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Abstract—Most existing recommender systems leverage user
behavior data of one type, such as the purchase behavior data
in E-commerce. We argue that other types of user behavior data
also provide valuable signal, such as views, clicks, and so on. In
this work, we contribute a new solution named NMTR (short for
Neural Multi-Task Recommendation) for learning recommender
systems from user multi-behavior data. In particular, our model
accounts for the cascading relationship among different types of
behaviors (e.g., a user must click on a product before purchasing
it). We perform a joint optimization based on the multi-task
learning framework, where the optimization on a behavior is
treated as a task. Extensive experiments on the real-world dataset
demonstrate that NMTR significantly outperforms state-of-the-
art recommender systems that are designed to learn from both
single-behavior data and multi-behavior data.

Index Terms—Multi-Behavior Recommendation, Collaborative
Filtering, Deep Learning

I. INTRODUCTION

In online information systems, users interact with a system
in a variety of forms. In traditional recommender systems, only
user-item interaction data of one behavior type is considered
for collaborative filtering [1]. Existing approaches for multi-
behavior recommendation can be divided into two categories.
The first category is based on collective matrix factorization
(CMF) [2]–[4], which extends the matrix factorization (MF)
method to jointly factorize multiple behavior matrices. The
second category approaches the problem from the perspective
of learning [5]–[7]. For example, [5], [7] extends the Bayesian
Personalized Ranking (BPR) [8] framework to address multi-
behavior recommendation by enriching the training data of
relative preference from the multi-behavior data.

Despite effectiveness, we argue that existing models for
multi-behavior recommendation suffer from three limitations.

• Lack of behavior semantics. Each behavior type has its
own semantics and contexts, and more importantly, there
exist strong ordinal relations among different behavior types.
However, existing models have largely ignored the seman-
tics of different behavior types.

• Unreasonable embedding learning. The common setting
of CMF is unreasonable. Specifically, a user’s embedding
vector represents his/her inherent interests, which should
remain unchanged when the user performs different types
of behaviors on items; and similarly for the item side.

• Incapability in modeling complicated interactions. Ex-
isting methods largely rely on MF to estimate a user’s
preference on an item. In MF, the interaction function
is a fixed inner product, being insufficient to model the
complicated and multi-type interactions between users and
items.

To address the above mentioned limitations in multi-
behavior recommendation, we propose a new solution named
Neural Multi-Task Recommendation (NMTR). Specifically,
we separate the two components of embedding learning and
interaction as advocated by the neural collbaborative filtering
(NCF) framework [9]. We then design that 1) a user (and
an item) has a shared embedding across multiple types of
behaviors, and 2) a data-dependent interaction function is
learned for each behavior type. Moreover, to incorporate the
behavior semantics, especially the ordinal relation among be-
havior types, we relate the model prediction of each behavior
type in a cascaded manner.

To summarize, the main contributions of this work are:

• We propose a novel neural network model tailored to
learning user preference from multi-behavior data.

• To capture the ordinal relations among behavior types, we
propose to correlate the model prediction of each behavior
type in a cascaded way.

• Extensive experiments on the real-world dataset show that
our method substantially outperforms existing methods.

II. PROBLEM FORMULATION

Let {Y1,Y2, ...,YR} denote the user-item interaction ma-
trices for all the R types of behaviors. Each interaction matrix
is of size M × N , where M and N denote the number of
users and items, respectively. We assume that each entry of a
interaction matrix has a value of 1 or 0:

yrui =

{
1, if u has interacted with i under behavior r;

0, otherwise.
(1)

As we have discussed in the introduction, many user behavior
types in real-world applications follow an ordinal (or sequen-
tial) relationship. Without loss of generality, we assume that
the behavior types have a total order and sort them from the
lowest level to the highest level: Y1 → Y2... → YR, where
YR denotes the target behavior to be optimized. An example
of the target behavior is the purchase behavior in E-commerce,
and other behaviors can include the click, adding to cart, etc.

The problem of multi-behavior recommendation is then
formulated as follows.

Input: The user-item interaction data of the target be-
havior YR, and the interaction data of other behavior types
{Y1,Y2, ...,YR−1}.

Output: A model that estimates the likelihood that a user
u will interact with an item i under the target behavior.
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Fig. 1. Illustration of our proposed NMTR model.

III. METHOD

Figure 1 illustrates our proposed NMTR model. Next, we
elaborate the architecture component by component.

A. Shared Embedding Layer
We apply one-hot encoding to encode the input of user ID

and item ID. One advantage is that it can be easily extended
to incorporate other features of a user and an item (e.g., user
demographics and item attributes), if they are available in the
application [10]. Let vUu and vI

i denote the one-hot feature
vector for user u and item i. Then the embedding layer is
defined as a linear fully connected layer without the bias terms:

pu = PT vUu , qi = QT vIi , (2)

where P and Q are the user embedding matrix and item
embedding matrix, respectively. When only the ID feature
is used to describe a user (or an item), P and Q are of the
size M × E and N × E, respectively, where E denotes the
embedding size; and pu and qi are essentially the u−th and
i−th row vector of P and Q, respectively.

B. Separated Interaction Function
Above the embedding layer is the hidden layers that model

the interaction between pu and qi to obtain the prediction
score. Since we need to predict the likelihood of multiple
behavior types with the same input, it is essential to learn
a separated interaction function for each type. Let fr

Θ denote
the interaction function for the r-th type of behaviors with
parameters Θ, which outputs the likelihood that u will perform
a behavior of the r-th type:

ŷrui = σ(fr
Θ(pu, qi)), (3)

where σ denotes the sigmoid function converting the output to
a probability. A good design of fr

Θ is to have the ability and
sufficient flexibility to learn the possible complicated patterns
(e.g., collaborative filtering and others) in user behaviors.
To achieve this, we consider the three neural network units
proposed in the NCF paper [9], namely the generalized matrix
factorization (GMF), multi-layer perceptron (MLP), and neural
matrix factorization (NeuMF).

C. Cascaded Predictions
Typically there are certain ordinal relations among behavior

types in a real-world application, such as a user must view a
product (i.e., click the product page) before she can purchase
it. The existence of such relations implies that the predictive

models for different behavior types should be related with each
other, rather than being independent. To encode the sequential
effect, we enforce that the prediction on a behavior type lies
in the predictions of the precedent behavior types. Formally,
we cascade the predictions of different behaviors as:

ŷRui = σ(ŷR−1
ui + fR

Θ (pu, qi) + bRi ),

· · · · · ·
ŷ2ui = σ(ŷ1ui + f2

Θ(pu, qi) + b2i ),

ŷ1ui = σ(f1
Θ(pu, qi) + b1i ),

(4)

where bri denotes the bias of item i in the data of the r-th
behavior type, and fr

Θ denotes the interaction function for the
r-th type of behaviors, which can be any of the three NCF units
as introduced before. A graphical illustration of our cascading
design can be found in the top part of Figure 1.

D. Multi-Task Learning
As we have a dedicated model for each type of behaviors

and the models follow a cascading prediction, it is intu-
itive to train models separately by following the order of
ŷ1ui, ŷ

2
ui, ..., ŷ

R
ui. However, this way can not fully utilize the

utility of learning from the data of multiple behaviors.
In contrast to training the models separately, multi-task

learning (MTL) is a paradigm that performs joint training on
the models of different but correlated tasks, so as to obtain a
better model for each task [11]. The intuition for our design of
cascaded predictions is that, if we can obtain improved models
for other types of behavior, the model for the target behavior
can also be improved. As such, we opt for MTL that trains
all models simultaneously, where the model learning for each
behavior type is treated as a task.

Objective Function. Following the probabilistic optimization
framework [9], we obtain the loss function to be minimized
as:

L = −
R∑

r=1

λr(
∑

(u,i)∈Y+
r

log ŷrui +
∑

(u,i)∈Y−r
log(1− ŷrui)), (5)

where we additionally include the term λr to control the
influence of the r-th type of behaviors on the joint training.
This is a hyper-parameter to be specified for different datasets,
since the importance of a behavior type may vary for problems
of different domains and scales. We additionally enforce

that
∑R

r=1 λr = 1 to facilitate the tuning of these hyper-
parameters.
Training. Since our model is composed of nonlinear neural
networks, we optimize parameters with stochastic gradient
descent (SGD), a generic solver for neural network models.
Specifically, we utilize Adagrad as the optimizer and adopt
L2 regularizer to solve over-fitting. As most machine learning
toolkits (e.g., TensorFlow, Theano, PyTorch etc.) provide the
function of automatic differentiation, we omit the derivation
of the derivatives of our model.

IV. EXPERIMENTS
In this section, we conduct extensive experiments on the

real-world dataset to answer the following research questions:

• RQ1: How does our proposed NMTR perform as compared
with state-of-the-art recommender systems that are designed
for learning from single-behavior and multi-behavior data?
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TABLE I
STATISTICS OF OUR EVALUATION DATASET.

Dataset User# Item# Purchase# Cart# View#
Beibei 21,716 7,977 295,622 642,622 2,412,586

• RQ2: How do the auxiliary behaviors affect NMTR’s per-
formance on the target behavior?

• RQ3: Can NMTR help to address the data sparsity problem,
i.e., improving recommendations for sparse users with fewer
interactions of the target behavior?

A. Experimental Settings
1) Dataset and Evaluation Protocol: We experimented with

a real-world E-commerce dataset that contains multiple types
of user behaviors including purchases, views, adding to carts,
etc. This dataset is collected from Beibei1, the largest E-
commerce platform for maternal and infant products in China.
The statistics of the dataset are summarized in Table I. We
applied the widely used leave-one-out technique and then
adopted two popular metrics, HR (Hit Ratio) and NDCG
(Normalized Discounted Cumulative Gain), to judge the per-
formance of the ranking list.

2) Baselines: We compared the performance of our pro-
posed NMTR with 9 baselines. The compared single-behavior
methods are introduced as follows.

BPR [8] Bayesian Personalized Ranking (BPR) is a widely
used pairwise learning framework for item recommendation
with implicit feedback.

NCF [9] Neural Collaborative Filtering (NCF) is a neural
framework to learn interactions between the latent features of
users and items. There are some variants: GMF, MLP and
NeuMF.
The second group of five compared methods that can leverage
multiple types of behavior data are as follows.

CMF [4] CMF decomposes the data matrices of multiple
behavior types simultaneously.

MC-BPR [5] Multi-Channel BPR [5] is the state-of-the-
art solution for multi-behavior recommendation. It adapts the
negative sampling rule in BPR for multi-behavior data.

MC-NCF We replaced the basic MF model in MC-BPR
with the NCF unit, and named three variants as MC-GMF,
MC-MLP and MC-NeuMF.

3) Parameter Settings: We implemented our NMTR and
baseline methods in TensorFlow2. Since we have three choices
of NCF units as the interaction function, we name the respec-
tive methods as NMTR-GMF, NMTR-MLP and NMTR-
NeuMF. We randomly selected a training instance for each
user as the validation set to tune hyper-parameters.

B. Performance Comparison (RQ1)
We first compare the top-K recommendation performance

with state-of-the-art methods. We investigate the top-K per-
formance with K setting to [50, 100]. Note that for a user, our
evaluation protocol ranks all unobserved items in the training
set [12].

Table II shows the performance of HR@K and NDCG@K
for our three NMTR methods, five multi-behavior recommen-
dation methods, and four single-behavior methods. From the

1https://www.beibei.com
2https://www.tensorflow.org
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NeuMF on users with different number of purchase records

results, we observe that our proposed NMTR methods obtain
the best performance in terms of HR@K and NDCG@K
as compared to all baselines. The one-sample paired t-tests
indicate that all improvements are statistically significant for

p< 0.05. Among the three NMTR methods, NMTR-GMF and
NMTR-NeuMF are better than NMTR-MLP, which verifies
the effectiveness of the element-wise operator in learning the
user-item interaction function. Compared with the best single-
behavior baseline NeuMF, NMTR outperforms it by 9.01% in
HR and 6.72% in NDCG on the Beibei dataset. Compared
with MC-NeuMF, which extends NeuMF on multi-behavior
data with the Multi-Channel BPR [5], NMTR obtains an
improvement in HR of 6.08%.

C. Impact of Auxiliary Behaviors(RQ2)

We investigate how the data quality of auxiliary behaviors
affects our NMTR model’s performance. A intuitive experi-
mental setting is that to random sample auxiliary behaviors
for our utilized dataset while keeping target behavior (i.e.
purchase) intact. Table III shows the performance of different
combinations of behavioral data. From the results, we have the
following two observations. First, adding views data leads to
better performance than adding carts data. The main reason is
probably that the cart data contains too similar signal with
the purchase data and provides fewer new signal on user
preference. Specifically, a purchase record is often accom-
panied by a carting record. Second, by using only 50% of
the cart and view interactions, we find that the performance
is worse than the previous two experiments. Specifically, the
performance of (Purchase, 50% Carting) is worse than only
using purchase, while (Purchase, 50% Viewing) is better than
only using purchase. There are two major reasons. On one
hand, view is the weakest signal to reflect user preference and
the total number of views is very large, making the missing
of part of view data is acceptable. Therefore, missing of some
view records shall not affect the result too much. On the other
hand, random missing of carts records can bring some noises.

D. Impact of Data Sparsity (RQ3)

We further study how our proposed NMTR model improves
the recommendation for those users having few records of
target behavior. eliminates the randomness of experimental
results. The results are shown in Figure 2. From the results, we
can observe that when the user purchase data becomes sparser,
the recommendation performance of NMTR-NeuMF decreases
slower than other methods. Especially for NDCG, from fifth
to first user group, NMTR-NeuMF is decreased by 27.56%
while MC-BPR and MC-NeuMF is decreased by 40.09% and
38.62%. Furthermore, even in the first user group with only

1556

Authorized licensed use limited to: Tsinghua University. Downloaded on July 31,2023 at 12:53:14 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
TOP-K RECOMMENDATION PERFORMANCE COMPARISON (K IS SET TO 50, 80, 100, 200)

Beibei Dataset
Group Method HR@50 NDCG@50 HR@80 NDCG@80 HR@100 NDCG@100 HR@200 NDCG@200

Our NMTR Model
NMTR-GMF 0.2050 0.0590 0.2721 0.0688 0.3119 0.0741 0.4543 0.0961
NMTR-MLP 0.1928 0.0560 0.2690 0.0676 0.3188 0.0762 0.4732 0.0967

NMTR-NeuMF 0.2079 0.0609 0.2689 0.0683 0.3193 0.0760 0.4766 0.0971

Multi-behavior

CMF 0.1596 0.0481 0.2377 0.0606 0.2829 0.0663 0.4191 0.0850
MC-BPR 0.1743 0.0503 0.2299 0.0604 0.2659 0.0647 0.3852 0.0786
MC-GMF 0.1822 0.0508 0.2425 0.0611 0.2975 0.0690 0.4262 0.0891
MC-MLP 0.1810 0.0534 0.2342 0.0598 0.2810 0.0684 0.4116 0.0834

MC-NeuMF 0.2014 0.0577 0.2522 0.0669 0.3010 0.0719 0.4300 0.0897

Single-behavior

BPR 0.1199 0.0348 0.1686 0.0419 0.2002 0.0463 0.3039 0.0624
GMF 0.1792 0.0475 0.2555 0.0608 0.2920 0.0665 0.4090 0.0828
MLP 0.1711 0.0483 0.2383 0.0459 0.2679 0.0617 0.3947 0.0792

NeuMF 0.1828 0.0573 0.2559 0.0668 0.2929 0.0714 0.4078 0.0852

TABLE III
PERFORMANCE OF NMTR MODEL WITH DIFFERENT COMBINATION OF INTERACTION DATA

Beibei Dataset
Interaction Subset (Purchase, Carting) (Purchase, View) (Purchase, 50% Carting) (Purchase, 50% View)

Performance HR@100 NDCG@100 HR@100 NDCG@100 HR@100 NDCG@100 HR@100 NDCG@100
NMTR-GMF 0.2979 0.0705 0.3029 0.0726 0.2947 0.0701 0.2953 0.0698
NMTR-MLP 0.2770 0.0670 0.3140 0.0741 0.2726 0.0654 0.3058 0.0725

NMTR-NeuMF 0.2882 0.0691 0.3147 0.0743 0.2778 0.0676 0.3107 0.0737

5-8 purchase records, our NMTR still keeps a good recom-
mendation performance of 0.027 for HR@100 and 0.07 for
NDCG@100, which outperforms the best baseline by 11.23%
and 15.35%, respectively. As a result, the performance gap
between NMTR and other methods becomes larger when data
become sparser. As a summary, we conclude that our proposed
NMTR model alleviate data sparsity problem efficiently to
some extent. V. RELATED WORK

Multi-behavior based recommendation aims to leverage the
behavior data of other types to improve the recommenda-
tion performance on the target behavior. Matrix factoriza-
tion, a prevalent method for single-behavior based recom-
mendation [8], [12], [13], has been adapted to the multi-
behavior scenario. Ajit et al. [2] first proposed a collective
matrix factorization model (CMF) to simultaneously factorize
multiple user-item interaction matrices with sharing item-side
embeddings across matrices. Some other works extended the
CMF to handle datasets of multiple user behaviors [3], [4].
Zhe et al. [4] considered different behaviors in online social
network (comment, re-share, and create-post), while Artus et
al. [3] extended CMF with sharing user-side embeddings in
recommendation based social network data.

On the other hand, some works approach multi-behavior
recommendation from the perspective of learning [5]–[7].
Babak et al. [5] proposed an extension of Bayesian Person-
alized Ranking (BPR) [8], as Multi-channel BPR, to adapt
the sampling rule from different types of behavior in training
of standard BPR. Recently, Ding et al. [7] assign different
weights to multiple types of behaviors in the training of matrix
factorization with considering some specific behaviors, such as
view but not purchase. Later on, the same authors [6] devel-
oped a margin-based pairwise learning framework to jointly
capture observed multiple types of behaviors and unobserved
interactions.

As discussed in the introduction, these existing models
suffer from several limitations, which are addressed by our
neural network-based solution NMTR.

VI. CONCLUSION

In this work, we designed a recommendation system to
exploit multiple types of user behaviors. We proposed a

neural network method named NMTR, which combines the
recent advances of NCF modeling and the efficacy of multi-
task learning. We conducted extensive experiments on the
real-world dataset and demonstrated the effectiveness of our
NMTR method on multiple recommender models. This work
makes the first step towards understanding how to integrate the
rich semantics of users’ multiple behaviors into recommender
systems. With increasing kinds of user behaviors on the Web,
we believe multi-behavior recommendation is an important
topic and will attract more attention in the future.
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