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Abstract
Multi-interest modeling in current recommender systems (RS) is
mainly based on user behavioral data, capturing user interest pref-
erences from multiple dimensions. However, since behavioral data
is implicit and often highly sparse, it is challenging to understand
users’ complex and diverse interests. Recent studies have shown
that the rich semantic information in the text can effectively supple-
ment the deficiencies of behavioral data and provide a new perspec-
tive for building more accurate user portraits. Despite this, it is still
difficult for small models to directly extract semantic features asso-
ciated with users’ deep interests. That is, how to effectively align
semantics with behavioral information to form a more comprehen-
sive and accurate understanding of user interests has become a
critical research problem.

To address this, we propose an LLM-assisted explicit and im-
plicit multi-interest learning framework (named EIMF) to model
user interests on two levels: behavior and semantics. The frame-
work consists of two parts: Implicit Behavioral Interest Module
(IBIM) and Explicit Semantic Interest Module (ESIM). The tradi-
tional multi-interest RS model in IBIM can learn users’ implicit
behavioral interests from interactions with items. In ESIM, we first
adopt a clustering algorithm to select typical samples and design a
prompting strategy on LLM to obtain explicit semantic interests.
Furthermore, in the training phase, the semantic interests of typi-
cal samples can enhance the representation learning of behavioral
interests based on the multi-task learning on semantic prediction
and modality alignment. Therefore, in the inference stage, accurate
recommendations can be achieved with only the user’s behavioral
data. Extensive experiments on real-world datasets demonstrate the
effectiveness of the proposed EIMF framework, which effectively
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and efficiently combines small models with LLM to improve the
accuracy of multi-interest modeling.

CCS Concepts
• Information systems→ Recommender systems.
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1 Introduction
Recommender systems (RS) [1, 3] often rely on user behavioral
data to learn user preferences to provide personalized services in
multiple applications of World Wide Web. Given that user interests
tend to evolve over time, to more accurately capture the short-term
and immediate trend of user interest changes, sequential recom-
mendation (SR) [9, 39] has gradually become a key focus in research
and applications. Different from traditional content-based [26, 28]
or collaborative filtering RSs [16, 17], SR emphasizes the tempo-
ral order and contextual information of behaviors, which uses the
user’s past behavior sequence to model user interests and predict
the items that may be of interest next. Most current SR methods
model user interests as a single, comprehensive representation to
capture the user’s overall interests. However, users may be inter-
ested in multiple types of content over a while, so there is a clear
representational bottleneck in modeling users’ varying interests
using a single-interest learning model.

In the MIND model [21] proposed in 2019, the concept of multi-
interest learning is introduced for the first time. The model employs
the dynamic routing mechanism of capsule networks to capture
the diverse interests of users. Since then, the research of multi-
interest learning [8, 25, 29, 41] has received increasing attention.
Current multi-interest approaches mainly rely on user behavioral
data to learn users’ interests. However, most of this behavioral data
consists of implicit feedback [37], such as clicking, browsing, and
purchasing behaviors, which do not always accurately reflect the
user’s true preferences. It may contain noisy data [13, 30], such as
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records generated by mis-touching or non-true expressions of in-
terest due to popularity bias, which may interfere with the model’s
understanding of the user’s actual preferences. In addition, user
behavioral data usually exhibits a high degree of sparsity, which
further limits the model’s ability to capture users’ diverse and dy-
namically changing interests.

With the rapid development of natural language processing
(NLP), the era of large language models (LLMs) [11, 27] has arrived.
LLMs’ outstanding language understanding, logical inference, and
content generation capabilities provide new ideas and methods
for solving the above challenges. That is, LLM is not only capable
of extracting deep semantic information from text but also con-
tains extensive knowledge of the outside world. With its superior
contextual understanding, LLM effectively filters out irrelevant in-
formation and accurately captures user interests. Numerous studies
[6, 12, 23, 42, 43] have shown that applying LLMs to RS demon-
strates promising results in solving the cold-start problem and
improving the interpretability of recommendation. However, since
SR has high real-time requirements and the fine-tuning and infer-
ence of LLM requires a lot of time and computing resources, the
fundamental problem of combining large models (LLMs) and small
models (traditional algorithms) remains unsolved.

As mentioned above, multi-interest learning aims to learn the
semantic-aware sub-interest, which happens to hold the same view
as the LLM-enhanced RS. Therefore, combining the learned seman-
tic information from LLMs with behavioral data is promising yet
still very challenging: how to perform the alignment and how to
ensure high efficiency?

To address the above challenges, we propose an LLM-assisted
Explicit and Implicit Multi-interest Learning Framework (shorten
as EIMF). Specifically, EIMF can be divided into two modules, the
implicit behavioral interest module (IBIM) and the explicit seman-
tic interest module (ESIM). In the training phase, IBIM follows
the traditional multi-interest SR model, which can learn the im-
plicit behavioral interests of users from their interaction data with
items. ESIM, on the other hand, first analyzes user-generated text
sequences using the clustering algorithm to identify representative
samples. Next, these typical samples are subjected to deep infer-
ence using an LLM to reveal the users’ explicit semantic interests.
Finally, we match semantic and behavioral interests based on “id-
cluster numbering”, with joint learning on two auxiliary tasks (text
classification and modal alignment), which can help fuse semantic
information into behavioral interest representations. In the testing
phase, accurate recommendations can be achieved based solely on
user behavior data.

In summary, the contributions of this paper are as follows:

• We answer the question of how to combine large&small models in
RS from the perspective of multi-interest learning and semantic
alignment. We propose an LLM-assisted multi-interest learning
framework, which can fully use the semantic reasoning capabili-
ties of LLM and enrich the user’s behavioral learning, thereby
significantly improving the accuracy of recommendation results.
• We propose an efficient typical sample strategy to reduce the
inference cost of LLM and enrich the user interest representation
through multi-task learning in the training phase so that more

accurate recommendations can be achieved in the testing phase
by only using user behavior data.
• We conduct extensive experiments on real-world datasets, and
the results show that our EIMF can significantly and stably im-
prove the recommendation performance and exhibit excellent
generalization capabilities.

2 Related Work
2.1 Sequential Recommendation
Early SR research [15, 32] focused on using the Markov Chain
model to capture the transition probability between user behaviors
to make recommendations. With the continuous advancement of
deep learning technology, neural networks have become the main-
stream method for SR. Among these methods, recurrent neural
networks (RNNs) [33] are widely used due to their ability to effec-
tively process sequence data. For example, GRU4Rec [18] uses GRU
to capture changes in the user’s interest in the current session. Wu
et al. [38] proposed RRN, which is implemented through a long
short-term memory (LSTM) autoregressive model that captures
dynamics and low-rank decomposition. With the emergence of
the Transformer model [36], researchers have discovered that the
attention mechanism can adaptively adjust the degree of attention
to each element in the input information, achieving more accurate
learning of user interests. NARM [22] and SASRec [20] use the
attention mechanism to model the user’s sequential behavior, and
capture the user’s main purpose. Bert4Rec [34] performs bidirec-
tional encoding of user sequences based on the Bert structure and
combines context to predict randomly masked items.

Although these SR models perform well in performance, they
usually simplify user interests into a single embedding vector, re-
sulting in recommendation results that cannot fully reflect the
user’s actual multi-dimensional preferences, which in turn affects
the personalization level and user experience.

2.2 Multi-interest Learning
As the research continues to deepen, researchers have gradually
realized that users’ interests are often diverse, and a single interest
modeling method makes it difficult to capture users’ complex and
dynamically changing interests accurately. Alibaba’s research team
proposed the MIND model [21], which introduced the concept of
multi-interest modeling. The model uses a dynamic routing mecha-
nism to build a multi-interest extraction layer, which can effectively
mine users’ multiple interests from their historical behavior data.
The ComiRec [4] model explores multi-interest learning methods
using dynamic routing and self-attention mechanisms. Tan et al.
proposed the SINE model [35], in which the sparse interest module
can adaptively infer the sparse concept set of each user from a
large concept pool, and the interest aggregation module is used to
model multiple user interests. Xie et al. [40] proposed the REMI
framework, which uses an interest-aware hard negative mining
strategy to effectively train discriminative representations and a
routing regularization method to prevent interest routing collapse.
Zhu et al. [45] proposed the HPCL4SR model, in which category
information was introduced into the model to construct a global
graph to filter high-level preferences and used them as positive ex-
amples, and used contrastive learning to distinguish the differences
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between multiple interests based on user-item interaction informa-
tion. PoMRec [7] first inserts specific prompts into user interactions
to adapt them to the multi-interest extractor and aggregator and
then utilizes the mean and variance embedding of user interactions
to embed users’ multiple interests.

Although the above multi-interest models can learn users’ multi-
dimensional interests, they only model multi-interests at the be-
havioral level based on the ID paradigm and do not involve the
understanding and exploration of the deeper semantic meanings
behind user interests.

2.3 LLM-assisted Recommender System
As LLMs continue to demonstrate their superior capabilities, more
and more research has begun to explore the application of LLMs in
RS. LLM-assisted RS can analyze text information related to users
and items, thereby understanding user interests more deeply. Cha-
tRec [11] combines conversational AI, such as ChatGPT, with an RS
that converts user profiles and historical interactions into prompts,
relying only on contextual learning for effective recommendations
without training. InstructRec [44] adapts to the recommendation
task by way of LLM instruction tuning. By combining the strengths
of traditional CTR models with pre-trained language models, the
CTRL framework [24] aims to integrate and utilize information
from different modalities more effectively. E4SRec solves the prob-
lem of representing ID information by injecting the ID embedding
of items in the SR model into the LLM. SAID [19] uses a projector
module to convert item IDs into embedding vectors, which are
fed into LLM to obtain item embeddings containing fine-grained
semantic information. RLMRec [31]incorporates auxiliary text sig-
nals, uses LLM for user/item analysis, and aligns the semantic space
of LLM with collaborative relationship signals through cross-view
alignment.

Although LLM can significantly improve the performance of
RS, LLM-assisted RS often faces challenges such as real-time re-
quirements and large computational resources during training and
deployment, which limits its feasibility for direct application in
industrial environments.

3 Methodology
In Figure 1, we show the overall architecture of EIMF. In this section,
we introduce the problem definition of SR in Section 3.1, then intro-
duce EISM in Section 3.2, IBIM in Section 3.3, and finally introduce
the training and serving of the framework in Section 3.4.

3.1 Problem Definition
In this paper, we define the set of all users asU and the set of all
items as I = {𝑖1, 𝑖2, · · · , 𝑖𝑁 }, Where N is the number of unique
items in the dataset. For each historical interaction sequence 𝑠𝑢 be-
tween a user and an item set, we represent it as 𝑆𝑢 = [𝑖𝑢1 , 𝑖

𝑢
2 , · · · , 𝑖

𝑢
𝑛 ].

Here 𝑛 is the maximum length of the sequence, and the sequence is
arranged in order according to the time of user interaction. There-
fore, the task of the multi-interest SR model is to recall a subset of
items from item set I that the user is likely to interact with next
based on the user’s historical behavior records. Specifically, given
a user’s interaction sequence 𝑆𝑢,𝑡 = [𝑖𝑢1 , 𝑖

𝑢
2 , · · · , 𝑖

𝑢
𝑡 ] at the previous

𝑡 steps as input, predict the item 𝑖𝑢
𝑡+1 that the user may click at the

next step.

3.2 Explicit Semantic Interest Module
3.2.1 Dividing Interest Groups. Although each user’s interests are
highly individualized, in practical applications, those users who
exhibit similar behavioral patterns are likely to share similar in-
terests. Second, considering the relationship between data volume
and LLM inference time, to effectively reduce the time required for
the LLM inference process, we start from the perspective of data
optimization by selecting representative data to ensure the quality
of the model inference and significantly reduce the computational
resource requirements.

Based on the natural similarity of text structure, we cluster the
sequence data in text form to divide users into different interest
groups. We chose the Affinity Propagation (AP) algorithm [10]
as our clustering tool during this process. The uniqueness of this
algorithm is that it determines the relationship between data points
by exchanging “responsibility” and “availability” messages between
data points until a stable state is reached to form clusters. This
mechanism enables Affinity Propagation to dynamically determine
the optimal number of clusters without pre-setting, thereby more
accurately capturing the different interest patterns of users. The
specific algorithm flow is shown in Algorithm 1.

𝐸𝑡 = BERT(𝑇 ), (1)

where 𝑇 = [𝑡1, 𝑡2, · · · , 𝑡𝑛] represents the text form of the user’s
historical click sequence, BERT is a pre-trained language model.

𝐶,𝐶c = AP(𝐸𝑡 , 𝑝), (2)

where 𝐶 = {𝑐1, 𝑐2, · · · , 𝑐𝐾 } represents the category of clustering
and 𝐾 is the number of clusters, and 𝑝 is the hyperparameter in
the AP algorithm, which can control the scale of clustering. 𝐶c =
{𝑐1c , 𝑐2c , · · · , 𝑐1c , 𝑐𝐾c }is the central sample set for each cluster, we use
these central samples as typical samples for LLM inference. Note
that for clusters where the center sample cannot be found, we select
the closest-spaced sample as the typical sample by calculating the
distance from the center value for all samples within the cluster.

3.2.2 Constructing Typical Prompts. To more effectively utilize the
powerful inference capabilities of the LLM and to make it better
at understanding the task, we have crafted a specific prompt. The
prompt consists of three parts: 1. Context Introduction, 2. User
Information, and 3. Task Definition. The green part in Figure 2
shows an example of a Prompt.
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Recommendation 
TaskItem ID Index
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Cluster 1 Cluster 2 Cluster K

key

key

Implicit Behavioral Interest Module Explicit Semantic Interest Module

PromptPrompt

Top-N Search

...
1. 2. 3.

Figure 1: EIMF overall architecture diagram.

The user's historical click sequence is as follows: 
['Texas Instruments BA II Plus Professional 
Financial Calculator (Color May Vary)', 'Texas 
Instruments BA II Plus Financial Calculator', 'HP 
12CP Financial Calculator', 'HP 12C Financial 
Calculator', 'HP 35s Scientific Calculator'], please 
infer the user's interest preference and output it in 
the format of json, such as {interest sequence 
number: interest content;}

Prompt

{
  "1": "Financial Calculators",
  "2": "HP Financial Calculators",
  "3": "Texas Instruments Financial Calculators"
}

Response

Figure 2: An example of a case that prompts design and LLM
inference.

Specifically, the Context Introduction is a fixed template “The
user’s historical click sequence is as follows:”, which is to help LLM
understand the background meaning of the following list data; then
in the User Information part, we use “[]” to mark the specific
item list of each user, and each element in the list is designed to
be in the form of an item name (ID) so that items with similar but
different text names can be more distinguished in LLM; finally, the

Algorithm 1 Affinity Propagation Clustering Algorithm.

Input: Et ∈ R𝑛×𝑑 , 𝑝
Output: C, Cc
1: Initialize responsibility matrix R← 0𝑛×𝑛
2: Initialize availability matrix A← 0𝑛×𝑛
3: Compute similarity matrix:
4: 𝑠 (𝑖, 𝑘) = (−∥𝐸𝑡 [𝑖] − 𝐸𝑡 [𝑘] ∥2 + 𝑝) for 𝑖, 𝑘 in range(𝑛)
5: while not converged do
6: Update the responsibility matrix R using the current avail-

ability matrix A:
7: 𝑟 (𝑖, 𝑘) ← 𝑠 (𝑖, 𝑘) −max𝑘 ′≠𝑘 {𝑎(𝑖, 𝑘′) + 𝑠 (𝑖, 𝑘′)}
8: Update the availability matrix A using the updated responsi-

bility matrix R:
9: 𝑎(𝑘, 𝑘) ← ∑

𝑖′≠𝑘 max{0, 𝑟 (𝑖′, 𝑘)}
10: Determine exemplars by finding column 𝑘 that maximizes

𝑎(𝑖, 𝑘) + 𝑟 (𝑖, 𝑘) for 𝑖 in range(𝑛)
11: end while
12: Assign each data point to its nearest exemplar
13: return C, Cc

Task Definition part is placed at the end of the Prompt “please
infer the user’s interest preference and output it in the format of
JSON, such as interest sequence number: interest content;”, telling
LLM what to do with the above information and using the JSON
format to guide LLM to output the inference results.
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3.2.3 Inference Semantic Interests. To capture more fine-grained
semantic interests, we design an example of “serial number: interest”
in prompts to guide the LLM to deep inference.

𝑇r = LLM(𝑃𝑇𝑐 ), (3)

where 𝑃𝑇𝑐 = {𝑝1𝑡𝑐 , 𝑝
2
𝑡𝑐
, · · · , 𝑝𝐾𝑡𝑐 } represents the prompts correspond-

ing to the typical samples. The user’s semantic interest of each
sample in 𝑇r is composed of multiple sub-interests 𝑡 𝑗r .

At the same time, to distinguish each semantic interest and
ensure the consistency of text representation, we use the same
BERT pre-trained model as in the previous section 3.2.1 to encode
each sub-interest separately, and then concatenate them to form a
semantic interest representation of a typical sample.

ℎex = Concat(Bert(𝑡1r𝑢 ), Bert(𝑡
2
r𝑢 ), · · · , Bert(𝑡

𝑚
r𝑢 )), (4)

𝑡𝑚r ∈ 𝑇r . ℎex ∈ R𝑚×𝑑𝑡 is the user’s explicit semantic interest repre-
sentation obtained by LLM inference,𝑚 represents the number of
interests in LLM inference, and 𝑑𝑡 is the text embedding dimension.
For each user’s semantic interest, we need to use the dictionary
stored by the previous clustering algorithm in the form of “user𝑖𝑑 -
(𝐶user𝑖𝑑 , 𝐶𝑐 )” to locate the corresponding typical sample semantic
interest and use it as the interest representation of the user.

3.3 Implicit Behavioral Interest Module
3.3.1 Multi-interest SR Model. To more effectively mine potential
interests from user behavior data represented in the form of IDs,
the EIMF framework integrates the interfaces of traditional multi-
interest recommendation models. We denote the set of all user ID
sequences as 𝑆 = [𝑠1, 𝑠2, · · · , 𝑠𝑛],

𝐻im = Multi-Interest SR Model(𝑆), (5)

where ℎ𝑖𝑚 ∈ R𝑛𝑖 ,𝑑 is the learned user implicit behavior interest, 𝑛𝑖
represents the number of interests learned from the sequence and
𝑑 is the embedding dimension.

3.3.2 Target-aware Attention Layer. The multi-interest SR model
allows us to capture multiple implicit behavioral interests of a user,
each of which reflects a different aspect of the user’s behavioral
interests. Given that the ultimate goal of the SR model is to predict
the user’s next click item, a target-aware attention mechanism is
specifically designed. This mechanism uses target labels to screen
out the most relevant potential behavioral interests during the
training process. Specifically, in the target-aware attention layer,
the query is the target label (𝑒𝑇

𝑖
), and 𝑘, 𝑣 = ℎim.

®ℎim = 𝑇𝑎-Attention(𝑞, 𝑘, 𝑣), (6)

3.4 Training & Serving
In the EIMF framework, the training phase and the serving phase
are separated. During the training phase, we use a joint learning ap-
proach to leverage semantic signals inferred by the LLM to enhance
the modeling of user behavior interest representations.

3.4.1 Semantic Prediction Task. Consistent with the design concept
of the attention layer in the implicit behavior interest module in
the previous section, we designed a two-layer attention mechanism
for the explicit semantic interests derived from LLM inference.
The self-attention layer aims to learn the association preferences

between different semantic interests based on the semantic interests
themselves; the target-aware attention layer selects the semantic
interests most relevant to the semantic prediction task by injecting
the text labels of the target products.

ℎ𝑡 = Self-Attention(𝑞, 𝑘, 𝑣), (7)

where 𝑞, 𝑘, 𝑣 = ℎex.
®ℎex = 𝑇𝑎-Attention(𝑞, 𝑘, 𝑣), (8)

where 𝑞 = 𝑒𝑇𝑡 , 𝑘, 𝑣 = ℎ𝑡 , 𝑒𝑡 represents the text embedding of the tar-
get item name. Then, we calculate the score of user semantic interest
embedding and item text embedding 𝑦𝑘𝑡 = softmax( ®ℎex

𝑇
𝑒𝑘𝑡 ), and

use cross entropy as the loss function for the semantic prediction
task.

LS =

𝑛∑︁
𝑘=1

𝑦𝑘𝑡 𝑙𝑜𝑔(𝑦𝑘𝑡 ), (9)

3.4.2 Modal Alignment Task. To ensure that the embeddings of dif-
ferent modalities can be in a unified embedding space, we specially
designed a Modal alignment task. Specifically, the task achieves
alignment between behavioral interest representation and semantic
interest representation as well as alignment between item ID labels
and corresponding text labels through contrastive learning and
cosine similarity.

CL(𝑒𝑎, 𝑒𝑏 ) = −
1
𝑁

𝑁∑︁
𝑘=1

𝑙𝑜𝑔
©«

exp(Sim(𝑒𝑘𝑎 , 𝑒𝑘𝑏 )/𝜏)∑𝑁
𝑗=1 exp(Sim(𝑒𝑘𝑎 , 𝑒

𝑗

𝑏
)/𝜏)

ª®¬ , (10)

Cos(𝑒𝑎, 𝑒𝑏 ) =
1
𝑁

𝑁∑︁
𝑘=1

(
1 − Sim(𝑒𝑘𝑎 , 𝑒𝑘𝑏 )

)
, (11)

where Sim(𝑎, 𝑏) = a·b
∥a∥ ∥b∥ is the calculation method of cosine simi-

larity, the loss function for the final modal alignment task we denote
as follows,

LA = 𝛼 (CL(ℎex, ℎim)+CL(𝑒𝑇t , 𝑒𝑇i ))+𝛽 (Cos(ℎex, ℎim)+Cos(𝑒
𝑇
t , 𝑒

𝑇
i )),
(12)

where 𝛼 and 𝛽 are hyperparameters, 𝛼 + 𝛽 = 0.5.

3.4.3 Recommendation Task. For the main recommendation task
in the training phase, we maintain the same operation as the tradi-
tional SR models. Specifically, the score of each candidate item is
obtained by multiplying the user behavior interest representation
and the item representation, and then softmax is applied to convert
it into probability.

𝑦𝑘
𝑖
= softmax(ℎ⊤ex𝑒𝑘𝑖 ), (13)

where 𝑒𝑘
𝑖
is item embeddings.

L𝑅 =

𝑛∑︁
𝑘=1

𝑦𝑘𝑖 𝑙𝑜𝑔(𝑦𝑘𝑖 ), (14)

where 𝑦𝑘
𝑖
is ground truth. Finally, We combine the auxiliary tasks

(semantic prediction, modality alignment) with the main task (rec-
ommendation) through joint learning to obtain the final loss func-
tion.

L = L𝑅 + 𝛾 (L𝑆 + L𝐴) , (15)
where 𝛾 is a hyperparameter that controls the proportion of auxil-
iary tasks.
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Table 1: Statistics of the utilized datasets.

Datasets Users Items Interactions Avg.len.
Beauty 22,363 12,101 198,502 8.87
Grocery 14,681 8,713 151,254 10.30
Office 4,905 2,420 53,258 10.85

In the serving phase, the trained EIMF framework can be used as
an extractor of user interests and only requires the user’s behavior
sequence without any textual input. Then, based on the multiple
user interest vectors extracted by the framework, the approximate
nearest neighbor approach is used to search for the top-𝑁 items
with the highest similarity to these interests, to form the final set
of candidate items.

4 Experiment
4.1 Experiment setup
4.1.1 Datasets and EvaluationMetrics. To evaluate the framework’s
performance, we selected three sub-datasets from the review dataset
of the Amazon e-commerce platform1, namely Office Products, Gro-
cery and Gourmet Food, and All Beauty. The statistics of the three
datasets after preprocessing are summarized in Table 1.

To maintain fairness, the preprocessing method of all behavioral
data follows previous related studies [4, 40] and maintains a ratio
of 8:1:1 for training, validation, and testing sets in our experiment.
Specifically, for a single sequence, the first 80% of the item sequences
are used to model user preferences, and the last 20% of the items
are used as predicted labels.

In terms of metrics, we chose the Recall @𝐾 , Normalized Dis-
counted Cumulative Gain (NDCG) @𝐾 , and Hit Ratio (HR) @𝐾 ,
which are commonly used in SR. 𝐾 value is set to 20 and 50.

4.1.2 Implementation Details and Hyperparameter Settings. The
Qwen-Turbo model [2] was chosen for the LLM in the experiments
and is responsible for inference about user interests. All models
were implemented in Pytorch 1.10.0 and Python 3.9 in the conda
environment. We follow previous research[40], and in our experi-
ments, the batch size = 128, the dimension = 64, and the maximum
number of training iterations for all models is 1 million. The num-
ber of interests for the multi-interest model is set to 4, the number
of user interests inferred by LLM to at most 20 and the optimizer is
trained using Adam with the learning rate set to 0.001. The hyper-
parameters 𝛼 and 𝛽 in the Modal Representation Alignment task
were set to 0.4 and 0.1, respectively, and the loss function in the
auxiliary task parameter 𝛾 was set to 0.1. Please note that except for
the hyperparameter experiments, we use 𝑝 = -10 as the reference
value setting for the AP algorithm in the rest of the experiments
(clustered typical samples account for about 3% of the dataset).

4.1.3 Baselines. Regarding baseline selection, we mainly select
from single-interest and multi-interest aspects, including single-
interest models [5, 18, 20, 34], LLM-based RS model [14], and multi-
interest models [4, 21, 40].
• Pop. An algorithm that makes recommendations based on prod-
uct popularity.

1https://jmcauley.ucsd.edu/data/amazon/links.html

• DNN [5]. The twin-tower DNN model developed by the YouTube
team pools user behaviors and then uses MLP to obtain user
interest representations.
• GRU4Rec [18]. A Classic SR model based on Gated Recurrent
Unit (GRU).
• SASRec [20]. An SRmodel based on the self-attentionmechanism.
• Bert4Rec [34]. An SRmodel based on the Bert architecture, which
uses pre-trained language model technology to process user be-
havior sequences and captures contextual information in the
sequence through a bidirectional encoder.
• LLM2Bert4Rec [14]. A framework to enhance existing SR models
by leveraging semantically rich item representations provided
by LLM.
• MIND [21]. The first model proposes the concept of a multi-
interest model, using capsule networks to capture the user’s
multiple interests.
• ComiRec-SA [4]. A model that proposes diversity control based
on MIND and uses the self-attention mechanism to model multi-
interests.
• REMI [40]. A general multi-interest candidate matching enhance-
ment framework including interest-aware hard negative mining
strategy and routing regularization method.

4.2 Performance Study
4.2.1 Performance comparison experiment with baselines. Weadded
the EIMF framework to REMI to conduct performance comparison
experiments with other baselines. The results are shown in Table
2. Here we marked the best performance value among all models
in bold and the best performance value in the baseline with an
underline. Based on the results in Table 2 and Table 3, we can make
the following observations:

• In the large-scale data set in Table 2, the performance of the
multi-interest model is significantly better than that of the single-
interest model, and as the amount of data increases, this advan-
tage becomes more and more significant. Our analysis shows
that multi-interest learning is more suitable for data-rich envi-
ronments because it is able to capture more complex and diverse
underlying interests among users or items, thereby more accu-
rately understanding subtle differences between individuals.
• In the small-scale dataset shown in Table 3, the traditional single-
interest SR model outperforms the multi-interest model. Our
analysis shows that when the amount of data is limited, it is
difficult to accurately capture the diverse interests of users by
simply relying on user behavior information. Therefore, a model
that focuses on a single major interest can utilize the limited
information in a more concentrated manner, thus providing more
accurate recommendation results.
• In the large datasets, EIMF(REMI) achieved the best performance;
while in the small dataset, LLM2Bert4Rec and EIMF(REMI) per-
formed best. First, this shows that the rich semantic knowledge
in the LLM can effectively enhance the behavioral modeling
ability of user representation, showing the great potential of
LLM in recommendation tasks. Second, although some metrics
of EIMF(REMI) are slightly lower than LLM2Bert4Rec on small
datasets, its better performance on large datasets proves that
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Table 2: The result of performance comparison between baselines and EIMF on large datasets (Grocery and Beauty).

Dataset Model Pop DNN GRU4Rec SASRec Bert4Rec LLM2Bert4Rec MIND ComiRec-SA REMI EIMF(REMI) Improv.(%)

Grocery

Recall@20 0.0729 0.1252 0.1387 0.1536 0.1544 0.1259 0.1445 0.1122 0.1617 0.1758 +8.71
Recall@50 0.1305 0.2044 0.2300 0.2508 0.2372 0.2080 0.2162 0.2076 0.2574 0.2704 +5.05
NDCG@20 0.0448 0.0804 0.0905 0.1041 0.1074 0.0793 0.0844 0.0706 0.0953 0.1025 -4.56
NDCG@50 0.0624 0.0969 0.1097 0.1139 0.1130 0.0954 0.0967 0.0918 0.1108 0.1181 +3.69
HR@20 0.1252 0.2076 0.2321 0.2586 0.2614 0.2164 0.2328 0.1851 0.2539 0.2750 +6.34
HR@50 0.2137 0.3227 0.3649 0.3750 0.3608 0.3294 0.3322 0.3220 0.3832 0.3955 +3.21

Beauty

Recall@20 0.0452 0.1613 0.1388 0.1495 0.1430 0.1383 0.1563 0.1582 0.2189 0.2323 +6.12
Recall@50 0.0660 0.2361 0.2109 0.2220 0.2050 0.2053 0.2384 0.2594 0.3420 0.3636 +6.31
NDCG@20 0.0213 0.0886 0.0798 0.0854 0.0846 0.0788 0.0787 0.0854 0.1139 0.1204 +5.71
NDCG@50 0.0270 0.0932 0.0844 0.0879 0.0852 0.0823 0.0900 0.1004 0.1304 0.1348 +3.37
HR@20 0.0675 0.2401 0.2141 0.2320 0.2221 0.2181 0.2203 0.2325 0.3111 0.3268 +5.04
HR@50 0.0966 0.3299 0.2982 0.3129 0.2986 0.2919 0.3272 0.3545 0.4532 0.4802 +5.95

*Note that we did not use the pre-trained version of Bert4Rec here, but adopted the same training method as other models.

Table 3: The result of performance comparison between baselines and EIMF on small dataset (Office).

Model Recall@20 NDCG@20 HR@20 Recall@50 NDCG@50 HR@50
GRU4Rec 0.0800 0.0537 0.1384 0.1770 0.0809 0.2811
SASRec 0.1152 0.0643 0.1792 0.1963 0.0805 0.2871
Bert4Rec 0.1037 0.0635 0.1812 0.1920 0.0834 0.3116
MIND 0.0915 0.0513 0.1466 0.1593 0.0706 0.2505

ComiRec-SA 0.0788 0.0456 0.1202 0.1589 0.0653 0.2321
REMI 0.1072 0.0637 0.1751 0.2018 0.0825 0.2973

LLM2Bert4Rec 0.1085 0.0660 0.1812 0.2117 0.0939 0.3360
EIMF(REMI) 0.1222 0.0649 0.1772 0.2296 0.0930 0.3503
Improv.(%) +6.08 -1.66 -2.20 +8.45 -0.95 +4.25

Table 4: Performance experimental results of different backbones on Beauty and Office datasets.

Dataset Beauty Office
Model Recall@50 NDCG@50 HR@50 Recall@50 NDCG@50 HR@50

Bert4Rec 0.2050 0.0852 0.2986 0.1920 0.0834 0.3116
EIMF(Bert4Rec) 0.2155 0.0854 0.3071 0.2101 0.0909 0.3380

Improv.(%) +5.12 +0.23 +2.84 +9.42 +8.99 +8.47
SASRec 0.2220 0.0879 0.3129 0.1964 0.0806 0.2872

EIMF(SASRec) 0.2499 0.0999 0.3469 0.2088 0.0878 0.3198
Improv.(%) +12.56 +13.65 +10.86 +6.31 +8.93 +11.35
MIND 0.2384 0.0900 0.3272 0.1594 0.0707 0.2505

EIMF(MIND) 0.2518 0.0968 0.3424 0.2023 0.0793 0.2953
Improv.(%) +5.62 +7.55 +4.64 +26.91 +12.16 +17.88

EIMF(REMI) not only has good stability but also can adapt to
more diverse data environments.

4.2.2 Performance experiment on different backbones. To explore
whether the EIMF framework is compatible, we designed the fol-
lowing experiment. We selected three classic models as backbone,
which include the traditional single-interest SR models SASRec
and Bert4Rec, and the multi-interest model MIND. We compared
the recommendation performance of the above models with the
model combined with the EIMF framework on the Beauty and Office
datasets. The experimental results are shown in the Table4.

As can be seen from Table 4, the performance of all backbone
models has been improved after adding the EIMF framework, which
proves the wide applicability of the EIMF framework. Our analysis
suggests that this is because EIMF greatly enriches the information
resources on which behavioral interest modeling relies by introduc-
ing semantic interests, effectively compensating for the limitations

due to data sparsity in traditional modeling approaches. In addition,
EIMF adopts an inference mechanism based on typical samples,
which not only greatly reduces the amount of data for LLM reason-
ing tasks but also further explores and demonstrates the positive
impact of group interests on individuals.

4.3 Ablation Study
To verify the effectiveness of framework components, we designed
two variants, EIMF w/o Align and EIMF w/o Predict, which
represent the deleted modality alignment task and deleted semantic
prediction task respectively.We experimented with the two variants
and the whole framework on three datasets, and the results are
shown in Figure 3.

As can be seen from Figure 3, thewhole EIMF is the best-performing
model on all three datasets, and the other two variants have vary-
ing degrees of performance degradation, which proves that the
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Figure 3: The results of ablation experiments on three datasets.
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Figure 4: The results of the AP clustering algorithm with different 𝑝 hyperparameter settings on three datasets.

two auxiliary tasks we designed can effectively enhance the user’s
multi-interest representation. In addition, the performance of the
other two variants drops to different degrees on different datasets.
In the Office and Beauty datasets, the performance of EIMF w/o
Align drops the most, while in the Grocery dataset, the performance
of EIMF w/o Predict drops the most. We believe that this is because
different categories of items correspond to different user behavioral
patterns, e.g., when purchasing office supplies or beauty products,
users’ interests tend to change frequently; while when purchasing
daily groceries, users’ interests are more purposive. Therefore, in
the Grocery dataset, the invisible interests reflected by the behav-
ioral patterns are more homogeneous, and the semantic prediction
auxiliary task dominated by explicit interests can identify more po-
tential interests, on the contrary, in the Beauty and Office datasets,
the behavioral patterns have been able to reflect the diversified
interests of the users, and therefore it is more necessary to enhance
the invisible user behavioral interests by using the modal alignment
task. The two auxiliary tasks complement each other and enable
EIMF to adapt to more scenarios.

4.4 Hyperparameter Study
We conducted hyperparameter experiments on three datasets to
explore the impact of preference degree (𝑝) on the framework rec-
ommendation performance in the AP clustering algorithm. The
𝑝 can control the number of clusters in the AP algorithm. The

smaller the 𝑝 , the fewer clusters there are. The value of 𝑝 is set
to {𝑁𝑜𝑛𝑒,−2,−3,−4,−5,−7,−10}, where 𝑁𝑜𝑛𝑒 means not using a
clustering algorithm to infer the interests of each user individually.
In addition, corresponding to 𝑝 = {−2,−5,−7,−10}, the typical
number of samples obtained from clustering about the proportion
of the total number of data are {80%, 50%, 20%, 5%}, respectively.

It can be seen from Figure 4 that the best p-values are different
on different datasets. Specifically, on the Office dataset, when 𝑝 =

−2, the Recall@50 of EIMF(REMI) is 0.2492, and the NDCG@50
is 0.1010; on the Grocery dataset, when 𝑝 = −5, the Recall@50 is
0.2856, and the NDCG@50 is 0.1214; on the Beauty dataset, when
𝑝 = −10, the Recall@50 is 0.3636, and the NDCG@50 is 0.1348.
Through analysis and discussion, we believe that the optimal p-
value selection is closely related to the amount of data and data
distribution. Specifically, when the amount of data is small or the
behavioral similarity between users is weak, a larger p-value helps
to identify as many typical samples as possible and ensure the
independence and uniqueness of user interests; when the amount
of data is large or the behavioral similarity between users is high, a
smaller p-value can not only effectively reduce the computational
burden faced by LLM when processing large amounts of data, but
also help to discover a wider range of group characteristics and
enrich user interest modeling.
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5 Conclusions and Future Work
In this paper, we answer the question of how to combine large&small
models in RS from the perspective of multi-interest learning and
semantic alignment. We propose an LLM-assisted framework with
explicit and implicit multi-interest learning to capture users’ in-
terests from both behavioral and semantic levels. Specifically, the
framework consists of an implicit behavioral interest module and an
explicit semantic interest module. The implicit behavioral interest
module adopts the traditional multi-interest RS model and learns
user behavioral interest patterns by analyzing the interaction data
between users and items; the explicit semantic interest module,
in the training phase, first classifies users based on the AP algo-
rithm to select typical samples of each category, and then uses LLM
to infer the typical samples to obtain multiple semantic interests.
These semantic interests are subsequently used to augment the
representation of user behavioral interests through auxiliary tasks,
including semantic prediction and modality alignment. Observed
from extensive experiments on real-world datasets, our EIMF frame-
work can effectively and efficiently combine LLM with RS models,
significantly improving the recommendation performance. This
two-layer interest modeling method not only considers the interest
preferences directly expressed by users but also deeply explores
their potential tendencies, which can provide users with more com-
prehensive and accurate personalized recommendations. In future
research, we plan to combine multimodal and multi-behavioral data
further to explore the more fine-grained user interests reflected in
these data.
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