝑗
). Since the well-trained

intent encoders can obtain the transferable intent features for both
known intents and unknown ones, we can generate the intent
features z𝑠

𝑖,𝑢
, z𝑠
𝑗,𝑢

for the above pairwise data in subspace 𝑠 . Given
that consumption intents may be more relevant in one aspect but
less in other ones (e.g. have lunch and have dinner are more relevant
in category-aspect but less in time-aspect), for the pair (𝑥𝑢

𝑖
, 𝑥𝑢
𝑗
), we

generate the pseudo-label 𝑟𝑠
𝑖 𝑗
in each disentangled subspace 𝑠 based

on the similarity of the corresponding intent features z𝑠
𝑖,𝑢
, z𝑠
𝑗,𝑢

.
Calculating denoised similarity: Since the robust pseudo-

labels are more suitable for training the classifiers of unknown
intents, instead of directly calculating the similarity of z𝑠

𝑖,𝑢
and

z𝑠
𝑗,𝑢
, we propose a more robust method by denoising the intent

features with Low-Pass Fast Fourier Transform (LPFFT). Since Fast
Fourier Transform (FFT) can convert signals into the frequency
domain, it is widely used for denoising in signal processing area [2].
In this paper, we first conduct FFT for each dimension of intent
features, and then we remove the higher-frequency half of signals
via Low-Pass Filter (LPF). Finally, we perform inverse FFT (IFFT) to
generate the robust features. The above operations can be denoted
as LPFFT : IFFT(LPF(FFT(·))). With the denoised features, we
further calculate the cosine similarity 𝑟𝑠

𝑖 𝑗
for the pairwise samples

(𝑥𝑢
𝑖
, 𝑥𝑢
𝑗
) in subspace 𝑠 , formulated as,

𝑟𝑠𝑖 𝑗 = COSINE(LPFFT(z𝑠𝑖,𝑢 ), LPFFT(z
𝑠
𝑗,𝑢 )), 𝑠 ∈ S = {𝐿,𝑇 ,𝐶}, (12)

where COSINE(·) denotes the cosine similarity function. In this
way, we obtain the pairwise pseudo-labels in each subspace 𝑠 .

b) Pseudo-label enhanced joint learning. Given that we have
learned 𝜂𝑠

𝑘
in section 3.2.1 b), we only randomly initialize the pa-

rameters for the new classes in 𝜂𝑠 and further train 𝜂𝑠 with the
pseudo-label enhanced joint learning. For the labeled data D𝑙 , the
extended classifier 𝜂𝑠 should also classify the known intents cor-
rectly. Hence, we extend the cross-entropy (CE) loss in eq. (11) to
𝜂𝑠 in three subspaces S = {𝐿,𝑇 ,𝐶} as follows,

LCE = − 1
𝑀

𝑀∑︁
𝑖=1

𝑦𝑙𝑖
∗
log[

∑︁
𝑠∈S

𝛼𝑠 · 𝜂𝑠 (z𝑠𝑖 )],

𝛼𝑠 = softmax(q⊤z𝑠𝑖 ),

(13)

where 𝑦𝑙
𝑖

∗ is the extended one-hot intent label (the dimensions of
new classes are set to 0) for the labeled data.

For the unlabeled data, we use the obtained pairwise pseudo-
labels in each subspace 𝑠 to train the corresponding classifier 𝜂𝑠 .
Specifically, in each disentangled subspace 𝑠 , we first calculate the
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Figure 4: Industrial deployment of AutoIntent in theMeituan
recommendation engine.

score for whether the given pairwise samples (𝑥𝑢
𝑖
, 𝑥𝑢
𝑗
) belong to

the same class or not, denoted as 𝑠𝑠
𝑖 𝑗

= 𝜂𝑠 (z𝑠
𝑖,𝑢

)⊤𝜂𝑠 (z𝑠
𝑗,𝑢

). Then, we
optimize 𝜂𝑠 with the binary cross-entropy (BCE) loss, denoted as,

LBCE = − 1
𝑁 2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

∑︁
𝑠∈S

[𝑟𝑠𝑖 𝑗 log𝑠
𝑠
𝑖 𝑗 + (1 − 𝑟𝑠𝑖 𝑗 )log(1 − 𝑠

𝑠
𝑖 𝑗 )], (14)

where 𝑁 is the number of unlabeled data D𝑢 . S = {𝐿,𝑇 ,𝐶} is the
set of three disentangled subspaces and 𝑟𝑠

𝑖 𝑗
denotes the pseudo-label

of pairwise samples (𝑥𝑢
𝑖
, 𝑥𝑢
𝑗
) in subspace 𝑠 .

To ensure the independence among disentangled intent features,
we further introduce the independence loss in eq. (6) and define
the overall loss function as follows,

L = LCE + LBCE + 𝜆LIND, (15)

where 𝜆 denotes the hyperparameter to control the influence of
independence constraints. Note that we also froze the encoders
Φ𝑠 (𝑠 ∈ S) to avoid over-fitting during the joint-learning process.

In this way, we successfully transfer the knowledge from known
intents to unknown intents with the joint-learning framework. The
joint-learning framework also creates a feedback loop that refines
the intent features with the well-trained classifier 𝜂𝑠 , which in turn
generates better pairwise pseudo-labels for the training of 𝜂𝑠 .

3.2.3 Output Stage. With the intent discovery decoders in three
disentangled aspects S = {𝐿,𝑇 ,𝐶}, we can adapt the importance
of each aspect to the final intent discovery results. Specifically, we
first conduct aspect-level prediction and then leverage attentive
fusion to fuse the results from different aspects.
a) Aspect-level prediction.With the well-trained encoder Φ𝑠 and
classifier 𝜂𝑠 (for both known intents and unknown ones) in each
disentangled aspect 𝑠 , we calculate the prediction score 𝑝𝑠

𝑖
for any

unlabeled data 𝑥𝑢
𝑖
, denoted as 𝑝𝑠

𝑖
= 𝜂𝑠 (Φ𝑠 (𝑥𝑢

𝑖
)).

b) Attentive Fusion.We assume that the well-trained intent fea-
ture in each disentangled aspect should reveal the importance of
the corresponding result. In other words, our model should pay
more attention to the aspect that generates more important intent
feature. Hence, we first calculate the attention score 𝛼𝑠 with intent
features and then combine the predicted results from three aspects
to obtain the final predicted intent class, formulated as follows,

𝑦𝑢𝑖 = argmax(
∑︁
𝑠∈S

𝛼𝑠 · 𝑝𝑠𝑖 ),

𝛼𝑠 = softmax(q⊤Φ𝑠 (𝑥𝑢𝑖 )),
(16)

Table 1: Statistics of Two Datasets from Meituan.
Dataset #Users #Locations #Time #Category #Intents #Records

Beijing 38,702 13 96 748 19 7,075,926
Shanghai 44,186 13 96 792 19 8,634,379

where q denotes attention vector. In this way, we can assign any
unlabeled sample to a certain known or unknown intent class.

To summarize, with the designed decoders, our AutoIntent can
estimate the number of new intents and can further assign the
unlabeled data to a certain intent class with the well-trained in-
tent classifier. In other words, AutoIntent can assign the data into
distinct intent clusters. Hence, we can obtain the intent-category
relation from the intent clusters and further define the semantic
information of the new intents by combining the popular categories
in the corresponding clusters, which will further contribute to the
downstream applications (i.e. recommendation) in Meituan.

3.3 Industrial Deployment of AutoIntent
In this section, we will introduce how to deploy our AutoIntent
model in the recommendation engine for Meituan APP’s homepage.
As Figure 4 shows, the recommendation engine consists of two
stages, i.e., recall stage and ranking stage. For a certain user on
Meituan platform, according to his/her historical consumption data,
the recommendation engine first produces an candidate item set
(recall pool) with distinct recall methods in the recall stage. Then,
the above candidates (recall pool) are passed through multi-stages
of ranking (i.e., pre-ranking, ranking, and re-ranking) to generate
the final recommendation list. We deploy AutoIntent in the recom-
mendation engine by introducing an additional intent discovery
stage, which is benefitial to both the recall and ranking stage.

With the user consumption data (only few data with intent label
and most data without label), our AutoIntent can assign any unla-
beled sample to a certain known or unknown intent class. Moreover,
for each discovered new intent, AutoIntent can generate the corre-
sponding intent-category relation according to the item category
information in the user consumption data samples that belong to
the current new intent. As illustrated in Figure 4, the generated in-
tent labels and intent-category relation for new intents can enhance
the intent-based recall method in the recall stage. For the ranking
stage, the intent features captured by AutoIntent can contribute to
the better personalized modeling for user consumption behaviors.
At a high level, the system in Figure 4 is in a positive feedback loop.
The intent discovery stage can constantly discover new intents from
the user consumption data, which contributes to better recommen-
dation and user growth. In return, better recommendation and user
growth can provide more user consumption data to enhance intent
discovery. We conduct evaluation of downstream recommendation
in section 5 to verify the effectiveness of the deployment.

4 EVALUATION OF INTENT DISCOVERY
4.1 Experimental Settings

4.1.1 Datasets. We collect two large-scale user consumption
data from Meituan APP in the two cities of China (Beijing and
Shanghai), from Jan. 1st to Mar. 1st, 2021 (60 days), which contain
13 locations and 96 time-slots. To evaluate the model performance,
we split the first 48 days’ data as the training set, the following 6
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Table 2: Performance comparisons on two datasets.

Method Beijing Shanghai

ACC ARI NMI ACC ARI NMI

DeepFM-KM 54.41 35.83 29.17 51.98 33.69 37.63
LightGCN-KM 58.84 36.16 31.48 55.46 35.87 40.82

HAN-KM 60.32 38.59 33.74 58.76 36.65 42.29

HAN-CDAC+ 67.34 42.53 36.82 66.18 40.47 45.86
HAN-DeepAligned 69.89 46.48 36.75 67.56 43.28 46.50

HAN-DTC 68.35 47.72 38.36 67.13 43.34 46.91
HAN-RankStat 70.24 49.45 40.29 68.58 44.92 47.46

AutoIntent 81.07 57.34 46.81 77.39 50.27 53.35

Improv. 15.42% 15.96% 16.18% 12.85% 11.91% 12.41%

days’ data as validation set, and the last 6 days’ data as testing set.
Moreover, we select the first 10 intents as known intents and treat
the remaining 9 intents as unknown ones. The details of datasets
are provided in Table 1 and Appendix A.1.

4.1.2 Metrics. Following [39], we adopt three widely used clus-
tering metrics, ACC3 (Accuracy), ARI (Adjusted Rand Index), and
NMI (Normalized Mutual Information), for evaluation.

4.1.3 Baselines. The two key designs of AutoIntent are 1) dis-
entangled intent encoders and 2) intent discovery decoders, we
compare AutoIntent with two categories of baselines. 1) Three
SOTA feature generating methods4 (DeepFM [10], LightGCN [14],
and HAN [33]) to verify the effectiveness of our encoders. 2) Four
SOTA deep clustering methods for intent discovery (CDAC+ [23]
and DeepAligned [39]) and new category discovery (DTC [13] and
RankStat [12])5. We provide the details of baselines in Appendix A.2.

4.2 Overall performance
We compare our AutoIntent with SOTA baselines on two datasets.
From the results in Table 2, we have the following observations.
• Our proposed AutoIntent achieves the best performance.
Owing to the disentangled intent encoders and conducting in-
tent discovery from the disentangled view, AutoIntent can cap-
ture the preferences of distinct aspects (i.e., location-, time- and
category-aspect) and achieves the best performance. On aver-
age, AutoIntent outperforms the best baseline by 14.14% on ACC,
13.93% on ARI, and 14.30% on NMI, respectively. The significant
performance gains verify the effectiveness of our AutoIntent.

• Modeling the preferences with the relations from distinct
aspects is essential. For the encoder baselines, HAN-KM and
LightGCN-KM achieve better performance than DeepFM-KM,
which demonstrates modeling the relations in user consumption
behavior is necessary. Moreover, HAN-KM (separately model-
ing the location-, time- and category-aspect performance with
distinct meta-paths) achieves the best performance, which ver-
ifies the necessity of modeling the user preferences from the
disentangled views with dual hypergraphs in our AutoIntent.

• For intent discovery, pairwise labeling is easier to opti-
mize than the clustering methods HAN-RankStat, using the
pairwise pseudo-labels to train the classifiers for unlabeled data,

3When calculatingACC, we first match the predicted intent label and the ground-truth
label with the Hungarian algorithm[20].
4We use the K-means (KM) [24] to cluster new intents for all encoder baselines.
5To ensure better performance, we adopt the best encoder in the SOTA feature gener-
ating methods (HAN[33]) as the feature encoder of the above deep clustering methods.

Table 3: Ablation Study of the key designs in AutoIntent.
Dataset Beijing Shanghai

Model Variants ACC ARI NMI ACC ARI NMI
w/o DisenEncoder (HAN) 74.23 53.42 43.45 70.67 47.83 49.69

w/o DS 78.88 50.09 42.08 76.28 45.62 50.67
w/o LCE 76.28 51.47 42.96 74.19 46.08 50.83
w/o LBCE 36.26 26.45 20.37 32.41 24.19 27.32
w/o LIND 79.36 55.88 45.95 76.79 49.47 52.34
AutoIntent 81.07 57.34 46.81 77.39 50.27 53.35
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Figure 5: Impact of model depth 𝐿 (a) and independent coeffi-
cient 𝜆 (b) on two datasets from Meituan.

achieves a better performance than clustering-based methods
(HAN-CDAC+, HAN-DeepAligned, and HAN-DTC), which veri-
fies that learning the classifiers for the unlabeled data is a better
choice for intent discovery. Hence, it is necessary to sufficiently
model the pairwise similarity from disentangled perspectives for
better pseudo-labels in our proposed AutoIntent.

4.3 Studies of AutoIntent
4.3.1 Ablation Study. AutoIntent has the following key designs:

1) Disentangled Intent Encoders (DisenEncoder), 2) Denoised Simi-
larity (DS), and 3) Loss Functions in Intent Discovery Decoders (i.e.,
LCE, LBCE, and LIND). To evaluate the effectiveness of the above
components, we compare the performance of the model variants
that without (w/o) a certain component. From the results in Table 3,
removing any component leads to a significant performance drop,
which demonstrates the effectiveness of the above key components.
Among them, removing the BCE loss causes a dramatic drop, which
verifies that our denoised feature comparison with Low-Pass Fast
Fourier Transform (LPFFT) can indeed generate reliable pairwise
pseudo labels to train the classifiers for unlabeled data. Moreover, if
we replace the designedDisentangled Intent Encoderswith HAN (the
SOTA baseline encoder), the performance also suffers a significant
drop, which demonstrates the necessity of modeling the user pref-
erences in distinct aspects with dual hypergraphs in Disentangled
Intent Encoders. We further provide the ablation study of Denoised
Similarity Methods and Training Scheme in Appendix A.5.

4.3.2 Hyper-parameter Study. In this part, we study the impact
of two essential hyper-parameters in our proposed AutoIntent, i.e.,
the model depth 𝐿 and the independent coefficient 𝜆.
1) Impact of Model Depth 𝐿. To study the impact of depth of
dual hypergraphs in encoders, we vary 𝐿 in {1, 2, 3, 4}. From the
results in Figure 5 (a), the model achieves the best performance
with one layer on both datasets. The possible reason is that the
hypergraph can capture the high-order relations without stacking
multiple layers, which means our hypergraph-based encoders are
more efficient. Hence, we set 𝐿 as 1 for both datasets.
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Figure 6: Illustration of Meituan App’s homepage.

2) Impact of Independent Coefficient 𝜆. To evaluate the impact
of 𝜆, we vary it in {1𝑒−6, 1𝑒−5, 1𝑒−4, 1𝑒−3, 1𝑒−2, 1𝑒−1}. According
to the results in Figure 5 (b), our AutoIntent is not sensitive to
𝜆 (the performance remains relatively stable in a certain interval
1𝑒−5 ∼ 1𝑒−3) and achieves the best performance when 𝜆 = 1𝑒−4.
Hence, we set 𝜆 as 1𝑒−4 for both datasets.

5 EVALUATION OF DOWNSTREAM
RECOMMENDATION

In this section, we further evaluate whether our proposed AutoIn-
tent can enhance the downstream recommendation in Meituan.
Referring to the proposed deployment scheme in section 3.3, we
conduct the downstream evaluations on the recommendation en-
gine for the Meituan APP homepage (including recall and ranking
stage) to evaluate the effectiveness of the deployment. Specifically,
we obtain the recall pool by merging the results from all the three
strategies (popularity-based, model-based, and intent-based). In the
ranking stage, we further generate recommendation list from the
recall pool. To evaluate the effectiveness intent discovery module
in the deployment system, we compare the recommendation per-
formance with (strategy A) and without (strategy B) AutoIntent. In
strategy A (with AutoIntent), as shown in Figure 4, the discovered
new intents and intent features are used in recall and ranking stage,
respectively. The evaluation of recommendation are conducted in
the Meituan APP homepage, as shown in Figure 6, involving about
8 million users. We compare the recommendation performance
among the users in Beijing and Shanghai with two ranking-based
metrics, recall@10 (R@10) and NDCG@10 (N@10). In Meituan APP,
there are many different Business Units (BUs), such as Takeaway
and Pets in Figure 6. Given that the user intents in different BUs
may be different, we conduct the experiments with two settings,
i.e. intent discovery in known BUs and intent discovery in new BUs.
a) Intent Discovery in Known BUs. We first compare the rec-
ommendation performance with (w) and without (w/o) AutoIntent
in the known BUs. We use the data from all BUs in Beijing and
Shanghai datasets to train our AutoIntent model. AutoIntent discov-
ers 11 new intents with 19 known intents on both offline datasets.
Then, we deploy the AutoIntent model on all BUs to evaluate the
recommendation performance. From the results in Table 4, we can
observe that the recommendation performance with AutoIntent

Table 4: Evaluations of Downstream Recommendation (in %).

Model
Beijing Shanghai

R@10 N@10 #Intent R@10 N@10 #Intent

Known
BUs

w/o AutoIntent 14.25 11.43 19 12.94 10.08 19
w AutoIntent 15.57 12.68 19+(11) 14.21 11.24 19+(11)
Imp. 9.26% 10.94% - 9.81% 11.51% -

New
BUs

w/o AutoIntent 13.27 10.57 15 11.62 9.06 15
w AutoIntent 15.08 12.32 15+(7) 13.45 10.74 15+(7)
Imp. 13.64% 16.56% - 15.75% 18.54% -

improves by 9.54% on Recall and 11.23% on NDCG, respectively.
Such a significant gain verifies that AutoIntent can enhance the
recommendation with the discovered new intents.
b) Intent Discovery in New BUs. Another important task in
Meituan is the intent discovery in new BUs, which is a more chal-
lenging task with no known intents in new BUs. Here, we regard
Pets as new BU and remove the known intents in Pets BU. Hence,
the number of known intents reduce to 15 after removing the intent
labels in Pets BU. In the offline training of AutoIntent, we only
use the 15 known intents for training and discover 7 new intents
in Pets BU. Then, we deploy the well-trained AutoIntent model in
the Pets BU and evaluate the recommendation performance. As
the results in Table 4, the recommendation model with AutoIntent
achieves the performance gains of 14.70% on Recall and 17.55%
on NDCG, which is a more significant improvement than in the
known BUs. The possible reason is that AutoIntent can capture the
common features in distinct intents and transfer the knowledge
from the intents (in known BUs) to the new intents (in new BUs).

In short, the results demonstrate that a) AutoIntent can enhance
the recommendation performance with the discovered intents and
b) our proposed AutoIntent can transfer knowledge among BUs to
achieve more significant improvement in New BUs.

6 RELATEDWORK
Intent Discovery Intent discovery aims to discover new intents
by transferring the knowledge from the known intents to the new
ones and has been explored in dialogue systems [26, 27, 30, 31].
CDAC+ [23] propose to discover new intents via deep adaptive clus-
tering with cluster refinement. DeepAligned [39] enhance the deep
clustering with an alignment strategy to tackle the label inconsis-
tency problem. Another research problem that is highly related to in-
tent discovery is the new visual categories discovery[12, 13, 16, 40].
DTC [13] extends the Deep Embedded Clustering to a transfer
learning setting by introducing the temporal ensemble and consis-
tency. RankStat [12] propose to generate the pairwise pseudo-label
with rank statistics to transform the clustering task to a binary
classification task. Zhao et al [40] further extent RankStat in a two-
branch learning framework. Different from the above works, we
aim to discover intents from user consumption data, which is more
challenging and needs to sufficiently capture the user preferences.
Hypergraph Learning Hypergraph [1] introduces hyperedge, a
special edge to connect more than two nodes, to naturally cap-
ture high-order relations, which has widely used in recommenda-
tion [9, 21, 32, 36, 38]. The learning on hypergraph can be regarded
as a two-stage process and has been well-explored. HGNN [8] intro-
duces graph convolution to hypergraph to learn the graph embed-
ding. HyperGAT [7] attentively aggregates the node information
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and extends GAT to hypergraph. HGC-RNN [37] combines the hy-
pergraph learning and RNN to learn temporal dependency among
different hypergraphs. In this work, we use dual hypergraphs to
model the user preferences.
Disentangled Representation Learning Disentangled represen-
tations can independently model a certain object from multiple
aspects or factors [3]. The earlier works [4, 5, 15] learn the disen-
tangled features via the regularized variational auto-encoders [19].
With the development of GNNs, there exist some works [21, 22, 34,
35, 41] that explore how to learn the disentangled embeddings on
the graphs. In this work, we learn the disentangled intent features
from distinct aspects and further conduct intent discovery in a
disentangled manner.

7 CONCLUSION
In this work, we approach the new problem of user consumption
intents discovery that is highly related to the recommendation in
Meituan and develop a system named AutoIntent to automatically
discover intents from the consumption data. AutoIntent first lever-
ages dual hypergraph neural networks to learn the disentangled
intent features with the disentangled intent encoders. Then, the
intent discovery decoders transfer the knowledge from the known
intents to discover new ones. Finally, we deploy AutoIntent in the
Meituan recommendation engine for downstream evaluation. Ex-
periments verify that AutoIntent can effectively discover unknown
intents and enhance recommendation.
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A APPENDIX FOR REPRODUCIBILITY
A.1 Datasets and Evaluation Setting
We collect two large-scale user consumption data fromMeituan
APP in the two cities of China (Beijing and Shanghai), from Jan.
1st to Mar. 1st, 2021 (60 days). According to the business logic of
Meituan, there are 13 locations and 96 time-slots (dividing a day
into 48 time-slots for weekends and weekdays) in the collected
datasets. We only have 19 known intents among a small amount
of data (∼ 17.4%), and most of the user consumption behaviors
lack intent labels. To evaluate the model performance in the offline
intent discovery task, we split the first 48 days’ data as the training
set, the following 6 days’ data as validation set, and the last 6 days’
data as testing set. Specifically, we select the first 10 intents as
known intents and treat the remaining 9 intents as unknown ones
(10 known + 9 unknown intents). We regard the data with known
intents and part of the unknown intents data as training set6. For
the evaluation, we test all the methods on the remaining unknown
intents data to evaluate the performance.

A.2 Baseline Models
In this section, we give the detailed descriptions of all compared
methods as follows.
(1) Feature generating methods:
• DeepFM [10] combines the FM and deep neural networks to
capture the feature interactions. We concatenate the user ID,
location ID, time-slot ID, and category ID as input.

• LightGCN [14] is the state-of-the-art GCN model for recommen-
dation. We adopt it to our task by construct a graph with 6 types
of edges among the four types of nodes (i.e., user, location, time
and category). We add the learned node embeddings for each
record as the intent feature.

• HAN [33] is a general state-of-the-art heterogeneous graph learn-
ing method. We adapt it to the graph with four types of nodes
(user, location, time, and category) by designing three types of
meta-path (user-location, user-time, user-category) to represent
user’s preferences on distinct aspects.
We combine those feature generating baselineswith K-means [24]

to obtain DeepFM-KM, LightGCN-KM, and HAN-KM for the
consumption intent discovery task in Meituan.
(2) Deep clustering methods:
• CDAC+ [23] refines the cluster results by forcing the model to
learn from the high confidence assignments for intent discovery.

• DeepAligned [39] is the SOTA method for intent discovery in
dialogue systems, which proposes an alignment strategy to tackle
the label inconsistency problem during clustering assignments.

• DTC [13] extends the Deep Embedded Clustering to a trans-
fer learning setting by introducing the temporal ensemble and
consistency for the new category discovery.

• RankStat [12] is the SOTA method for the new category discov-
ery, which uses pairwise labeling and rank statistics to transfer
knowledge of the labeled classes to the unlabeled data.

6We conduct sampling strategy when obtaining training set to ensure the proportion
of known intents data (∼ 17.4%) is consistent with the distribution of the original data.

We replace the feature encoder of the deep clustering methods
with HAN [33] (the encoder with best performance) to obtainHAN-
CDAC+, HAN-DeepAligned, HAN-DTC, and HAN-RankStat
for the consumption intent discovery task in Meituan.

A.3 Metrics
A.3.1 Metrics for the intent discovery task. Following [39], we

adopt three widely used clustering metrics, ACC (Accuracy), ARI
(Adjusted Rand Index), and NMI (Normalized Mutual Information),
to evaluate the performance of the intent discovery task. Note that
we first match the predicted intent label and the ground-truth label
with the Hungarian algorithm[20] when calculating ACC.

A.3.2 Metrics for the recommendation task. Following [14, 17],
we use two widely used ranking-based metrics, Recall@K and
NDCG@K (we set K as 10 by following [14, 22]), to evaluate the
performance of the recommendation task.

A.4 Implementation Details
A.4.1 Efficient Implementation for Large-scale Industrial Datasets.

Given that the user number is huge in large scale datasets from
Meituan, for all of the graph-based encoders (i.e., LightGCN, HAN,
and the dual-hypergraphs in our AutoIntent), the propagation on
the graph is very time-consuming. Inspired by GraphSAGE [11],
instead of training node embedding with its all neighbors, we pro-
pose to sample local neighborhoods for each node and update its
embedding by aggregating features from its local neighborhoods.
Specifically, we conduct the sample strategy in a mini-batch manner.
Given B nodes in a mini-batch and the sample number is N, the
cost of message passing is O(𝐵𝑁 ), which is more efficient and only
related to the mini-batch size and sample number. Hence, with the
above sample strategy, the graph-based methods can be used in
large-scale industrial datasets. Following GraphSAGE [11], we set
the sample number 𝑁 as 25 in our AutoIntent model for the two
datasets from Meituan.

A.4.2 Hyper-parameter Settings. For all the models, the embed-
ding size and hidden state size are set as 64, the batch size is set
to 2048. We optimize all the methods with Adam [18] optimizer,
which initializes learning rate as 0.001 and will decay it by 0.1
after every three epochs. We also utilize early stopping to detect
over-fitting, and the training process will be stopped if ACC on the
validation set does not increase for five epochs. For the baseline
methods, we initialize the hyper-parameters as the original papers
and carefully tune them to get optimal performance. For AutoIntent,
we set the initial number of all intents 𝐾 ′ as 3𝐾𝑘 when estimat-
ing intent number. We further study the impact of other essential
hyper-parameters (the layer number of dual hypergraphs in intent
encoders 𝐿 and the independent coefficient 𝜆) in section 4.3.2. For
all methods, we run ten times with the same partition and report the
average results.

A.5 Additional Ablation Study
In this section, we further provide the additional ablation study of
Denoised Similarity Methods and Training Scheme.
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Table 5: Ablation Study of the Denoised Similarity Methods.
Dataset Beijing Shanghai

Model Variants ACC ARI NMI ACC ARI NMI
RS 78.35 49.71 41.87 76.20 45.54 50.56

Cosine 78.88 50.09 42.08 76.28 45.62 50.67
HPFFT 72.63 31.77 31.10 76.25 45.34 50.61
BPFFFT 75.99 41.96 36.53 76.79 49.75 50.73
LPFFT 81.07 57.34 46.81 77.39 50.27 53.35

Table 6: Ablation Study of the training scheme.
Dataset Beijing Shanghai

Model Variants ACC ARI NMI ACC ARI NMI
w/o PRE 77.96 53.43 44.25 74.71 47.49 51.18
w/o FT 80.15 56.98 45.52 76.81 49.75 52.84
w/o JL 80.42 57.16 46.58 76.94 49.91 52.95

AutoIntent 81.07 57.34 46.81 77.39 50.27 53.35

Location Time Category
0.0
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0.4
0.6
0.8
1.0

(a) Snack

Location Time Category
0.0
0.2
0.4
0.6
0.8
1.0

(b) Doing Exercise

Figure 7: The attention distributions of each disentangled
aspects for two intents (Snack and Doing Exercise).

A.5.1 Ablation Study of Denoised Similarity Methods. We com-
bine the Low-Pass Fast Fourier Transform (LPFFT) and Cosine sim-
ilarity to calculate the pairwise pseudo labels in eq. (12). In this
section, we further compare the LPFFT with other alternative de-
noised similarity methods, i.e., ranking statistics proposed in [12]
(RS), cosine similarity without denoising (Cosine), High-Pass Fast
Fourier Transform (HPFFT), Band-Pass Fast Fourier Transform
(BPFFT). From the results in Table 5, the denoised methods (RS,
LPFFT) achieve the better performance. Among the methods with
filter algorithms, HPFFT achieves the worst performance while
LPFFT achieves the best, which verifies that the higher-frequency

signals are more likely to be noisy and filtering out them contributes
to better performance.

A.5.2 Ablation Study of Training Scheme. As for the training
scheme of AutoIntent, we first pre-train the disentangled intent
encoders with both the labeled and unlabeled data (don’t use intent
label). Then, we fine-tune the classifier for known intents on the
labeled data. Finally, we transfer the knowledge form the known
intents to unknown ones with the peseudo-label enhanced joint
learning. To verify the effectiveness of the each step in training
scheme, we compare the performance of model variants that with-
out pre-training (w/o PRE), without fine-tuning (w/o FT), without
peseudo-label enhanced joint learning (w/o JL) and AutoIntent.
From the results in Table 6, we can observe that removing any
training step will cause significant performance drop. Among them,
removing the pre-training of disentangled intent encoders causes
a dramatic drop , which verifies that the pre-training without in-
tent label indeed captures the user preference without bias and can
generate the transferable intent features.

A.6 Case Study
We assume that user consumption behaviors are related to mul-
tiple aspects (i.e., location, time, and category). Hence, we design
disentangled intent encoders to obtain the intent feature in each
aspect and further conduct intent discovery in a disentangled man-
ner. To verify the effectiveness of the disentangled setting in the
user consumption intent discovery task, we select two kinds of
discovered new intents (i.e., snack and doing exercise) for case
study. Specifically, we conduct the attention distribution analysis
with a box plot for the attention weights calculated from the dis-
entangled intent features in Eq. (16). From the results in Figure 7,
we can observe that the attention distributes in different intents
are quite different. For the intent snack, the attention values in the
category aspect are larger than other aspects, which means that
the consumption intent snack is more related to users’ intrinsic
preference, such as taste and brand. For the intent doing exercise,
the attention values in location and category aspects are larger than
the time aspect, which means the user who wants to do exercise
can be more likely to be influenced by the location factor (where
he/she is) and intrinsic preference (which sport he/she likes). In
short, the results of the case study further verify the effectiveness
of the disentangled setting in our AutoIntent model.
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