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Abstract—In recent years, much research effort on recom-
mendation has been devoted to mining user behaviors, i.e.,
collaborative filtering, along with the general information which
describes users or items, e.g., textual attributes, categorical
demographics, product images, and so on. Price, an important
factor in marketing — which determines whether a user will
make the final purchase decision on an item — surprisingly, has
received relatively little scrutiny.

In this work, we aim at developing an effective method to
predict user purchase intention with the focus on the price
factor in recommender systems. The main difficulties are two-
fold: 1) the preference and sensitivity of a user on item price
are unknown, which are only implicitly reflected in the items
that the user has purchased, and 2) how the item price affects
a user’s intention depends largely on the product category, that
is, the perception and affordability of a user on item price could
vary significantly across categories. Towards the first difficulty,
we propose to model the transitive relationship between user-to-
item and item-to-price, taking the inspiration from the recently
developed Graph Convolution Networks (GCN). The key idea
is to propagate the influence of price on users with items as
the bridge, so as to make the learned user representations be
price-aware. For the second difficulty, we further integrate item
categories into the propagation progress and model the possi-
ble pairwise interactions for predicting user-item interactions.
We conduct extensive experiments on two real-world datasets,
demonstrating the effectiveness of our GCN-based method in
learning the price-aware preference of users. Further analysis
reveals that modeling the price awareness is particularly useful
for predicting user preference on items of unexplored categories.

Index Terms—Price-aware, recommendation, collaborative fil-
tering, price, user preference

I. INTRODUCTION

Recommendation is attracting increasing attention in both

industry and academia, owing to the prevalence and success

of recommender systems in many applications [1]–[3]. From

the perspective of product providers, the aim of building a

recommender system is to increase the traffic and revenue,

by recommending the items that a user will be likely to

consume. As such, the key data source to leverage is the

past consumption histories of users, since they provide direct

evidence on a user’s interest. To this end, much research effort

has been devoted to collaborative filtering (CF) [4]–[6], which

casts the task as completing the user-item consumption matrix,

and incorporating side information into CF, such as textual

attributes [7]–[9], categorical demographics [10], and product

images [11]. To utilize such diverse data in an unified model,

a general class of feature-based recommendation models have

been proposed, such as the pioneer work of factorization

machines (FM) [12] and several recent developments that

augment FM with neural networks [13]–[15].

With respect to E-commerce products and restaurants rec-

ommendation, where the item comes at an economic cost, not

only the inherent interest of the user, but also the item price,

plays a critical role in determining whether the user will make

the final purchase decision. It has long been acknowledged that

price is a significant factor in affecting user behaviors and

product sales in marketing research [16], [17]. Nevertheless,

and surprisingly, it has received relatively little scrutiny in

recommendation.

Different from other item attributes like manufacturer and

tags that influence a user’s interest, the price of an item instead

affects whether the user is willing to pay (WTP) for it. In other

words, price and other attributes play orthogonal roles in the

user decision making process — in most cases, only when

both the item is of interest and its price is acceptable, will

the user purchase it. In general, there are two difficulties in

effectively integrating item price into recommender systems:

• Unstated price awareness. A user seldom states her pref-

erence and sensitivity on item price explicitly. As such,

to build data-driven approaches, we have to infer a user’s

personalized awareness on item price from her purchase

history. More challengingly, we need to consider the CF

effect reflected in the histories of similar users to enhance

the inference accuracy.

• Category-dependent influence. A user would have rather

different perception and affordability on items of different

categories. For example, a sport lover would have high

tolerance on the price of a sport equipment, but not on

alcoholic drinks. As such, it is important to take the item

category information into consideration to accurately infer

users’ price preference.

As a special case of item side information, price could be

integrated to generic recommender models like FM as a nor-

malized numerical feature or discretized categorical feature.

However, such solutions ignore the unique role of price in

affecting user decision — they are not specifically designed

to tackle the above-mentioned two challenges, thus whether
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the price sensitivity is properly captured remains unclear. In

this work, we aim to address the two difficulties in price-

aware recommendation system. We propose a new solution

named Price-aware User Preference-modeling (PUP), which

employs the recently emerged Graph Convolution Networks

(GCN) [18] to learn the price-aware and category-dependent

user representations.

To be specific, we discretize the price variable and build

a heterogeneous graph consisting of four types of nodes —

users, items, prices and categories — where users connect to

items, and items connect to prices and categories. We then

propagate embeddings from prices to users with items as the

bridge, so as to encode the indirect influence of prices on

users. This makes the user embedding be related to the price

embedding, such that high affinity is conceptually assigned

to a user and her frequently purchased prices. To capture

the CF effect of collective behaviors, we further propagate

the user embeddings back to items and prices. Towards the

second challenge of category relevance, we also integrate

categories into the propagation process, and employ a pairwise

interaction-based decoder to capture the interactions among

users, items, prices and categories. Lastly, the overall model

is trained in an end-to-end fashion and is optimized to estimate

the consumption behaviors. Through these designs, our PUP

method effectively incorporates the important yet complicated

price factor into recommender systems.

To summarize, the main contributions of this work are as

follows.

• We highlight the significance of the price factor in recom-

mending items with economic cost, and propose a graph-

based solution to unify the influence of item price and

category to learn user preference.

• We experiment on real-world datasets to evaluate our

method. Further analysis justifies the utility of modeling

price in cold-start scenarios and recommending the items

of unexplored categories for a user.

The remainder of the paper is as follows. First we conduct

some preliminary studies on a real-world dataset to analyze

users’ category-dependent price awareness in Section II-A.

Then we formalize the problem in Section II-B and present

our proposed method in Section III. After that we introduce

the implementation of our proposed method in Section IV. We

conduct experiments in Section V and we review related work

in Section VI. Last, we conclude the paper in Section VII.

II. MOTIVATION AND PROBLEM FORMULATION

A. Preliminary Study

In this section, we conduct statistical analyses on a real-

world dataset, which is collected from one of the biggest

e-commerce websites in China (details in Section V). As

stated in Section I, price sensitivity depends largely on product

category. To understand the inconsistent sensitivity across

categories, we extend the widely used willing to pay (WTP) to

category willing to pay (CWTP) which measures such incon-

sistency. As an indicator that reflects users’ price awareness,
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Fig. 1. Histogram of users’ CWTP entropy value. High entropy value means
users consider price differently in distinct categories.
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Fig. 2. Price-category purchase heatmap of three randomly selected users

WTP is defined as the highest acceptable price of an item at

which a user is willing to pay [19]. One step forward, we

define CWTP as the highest price a given user is willing to

pay for items of a given category. Therefore, for a user who

interacted with items of multiple categories, she will have

multiple CWTP values (one for a category). We then compute

the entropy of CWTPs for the user, where a small entropy

value implies that the user’s price sensitivity is consistent

across categories, while a large value means that the user

considers price differently for products of distinct categories1.

Figure 1 plots the histogram of the entropy value over all

users. The skewed distribution verifies the aforementioned

challenge that the price awareness is highly relevant to the

product category, and the inconsistency of price sensitivity

across categories exists widely.

In addition, we randomly sample three users from the

dataset, and present the interaction history as a price-category

heatmap in Figure 2. We discretize the price using uniform

quantization which will be explained in detail in Section II-B.

In total, there are 110 categories and 10 price levels in this

dataset. A row in the price-category heatmap represents one

category and a column means one price level. The heatmap

shows that the consumption of a user on a category mostly

concentrates on one price level. This implies that the price

sensitivity of a user is closely related to product categories.

Furthermore, in alignment with the entropy distribution in

Fig 1, a user is likely to purchase cheap items in one category,

1For a user u, the entropy value is in the range of [0, logCu], where Cu

denotes the number of product categories that u has interacted with.
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but purchases products of a much higher price in another

category.

In summary, through both macro-level statistical analyses

and micro-level case studies, we find that the effect of price is

relevant to category and such sensitivity is often inconsistent

across different categories. The observations verify the critical

role of category-dependent price awareness — it is the main

difficulty when modeling price in recommendation tasks.

B. Problem Definition

The focus of this work is to leverage item price to improve

recommendation accuracy. As discussed above, since the price

awareness of a user is closely relevant to product category, it

is essential to take category into consideration when designing

a system of price-aware recommendation. We formulate this

recommendation task as follows.

Let U and I denote the sets of users and items, and RM×N

denote the utility (user-item interaction) matrix where M and

N are the number of users and items. Here, an observed

interaction Rui = 1 in R means user u once purchased item

i. We use p = {p1, p2, ..., pN} and c = {c1, c2, ..., cN} to

denote the price and category of items.

For ease of modeling, we consider price as a categorical

variable, discretizing a price value into separate levels using

uniform quantization2. For example, suppose the price range

of category mobile phone is [200, 3000] and we discretize it

to 10 price levels. Then a mobile phone at the price of 1000

will have the price level
⌊
1000−200
3000−200 × 10

⌋
= 2.

Finally, we formulate the problem of price-aware item

recommendation as follows:

Input: interaction matrix R, price of items p and category

of items c.

Output: The estimated probability of purchasing behavior

given a user-item pair (u, i).

III. METHOD

Figure 3 illustrates our proposed PUP model. Given a user-

item pair (u, i) and the item’s two attributes < pi, ci > as

the input, the model aims to predict the likelihood that u will

consume item i. Our proposed PUP method is featured with

the following three special designs.

• Unified heterogeneous graph. To explicitly model user be-

haviors and item attributes, we discretize the price variable

and build a heterogeneous graph with four types of nodes. To

tackle the problem of unstated price awareness, we explicitly

introduce price as price nodes on the graph instead of input

features of item nodes. As for the difficulty of category-

dependent influence, we further add category nodes to the

graph.

• Graph convolutional encoder. To capture both the CF ef-

fect and price awareness, we utilize a graph convolutional

network as an encoder to learn semantic representations for

2In the following of the paper, we will use “price” and “price level”
interchangeably to denote the categorical variable.

users, items, prices and categories. With embeddings prop-

agating on the heterogeneous graph, users’ price sensitivity

is captured by aggregating price-aware information into user

nodes.

• Pairwise-interaction based decoder. Since the heterogeneous

graph consists of four types of nodes which are factorized

to a shared latent space, inspired by the philosophy of Fac-

torization Machines [12], we employ a pairwise interaction-

based decoder to estimate interaction probability.

To capture the complicated price factor in recommendation, we

estimate the category-dependent and price-aware user prefer-

ence using two branches — one branch focuses on a user’s

interest and models price as a global effect representing a

user’s overall purchasing power which is unrelated to category,

while the other branch focuses on the category-dependent

influence of price factor. In this paper, we will call the first

branch as the global branch and the second as the category

branch. For each branch, we construct a heterogeneous graph

and employ a graph convolutional encoder and a pairwise-

interaction decoder. For simplicity, we introduce our method

in a single branch manner where there exists only one graph

encoder. The two-branch version is similar like mirror image.

A. Unified Heterogeneous Graph

For the task of price-aware item recommendation, where we

have both user-item interaction data and items’ price attributes,

it is challenging to explicitly capture users’ price awareness

since user is not directly related to price. In other words, a

user’s relation with price is build upon the transitive relation of

user-to-item and item-to-price. In this way, items play a bridge
role connecting users and prices. To address this challenge in

capturing the complicated relations into a unified model, we

discretize the price variable and build a heterogeneous graph

consisting of four types of nodes – users, items, prices and

categories. Formally, the input interaction data and attributes

(category and price) can be represented by an undirected graph

G = (V,E). The nodes in V consist of user nodes u ∈ U ,

item nodes i ∈ I , category nodes c ∈ c and price nodes p ∈ p.

The edges in E are composed of interaction edges (u, i) with

Rui = 1, category edges (i, ci) and price edges (i,pi) with

i ∈ I . The second block in Figure 3 illustrates our constructed

graph. By introducing four types of nodes, we represent all

the entities, features and relations in a unified graph, so as to

capture all pairwise relations in an explicit manner.

Notice that we use separate node types for category and

price instead of a single node type for the cross feature of (cat-

egory, price) to avoid redundant parameters. Intuitively, items

of the same category with different price shares functionality

similarity. Meanwhile, items of the same price from various

categories reflect similar price awareness as well. Thus a single

type of cross feature lacks connections of the two situations

above. By applying distinct node types to category and price,

different levels of semantic similarities are captured in the

graph.

With respect to graph convolutional networks in the field

of node classification [20], it is common to use some certain
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Fig. 3. The overall design of our proposed PUP method which consists of an unified heterogeneous graph, a graph convolutional encoder and a pairwise-
interaction based decoder. The constructed unified heterogeneous graph is composed of four types of nodes where user nodes connect to item nodes, and item
nodes connect to price nodes and category nodes

high-level feature vectors like word embeddings extracted by

word2vec [21] as the input features of the nodes. Following

the same fashion, it seems reasonable to encode price and

category information into the input features for user nodes

and item nodes which leads to a rather concise bipartite

design. However, in our work, we explicitly squeeze out

the two important attributes (price and category) as entity

nodes to capture the category-dependent price awareness in

a more expressive way. Thanks to the explicit design of a

heterogeneous graph with four types of nodes which is also

in line with the philosophy of Factorization Machines, we

could model the pairwise interactions between any features

intuitively and effectively.

As prices and categories are captured directly and explicitly

by assigning separate nodes to them, the two aforementioned

difficulties of price-aware item recommendation are alleviated.

Specifically, the unstated price awareness is transformed to

high-order neighbor proximity on the heterogeneous graph

which could be well captured by graph convolutional net-

works. And the category-dependent influence issue is allevi-

ated by linking item nodes to both price nodes and category

nodes.

B. Graph Convolutional Encoder

Latent factor model (LFM), which tries to encode entities in

a low-dimensional latent space, is a widely-used mechanism

in recommender systems [22], [23]. For traditional LFMs

in recommender system, such as Matrix Factorization, an

observed (u, i) pair will push u and i to each other in latent

space. However, in our built unified heterogeneous graph,

there are two more pairs, (i, p) and (i, c) . Besides, there are

underlying user-price interaction (u, p) when user u purchases

item i with price p. In this paper, we extend traditional LFMs

that only learn representations for users and items, and try

to learn representations of four types of entities in the same

latent space. Recent research [20], [24], [25] have shown

that performing message passing on the graph could lead to

semantic and robust node representations for multiple tasks

like node classification and link prediction. A special class of

algorithms among them called Graph Neural Networks achieve

the state of art in the field of network representation learning.

We employ an encoding module consisting of an embedding

layer for converting one-hot input to low-dimensional vectors,

an embedding propagation layer to capture both CF effect and

price awareness, and a neighbor aggregation layer to model

neighbor similarity.

Embedding Layer. As discussed previously, in our pro-

posed model, since price attributes and category attributes are

squeezed out as nodes, ID is the only feature left for a node.

Thus, we introduce an embedding layer to compress the one-

hot ID encoding to a dense real-value vector. That is, we

represent each node with a separate embedding e′ ∈ R
d, where

d is the embedding size.

Embedding propagation layer In GCN, embeddings of

nodes propagate to their first order neighbors and further if

more than one convolutional layer are applied. In our encoder,

the embedding propogation layer captures the message trans-

ferred between two directly connected nodes which could be

user-item, item-price or item-category. Suppose node i and

node j are two connected nodes in our unified heterogeneous

graph. The propagated embedding from node j to node i is

formulated as follows:

tji =
1

|Ni|e
′
j , (1)

where Ni denotes the set of neighbors for node i and e′j is the

embedding of node j retrieved from the embedding layer. As

stated in [26], adding self-loops is of significant importance

to GCN since it shrinks the spectrum of the normalized

Laplacian, thus we link each node in our heterogeneous graph

to itself which makes node i also appear in Ni.

Neighbor aggregation layer. From the perspective of net-

work representation learning, the neighbor relation of two

nodes in the graph structure implies that their representations

should also be near in the transformed latent space. Inspired

by recent advances in graph convolutional networks [24], [25],

[27], we update the representation of a node by aggregating

its neighbors’ representations. Among all the aggregating

operations, summation, taking average, and LSTM are the

most frequently used approaches [24], [28]. In our proposed

encoder, we adopt average pooling and utilized a non-linear

activation function to perform message passing on the graph.

Specifically, let eu, ei, ec, and ep denote the representations

for user u, item i, category c and price p. The updating rule
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Fig. 4. The updating rule for different types of nodes. Left: user node. Mid:
item node. Right: a price node. Category nodes update similarly with price
nodes

can be formulated as follows:

ou =
∑

j∈{i with Rui=1}∪{u}
tju,

oi =
∑

j∈{u with Rui=1}∪{i,ci,pi}
tji,

oc =
∑

j∈{i with ci=c}∪{c}
tjc,

op =
∑

j∈{i with pi=c}∪{p}
tjp,

ef = tanh(of ), f ∈ {u, i, c, p}.

(2)

Figure 4 illustrates the updating rule for different types of

nodes. Due to the intrinsic expressive power of embedding

propagation and neighbor aggregation, the learned represen-

tations extracted by the graph convolutional encoder can

effectively model the relations between nodes and their high

order neighbors.

Intuitively, items of the same price level are likely to

be more similar than items of different price levels. In our

constructed heterogeneous graph, a price node links to all the

items of that price level, and the graph convolutional encoder

guarantees that the output representations for those items will

absorb the price embedding into themselves by embedding

propagation and neighbor aggregation. Therefore, the encoder

generates item representations with price-aware similarities.

Category-aware similarities are captured in the same way since

a category node is connected to all the item nodes which

belong to that category.

Furthermore, a user’s price awareness is largely reflected by

her interacted items and other users’ purchase history through

collaborate filtering. Thus it is crucial to leverage items as the

bridge between users and price awareness. In our model, a

user’s representation is aggregated from her interacted items

explicitly and the items are directly linked to categories and

prices. Thus category nodes and price nodes are high-order

neighbors with respect to user nodes, and the price awareness

is propagated to the users via intermediate item nodes.

From the perspective of recommendation, the proposed

graph convolutional encoder is able to capture the similarity

of any two nodes when there exists a path between them.

With respect to the classic Matrix Factorization algorithm,

collaborative filtering effect is captured implicitly by optimiz-

ing to estimate user-item interactions. However, in our graph

convolutional encoder, we explicitly incorporate collaborate

filtering effect by aggregating a node’s neighbors. Specifically,

similar users who have interacted with the same item are 2-

order neighbors on the heterogeneous graph and this proximity

could be captured by the graph convolutional encoder.

C. Pairwise-interaction Based Decoder

As discussed previously, we adopt a two-branch design to

estimate user-item interactions with emphasis on incorporating

price into recommendation. The global branch models the

price effect in a large scope which focuses on a user’s overall

purchasing power. The category branch instead concentrates

on a rather “local” level where the category factor influences

a user’s price sensitivity. For each branch, we employ a

pairwise-interaction based decoder to estimate the interaction

probability and combine the two predicted scores as the final

result.

As we represent users, items, categories and prices as four

types of nodes on a unified heterogeneous graph, the learned

representations for different types of nodes share the same

latent space. Inspired by Factorization Machines [12] which

factorizes all the features in a shared latent space and estimates

the interaction by taking inner products of every pair of feature

vectors, we employ a decoder following the FM fashion.

Formally, using the same notation from the previous encoder

section, the estimated purchase probability between user u and

item i of category c and price p can be formulated as follows:

s = sglobal + αscategory

sglobal = eTu ei + eTu ep + eTi ep

scategory = eTu ec + eTu ep + eTc ep,

(3)

where the final prediction combines the results from two

branches with a hyper-parameter α to balance the two terms.

It should be noted that the each branch has its own graph con-

volutional encoder, thus the embeddings used for computing

sglobal and scategory are different and independent.

With respect to the global branch, three features which are

users, items and prices are fed into a pairwise-interaction based

decoder in a 2-way FM manner. In this branch, the three inner

products each captures the user’s interest, the user’s global

price effect and the item’s price bias respectively. we estimate

the interaction probability without category embeddings and

thus category nodes only serve as a regularization term on

the graph which makes items of the same category near to

each other. Since category information is hidden in the decoder

process in the global branch, the local effect of price which is

related to category is pushed out from the learned latent space.

And the global price influence, which reflects a user’s overall

purchasing power and affordability, is reserved in the latent

space learned by the powerful graph convolutional encoder.
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However, as discussed previously, users’ price sensitivity is

largely relevent to category and often appears inconsistently

across different categories. Thus we add a category branch

which serves to capture this subtle price awareness which is

related to category. In this branch, we omit item embeddings

when estimating interactions and only take users, categories

and prices into consideration. Item nodes simply play the

bridge role transferring price and category information to

users. By taking inner products of the three embeddings,

users’ category-dependent price awareness is guaranteed in the

shared latent space.

Following the graph convolutional encoder with strong

power in learning representations, we employ a two-branch

pairwise interaction based decoder to estimate the interaction

probability. The design of this decoder largely benefits from

the philosophy of Factorization Machines [12] which is one of

the most widely used and effective method for estimating CTR

(click through rate) in both research and industry. Moreover,

our decoder serves great interpretability with respect to price

awareness since the two-branch design disentangles the global

effect and the category-dependent effect of the price factor in

recommender systems.

D. Model training

Semi-supervised graph auto-encoder. To train our pro-

posed PUP model, we follow a popular fashion of semi-

supervised graph auto-encoder [25], [29], [30]. That is, during

the encoding stage, we utilize a GCN which aims at learning

expressive and robust representations for all the four types

of nodes. While in the decoding stage, we only focus on

reconstructing user-item edges on the heterogeneous graph and

omit item-price and item-category edges, because predicting

user-item interaction is the main task for recommendation.

Loss function. In order to learn users’ preferences on

different items, we adopt Bayesian Personalized Ranking

(BPR) [5] as our loss function which has been widely used in

recommendation tasks for implicit data [6], [31], [32]. The

BPR loss induces the model to rank the positive samples

(interacted items) higher than negative samples (unobserved

interactions). This pairwise object which focuses on the rela-

tive preference priority of items instead of absolute interests

could be formulated as follows:

L =
∑

(u,i,j)∈O
− ln (σ (s (u, i))− σ (s (u, j))) + λ ‖Θ‖2 , (4)

where O denotes the set of positive-negative sample pairs and

σ stands for sigmoid function. The second term of equation

(4) performs L2 regularization where Θ stands for model

parameters and λ controls the penalty strength.

IV. IMPLEMENTATION

In this section, we introduce several important details when

implementing our proposed PUP model.

A. How to Perform Graph Convolution?

As introduced previously, our proposed graph convolutional

encoder is composed of an embeddding layer, an embedding

propagation layer and a neighbor aggregation layer. Message

passing on the heterogeneous graph is accomplished through

stacking the three layers. In fact, similar to the semi-supervised

approach proposed in [20], the graph convolutional encoder

can be implemented effectively utilizing sparse matrix pro-

duction.

We define the rectified adjacency matrix Â which is sparse

as follows:

Â = f (A+MI) , (5)

where A is the original adjacency matrix and MI is the

identity matrix. f (M) takes average on each row of matrix

M . Adding the identity matrix is equivalent to adding self-

loops on the graphs which will influence the performance of

GCN significantly [26].

We denote the input one-hot encoding feature matrix as Fin

where each row represents a node, and use W to represent the

learnable embedding matrix. Then the output representation

matrix is computed as follows:

Fout = tanh(ÂFinW ). (6)

It can be easily proved that the matrix production expression

above is equivalent to the design of stacking an embedding

layer, an embedding propagation layer and a neighbor aggre-

gation layer.

B. How to Efficiently Perform Decoding?

Since in the pairwise-interaction based decoder we take

inner products of every pair of features, the computation

complexity is relatively high. However, the computation can be

reduced to linear complexity using the following trick which

was first introduced in [12] (take the category branch as an

example):

∑
f,g∈{u,c,p},f �=g

eTf eg =
1

2

⎛
⎜⎝
⎛
⎝∑

f

ef

⎞
⎠

2

−
∑
g

(
e2g

)
⎞
⎟⎠ . (7)

It is worthwhile to state that more features could be added to

our model and the computation complexity will matter a lot

when there exist hundreds of features which is quite common

in today’s recommender systems.

C. How to Prevent the Model from Overfitting?

Dropout is an effective way to prevent neural models from

overfitting [33]. We adopt dropout on the feature level, which

means randomly dropping the output representations with

probability p. p is a hyper-parameter in our method. We

perform grid search on this hyper-parameter and report the best

performance. With the help of dropout technique, our proposed

PUP method learned more robust node representations on the

unified heterogeneous graph.
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TABLE I
STATISTICS OF THE DATASETS

Dataset #Users #Items #Cate #Price #Interactions
Yelp 20637 18907 89 4 505785

Beibei 52767 39303 110 10 677065

V. EXPERIMENTS

In this section, we first investigate the performance of

our proposed PUP method compared with existing baselines

and verify the effect of price-aware recommendation system.

One step forward, we dive deeper into the role price factor

plays in our proposed method. Then we study the effect

of our two-branch design to see whether price awareness is

carefully modelled in our method. Furthermore, we test the

performance on users with different consistency in terms of the

price awareness across categories. Moreover, as stated in [34],

incorporating the price factor could improve the performance

when recommending items of unexplored categories which is a

cold-start problem. Thus we also measure our proposed model

under this protocol.

A. Experimental Settings

1) Dataset and Evaluation Protocol: To evaluate the perfor-

mance of our proposed PUP method, we utilize two real-world

datasets for comparison: Yelp and Beibei, which both have

abundant category and price information for items. Statistics

of these two datasets are summarized in Table I.

• Yelp. We adopt Yelp2018 Open Dataset3 in which restau-

rants and shopping malls are regarded as items. We choose

all the sub-categories under the top-level category restau-
rant. In this dataset, price of each restaurant is shown as

different number of dollar symbols which ranges from 1 to

4. Thus we directly use the number of dollar symbols as

price levels in our experiments. Finally, we utilize 10-core

settings which means only retaining users and items with at

least 10 interactions.

• Beibei. This is a dataset collected from one of the largest

E-commerce platforms4 in China. In this dataset, all items

are with specific category and price information. Since

the price of each item in this dataset is of continuous

form, we discretize the continuous price to 10 price levels

using uniform quantization and use the 10-core settings to

guarantee data quality.

For each dataset, we first rank the records according to

timestamps and then select the early 60% as the training set,

middle 20% as the validation set, and the last 20% as the test

set. For each user, the items that are not interacted by the user

are viewed as negative samples. We perform negative sampling

to constitute positive-negative sample pairs for training. To

evaluate the effectiveness of top-K recommendation, we use

the same metrics as in [6] including Recall and NDCG. We

report average metrics for all the users in the test set.

3https://www.yelp.com/dataset
4https://www.beibei.com

2) Baselines: To show the effectiveness of our proposed

PUP method, we compare the performance with the following

baselines.

• ItemPop It is a non-personalized method that ranks items

just according to their popularity in the training set.

• BPR-MF [5] This is a standard matrix factorization model

optimized by Bayesian Personalized Ranking (BPR) [5]

loss.

• PaDQ [34] This method is based on CMF [35] to handle

price information. Specifically, it factorizes user-item, user-

price and item-price matrix simultaneously with shared

latent representations among matrices.

• FM [12] Factorization Machines (FM) is a competitive

model which applies a sum of pairwise inner product of

user or item features to obtain the prediction score. In our

experiments, we integrate price and category into FM by

regarding them as item features.

• DeepFM [13] This method is an ensemble model that

combines Factorization Machines and deep neural networks

to capture both low- and high- order feature interactions.

We treat price and category similarly as in FM.

• GC-MC [25] It adopts graph convolutional networks to

learn the representations of users and items on a bipartite

user-item graph. We use one-hot ID features as input fea-

tures for user and item nodes.

• NGCF [18] This method is a new recommendation frame-

work based on graph neural networks which explicitly

captures the collaborative signal by performing embedding

propagation on a bipartite user-item graph. In our experi-

ments, we use a concatenation of one-hot ID feature and

one-hot price feature as the input feature for item nodes.

We did not compare our method with FMF proposed by [36]

and SVDutil proposed by [37] since these methods incorporate

the dynamic of price or net utility which we leave it for future

work.

3) Parameter settings: We adopt BPR loss for all methods

and fix the embedding size as 64. We use Adam for opti-

mization with the initial learning rate as 1e-2. The size of

mini-batch is fixed at 1024 and negative sampling rate is set

to 1. For each model, we train for 200 epochs and reduce the

learning rate by a factor of 10 twice for convergence.

B. Performance Comparison

We first compare the results of all the methods on two

datasets with respect to: Recall@50, NDCG@50, Recall@100

and NDCG@100. Table II presents the overall comparison

of our proposed PUP method and other baselines. From the

results, we have several important observations.

1) Incorporating Price into Recommendation Improves the
Accuracy: Generally, incorporating more attributes and fea-

tures into recommender systems would increase the overall

recommendation performance. Compared to trivial CF meth-

ods like MF which only consider users and items, attribute-

aware methods are able to capture the relationship between

much more features and interactions. In this work, we only

focus on two attributes which are category and price. As
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TABLE II
TOP-K RECOMMENDATION PERFORMANCE COMPARISON ON THE YELP AND BEIBEI DATASETS (K IS SET TO 50 AND 100)

Yelp dataset Beibei dataset
method Recall@50 NDCG@50 Recall@100 NDCG@100 Recall@50 NDCG@50 Recall@100 NDCG@100

ItemPop 0.0401 0.0182 0.0660 0.0247 0.0087 0.0027 0.0175 0.0046
BPR-MF 0.1621 0.0767 0.2538 0.1000 0.0256 0.0103 0.0379 0.0129

PaDQ 0.1241 0.0572 0.2000 0.0767 0.0131 0.0056 0.0186 0.0068
FM 0.1635 0.0771 0.2538 0.1001 0.0259 0.0104 0.0384 0.0130

DeepFM 0.1644 0.0769 0.2545 0.0998 0.0255 0.0090 0.0400 0.0122
GC-MC 0.1670 0.0770 0.2621 0.1011 0.0231 0.0100 0.0343 0.0124
NGCF 0.1679 0.0769 0.2619 0.1008 0.0256 0.0107 0.0383 0.0134
PUP 0.1765 0.0816 0.2715 0.1058 0.0266 0.0113 0.0403 0.0142

impr.% 5.12% 5.84% 3.59% 4.65% 2.70% 5.61% 0.75% 5.97%

illustrated in the results, attribute-aware methods outperform

other trivial CF methods. With respect to price-awareness

modeling, experimental results in both datasets verify that

incorporating price into recommendation could attain improve-

ments in accuracy. Specifically, FM and DeepFM outperform

BPR-MF, and NGCF outperforms GC-MC in most cases.

As stated previously, the input feature for NGCF contains

price information while the input of GC-MC is just one-hot

ID encoding. However, the performance gain is not signifi-

cant, which indicates that the two challenges of price-aware

recommendation remain unresolved in these attribute-aware

methods.

2) Price Should be Considered More as an Input Rather
Than a Target: PaDQ and FM, which are two typical methods

of attribute-aware recommendations, differ in how they incor-

porate price into the system. Specifically, PaDQ works in a

generative way, which means it takes price into consideration

by adding extra tasks of predicting price awareness with shared

underlying latent factors. However, FM follows a deterministic

fashion which means regarding user or item IDs as special

attributes and factorizes all attributes to the same latent space

to make predictions. As the results illustrated, FM substantially

surpasses PaDQ and PaDQ is even worse than BPR-MF.

The large performance gap indicates that price should be

considered more as an input of recommendation rather than a

target to predict.

3) Neural Based Methods and Graph Based Methods Have
an Advantage over Other Methods: From the results, neural

based methods and graph based methods achieves better results

than other “shallow” models in most cases. This performance

gain is reasonable since neural units increase the capacity of

the model and the graph structure is much more expressive

than a look-up embedding table. Specifically, DeepFM, GC-

MC and NGCF generally attains better results. DeepFM

combines DNN and FM to capture low- and high- order

interactions simultaneously. GC-MC applies graph convolution

on the user-item bipartite to learn more meaningful represen-

tations for users and items. NGCF captures the CF effect by

performing embedding propagation on the graph. The results

show that it is promising to enhance representation learning

and interaction modeling in recommendation by introducing

neural networks and graph neural networks into the system.

4) Our Proposed PUP Method Achieves the Best Per-
formance: Our proposed PUP consistently achieves the

best results on all metrics of both datasets. Following the

semi-supervised graph auto-encoder fashion, this two-branch

method which is specifically designed for modeling price

awareness is proven to be effective. Reuslts of t-tests in-

dicate that the improvements are statistically significant for

p < 0.005.

To summarize, the extensive comparisons on two datasets

verify that our proposed PUP method is able to effectively

leverage price of items to improve recommendation.

C. The Effect of Price Factor

In this section, we perform ablation study to verify the

importance of incorporating price into recommender systems.

Several modified models with the price factor removed are

constructed for comparison with our proposed PUP method.

Furthermore, in modern e-commerce platforms, the price range

is often large and the distribution of price tends to be much

complicated. The uniform quantization process of price factor

might fail to capture the price preference when price is not

uniformly distributed. Therefore, we adapt the quantization

process according to the rank of price and compare the

two quantization methods. With respect to the discretization

process of price factor, the number of price levels has a great

influence on the fineness of capturing the price preference

which directly impacts the performance of the recommen-

dation system. Thus we conducted experiments on different

price levels to investigate how the granularity of price affects

the recommendation results. To confirm the importance of the

price factor, we conducted experiments on a general dataset

which is collected from the reviews on Amazon [38] and the

original price information is available. We selected product

reviews of 5 categories (Cell Phones and Accessories, Tools
and Home Improvements, Toys and Games, Video Games and

Beauty). We utilized the 5-core version provided by [38] which

resulted in a total number of 438355 interactions with 48424

users and 33483 items.

1) Ablation Study of Price Factor: In our proposed two-

branch design, the price factor is incorporated into recom-

mender systems from both global level reflecting users’ pur-

chasing power and local level focusing on category-dependent
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TABLE III
ABLATION STUDY ON THE IMPORTANCE OF PRICE FACTOR (TOPK=50)

method Recall@50 NDCG@50 Recall@100 NDCG@100
PUP w/o c,p 0.0726 0.0211 0.1155 0.0285

PUP w/ c 0.0633 0.0222 0.0944 0.0276
PUP w/ p 0.0854 0.0277 0.1275 0.0350

PUP 0.0890 0.0293 0.1336 0.0370

TABLE IV
RESULTS OF DIFFERENT QUANTIZATION PROCESS ON AMAZON DATASET

Method Recall@50 NDCG@50 Recall@100 NDCG@100
Uniform 0.0807 0.0264 0.1192 0.0331

Rank 0.0885 0.0294 0.1313 0.0368

price awareness. We constructed several slim versions of

our PUP model to verify the necessity of taking price into

consideration. In these slim versions, category factor, or price

factor, or both are removed. Results are illustrated in Table

III. From the results we can address that incorporating price

into recommender systems brings significant improvements

with respect to recommendation accuracy and the price factor

is indeed a crucial feature in e-commerce recommendation

scenarios. Nevertheless, jointly modeling the price factor and

the category factor achieves the best performance which ver-

ify the necessity of taking category into consideration. The

large performance gap between PUP and other slim versions

confirms that our proposed method is of great effectiveness in

capturing users’ price awareness.

2) The Quantization Process of Price Factor: In most

cases, the distribution of price factor on e-commerce platforms

is complicated. Usually there are a few products with ex-

tremely high or particularly low price which in turn makes the

price range large. However, the majority of the products often

lie in the middle of the range. The non-uniform distribution of

price factor requires subtle adaptation of the uniform quanti-

zation process. We adopt rank-based quantization to alleviate

the problem of uniform quantization whose performance is

suboptimal when the price distribution is complex. In uniform

quantization, we calculate the normalized price by subtracting

the minimum price and then divided by the price range of the

corresponding category. However, in rank-based quantization,

we first rank the products by price within their categories

and then transform the rank to percentile form. At last, the

discretized price is obtained by multiplying the total number

of price levels and taking the integer part. Results of the two

different quantization processes are shown in Table IV. It is

reasonable that rank-based quantization attains much better

results than uniform quantization since the price factor is not

uniformly distributed. Rank-based quantization transforms the

non-uniform distribution of the absolute price value to the uni-

formly distributed ranking percentage value. This adaptation

of the quantization process of price factor makes our proposed

PUP model still feasible under the circumstance of large price

range and complicated distribution of price factor.

3) The Fineness of the Price Factor: Usually price is of

continuous form on e-commerce platforms. However, utilizing

the price factor directly as an absolute value brings much
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Fig. 5. Performance on amazon at different number of price levels.

complexity to the system since nodes on the heterogeneous

graph are discrete in essence. Nevertheless, consumers tend

to pay attention to other factors like brand or sales when

the candidate items cost roughly the same. Therefore, we

translate the price to price levels when it is continuous for

both simplicity and rationality. The number of price levels is

an important option which decides the fineness of the price

factor in our proposed method. We experimented on different

price levels to study how the granularity of the price factor

influences the recommendation performance. Figure 5 shows

the results of different price levels. When the number of price

levels is set extremely low such as two which means the

model only makes a coarse discrimination between cheap and

expensive, the price factor is not accurately incorporated, thus

the overall performance is inferior to more elaborate models

with finer capture of price factor. While if we set the number of

price levels too high like 100, items of near price are allocated

to different price levels which could damage the performance

as well since the difference in price is not so important under

this condition.

D. The Two-branch Design

Previously we introduced our two-branch design which aims

at disentangling the global and local effect of price awareness

in recommendation. If we fix the holistic embedding size, the

specific dimension at which we slice the embedding requires

careful consideration. With more dimensions allocated to the

global branch, the PUP model pays more attention to users’

interest and the average influence of the price factor. With

the category branch getting more dimensions, the local and

category-dependent price awareness plays a more important

role in estimating interactions. Intuitively, larger embedding

size leads to more capacity and expressive power in that

branch.

We slice at different dimension to study how the allocation

of embedding size influence price awareness modeling. Results

are shown in Table V. In the table, an allocation of m/n
indicates the embedding size is m for the global branch and

n for the category branch. It is reasonable that better perfor-

mance is achieved when the global branch takes the majority

since items is of vital importance when estimating user-item

interactions while in the category branch item embeddings

141



TABLE V
PERFORMANCE COMPARISON OF DIFFERENT EMBEDDING SIZE

ALLOCATIONS ON YELP DATASET (TOPK=50)

Allocation 16/48 32/32 48/16 56/8 60/4
Recall 0.1460 0.1689 0.1757 0.1765 0.1745

TABLE VI
PERFORMANCE COMPARISON ON DIFFERENT USER GROUPS ON BEIBEI

DATASET (METRICS=NDCG@50)

user group DeepFM PUP boost
consistent 0.0091 0.0129 41.76%

inconsistent 0.0085 0.0086 1.18%

are hidden. However, further compressing the embedding size

of the category branch to extremely low such as 4 or lower

will worsen the recommendation accuracy. Extremely low

embedding size restricts the capacity of the category branch

and thus the category-dependent price awareness could not be

well captured which leads to inferior performance.

E. Consistency of Price Awareness across Categories

It has been introduced that the effect of price on influencing

users’ purchase behavior largely depends on item categories.

Whether the price awareness is consistent across categories is

crucial when making recommendations for items of various

categories. We divide users into groups according to their

entropy value of CWTPs which was defined in Section II-A.

Table VI shows the performance of our proposed PUP method

on different user groups compared to DeepFM. From the

results, We have the following two findings:

• Both DeepFM and PUP perform much better on consistent

users than on inconsistent users. The reason for the perfor-

mance gap is that it is more difficult to predict users’ interest

when they regard price differently over distinct categories.

• Our proposed PUP achieves better results on both consistent

users (about 41.76% boost) and inconsistent users (about

1.18% boost). Given the fact that capturing the preference

of inconsistent users is more challenging, our proposed PUP

method is still able to improve the performance due to its

powerful capacity of learning high-quality representations

on the constructed unified heterogeneous graph.

The inconsistency of price awareness across categories brings

much more difficulties when incorporating price into recom-

mendation. The performance gap between DeepFM and PUP

suggests that it is not sufficient to model this inconsistency us-

ing a unified model and it requires specific design towards this

inconsistency. In our two-branch structure, this inconsistency

is exactly what the category branch aims to model. By com-

bining global and local effect of the price factor, our proposed

PUP method could improve the recommendation performance

on users with diverse consistency of price awareness.

F. Utilizing Price to Tackle Cold-Start Problems

In modern e-commerce platforms, a user usually only in-

teracts with a small number of categories compared with the

total number of categories on the platform. However, recom-

mending items of unexplored categories is rather important
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Fig. 6. Performance comparison on unexplored categories of Yelp dataset

both for diversity and for maximizing the revenue. This task

is a so called cold-start problem since there exists limited data

records in the unexplored categories. Users’ preference and

price awareness are not always consistent across categories.

Therefore, what we have learned on explored categories cannot

be directly transferred to unexplored ones. [34] first proposed

that the price could come to help in this situation.

To evaluate the performance on unexplored categories, we

make a few adaptations to our datasets. We find those users

who purchase items in the test set from categories that are

different from those purchased categories in the training set.

Then we filter out those items in the test set belonging to

explored categories. We conduct experiments according to two

protocols which were utilized in [34]:

• CIR (Category item recommendation): For this protocol,

the candidate item pool is composed of all the items which

belongs to the test positive unexplored categories.

• UCIR (Unexplored category item recommendation): For

this protocol, the candidate item pool consists of all the

items which are not in the train positive categories.

For example, suppose there are 7 categories in total which are

{A,B,C,D,E, F,G}. A user purchases items of category A,

B and C in the training set and purchases items of category E
in the test set. Then according to CIR protocol, all the items of

category E forms the candidate item pool. However, in UCIR

problem, the candidate item pool is composed of items from

unexplored categories which are {D,E, F,G}.
Figure 6 shows the performance comparison on unexplored

categories. PUP- stands for a slim version of PUP with cate-

gory nodes removed. The results verify the positive effect of

incorporating price when recommending items of unexplored

categories. Specifically, PUP and PUP- outperforms GC-MC

in all cases. Without incorporating price and category, GC-MC

only captures user-item interactions. And when performing

neighbor aggregation, item nodes of unexplored categories can

only be reaches via intermediate user nodes in GC-MC, while

in PUP or PUP- price nodes can also be leveraged which

makes it much easier to transfer from explored categories to

unexplored categories.

Moreover, the results illustrates that GCN based methods

(GC-MC, PUP-, PUP) consistently outperform factorization

based methods (FM, DeepFM). The performance gap indicates
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that a simple look-up embedding table is insufficient to learn

high-quality representations under cross category protocols.

With the help of GCN, item nodes of unexplored categories

could be reached by neighbor aggregation on the graph.

Finally, our proposed PUP model achieves the best perfor-

mance in both CIR and UCIR problems on two datasets. Due

to the powerful graph convolutional encoder, our proposed

PUP is able to capture users’ preference on unexplored cate-

gories. In our contructed unified heterogeneous graph, item

nodes linked to unexplored categorie nodes are high order

neighbors for the user since those item nodes could be reached

via price nodes and user nodes connected to them. With

strong collaborative filtering effect, an item of an unexplored

category could be reached within 3 hops (user-item-user-item).

Moreover, if the user purchases items of enough price levels,

the item could also be reached through price nodes (user-item-

price-item).

To summarize, we conduct extensive experiments on real-

world datasets, results illustrate that incorporating price could

improve the recommendation accuracy and our proposed PUP

method outperforms other baselines on price-aware recom-

mendation. We perform ablation study on price factor to con-

firm the critical role of price in e-commerce recommendation.

Experiments on the quantization and fineness of the price

factor illustrate the capability of our proposed method in cap-

turing price preference. Our two-branch design disentangles

the global and local effect of the price factor and serves

great recommendation performance. Moreover, we investigate

the consistency of price awareness across multiple categories.

Furthermore, our proposed PUP shows superior performance

when tackling cold-start problems.

VI. RELATED WORK

Price-aware Recommendation In e-commerce systems,

price serves as a significant role in researches focusing on the

task of revenue maximization. Nevertheless, price is seldom

specifically utilized in improving recommendation. Schafer et
al. [39] first pointed out the potential of including price in e-

commerce recommender systems. Wang et al. [37] proposed

SVDutil which leveraged price to recommend items with higher

net utility. Recently, several studies [34], [36], [40], [41]

started to approach price-aware recommendation, of which

the aim is to better estimate users’ preference with the help

of products’ price information. Asnat et al. [40] leveraged a

Gaussian distribution to model users’ acceptable price, and

when predicting user-item interactions, a user-price matching

score calculated from the distribution is multiplied to the

traditional user-item score to get the final predictions. A major

concern is that directly matching user and price ignores the

category-dependent influence of the price factor. Wang et al.
[36] incorporate dynamic pricing of item and price elasticity

(how the change of price affects user behaviors) into rec-

ommender systems via modeling users’ decision making into

three stages: category purchase, product choice and purchase

quantity. However, in most real scenarios, decision making

is always compressed to one stage because a user is directly

exposed to item candidates selected by recommendation en-

gines. Chen et al. [34] applied collective matrix factorization

(CMF) [35] and proposed a model called PaDQ to factorize

user-item, user-pattern and item-price matrices simultaneously.

Umberto [41] explored the role of price in e-commerce recom-

mendation and utilized price to improve business profit based

on a multi-dimensional collaborative filtering approach [42].

In summary, these methods are not able to address the two

main difficulties in integrating item price into recommender

systems which have been discussed in previous sections.

Attribute-aware Recommendation Attribute-aware rec-

ommendation is defined as to leverage user profiles or item de-

scriptions to enhance recommendation [43]. Rendle et al. [12]

proposed Factorization Machines (FM) which estimates pref-

erences with weighted sum of pairwise interactions between

every two attributes (since 2-way FM is the most well known

case). Juan et al. [44] further extended FM by adding field

information which could distinguish among different feature

interactions. Cheng et al. [45] proposed a model named

Wide&Deep, which is the first work to utilize neural networks

to capture various attributes in recommendation. He et al. [15]

extended FM via replacing weighted sum with a Bi-Interaction

layer and multi-layer perception. Guo et al. [13] extended

FM with a deep neural network to model high order feature

interactions in CTR prediction. Lian et al. [14] combined

compressed interaction network with multi-layer perceptions

to learn both low- and high-order feature interactions. How-

ever, these models are relatively general models and not

specifically designed for price-awareness modeling. Although

these attribute-based recommendation models can be adapted

to the task of price-aware recommendation by regarding price

as an attribute, some intrinsic characteristics such as category-

dependent price awareness could not be captured.

VII. CONCLUSION AND FUTURE WORK

In this work, we highlight the significance of incorporating

price into recommendation. To capture the two difficulties

of incorporating price which are unstated price awareness

and category-dependent influence, we propose a GCN-based

method named PUP and adopt a two-branch structure which is

specifically designed to disentangle the global and local effect

of the price awareness. We conduct extensive experiments

on real-world datasets, demonstrating that our proposed PUP

could improve the recommendation performance over existing

methods. Further insights are provided on alleviating the cold

start issue via capturing price awareness.

Although specifically designed for modeling price sensitiv-

ity, our proposed model serves great generality with respect

to feature engineering where other features can be easily

integrated into our proposed method. For example, user pro-

files can be added as separate nodes linked to user nodes,

while item features other than price and category can be

integrated similarly. Empirical studies are needed to investigate

the performance of PUP when further incorporating large

scale features. As increasing research focusing on the price

factor from the perspective of service providers, how to utilize
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PUP to maximize the revenue is an interesting and important

research question which extends price-aware recommendation

to value-aware recommendation. Furthermore, modeling the

dynamic of price is also a promising future direction.
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