
Large Language Model Agent for Hyper-Parameter Optimization

Siyi Liu 1 Chen Gao 2 Yong Li 2

Abstract
Hyperparameter optimization is critical in modern
machine learning, requiring expert knowledge, nu-
merous trials, and high computational and human
resources. Despite the advancements in Auto-
mated Machine Learning (AutoML), challenges
in terms of trial efficiency, setup complexity, and
interoperability still persist. To address these is-
sues, we introduce a novel paradigm leveraging
Large Language Models (LLMs) to automate hy-
perparameter optimization across diverse machine
learning tasks, which is named AgentHPO (short
for LLM Agent-based Hyperparameter Optimiza-
tion). Specifically, AgentHPO processes the task
information autonomously, conducts experiments
with specific hyperparameters (HPs), and itera-
tively optimizes them based on historical trials.
This human-like optimization process largely re-
duces the number of required trials, simplifies the
setup process, and enhances interpretability and
user trust, compared to traditional AutoML meth-
ods. Extensive empirical experiments conducted
on 12 representative machine-learning tasks in-
dicate that AgentHPO not only matches but also
often surpasses the best human trials in terms of
performance while simultaneously providing ex-
plainable results. Further analysis sheds light on
the strategies employed by the LLM in optimiz-
ing these tasks, highlighting its effectiveness and
adaptability in various scenarios.

1. Introduction
In Machine Learning (ML), Hyperparameter Optimization
(HPO) is indispensable for fitting models to diverse prob-
lems. This process involves adjusting hyperparameters
(HPs) that shape the model’s structure and learning method,
which are set before training and greatly affect performance
(LeCun et al., 2015; Melis et al., 2018). Traditionally, hu-

1EPFL 2Tsinghua University. Correspondence to: Siyi Liu
<ssui.liu1022@gmail.com>, Chen Gao <chgao96@gmail.com>,
Yong Li <liyong07@tsinghua.edu.cn>.

man experts with algorithmic knowledge play an essential
role in HPO, leveraging their theoretical and practical ML
expertise to refine models for improved performance. How-
ever, the complexity of HPO, due to the extensive range of
configurations and task-specific demands, makes it a time-
intensive process heavily reliant on an expert’s ability to
adapt their knowledge to new scenarios. (Yu & Zhu, 2020;
Yang & Shami, 2020; Mallik et al., 2023).

To alleviate the intensive labor of manual HPO, the ML
community has turned towards Automated Machine Learn-
ing (AutoML) (Hutter et al., 2019). AutoML frameworks
employ methods like Bayesian optimization (Shahriari et al.,
2015) to explore the HP space, reducing the need for ex-
tensive human intervention. Despite showing promise,
AutoML-based HPO still faces the following drawbacks:
Time-Intensive Trials: AutoML’s reliance on numerous tri-
als for black-box optimization is effective but burdensome,
particularly with complex tasks and large datasets. The
balance between the number of trials and computational de-
mand creates a trade-off between efficiency and the quality
of results (Yu & Zhu, 2020; Yang & Shami, 2020; Tornede
et al., 2023). Complex Setup: Despite AutoML’s versatility
across domains and hardware, its setup is intricate. That
is, it involves choosing suitable tools and defining optimal
HP spaces, where misconfigurations can lead to inefficiency
or poor performance without experts’ supervision (Wistuba
et al., 2015). Lack of Interpretability: The lack of trans-
parency in many AutoML methods leads to concerns about
their dependability. It is crucial, particularly for less experi-
enced users, to have a clear understanding of how different
HPs impact the model and the reasoning behind specific
configuration choices. This interpretability gap often makes
manual tuning a more trusted choice over AutoML (Gilpin
et al., 2018; Moosbauer et al., 2022; Hasebrook et al., 2022).

In this work, we propose AgentHPO, which utilizes the
advancements in Large Language Models (LLMs)-powered
autonomous agents, to overcome the complexities faced
by traditional AutoML methods. AgentHPO draws on the
extensive domain knowledge, advanced tool utilization, and
sophisticated reasoning of LLMs to ease the dependence on
human experts.

To be specific, AgentHPO is innovatively designed with
two specialized agents: Creator and Executor. The Creator

1

ar
X

iv
:2

40
2.

01
88

1v
2 

 [
cs

.L
G

] 
 6

 F
eb

 2
02

4



Large Language Model Agent for Hyper-Parameter Optimization

Experiment

Obsearvation

Experiment

Obsearvation

LLM Brain

Tools

Planning

Human Expert Traditional AutoML LLM-Based Agent

Figure 1. Comparative Frameworks in Hyperparameter Optimization: Human Expertise, Traditional AutoML, and LLM-Based Agents

agent acts as the starting point of optimization, enabling
users to input task-specific details, such as dataset character-
istics, model structure, and optimization goals, in a natural
language format. This agent adeptly interprets the input and
generates initial HPs, emulating the expertise of a human
specialist. Subsequently, based on the HPs provided by the
Creator, the Executor agent takes on the responsibilities
of training models, recording experimental data, and con-
ducting outcome analyses. The Creator uses insights from
the Executor’s training history to iteratively refine the HPs,
thereby streamlining the optimization process and making it
more intuitive and efficient. With the above designs, Agen-
tHPO effectively addresses several known challenges in
traditional AutoML methods, as follows:

Trial Efficiency: By leveraging the specialized capabili-
ties of the Creator and Executor, AgentHPO significantly
reduces the time and resources required for conducting mul-
tiple trials.

Simplified Setup and Configuration: AgentHPO’s natural
language input feature makes it easier to input task-specific
details and effectively define optimal HP search spaces.
This significantly reduces the complexity and likelihood of
misconfiguration.

Improved Interpretability and Trust: AgentHPO’s clear,
textual explanations of HP choices foster greater user trust
and understanding, making this approach more accessible
and preferable, particularly for those without expert-level
knowledge of HPO.

The key contributions of our work can be summarized as
follows:

• To the best of our knowledge, we take the first step to in-
troduce LLM-based autonomous agents in HPO problems.
Our investigation sheds light on the extensive capabilities
and adaptability of LLMs in automating and optimizing
ML processes.

• We propose an LLM agent-based general framework com-

prised of distinct and specialized agents: Creator and
Executor. The two agents work collaboratively to assist
a wide range of users, especially those without extensive
expertise, efficiently tuning ML models.

• We carried out extensive experiments on 12 representative
ML HPO tasks across various domains and the results
showcase the method’s practicality and superior perfor-
mance.

2. Related Works
2.1. LLM-based Autonomous Agents

Large language models (LLMs) have emerged as a pivotal
element in AI agent development, prized for their exten-
sive knowledge bases, reasoning and planning capabilities,
generalization potential, and adeptness at tool use (OpenAI,
2023; Bubeck et al., 2023). The integration of LLMs as
the core cognitive component in these agents has paved the
way for their versatile application across various real-world
domains. For instance, MetaGPT (Hong et al., 2023) has
leveraged LLM-based multi-agent systems for collaborative
software development tasks. Park et al. (2023) explored the
use of agents for simulating intricate human interactions.
Voyager (Wang et al., 2023) crafted an agent capable of
navigating the complex environment of the Minecraft game.
The S3 framework (Gao et al., 2023) utilizes LLM-based
agents for sophisticated social network simulations. Further
pushing the boundaries, Boiko et al. (2023) introduced Co-
scientist, an initiative harnessing the power of LLM-based
agents for pioneering autonomous chemical research.

In this paper, we delve deeper into the capabilities of LLM-
based autonomous agents in the AutoML field, focusing on
addressing HPO.

2.2. LLMs for AutoML

Large Language Models (LLMs) have the potential to sig-
nificantly enhance ML tasks by autonomously decomposing

2



Large Language Model Agent for Hyper-Parameter Optimization

Background Information Tools SetupHyperparameter Optimization

Creator Executor

Exp Logs

New HPHP Information
learning_rate: [1e-6, 1e-1]
batch size: [16, 256]
optimizer: [sgd, rmsprop, adam]

Dataset Information
Dataset name: Cifar-10
Number of classes: 10
Dataset size: 50,000

Optimization Goal
Tuning the hyperparameters of 
a image classification model to 
maximize the accuracy.

Model Information
ResNet18 series including
ResNet18, ResNet18d, 
SeResNet18, SKResNet18

Change HP
Configs

Training
Models

Record
Results

Analyze
Results

Figure 2. Overview of our AgentHPO. The AgentHPO processes textual background information, autonomously conducts experiments
with specific HPs, and iteratively optimizes them. This human-like optimization process enables AgentHPO to achieve high performance
with minimal trials and provides users with an interpretable optimization solution.

and executing complex ML operations. These models are be-
ing increasingly recognized for their ability to deliver conve-
nient, comprehensive, and reliable decision-making across
a variety of applications and tasks. For instance, AutoML-
GPT (Zhang et al., 2023b) leverages LLMs to conduct HPO
by iteratively prompting with data and model cards, along
with mimicking model training via LLMs. Similarly, ML-
copilot (Zhang et al., 2023a) utilizes LLMs, informed by
past experiences and knowledge, to predict optimal HP set-
tings in a categorized manner. CAAFE (Hollmann et al.,
2023) employs LLMs for automated feature engineering in
tabular data to generate semantically meaningful features.
EvoPrompting (Chen et al., 2023) integrates LLMs as adap-
tive operators in an evolutionary neural architecture search
(NAS) algorithm. Auto2Graph (Wei et al., 2023) deploys
LLM-based agents to devise tailored solutions for diverse
graph-structured data and learning tasks. Moreover, MLA-
gentBench (Huang et al., 2023) introduced a suite of ML
tasks specifically for benchmarking AI research agents, with
an emphasis on advancing research in the ML domain.

However, these methods are either not specifically designed
to address HPO or lack a mechanism to iteratively refine
HPs based on direct, empirical evidence from historical
training performance. Distinct from previous research, our
AgentHPO introduces the first agent-based task-agnostic
HPO framework, uniquely designed to iteratively optimize
HPs across various real-world ML tasks.

3. Methodology
Figure 2 and Algorithm 1 illustrate our AgentHPO frame-
work, which streamlines the HPO process. Initially, users
provide their dataset characteristics and learning goals in
natural language, offering a more user-friendly alternative
to traditional, code-intensive configurations. The process
commences with an LLM-empowered Creator agent C that
interprets the user-provided task-specific background in-
formation. This agent then generates an initial HP con-
figuration. Subsequently, Executor agent E employs this
configuration to train models, analyze the training outputs,
and log the experimental data. Leveraging the accumulated
training history, the Creator agent iteratively refines and pro-
poses new HPs. This approach streamlines the execution of
various ML HPO tasks, significantly reducing the necessity
for deep AutoML expertise or high-level coding skills. Sub-
sequent sections delve into the mechanisms by which LLM
agents execute HPO, utilizing the provided information and
historical training logs.

3.1. Creator Agent

This section describes our methodology for prompting the
Creator agent for initial HP generation and subsequent opti-
mization. The designed prompts enable the LLM to not only
generate appropriate HPs for a specific ML task but also
to iteratively refine them. The prompt structure comprises
several critical elements, each contributing to the informed
decision-making process of the Creator agent:

• HP Information: This supplies the agent with a founda-
tional understanding of the HPs that require optimization,

3



Large Language Model Agent for Hyper-Parameter Optimization

Algorithm 1 The optimization algorithm of AgentHPO
1: Input: Background Information B in natural language.

Tools T
2: Output: Optimized hyperparameters H∗, Experimen-

tal logs L
3: Initialize Creator C = init(LLM,B).
4: Initialize Executor E = init(LLM, T ).
5: Initialize Experimental Logs L = [].
6: Set number of trials T
7: for t = 1 to T do
8: Ht, Rt ← C.create(L)
9: Lt ← E.execute(Ht)

10: L.append([Ht, Rt, Lt])
11: end for
12: H∗,L ← C.analyze(L)
13: return H∗,L

encompassing a list of HP names and their descriptions.
Additionally, value ranges are specified to constrain the
LLM’s search space.

• Dataset Information: This includes essential statistical
details of the dataset such as the number of samples, fea-
ture dimensions, and number of target classes.

• Optimization Goal: This defines the objective that the
Creator agent aims to achieve, which may involve max-
imizing or minimizing specific metrics. These metrics
pertain to model efficacy as well as operational constraints
like memory usage or training duration.

• Model Information: This pertains to fundamental details
about the training model, including its architecture and
the number of parameters it contains.

The composite of these components constitutes the back-
ground information B, equipping the Creator agent with
the insights needed for strategic and informed HP gen-
eration. With this setup, the Creator agent, denoted as
C = init(LLM,B), is well-equipped to commence the HP
generation and optimization tasks. The complete prompts
utilized by the Creator agent are provided in Appendix C.1

3.2. Executor Agent

The role of the Executor agent commences upon receipt
of the generated HP configurations from the Creator agent.
Tasked with the crucial responsibility of conducting experi-
ments, the Executor assesses the effectiveness of these HP
settings. Each training session under the Executor is concep-
tualized as an interactive environment, allowing the agent
to execute specific actions and observe their outcomes. The
Executor agent utilizes a comprehensive suite of tools T to
facilitate these actions:

• Change HP Configs: The agent is equipped to modify
the HPs in response to newly updated configurations.

• Training Models: The agent possesses the capability to
execute model training scripts, allowing for evaluation of
the outcomes of the altered configurations.

• Analyze Results: Upon the completion of model train-
ing, the agent scrutinizes the training logs, which include
the trajectory of training and validation metrics, to con-
duct a comprehensive analysis of the training outputs and
synthesize a summary of the experiment.

• Record Results: Finally, the agent documents the out-
comes of the training and the corresponding analyses in
the experimental logs for future reference.

Equipped with these tools, the Executor agent is empowered
to not only implement and adjust HPs but also to critically
evaluate model performance and systematically record the
findings. This capability ensures a structured and methodi-
cal approach to experimental ML workflows. The Executor
is instantiated as E = init(LLM, T ), ready to undertake
its designated tasks. Detailed prompts for the Executor
agent are available in Appendix C.2.

3.3. Iterative Hyperparameter Optimization

To enhance model performance through HPO, expert prac-
titioners typically consult historical experimental records
to deduce potential avenues for improvement. This iter-
ative process, which tests new HP configurations Ht and
validates them through experimentation, aims to converge
on an optimized model performance H∗. Emulating this
expert approach, the Creator (C) and Executor (E) agents
operate within a similar paradigm for HP optimization in
our AgentHPO framework.

Within each iteration t of the optimization process, the Cre-
ator agent C generates a set of HPs Ht, along with the
rationales Rt for their selection, by analyzing the accumu-
lated experimental logs L (step 8 in Algorithm 1). The
Executor agent E then takes these HPs Ht and carries out
the experiments, with the outcomes of these experiments
being captured in Lt (step 9 in Algorithm 1). The results Lt

encompass the performance metrics and a comprehensive
analysis post-experimentation. These findings are appended
to the experimental logs L, creating a historical record that
includes the HPs Ht, their explanations Rt, and the ex-
perimental results Lt (step 10 in Algorithm 1). Thus, the
experimental logs L (depicted in Figure 6) serve as a dy-
namic repository, documenting the iterative progress and
informing the Creator agent’s subsequent decisions. In this
context, L can also be viewed as a memory block, archiv-
ing sequences of the agents’ past observations, reflections,
and actions. This repository harnesses prior experiences

4



Large Language Model Agent for Hyper-Parameter Optimization

Table 1. Comprehensive overview of tasks, datasets, and models, datasets marked with † indicate their release occurred post the knowledge
cutoff dates of GPT-3.5 and GPT-4. For all metrics, higher is preferable.

Task Sub-Task Dataset Model Metrics

CV Image classification Cifar-10 (Krizhevsky et al., 2009) ResNet-18 (He et al., 2016) Accuracy
Butterfly Image† (DePie, 2023)

Segmentation CityScapes (Cordts et al., 2016) ENet (Paszke et al., 2016) IOU

NLP Text classification Ecommerce Text† (Shahane, 2023) DistilBERT (Sanh et al., 2019) AccuracySST2 (Socher et al., 2013)
Machine Translation Opus Books (Zhang et al., 2020) T5-Small (Raffel et al., 2020) BLEU

RecSys Matrix Factorization MovieLens 1M (Harper & Konstan, 2015) LightGCN (He et al., 2020) NDCG@10
CTR DeepFM (Guo et al., 2017) AUC

Tabular Classification Water Portability† (Tharmalingam, 2023) XGBoost (Chen & Guestrin, 2016) F1 Score
Regression House Price† (Imran, 2023) R2 Score

GNN Node classification Cora (Sen et al., 2008) GCN (Kipf & Welling, 2016a) Accuracy
Link prediction Pubmed (Sen et al., 2008) VGAE (Kipf & Welling, 2016b) AUC

to inform future strategy formulation and decision-making
processes within the AgentHPO framework.

This cyclical refinement, driven by the Creator agent’s anal-
ysis and the Executor agent’s experimental results, ensures
a progressively optimized set of HPs Ht and systematically
steers the process towards the ideal HP H∗.

3.4. Explainable Hyperparameter Optimization

As we discussed in Section 3.3, experimental logs L encom-
pass not only the HPO trials but also provide comprehen-
sive explanations for each trial. Therefore, our AgentHPO
addresses the prevalent issue of interpretability in HPO pro-
cesses by providing optimal HP H∗ and its corresponding
reasoning R∗. Furthermore, the Creator agent offers an
in-depth final analysis upon the conclusion of each experi-
ment (step 12 in Algorithm 1). These analyses are pivotal
as they furnish users with a summary of the HPO process,
enhancing their understanding of the impact of various HPs
on the model’s performance. Finally, the Creator agent
can also propose potential avenues for future optimization,
thereby guiding users toward more effective and efficient
HPO strategies.

4. Benchmark Setting
4.1. Task descriptions

In this paper, our methodology is applied across a diverse
array of 12 tasks, covering disciplines such as Computer
Vision (CV), Natural Language Processing (NLP), Recom-
mender Systems (RecSys), Tabular Data, and Graph Neural
Networks (GNN). The specifics of these tasks are presented
in Table 1. Our task selection includes both classic datasets
and recent challenges from Kaggle, ensuring that the study

is representative of both traditional benchmarks and cur-
rent, real-world problems, which lie outside the scope of the
language models’ pre-training data1. This range was metic-
ulously selected to span a broad spectrum of complexities
and contemporary relevance. A comprehensive discussion
on each task and the corresponding HP search spaces can
be found in Appendix A and Table 2.

4.2. Experimental Setup

Evaluation of AgentHPO. Our experimental procedure
entails conducting 10 trials per run (T = 10). At each trial
milestone t (specifically at the {1, 3, 5, 10} trial marks), we
record the best metric performance achieved among the first
t trial results. This tiered evaluation process allows us to
assess performance improvements throughout the trials.

Baseline Settings. According to previous research (Bergstra
& Bengio, 2012; Eggensperger et al., 2021; Mallik et al.,
2023), the random search method is still a strong baseline
in HPO. Hence, we implement a random search strategy
as a benchmark, executing 10 runs for each experiment,
resulting in 100 random search iterations in total. The same
process of recording the best metric performance at each
trial milestone is applied to the random search, ensuring a
consistent and fair comparison. Since a random search with
100 trials has a 99% probability of locating a near-optimal
HP region that comprises just 5% of the search grid (Liao
et al., 2022), the peak performance across these trials is
indicative of the best outcome achievable through human-
directed efforts. This comparison is crucial to demonstrate

1Based on the information provided by OpenAI’s official doc-
umentation, the GPT-3.5 model encompasses knowledge up to
September 2021, while the GPT-4 model includes updates up to
April 2023.

5

https://platform.openai.com/docs/models/continuous-model-upgrades
https://platform.openai.com/docs/models/continuous-model-upgrades


Large Language Model Agent for Hyper-Parameter Optimization

1 3 5 10
Trial

50

60

70

80

A
cc

ur
ac

y

Image Classification Cifar-10

1 3 5 10
Trial

20

40

60

80

A
cc

ur
ac

y

Image Classification Butterfly

1 3 5 10
Trial

30

40

50

60

70

IO
U

Image Segmentation

1 3 5 10
Trial

77.5

80.0

82.5

85.0

87.5

90.0

A
cc

ur
ac

y

Text Classification SST2

1 3 5 10
Trial

80

85

90

95

A
cc

ur
ac

y

Text Classification Ecommerce

1 3 5 10
Trial

17.5

20.0

22.5

25.0

27.5

B
LE

U

Machine Translation

1 3 5 10
Trial

12.5

15.0

17.5

20.0

22.5

25.0

27.5

N
D

C
G

@
10

MF

1 3 5 10
Trial

72

74

76

78

80

82

A
U

C

CTR

1 3 5 10
Trial

68

69

70

71

72

F1

Tabular Classification

1 3 5 10
Trial

52

54

56

58

R
^2

Tabular Regression

1 3 5 10
Trial

55

60

65

70

75

80

A
cc

ur
ac

y

Node Classification

1 3 5 10
Trial

90

92

94

96

A
U

C

Link Prediction

Random Search Human Best over 100 Trial GPT-3.5 GPT-4

Figure 3. Performance trajectory of various baselines across trials, with the X-axis indicating the trial count and the Y-axis showing the
associated task metrics. To benchmark performance, we showcase the optimal outcome within 100 trials as a representation of the highest
achievement attainable by human effort.

the efficiency and effectiveness of the AgentHPO relative to
traditional manual optimization methods.

AgentHPO Settings. In our study, the AgentHPO frame-
work incorporates OpenAI’s GPT-4 and GPT-3.5 as LLMs.
The APIs for GPT-4 and GPT-3.5 are set as gpt-4-1106-
preview and gpt-3.5-turbo-1106 respectively. Due to the
higher operational costs associated with GPT-4, we strate-
gically conduct 5 runs using GPT-4, compared to 10 runs
for GPT-3.5. For the Creator agent within AgentHPO, the
temperature parameter is set to 1 to enhance exploration,
while other HPs remain at default settings. The AgentHPO
is implemented based on LangChain’s API zero-shot-react-
description for both agents.

5. Results and Analysis
5.1. Trajectory over Trails

Figure 3 delineates the performance trajectories for a suite
of tasks over a series of trials, with detailed numerical results
presented in Table 3. The key observations from this study
are summarized as follows:

• Superior Performance: AgentHPO consistently outper-
forms random search baselines and, in some instances,
surpasses human best results. Specifically, in the 10th
trial (T = 10), AgentHPO’s GPT-3.5 model exhibits a
3.83% average improvement over random search results,
though it is slightly lower than the best human results
by 1.18%. Meanwhile, GPT-4 showcases a remarkable
6.66% average enhancement over random search and a

6



Large Language Model Agent for Hyper-Parameter Optimization

5 4 3 2 1 0 1 2 3 4 5
X

5
4
3
2
1
0
1
2
3
4
5

Y 0
1

2

3

4

5

6 7

8

0

1

2
34

5

67

8

f(x, y) = (x 2)2 + (y 3)2

Traj 1
Traj 2

0

15

30

45

60

75

90

105

120

135

Figure 4. Optimization trajectories of GPT-3.5

1 0 1 2 3 4 5 6 7 8
X

1

0

1

2

3

4

5

6

7

8

Y

0

1

2

3
45

6

789

0 1 2 3 45

6

7

8

9

f(x, y) = (x 3)2 + (y 5)2

Traj 1
Traj 2

0.0

7.5

15.0

22.5

30.0

37.5

45.0

52.5

60.0

Figure 5. Optimization trajectories of GPT-4

1.52% average improvement over the best human perfor-
mances. These results confirm the AgentHPO’s profi-
ciency in leveraging intrinsic knowledge for HPO.

• Initial Trial Efficiency: Both GPT-3.5 and GPT-4 exhibit
impressive performance in the initial trials (T = 1). For
example, GPT-3.5 demonstrates a notable 56.81% aver-
age improvement over random search in the first trial,
while GPT-4 achieves an even more impressive 61.29%.
These figures highlight the models’ ability to effectively
utilize pre-learned knowledge for swift and effective op-
timization right from the start, underscoring their initial
trial proficiency.

• Robustness on New Datasets: AgentHPO shows remark-
able effectiveness on newer datasets that were released
after their training cut-off. For example, on the Butter-
fly dataset, GPT-4 achieves 85.92 ± 0.57%, surpassing
the human benchmark of 78.27%. Similarly, GPT-3.5
also demonstrates strong performance on the Butterfly
dataset, achieving 84.79± 1.01% in its 10th trial. These
results highlight the models’ ability to employ broad opti-
mization strategies, showcasing their adaptability and a
comprehensive understanding of optimization principles,
enabling them to perform effectively on both familiar and
new datasets.

• GPT-4’s Superiority Over GPT-3.5: A notable finding
in our analysis is the consistent outperformance of GPT-
4 over GPT-3.5. On average, in initial trials across all
tasks, GPT-4 surpasses GPT-3.5 by 4.65%, demonstrating
its enhanced efficiency in initial stages of optimization.
This trend continues into later stages, with GPT-4 main-
taining a 3.08% higher performance than GPT-3.5 by the
10th trial. Additionally, GPT-4 exhibits more robust re-
sults, evidenced by its lower average standard deviation
of 0.358 compared to GPT-3.5’s 0.994. These statistics
underscore GPT-4’s superior optimization capability and

its consistency in delivering more reliable and effective
results.

Collectively, these findings elucidate the advanced capabil-
ities of AgentHPO in the realm of HPO, showcasing the
potential of LLMs in the field of AutoML.

5.2. Optimization Strategy Analysis

To elucidate the underlying optimization strategy employed
by AgentHPO, we embarked on a task to optimize a con-
vex function to identify its minimum value over two vari-
ables. Specifically, we tasked GPT-3.5 with minimiz-
ing the function f(x, y) = (x − 2)2 + (y − 3)2, with
x, y ∈ [−5, 5], and assigned GPT-4 a similar function
f(x, y) = (x − 3)2 + (y − 5)2, with x, y ∈ [−10, 10].
These functions were chosen to test the agents’ ability to
search for the optimal x and y values within a given range,
a non-trivial challenge for the LLMs due to the absence of
explicit boundary values and function information2.

The optimization trajectories, visualized in Figures 4 and
5, reveal distinct behaviors for each model. Notably, both
LLMs initiated their search from the central region of the de-
fined space, echoing a common human heuristic that posits
the middle as a logical starting point in the absence of prior
information. Subsequently, GPT-3.5 exhibited a search pat-
tern akin to a “random search” strategy, particularly when
approaching the vicinity of the optimum. It then appeared
to refine its approach, progressively converging to the func-
tion’s minimum. This suggests that GPT-3.5’s strategy may
involve an “educated” random search, leveraging accumu-
lated information to hone in on the target.

2The range of values for x and y has been deliberately narrowed
to more clearly illustrate the trajectories generated by GPT-3.5.
This adjustment helps mitigate potential confusion in the plot that
could arise from the inherent randomness of the model’s search
strategy.

7



Large Language Model Agent for Hyper-Parameter Optimization

The strategic search patterns of GPT-4, as depicted in Figure
5, underscore a strong correlation between the model’s per-
formance and its optimization path. The first trajectory (Traj
1) showcases a methodical approach, mirroring a heuristic
or gradient-descent strategy that swiftly hones in on the
function’s minimum. This direct path reveals GPT-4’s abil-
ity to quickly discern a promising direction and steadfastly
pursue it, indicative of a deeper, inherent understanding of
optimization landscapes. In contrast, the second trajectory
(Traj 2) of GPT-4 reveals an exploratory strategy. It begins
by exploring the space more broadly before approaching
the minimum, indicating an exploratory strategy involving
a global search before local refinement. Following this, it
narrows down its search, indicative of a refined local search
strategy akin to simulated annealing or Bayesian optimiza-
tion methods.

While both GPT-3.5 and GPT-4 display competent perfor-
mance in early trials, GPT-4’s nuanced strategy showcases
its superiority in iterative refinement and strategy adaptation.
GPT-3.5 employs a method akin to educated guesswork to
identify minimal points, whereas GPT-4 engages in strate-
gic exploration and targeted refinement during the search
process. This distinction aligns with observed outcomes
in HPO tasks: both LLMs demonstrate proficiency from
the outset, yet GPT-4 exhibits a greater capacity for perfor-
mance enhancement as trials progress.

In conclusion, the behavior of AgentHPO, as evidenced by
the optimization exercises with convex functions, affirms
the viability of LLMs as powerful tools in the HPO. The
empirical evidence presented by the trajectories points to-
wards a future where AgentHPO can substantially reduce
the time and computational resources typically required for
HPO while simultaneously increasing the probability of
achieving near-optimal solutions.

5.3. Explainable Hyperparameter Optimization

In the domain of HPO, the interpretability of model decision-
making processes is of paramount importance. For this
reason, we have showcased a segment of the experimental
logs from AgentHPO in Figure 6, with a more detailed
example available in Appendix D. These logs offer not only
historical performance data but also enhance the process’s
interpretability. They allow users to monitor the progression
of model training, thereby promoting transparency in HPO
and providing an explainable HPO solution.

Despite this commonality, the two models exhibit notable
differences in their approach to generating HP configs. GPT-
4 distinguishes itself by providing more detailed explana-
tions for each HP’s reasoning. It goes beyond mere logging
of training progress. As seen in Experimental 4 in GPT-
4’s logs, it delves into the rationale behind each parameter
choice, drawing on the results from previous experiments

Experimental 1

Based on the given details, an initial set of hyperparameter
to maximize the accuracy could be as follows:
• learning_rate: 1e-3
• weight_decay: 1e-5
• epoch: 20

These initial hyperparameter settings are a balanced
combination of values that cover a range of possibilities
within the specified ranges. 

Epoch:
Train Acc:
Val Acc:
Total Training Time: 1442.33s | Final Valid Acc: 82.43%

The model showed signs of overfitting, as indicated by the 
perfect training accuracy and the plateauing validation 
accuracy. 

[0, 5, 10, 15, 20]
[39.54, 82.49, 96.30, 97.73, 98.30]
[50.3, 77.76, 82.73, 81.34, 82.69]

Executor Agent

Creator Agent

Experimental 2
Creator Agent

Based on the observation of overfitting, the new sub-task for 
the task execution agent should include the following
hyperparameter adjustments:
• learning_rate: 1e-4 (to potentially improve generalization

with a smaller learning rate)
• Weight decay: 1e-3 (to increase regularization and combat 

overfitting)
• epochs: 50 (to allow more time for the model to converge 

with a smaller learning rate)

…

Updating

Figure 6. Example of experimental logs.

to inform its decisions. This capability suggests a more
advanced understanding of the optimization landscape, al-
lowing GPT-4 to strategically deduce HP values that are
likely to yield improvements in model performance. Con-
versely, GPT-3.5’s approach within AgentHPO resembles
that of an educated guesswork system. While it can effec-
tively generate new HP sets and provide a degree of rationale
for its choices, its ability to reason and iterate based on his-
torical performance data is less sophisticated compared to
GPT-4. The GPT-3.5-based agent relies more heavily on
established heuristics and incremental adjustments, which,
although effective, may not capture the full complexity of
the optimization process as adeptly as GPT-4.

The nuanced distinction between the two models’ strategies
underscores the evolution of LLMs and their potential to en-
hance HPO. GPT-4’s nuanced reasoning and learning from
past results represent a significant step forward, offering a
more strategic and potentially more effective pathway to
optimal HP configurations.

8



Large Language Model Agent for Hyper-Parameter Optimization

6. Conclusion and Future Work
In this work, we take the pioneering step in exploring and
replacing human efforts in tuning machine-learning mod-
els with large language model-based agents. We propose
a creator-executor framework that shows superior perfor-
mance compared with human trials and baseline methods,
demonstrating a promising research direction that eases
human labor in machine learning tasks. For future work,
we aim to enhance the benchmark by incorporating more
sophisticated AutoML baselines for comparison.

Impact Statements
This paper presents a study primarily focused on address-
ing the challenges of Hyperparameter Optimization within
the field of machine learning. Given the technical and spe-
cialized nature of our work, we believe its direct societal
impacts are limited and do not warrant specific emphasis.

References
Bergstra, J. and Bengio, Y. Random search for hyper-

parameter optimization. Journal of machine learning
research, 13(2), 2012.

Boiko, D. A., MacKnight, R., Kline, B., and Gomes, G. Au-
tonomous chemical research with large language models.
Nature, 624(7992):570–578, 2023.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y.,
Lundberg, S., et al. Sparks of artificial general intel-
ligence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712, 2023.

Chen, A., Dohan, D., and So, D. Evoprompting: Lan-
guage models for code-level neural architecture search.
In Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023. URL https://openreview.
net/forum?id=ifbF4WdT8f.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd inter-
national conference on knowledge discovery and data
mining, pp. 785–794, 2016.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler,
M., Benenson, R., Franke, U., Roth, S., and Schiele, B.
The cityscapes dataset for semantic urban scene under-
standing. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

DePie. Butterfly image classification,
Jun 2023. URL https://www.
kaggle.com/datasets/phucthaiv02/
butterfly-image-classification.

Eggensperger, K., Müller, P., Mallik, N., Feurer, M., Sass,
R., Klein, A., Awad, N., Lindauer, M., and Hutter, F.
Hpobench: A collection of reproducible multi-fidelity
benchmark problems for hpo. In Thirty-fifth Conference
on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2), 2021.

Gao, C., Lan, X., Lu, Z., Mao, J., Piao, J., Wang, H., Jin, D.,
and Li, Y. S 3: Social-network simulation system with
large language model-empowered agents. arXiv preprint
arXiv:2307.14984, 2023.

Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M.,
and Kagal, L. Explaining explanations: An overview of
interpretability of machine learning. In 2018 IEEE 5th
International Conference on data science and advanced
analytics (DSAA), pp. 80–89. IEEE, 2018.

Guo, H., Tang, R., Ye, Y., Li, Z., and He, X. Deepfm: a
factorization-machine based neural network for ctr predic-
tion. In Proceedings of the 26th International Joint Con-
ference on Artificial Intelligence, pp. 1725–1731, 2017.

Harper, F. M. and Konstan, J. A. The movielens datasets:
History and context. ACM Trans. Interact. Intell. Syst., 5
(4), dec 2015. ISSN 2160-6455. doi: 10.1145/2827872.
URL https://doi.org/10.1145/2827872.

Hasebrook, N., Morsbach, F., Kannengießer, N., Franke, J.,
Hutter, F., and Sunyaev, A. Why do machine learning
practitioners still use manual tuning? a qualitative study.
arXiv preprint arXiv:2203.01717, 2022.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., and Wang, M.
Lightgcn: Simplifying and powering graph convolution
network for recommendation. In Proceedings of the 43rd
International ACM SIGIR conference on research and
development in Information Retrieval, pp. 639–648, 2020.

Hollmann, N., Müller, S., and Hutter, F. Large language
models for automated data science: Introducing caafe for
context-aware automated feature engineering. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023.

Hong, S., Zheng, X., Chen, J., Cheng, Y., Wang, J., Zhang,
C., Wang, Z., Yau, S. K. S., Lin, Z., Zhou, L., et al.
Metagpt: Meta programming for multi-agent collabora-
tive framework. arXiv preprint arXiv:2308.00352, 2023.

Huang, Q., Vora, J., Liang, P., and Leskovec, J. Benchmark-
ing large language models as ai research agents. arXiv
preprint arXiv:2310.03302, 2023.

9

https://openreview.net/forum?id=ifbF4WdT8f
https://openreview.net/forum?id=ifbF4WdT8f
https://www.kaggle.com/datasets/phucthaiv02/butterfly-image-classification
https://www.kaggle.com/datasets/phucthaiv02/butterfly-image-classification
https://www.kaggle.com/datasets/phucthaiv02/butterfly-image-classification
https://doi.org/10.1145/2827872


Large Language Model Agent for Hyper-Parameter Optimization

Hutter, F., Kotthoff, L., and Vanschoren, J. Automated ma-
chine learning: methods, systems, challenges. Springer
Nature, 2019.

Imran, M. B. Housing price prediction data,
Nov 2023. URL https://www.kaggle.
com/datasets/muhammadbinimran/
housing-price-prediction-data.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations, 2016a.

Kipf, T. N. and Welling, M. Variational graph auto-encoders.
NIPS Workshop on Bayesian Deep Learning, 2016b.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature,
521(7553):436–444, 2015.

Liao, L., Li, H., Shang, W., and Ma, L. An empirical
study of the impact of hyperparameter tuning and model
optimization on the performance properties of deep neural
networks. ACM Transactions on Software Engineering
and Methodology (TOSEM), 31(3):1–40, 2022.

Mallik, N., Bergman, E., Hvarfner, C., Stoll, D., Janowski,
M., Lindauer, M., Nardi, L., and Hutter, F. Priorband:
Practical hyperparameter optimization in the age of deep
learning. In Thirty-seventh Conference on Neural In-
formation Processing Systems, 2023. URL https:
//openreview.net/forum?id=uoiwugtpCH.

Melis, G., Dyer, C., and Blunsom, P. On the state of the art
of evaluation in neural language models. In International
Conference on Learning Representations, 2018.

Moosbauer, J., Casalicchio, G., Lindauer, M., and Bischl,
B. Enhancing explainability of hyperparameter optimiza-
tion via bayesian algorithm execution. arXiv preprint
arXiv:2206.05447, 2022.

OpenAI. Gpt-4 technical report, 2023.

Park, J. S., O’Brien, J., Cai, C. J., Morris, M. R., Liang,
P., and Bernstein, M. S. Generative agents: Interactive
simulacra of human behavior. In Proceedings of the 36th
Annual ACM Symposium on User Interface Software and
Technology, pp. 1–22, 2023.

Paszke, A., Chaurasia, A., Kim, S., and Culurciello, E. Enet:
A deep neural network architecture for real-time semantic
segmentation. arXiv preprint arXiv:1606.02147, 2016.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang,
S., Matena, M., Zhou, Y., Li, W., and Liu, P. J. Ex-
ploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning
Research, 21(140):1–67, 2020. URL http://jmlr.
org/papers/v21/20-074.html.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of bert: smaller, faster, cheaper and
lighter. ArXiv, abs/1910.01108, 2019.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI magazine, 29(3):93–93, 2008.

Shahane, S. Ecommerce text classification,
Oct 2023. URL https://www.kaggle.
com/datasets/saurabhshahane/
ecommerce-text-classification/data.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and
De Freitas, N. Taking the human out of the loop: A review
of bayesian optimization. Proceedings of the IEEE, 104
(1):148–175, 2015.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A., and Potts, C. Recursive deep models
for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pp. 1631–
1642, Seattle, Washington, USA, October 2013. Asso-
ciation for Computational Linguistics. URL https:
//www.aclweb.org/anthology/D13-1170.

Tharmalingam, L. Water quality and pota-
bility, Sep 2023. URL https://www.
kaggle.com/datasets/uom190346a/
water-quality-and-potability.

Tornede, A., Deng, D., Eimer, T., Giovanelli, J., Mohan, A.,
Ruhkopf, T., Segel, S., Theodorakopoulos, D., Tornede,
T., Wachsmuth, H., et al. Automl in the age of large lan-
guage models: Current challenges, future opportunities
and risks. arXiv preprint arXiv:2306.08107, 2023.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu,
Y., Fan, L., and Anandkumar, A. Voyager: An open-
ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023.

Wei, L., He, Z., Zhao, H., and Yao, Q. Unleashing the power
of graph learning through llm-based autonomous agents.
arXiv preprint arXiv:2309.04565, 2023.

10

https://www.kaggle.com/datasets/muhammadbinimran/housing-price-prediction-data
https://www.kaggle.com/datasets/muhammadbinimran/housing-price-prediction-data
https://www.kaggle.com/datasets/muhammadbinimran/housing-price-prediction-data
https://openreview.net/forum?id=uoiwugtpCH
https://openreview.net/forum?id=uoiwugtpCH
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://www.kaggle.com/datasets/saurabhshahane/ecommerce-text-classification/data
https://www.kaggle.com/datasets/saurabhshahane/ecommerce-text-classification/data
https://www.kaggle.com/datasets/saurabhshahane/ecommerce-text-classification/data
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.kaggle.com/datasets/uom190346a/water-quality-and-potability
https://www.kaggle.com/datasets/uom190346a/water-quality-and-potability
https://www.kaggle.com/datasets/uom190346a/water-quality-and-potability


Large Language Model Agent for Hyper-Parameter Optimization

Wistuba, M., Schilling, N., and Schmidt-Thieme, L. Hy-
perparameter search space pruning–a new component
for sequential model-based hyperparameter optimiza-
tion. In Machine Learning and Knowledge Discovery
in Databases: European Conference, ECML PKDD 2015,
Porto, Portugal, September 7-11, 2015, Proceedings, Part
II 15, pp. 104–119. Springer, 2015.

Yang, L. and Shami, A. On hyperparameter optimization
of machine learning algorithms: Theory and practice.
Neurocomputing, 415:295–316, 2020.

Yu, T. and Zhu, H. Hyper-parameter optimization: A
review of algorithms and applications. arXiv preprint
arXiv:2003.05689, 2020.

Zhang, B., Williams, P., Titov, I., and Sennrich, R. Improv-
ing massively multilingual neural machine translation and
zero-shot translation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics,
pp. 1628–1639, 2020.

Zhang, L., Zhang, Y., Ren, K., Li, D., and Yang, Y. Ml-
copilot: Unleashing the power of large language mod-
els in solving machine learning tasks. arXiv preprint
arXiv:2304.14979, 2023a.

Zhang, S., Gong, C., Wu, L., Liu, X., and Zhou, M. Automl-
gpt: Automatic machine learning with gpt. arXiv preprint
arXiv:2305.02499, 2023b.

References
Bergstra, J. and Bengio, Y. Random search for hyper-

parameter optimization. Journal of machine learning
research, 13(2), 2012.

Boiko, D. A., MacKnight, R., Kline, B., and Gomes, G. Au-
tonomous chemical research with large language models.
Nature, 624(7992):570–578, 2023.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y.,
Lundberg, S., et al. Sparks of artificial general intel-
ligence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712, 2023.

Chen, A., Dohan, D., and So, D. Evoprompting: Lan-
guage models for code-level neural architecture search.
In Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023. URL https://openreview.
net/forum?id=ifbF4WdT8f.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd inter-
national conference on knowledge discovery and data
mining, pp. 785–794, 2016.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler,
M., Benenson, R., Franke, U., Roth, S., and Schiele, B.
The cityscapes dataset for semantic urban scene under-
standing. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

DePie. Butterfly image classification,
Jun 2023. URL https://www.
kaggle.com/datasets/phucthaiv02/
butterfly-image-classification.

Eggensperger, K., Müller, P., Mallik, N., Feurer, M., Sass,
R., Klein, A., Awad, N., Lindauer, M., and Hutter, F.
Hpobench: A collection of reproducible multi-fidelity
benchmark problems for hpo. In Thirty-fifth Conference
on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2), 2021.

Gao, C., Lan, X., Lu, Z., Mao, J., Piao, J., Wang, H., Jin, D.,
and Li, Y. S 3: Social-network simulation system with
large language model-empowered agents. arXiv preprint
arXiv:2307.14984, 2023.

Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M.,
and Kagal, L. Explaining explanations: An overview of
interpretability of machine learning. In 2018 IEEE 5th
International Conference on data science and advanced
analytics (DSAA), pp. 80–89. IEEE, 2018.

Guo, H., Tang, R., Ye, Y., Li, Z., and He, X. Deepfm: a
factorization-machine based neural network for ctr predic-
tion. In Proceedings of the 26th International Joint Con-
ference on Artificial Intelligence, pp. 1725–1731, 2017.

Harper, F. M. and Konstan, J. A. The movielens datasets:
History and context. ACM Trans. Interact. Intell. Syst., 5
(4), dec 2015. ISSN 2160-6455. doi: 10.1145/2827872.
URL https://doi.org/10.1145/2827872.

Hasebrook, N., Morsbach, F., Kannengießer, N., Franke, J.,
Hutter, F., and Sunyaev, A. Why do machine learning
practitioners still use manual tuning? a qualitative study.
arXiv preprint arXiv:2203.01717, 2022.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., and Wang, M.
Lightgcn: Simplifying and powering graph convolution
network for recommendation. In Proceedings of the 43rd
International ACM SIGIR conference on research and
development in Information Retrieval, pp. 639–648, 2020.

Hollmann, N., Müller, S., and Hutter, F. Large language
models for automated data science: Introducing caafe for

11

https://openreview.net/forum?id=ifbF4WdT8f
https://openreview.net/forum?id=ifbF4WdT8f
https://www.kaggle.com/datasets/phucthaiv02/butterfly-image-classification
https://www.kaggle.com/datasets/phucthaiv02/butterfly-image-classification
https://www.kaggle.com/datasets/phucthaiv02/butterfly-image-classification
https://doi.org/10.1145/2827872


Large Language Model Agent for Hyper-Parameter Optimization

context-aware automated feature engineering. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023.

Hong, S., Zheng, X., Chen, J., Cheng, Y., Wang, J., Zhang,
C., Wang, Z., Yau, S. K. S., Lin, Z., Zhou, L., et al.
Metagpt: Meta programming for multi-agent collabora-
tive framework. arXiv preprint arXiv:2308.00352, 2023.

Huang, Q., Vora, J., Liang, P., and Leskovec, J. Benchmark-
ing large language models as ai research agents. arXiv
preprint arXiv:2310.03302, 2023.

Hutter, F., Kotthoff, L., and Vanschoren, J. Automated ma-
chine learning: methods, systems, challenges. Springer
Nature, 2019.

Imran, M. B. Housing price prediction data,
Nov 2023. URL https://www.kaggle.
com/datasets/muhammadbinimran/
housing-price-prediction-data.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations, 2016a.

Kipf, T. N. and Welling, M. Variational graph auto-encoders.
NIPS Workshop on Bayesian Deep Learning, 2016b.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature,
521(7553):436–444, 2015.

Liao, L., Li, H., Shang, W., and Ma, L. An empirical
study of the impact of hyperparameter tuning and model
optimization on the performance properties of deep neural
networks. ACM Transactions on Software Engineering
and Methodology (TOSEM), 31(3):1–40, 2022.

Mallik, N., Bergman, E., Hvarfner, C., Stoll, D., Janowski,
M., Lindauer, M., Nardi, L., and Hutter, F. Priorband:
Practical hyperparameter optimization in the age of deep
learning. In Thirty-seventh Conference on Neural In-
formation Processing Systems, 2023. URL https:
//openreview.net/forum?id=uoiwugtpCH.

Melis, G., Dyer, C., and Blunsom, P. On the state of the art
of evaluation in neural language models. In International
Conference on Learning Representations, 2018.

Moosbauer, J., Casalicchio, G., Lindauer, M., and Bischl,
B. Enhancing explainability of hyperparameter optimiza-
tion via bayesian algorithm execution. arXiv preprint
arXiv:2206.05447, 2022.

OpenAI. Gpt-4 technical report, 2023.

Park, J. S., O’Brien, J., Cai, C. J., Morris, M. R., Liang,
P., and Bernstein, M. S. Generative agents: Interactive
simulacra of human behavior. In Proceedings of the 36th
Annual ACM Symposium on User Interface Software and
Technology, pp. 1–22, 2023.

Paszke, A., Chaurasia, A., Kim, S., and Culurciello, E. Enet:
A deep neural network architecture for real-time semantic
segmentation. arXiv preprint arXiv:1606.02147, 2016.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang,
S., Matena, M., Zhou, Y., Li, W., and Liu, P. J. Ex-
ploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning
Research, 21(140):1–67, 2020. URL http://jmlr.
org/papers/v21/20-074.html.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of bert: smaller, faster, cheaper and
lighter. ArXiv, abs/1910.01108, 2019.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI magazine, 29(3):93–93, 2008.

Shahane, S. Ecommerce text classification,
Oct 2023. URL https://www.kaggle.
com/datasets/saurabhshahane/
ecommerce-text-classification/data.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and
De Freitas, N. Taking the human out of the loop: A review
of bayesian optimization. Proceedings of the IEEE, 104
(1):148–175, 2015.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A., and Potts, C. Recursive deep models
for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pp. 1631–
1642, Seattle, Washington, USA, October 2013. Asso-
ciation for Computational Linguistics. URL https:
//www.aclweb.org/anthology/D13-1170.

Tharmalingam, L. Water quality and pota-
bility, Sep 2023. URL https://www.
kaggle.com/datasets/uom190346a/
water-quality-and-potability.

Tornede, A., Deng, D., Eimer, T., Giovanelli, J., Mohan, A.,
Ruhkopf, T., Segel, S., Theodorakopoulos, D., Tornede,

12

https://www.kaggle.com/datasets/muhammadbinimran/housing-price-prediction-data
https://www.kaggle.com/datasets/muhammadbinimran/housing-price-prediction-data
https://www.kaggle.com/datasets/muhammadbinimran/housing-price-prediction-data
https://openreview.net/forum?id=uoiwugtpCH
https://openreview.net/forum?id=uoiwugtpCH
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://www.kaggle.com/datasets/saurabhshahane/ecommerce-text-classification/data
https://www.kaggle.com/datasets/saurabhshahane/ecommerce-text-classification/data
https://www.kaggle.com/datasets/saurabhshahane/ecommerce-text-classification/data
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.kaggle.com/datasets/uom190346a/water-quality-and-potability
https://www.kaggle.com/datasets/uom190346a/water-quality-and-potability
https://www.kaggle.com/datasets/uom190346a/water-quality-and-potability


Large Language Model Agent for Hyper-Parameter Optimization

T., Wachsmuth, H., et al. Automl in the age of large lan-
guage models: Current challenges, future opportunities
and risks. arXiv preprint arXiv:2306.08107, 2023.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu,
Y., Fan, L., and Anandkumar, A. Voyager: An open-
ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023.

Wei, L., He, Z., Zhao, H., and Yao, Q. Unleashing the power
of graph learning through llm-based autonomous agents.
arXiv preprint arXiv:2309.04565, 2023.

Wistuba, M., Schilling, N., and Schmidt-Thieme, L. Hy-
perparameter search space pruning–a new component
for sequential model-based hyperparameter optimiza-
tion. In Machine Learning and Knowledge Discovery
in Databases: European Conference, ECML PKDD 2015,
Porto, Portugal, September 7-11, 2015, Proceedings, Part
II 15, pp. 104–119. Springer, 2015.

Yang, L. and Shami, A. On hyperparameter optimization
of machine learning algorithms: Theory and practice.
Neurocomputing, 415:295–316, 2020.

Yu, T. and Zhu, H. Hyper-parameter optimization: A
review of algorithms and applications. arXiv preprint
arXiv:2003.05689, 2020.

Zhang, B., Williams, P., Titov, I., and Sennrich, R. Improv-
ing massively multilingual neural machine translation and
zero-shot translation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics,
pp. 1628–1639, 2020.

Zhang, L., Zhang, Y., Ren, K., Li, D., and Yang, Y. Ml-
copilot: Unleashing the power of large language mod-
els in solving machine learning tasks. arXiv preprint
arXiv:2304.14979, 2023a.

Zhang, S., Gong, C., Wu, L., Liu, X., and Zhou, M. Automl-
gpt: Automatic machine learning with gpt. arXiv preprint
arXiv:2305.02499, 2023b.

13



Large Language Model Agent for Hyper-Parameter Optimization

A. Detailed Task Description
For organizational clarity and ease of analysis, these tasks have been categorized into distinct groups as follows:

Computer Vision: In this domain, we concentrate on two primary sub-tasks: Image Classification and Image Segmentation.
For Image Classification, we use ResNet-18 (He et al., 2016) with accuracy as the performance metric. We conduct HPO
on two datasets, the first is the well-known Cifar-10 (Krizhevsky et al., 2009), and the second is the newer Butterfly
Image dataset (DePie, 2023) from Kaggle, which was released after the LLM release date. For Image Segmentation, our
experiments utilize the CityScapes dataset (Cordts et al., 2016) with ENet (Paszke et al., 2016) as the model. We measure
performance using the Intersection over Union (IOU) metric.

Natural Language Processing: Our research encompasses two crucial sub-fields within NLP: Text Classification and
Machine Translation. For Text Classification, we focus on the SST2 (Socher et al., 2013) and the recent Ecommerce datasets
(Shahane, 2023). We use the DistilBERT (Sanh et al., 2019) model, fine-tuned for these tasks, with accuracy as our metric.
Regarding Machine Translation, we utilize the Opus Books (Zhang et al., 2020) dataset, specifically targeting English-French
translation. For this task, the T5-Small (Raffel et al., 2020) model is fine-tuned to assess its efficacy in translation and use
the BLEU-Score to evaluate the model.

Recommender Systems: In Recommender Systems, our work spans Matrix Factorization (MF) and Click-Through Rate
(CTR) prediction. We apply LightGCN (He et al., 2020) for MF, measuring performance with NDCG@10. For CTR
prediction, we deploy DeepFM (Guo et al., 2017) and use AUC as the metric. Both tasks are executed on the MovieLens
1M (Harper & Konstan, 2015) dataset.

Tabular: In the realm of tabular data, our research encompasses both regression and classification tasks. Specifically, we
focus on a classification task involving water portability (Tharmalingam, 2023) and a regression task concerning house price
(Imran, 2023) predictions. These tasks utilize datasets sourced from Kaggle, with careful consideration to avoid data leakage
after the incorporation of GPT-based knowledge. For both tasks, we implement models based on the XGBoost (Chen &
Guestrin, 2016) framework, known for its efficacy in handling structured data. For classification and regression tasks, we
use the F1 Score and R2 Score as the metrics, respectively.

Graph Neural Networks: In our Graph Neural Networks (GNN) research, we focus on two main objectives: node classifica-
tion and link prediction. For node classification, we use the Cora dataset (Sen et al., 2008) and apply a Graph Convolutional
Network (GCN) (Kipf & Welling, 2016a) as our model, evaluating performance based on accuracy. Additionally, for link
prediction, we conduct experiments using the Pubmed dataset (Sen et al., 2008), employing a Variational Graph Autoencoder
(VGAE) (Kipf & Welling, 2016b), with the AUC serving as the performance metric.

Table 2: Hyperparameter spaces of optimization tasks. We report the
names, types, whether they are on a log scale, and the corresponding
ranges of the hyperparameters for every task.

Experiment ID Hyperparameter Type Log Transform Range

Image Classification

global pool cat ✗ [avg, max, avgmax, catavgmax]
learning rate float ✓ [10−5, 10−1]
optimizer cat ✗ [adam, sgd]
epochs int ✗ [25, 200]
model name cat ✗ [resnet18, resnet18d, seresnet18, skresnet18]
weight decay float ✓ [10−6, 10−1]
dropout rate float ✗ [0, 0.5]
momentum float ✗ [0.5, 1]
batch size ord ✗ [32, 64, 128, 256, 512]

Image Segmentation

learning rate float ✓ [10−5, 10−1]
optimizer cat ✗ [adam, sgd]
epochs int ✗ [10, 50]
weight decay float ✓ [10−6, 10−1]
activation cat ✗ [relu, prelu]

Continued on next page

14



Large Language Model Agent for Hyper-Parameter Optimization

Table 2 – Continued from previous page

Experiment ID Hyperparameter Type Log Transform Range
momentum float ✗ [0.5, 1]
batch size ord ✗ [4, 8, 16, 32, 64]

Text Classification

learning rate float ✓ [10−6, 10−2]
epochs int ✗ [1, 4]
dropout rate float ✗ [0, 0.5]
attention dropout float ✗ [0, 0.5]
seq classif dropout float ✗ [0, 0.5]
batch size ord ✗ [8, 16, 32, 64, 128]
activation cat ✗ [gelu, relu, silu]
weight decay float ✓ [10−6, 0.1]

Translation

learning rate float ✓ [10−6, 10−2]
dropout float ✗ [0, 0.5]
epochs int ✗ [1, 4]
batch size ord ✗ [16, 32, 64, 128]
weight decay float ✓ [10−6, 0.1]

CTR

embedding size ord ✗ [8, 16, 32, 64]
learning rate float ✓ [10−5, 10−1]
optimizer cat ✗ [adam, sgd]
reg weight float ✓ [10−6, 10−1]
dropout prob float ✗ [0, 0.5]
batch size ord ✗ [256, 512, 1024, 2048, 4096]
mlp hidden size ord ✗ [32, 64, 128, 256, 512]
num mlp layers int ✗ [1, 4]

MF

embedding size int ✗ [16, 256]
learning rate float ✓ [10−5, 10−1]
optimizer cat ✗ [adam, sgd]
reg weight float ✓ [10−6, 10−1]
batch size ord ✗ [512, 1024, 2048, 4096]
epochs int ✗ [100, 400]
num layers int ✗ [1, 5]

Tabular

max depth int ✗ [3, 11]
learning rate float ✓ [10−3, 1]
min child weight int ✗ [1, 10]
subsample float ✗ [0.5, 1]
colsample bytree float ✗ [0.5, 1]
n estimators int ✗ [100, 500]
gamma float ✗ [0, 0.5]
reg alpha float ✗ [0, 1]
reg lambda float ✗ [0, 1]
scale pos weight float ✗ [1, 10]

Node Classification

num layers int ✗ [1, 5]
learning rate float ✓ [10−6, 10−1]
optimizer cat ✗ [adam, sgd]
epochs int ✗ [1, 200]
hidden size ord ✗ [8, 16, 32, 64]
activation cat ✗ [relu, elu, silu]
weight decay float ✓ [10−6, 10−1]
dropout float ✗ [0, 0.5]

Continued on next page

15



Large Language Model Agent for Hyper-Parameter Optimization

Table 2 – Continued from previous page

Experiment ID Hyperparameter Type Log Transform Range

Link Prediction

num layers int ✗ [2, 5]
learning rate float ✓ [10−6, 10−1]
optimizer cat ✗ [adam, sgd]
epochs int ✗ [1, 200]
hidden channels ord ✗ [16, 32, 64, 128, 256]
out channels ord ✗ [16, 32, 64, 128, 256]
activation cat ✗ [relu, elu, silu]
weight decay float ✓ [10−6, 10−1]
dropout float ✗ [0, 0.5]

Table 3: Performance comparison across 12 ML tasks among AgentHPO,
Random Search, and Best Human Performance, with the highest bold-
faced and second-highest underlined

Experiment ID # of Trial Random GPT-3.5 GPT-4 Human

Image Classification Cifar-10

1 48.37± 25.58% 81.57± 1.22% 82.59± 1.09% 85.05
3 74.17± 5.71% 82.84± 0.34% 81.74± 0.72% 85.05
5 77.57± 8.17% 82.84± 0.34% 85.08± 0.42% 85.05

10 77.35± 5.84% 83.87± 1.18% 85.18± 0.52% 85.05

Image Classification Butterfly

1 20.32± 25.06% 81.51± 3.78% 78.22± 0.56% 78.27
3 25.55± 27.62% 83.97± 2.12% 83.67± 0.58% 78.27
5 40.55± 25.51% 84.79± 1.01% 85.20± 0.62% 78.27

10 63.57± 8.67% 84.79± 1.01% 85.92± 0.57% 78.27

Image Segmentation

1 31.87± 19.57% 65.66± 4.33% 69.30± 0.83% 68.01
3 49.82± 10.42% 67.39± 3.88% 69.42± 0.69% 68.01
5 56.23± 10.29% 67.39± 3.88% 70.04± 0.57% 68.01

10 63.06± 6.76% 67.64± 4.00% 70.04± 0.57% 68.01

Text Classification SST2

1 75.91± 16.18% 89.79± 0.64% 90.41± 0.30% 90.71
3 85.86± 5.09% 90.02± 0.42% 90.83± 0.47% 90.71
5 89.91± 1.00% 90.02± 0.42% 91.09± 0.43% 90.71

10 90.28± 0.45% 90.34± 0.79% 91.32± 0.11% 90.71

Text Classification Ecommerce

1 79.44± 24.82% 95.96± 0.72% 97.44± 0.18% 97.53
3 96.05± 1.15% 97.18± 0.53% 97.70± 0.07% 97.53
5 96.68± 0.73% 97.55± 0.36% 97.77± 0.11% 97.53

10 97.21± 0.50% 97.55± 0.36% 97.81± 0.13% 97.53

Machine Translation

1 17.39± 6.85% 17.41± 1.61% 25.11± 0.28% 27.47
3 20.06± 3.57% 21.32± 1.35% 26.40± 0.29% 27.47
5 24.16± 2.98% 21.53± 1.35% 27.70± 0.45% 27.47

10 26.70± 0.59% 22.43± 2.04% 28.02± 0.61% 27.47

MF

1 13.16± 10.20% 26.21± 0.57% 26.92± 0.07% 27.05
3 17.33± 9.80% 26.57± 0.65% 27.14± 0.04% 27.05
5 23.81± 2.65% 27.05± 0.17% 27.23± 0.05% 27.05

10 26.02± 0.81% 27.13± 0.13% 27.24± 0.07% 27.05

CTR

1 71.26± 11.34% 81.68± 0.44% 81.92± 0.05% 82.19
3 76.98± 7.43% 82.05± 0.14% 82.01± 0.06% 82.19
5 78.85± 7.21% 82.14± 0.06% 82.06± 0.05% 82.19

Continued on next page

16



Large Language Model Agent for Hyper-Parameter Optimization

Table 3 – Continued from previous page

Experiment ID # of Trial Random GPT-3.5 GPT-4 Human
10 81.94± 0.24% 82.14± 0.06% 82.09± 0.05% 82.19

Tabular Classification

1 68.71± 2.18% 68.06± 0.11% 69.33± 0.12% 72.3
3 70.58± 1.04% 71.37± 0.32% 71.57± 0.17% 72.3
5 70.95± 0.95% 71.76± 0.41% 71.65± 0.19% 72.3

10 71.58± 0.72% 71.81± 0.37% 72.01± 0.35% 72.3

Tabular Regression

1 50.75± 10.18% 56.27± 0.35% 56.57± 0.40% 56.9
3 55.68± 2.23% 56.55± 0.39% 57.71± 0.05% 56.9
5 56.69± 0.23% 56.76± 0.33% 57.73± 0.07% 56.9

10 56.85± 0.05% 56.78± 0.36% 58.01± 0.11% 56.9

Node Classification

1 55.57± 18.37% 79.77± 0.71% 80.06± 0.66% 81.5
3 64.28± 14.52% 80.60± 0.33% 80.72± 0.27% 81.5
5 70.57± 11.43% 80.93± 0.33% 81.18± 0.45% 81.5

10 74.96± 2.70% 81.13± 0.22% 81.38± 0.22% 81.5

Link Prediction

1 90.53± 2.40% 90.02± 1.02% 90.76± 0.47% 95.12
3 92.36± 1.83% 92.24± 1.43% 92.51± 0.30% 95.12
5 93.33± 1.81% 94.21± 0.55% 94.87± 0.46% 95.12

10 94.84± 0.34% 94.34± 0.65% 95.39± 0.66% 95.12

B. Cost of AgentHPO
This section provides the average computational costs associated with conducting a single HPO task using GPT-3.5 and
GPT-4 models, as outlined in Table 4.

Table 4. Average number of token usage (k) and cost ($) for a single HPO task

LLM Model # prompt # completion # total Cost

GPT-3.5 109.23 6.14 115.37 0.1215
GPT-4 266.61 14.70 281.32 3.1071

C. Prompts for AgentHPO
We here present the prompt template used to initialize the Creator and Executor agents.

C.1. Creator Agent

You are a task creation AI expert in machine learning that required to optimize the model’s hyperparameter settings
to accomplish the final objective. To achieve this, you need to check the previous hyperparameter tuning plan and
completed tasks results. Based on this information, generate a new sub-task for the task execution agent that can solve
the sub-task. Below is the basic information about the experimental settings:

{model info}

{dataset info}

Below is the hyper-parameters and corresponding candidates or values range that can be tuned for the task:

{hyperparameter info}

To accomplish the task, you have access to the following tools:

Name: ”LoadHistoricalTrainingLogs”

17



Large Language Model Agent for Hyper-Parameter Optimization

Description: ”This tool is designed for easily loading and reviewing model training logs. It automatically accesses
records of loss and accuracy metrics from different hyper-parameter settings.”

Format your response as follows:

Objective: Define the final goal
Thought: Describe your reasoning process
Action: Specify the action to take; valid actions are ’Final Answer’ or {tool names}
Action Input: Input for the action
Observation: Outcome of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: The proposed hyper-parameters for the task

Analyze the completed tasks and their outcomes. Propose a new task focused on unexplored hyperparameter spaces or
optimization techniques to methodically reach the final objective. The task executor will adjust hyperparameters and
run the training script. Ensure your proposed hyperparameters are distinct from those previously tested, and state your
recommendation as the ’Final Answer’.

Objective: {optim goal}
Thought: {agent scratchpad}

C.2. Executor Agent

You are the machine learning experimenter and asked to finish the given objective below. To accomplish the task, you
have access to the following tools:

Name: ”LoadConfigs”
Description: ”Useful for when you need to loading the model training configs and read the content. The file contains
the hyper-parameters that used to define the training details of the model.”

Name: ”WriteConfigs”
Description: ”Useful for when you need to writing the changed configs into file. Input should be the hyper-parameters
that you want to write into the file IN JSON FORMAT. And you should also keep the unchanged Hyperparameter into
the file.”

Name: ”ExecutePythonFile”
Description: ”Useful for when you need to execute the python file to training the model”

Name: ”LoadTrainingLogs”
Description: ”Useful for when you need to loading the model training logs and read the content. The file contains the
training logs (loss, accuracy) generated by training.”

Use the following format:

Task: the input task you must solve
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question

After finish the task, analyze the training logs to make a summary about this experiment, including the analysis of the
training trajectory and final training results. Then provide your answer with Final Answer.

Task: {task name}

18



Large Language Model Agent for Hyper-Parameter Optimization

Thought:{agent scratchpad}

D. Example of Experimental Logs
In this section, we present selected experimental logs produced by AgentHPO for the image classification task using the
Cifar dataset. Owing to space constraints, we illustrate only the initial experiment and the experiment that yielded the
optimal results.

D.1. GPT-3.5 Experimental Logs

Experiment 1:

Based on the given information, I would recommend the following initial set of hyper-parameter settings to maximize
accuracy:

global pool: ’avgmax’
learning rate: 1e-3
optimizer: ’adam’
epochs: 100
model name: ’resnet18’
weight decay: 1e-4
drop rate: 0.3
momentum: 0.9
batch size: 256

These settings aim to strike a balance between model complexity, regularization, and training efficiency, considering
the dataset and the available models. Adjustments can be made based on the performance of the initial training runs.

Training Trajectory:
Epoch: [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70]
Train Loss: [1.993, 0.9729, 0.5704, 0.2754, 0.0984, 0.0466, 0.0383, 0.0374, 0.0148, 0.0205, 0.0247, 0.0161, 0.0187,
0.018, 0.0113]
Train Acc: [27.47, 65.47, 80.205, 90.9475, 97.0475, 98.7675, 98.82, 98.7775, 99.615, 99.3625, 99.18, 99.5225,
99.3925, 99.4, 99.6625]
Val Loss: [1.6491, 0.9406, 0.6651, 0.6689, 0.7548, 0.962, 0.8462, 1.0437, 0.9182, 0.8397, 0.8824, 0.9271, 0.9714,
0.9869, 1.6386]
Val Acc: [42.57, 66.96, 77.0, 77.23, 78.53, 77.01, 79.4, 77.06, 80.11, 81.84, 80.69, 81.21, 80.82, 80.93, 75.28]

Total Training Time: 3096.64s
Final Validation Accuracy: 81.4500%
The final validation accuracy of the model trained with the given hyper-parameters is 81.45%.

Experiment 7:

The final answer of proposed new hyper-parameters is as follows:

global pool: ’catavgmax’
learning rate: 1e-4
optimizer: ’adam’
epochs: 150
model name: ’resnet18d’
weight decay: 1e-5
drop rate: 0.4
momentum: 0.95
batch size: 128

19



Large Language Model Agent for Hyper-Parameter Optimization

Training Trajectory:
Epoch: [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75]
Train Loss: [1.7289, 0.6375, 0.2236, 0.1073, 0.0614, 0.065, 0.0423, 0.0404, 0.036, 0.0518, 0.0569, 0.027, 0.0289,
0.0312, 0.0216, 0.0282]
Train Acc: [36.6725, 77.785, 92.315, 96.3375, 98.105, 97.865, 98.6375, 98.655, 98.74, 98.2775, 98.1325, 99.1125,
99.0875, 98.98, 99.3175, 99.1]
Val Loss: [1.5076, 0.7051, 0.6053, 0.9768, 0.8362, 0.7814, 0.8403, 0.7787, 0.805, 0.8523, 0.7458, 0.827, 0.945,
0.9369, 0.8229, 0.889]
Val Acc: [45.51, 75.41, 80.48, 76.1, 79.73, 80.63, 80.99, 82.31, 81.09, 81.14, 83.16, 82.28, 80.71, 80.78, 82.81, 81.17]
Total Training Time: 2816.78s
Final Validation Accuracy: 82.82%

The model trained with the recommended hyper-parameter settings achieved a final validation accuracy of 82.82%.
The training trajectory indicates that the model may be overfitting as the training accuracy continues to increase while
the validation accuracy fluctuates. Further adjustments to the hyper-parameters and potential regularization techniques
may be necessary to improve the model’s generalization performance.

Final analyse result:
1. Best Hyper-Parameter Found in Experiment:
The best hyper-parameter configuration was found in Experiment 7, which achieved a final test accuracy of 82.82%.

The hyper-parameter configuration is as follows:
- Global Pooling: ’catavgmax’
- Learning Rate: 1e-4
- Optimizer: ’adam’
- Epochs: 150
- Model Name: ’resnet18d’
- Weight Decay: 1e-5
- Drop Rate: 0.4
- Momentum: 0.95
- Batch Size: 128

2. Influence of Each Hyper-Parameter:
- Learning Rate: Lower learning rates (e.g., 1e-4) seem to perform better than higher rates. They help stabilize training
and improve generalization.
- Optimizer: ’adam’ consistently outperformed ’sgd’ in terms of final test accuracy, indicating that it is a better choice
for this task.
- Epochs: Longer training (e.g., 150 epochs) generally led to better performance, but potential overfitting after a certain
point was observed.
- Model Name: ’resnet18d’ was the model that consistently performed well across experiments.
- Weight Decay: Small weight decay values (e.g., 1e-5) performed better, suggesting the importance of regularization.
- Drop Rate: A drop rate of 0.4 seemed to be effective in preventing overfitting in several experiments.
- Momentum: Higher momentum values (e.g., 0.95) helped improve the model’s training speed and performance in
some cases.
- Batch Size: Larger batch sizes (e.g., 128) performed better, likely due to improved gradient estimates.

3. Potential Future Exploration Direction:
- Further exploration of learning rates: Experiment with a wider range of learning rates to find the optimal value for
this specific task.
- Model architecture exploration: Consider exploring other architectures or variations of ’resnet18d’ to see if any
provide better results.
- Data augmentation: Investigate the impact of different data augmentation techniques on model performance to

20



Large Language Model Agent for Hyper-Parameter Optimization

potentially improve generalization.
- Regularization methods: Experiment with different regularization techniques (e.g., dropout rates, weight decay) to
find the right balance between overfitting and underfitting.
- Learning rate schedules: Implement learning rate schedules (e.g., learning rate annealing) to potentially enhance
training stability.
- Hyperparameter tuning: Utilize automated hyperparameter optimization techniques (e.g., Bayesian optimization) to
search for optimal hyperparameters efficiently.

D.2. GPT-4 Experimental Logs

Experiment 1:

To tune the hyperparameters for the ResNet models on the CIFAR-10 dataset, it’s important to select a range that
has been generally found to work well for image classification tasks. Here is an initial suggestion for setting each
hyperparameter, along with the reasoning behind each choice:

1. global pool: Start with ’avg’ as it’s a common approach that helps to reduce overfitting compared to ’max’ pooling.

2. learning rate: Initialize in the middle of the log-scale range, around 1e-3. This is often a good starting point for
learning rate. Be prepared to adjust this based on whether the loss is changing too slowly or too quickly.

3. optimizer: Use ’adam’ to start with since it generally converges faster and with less tuning than ’sgd’, though ’sgd’
often yields better generalization with well-tuned learning rate and momentum.

4. epochs: Begin with a moderate number of epochs, such as 100. This represents a balance between underfitting (25
epochs might be too few) and overfitting or unnecessary computation (200 epochs could be too many if early stopping
criteria or learning rate schedules are used).

5. model name: Start with ’resnet18’ as it is the most standard of the models and thus the most likely to have
established baselines. After establishing a baseline with ’resnet18’, you can experiment with the other variants.

6. weight decay: Opt for a moderate value, like 1e-4. It helps regularize the learning process but setting it too high
might lead to underfitting.

7. drop rate: Begin with a small dropout rate, such as 0.1, to prevent overfitting, especially since CIFAR-10 is a
relatively small dataset. Adjust as necessary based on validation set performance.

8. momentum: If you opt for ’sgd’, set momentum around 0.9 as it is a typical value that helps accelerate the gradient
vectors in the right directions, thus leading to faster converging.

9. batch size: Start around 128 which is a balanced trade-off between the benefits of larger batch size (stability and
performance) and smaller batch size (memory constraints and potential for better generalization).

Based on these considerations, here’s a proposed initial configuration:

global pool: avg,
learning rate: 1e-3,
optimizer: adam,
epochs: 100,
model name: resnet18,
weight decay: 1e-4,
drop rate: 0.1,
momentum: 0.9, # Only applicable for sgd optimizer
batch size: 128

Please consider this as a starting point. It is crucial to use a systematic approach such as grid search, random search,
or Bayesian optimization to find the best hyperparameters. Furthermore, proper techniques for avoiding overfitting,

21



Large Language Model Agent for Hyper-Parameter Optimization

such as early stopping, data augmentation, or regularization, should complement this process. Monitoring both the
training and validation loss will inform whether further adjustments are needed and help in the detection of overfitting
or underfitting.

Training Trajectory:
Epoch: [0, 5, 10, 15, 20, 25, 30, 35, 40, 45]
Train Loss: [1.5783, 0.5534, 0.2122, 0.1135, 0.0776, 0.0759, 0.054, 0.0521, 0.0536, 0.0508]
Train Acc: [42.0275, 80.615, 92.675, 96.1475, 97.3, 97.44, 98.1325, 98.2725, 98.1925, 98.2525]
Val Loss: [1.7791, 0.7139, 0.7447, 0.8525, 0.7293, 0.9376, 0.8194, 0.8674, 0.8768, 0.9351]
Val Acc: [39.43, 75.77, 78.15, 78.3, 81.33, 78.63, 80.68, 80.24, 80.23, 78.59] Total Training Time: 1438.35s
Final Validation Accuracy: 80.4100%
The initial hyperparameter configuration led to a final validation accuracy of 80.41% on the CIFAR-10 dataset with the
ResNet18 model. However, the model shows signs of overfitting as evidenced by the high training accuracy and the
increase in validation loss over epochs. Further hyperparameter tuning and regularization techniques are necessary to
improve the model’s generalization to new data.

Experiment 4:

The proposed new hyperparameters for the next experiment are:

global pool: catavgmax, # A combination of ’avg’ and ’max’ pooling not yet tested
learning rate: 1e-4, # A value that has shown promise in Experiment 3
optimizer: adam, # ’adam’ is chosen for fast convergence
epochs: 150, # An increased number of epochs to allow learning rate scheduler to work effectively
model name: resnet18d, # A variant of ResNet18 that hasn’t been tested yet
weight decay: 2e-4, # A moderate value for weight decay, higher than in Experiment 1 but lower than in Experiment 2
drop rate: 0.25, # A value between the drop rates tested in Experiments 2 and 3
momentum: 0.9, # Momentum is not applicable for ’adam’ optimizer
batch size: 96, # A batch size between those tested in Experiments 1 and 2

This configuration is chosen to explore different areas of the hyperparameter space that have not been fully tested in
the previous experiments, with a focus on improving model generalization and reducing overfitting.

Training Trajectory:
Epoch: [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50]
Train Loss: [1.865, 0.7766, 0.3374, 0.1026, 0.0508, 0.043, 0.0444, 0.0298, 0.0285, 0.028, 0.0266]
Train Acc: [31.9975, 72.8975, 88.9175, 97.035, 98.56, 98.755, 98.6025, 99.0475, 99.0875, 99.1025, 99.1675]
Val Loss: [1.5616, 0.7803, 0.6193, 0.7015, 0.7287, 0.6634, 0.7635, 0.9808, 0.7534, 0.8566, 0.8475]
Val Acc: [45.55, 72.9, 78.83, 78.98, 79.6, 82.44, 80.86, 77.17, 82.24, 79.39, 80.99]
Total Training Time: 2585.06s
Final Validation Accuracy: 82.4500%
The experiment with the specified configuration achieved a high training accuracy of 99.1675% but a moderate
validation accuracy of 82.45%, indicating potential overfitting. Future work should focus on improving generalization
to avoid overfitting and enhance performance on unseen data.

Final analyse result:
1. Best Hyperparameter Configuration Found in Experiments:
- Experiment 4 yielded the highest final validation accuracy (82.45%). The key hyperparameters in this experiment
were:
- Global Pool: catavgmax
- Learning Rate: 1e-4
- Optimizer: adam
- Epochs: 150
- Model Name: resnet18d
- Weight Decay: 2e-4

22



Large Language Model Agent for Hyper-Parameter Optimization

- Drop Rate: 0.25
- Batch Size: 96

2. Influence of Each Hyperparameter:
- Global Pool: Switching between ’avg’, ’max’, and combined strategies showed varying impacts on overfitting and
model performance.
- Learning Rate: Lower learning rates (1e-4 to 5e-5) generally improved generalization but required more epochs for
convergence.
- Optimizer: ’adam’ provided fast convergence but sometimes led to overfitting; ’sgd’ improved generalization but
required careful tuning of learning rate and momentum.
- Epochs: Higher epoch counts (150-200) were beneficial for models with lower learning rates, allowing for more
gradual learning and convergence.
- Model Variants: Different ResNet variants (e.g., ‘seresnet18‘, ‘skresnet18‘) influenced the model’s ability to learn
and generalize, with each showing unique performance characteristics.
- Weight Decay: Higher values (up to 5e-4) helped in regularizing the model and reducing overfitting.
- Drop Rate: Varied impacts were observed; higher drop rates (0.3-0.4) seemed beneficial in some cases for preventing
overfitting.
- Momentum: Used with ’sgd’, values around 0.85 to 0.95 helped in smoothing out updates and improving convergence.
- Batch Size: Middle-range sizes (64-128) provided a balance between performance and generalization.

3. Potential Future Exploration Directions:
- Hyperparameter Ranges: Further fine-tuning within the established ranges could yield improvements, especially
balancing learning rate and epochs for different optimizers.
- Regularization Techniques: Exploring additional regularization methods (e.g., more advanced dropout strategies, data
augmentation) could help in reducing overfitting.
- Model Variants: Testing other ResNet variants or even different architectures might reveal models better suited to the
CIFAR-10 dataset.
- Pooling Strategies: Continued exploration of different global pooling methods (like combinations of ’avg’ and ’max’)
may uncover optimal feature extraction techniques.
- Learning Rate Schedulers: Experimenting with different schedulers could lead to better training dynamics.
- Batch Size Optimization: Investigating the impact of batch size on model performance and generalization in more
detail could be valuable, as different sizes may affect the noise in gradient estimates.
- Ensemble Techniques: Combining predictions from models trained with different hyperparameters might enhance
overall performance.

In summary, while Experiment 4 provided the best results, there is room for improvement in generalization and perfor-
mance. Further experiments should focus on fine-tuning hyperparameters, exploring new regularization techniques,
and possibly trying different model architectures or ensemble methods.

23


