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Abstract—Urban spatio-temporal prediction is crucial for
informed decision-making, such as traffic management, re-
source optimization, and emergence response. Despite remark-
able breakthroughs in pretrained natural language models that
enable one model to handle diverse tasks, a universal solution for
spatio-temporal prediction remains challenging. Existing predic-
tion approaches are typically tailored for specific spatio-temporal
scenarios, requiring task-specific model designs and extensive
domain-specific training data. In this study, we introduce UniST,
a universal model designed for general urban spatio-temporal
prediction across a wide range of scenarios. Inspired by large
language models, UniST achieves success through: (i) utilizing di-
verse spatio-temporal data from different scenarios, (ii) effective
pre-training to capture complex spatio-temporal dynamics, (iii)
knowledge-guided prompts to enhance generalization capabilities.
These designs together unlock the potential of building a univer-
sal model for various scenarios. Extensive experiments on more
than 20 spatio-temporal scenarios, including grid-based data and
graph-based data, demonstrate UniST’s efficacy in advancing
state-of-the-art performance, especially in few-shot and zero-shot
prediction. The datasets and code implementation are released
on https://github.com/tsinghua-fib-lab/UniST.

Index Terms—Spatio-temporal prediction, prompt learning,
universal model.

I. INTRODUCTION

Pre-trained foundation models have showcased remarkable
success in Natural Language Processing (NLP) [1], [2], par-
ticularly excelling in few-shot and zero-shot settings [2], [3].
However, similar breakthroughs have not yet been achieved
in the field of urban spatio-temporal prediction [4]–[6]. Data
scarcity is a critical challenge [7]–[9], as acquiring extensive
datasets across diverse urban contexts is often infeasible due
to privacy concerns, cost, and time constraints. This scarcity
restricts the ability of traditional models to generalize across
varied environments and impedes their performance in cities
or scenarios with limited data. In this paper, our goal is to
establish a foundation model for general urban spatio-temporal
prediction — specifically, to develop a universal model that
offers superior performance and powerful generalization capa-
bilities across diverse spatio-temporal scenarios. This entails
training a single model capable of effectively handling various
urban contexts, encompassing various domains such as human
mobility, traffic and communication networks across different
cities.

The significance of such a universal model lies in its
ability to address prevalent data scarcity issues in urban areas.
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Fig. 1: The transition from traditional separate deep learning
models to a one-for-all universal model for urban spatio-
temporal prediction.

The varying levels of digitalization across domains and cities
often result in imbalanced and incomplete datasets. Despite
notable advancements in existing spatio-temporal modeling
approaches [10]–[16], their effectiveness is typically confined
to specific domains within a single city. The reliance on exten-
sive training data further impedes the model’s generalization
potential. Consequently, current solutions are still far from
“universality”, and remain narrowly applicable.

A universal spatio-temporal model must possess two es-
sential capabilities. Firstly, it must be capable of leveraging
abundant and rich data from different urban scenarios for
training. The training of the foundational model should ensure
the acquisition of ample and rich information [1], [17], [18].
Second, it should demonstrate robust generalization across
different spatio-temporal scenarios. Especially in scenarios
with limited or no training data, the model can still work well
without obvious performance degradation [17], [19].

However, realizing the aforementioned capabilities encoun-
ters significant challenges specific to spatio-temporal data,
which impede the direct application of current foundation
models developed for language and vision domains. The first
challenge arises from the inherent diverse formats of spatio-
temporal datasets. Unlike languages with a natural and unified
sequential structure or images and videos adhering to standard-
ized dimensions, spatio-temporal data collected from different
sources exhibit highly varied features. These include variable
dimensions, temporal durations, and spatial coverages that
differ significantly, posing difficulties in standardizing their
structure. Additionally, spatio-temporal data are organized in
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distinct structures, such as grid-based spatial partitions and
graph-based spatial correlations. The conference version [20]
was limited to handling only grid-based data. The second
challenge arises from high variations in data distributions
across multiple scenarios. Faced with highly distinct spatio-
temporal patterns, the model may struggle to adapt to these
differences. Unlike language, which benefits from a shared
vocabulary, various scenarios of different domains and cities
often operate on entirely different spatial and temporal scales,
lacking common elements for effective training and general-
ization.

Although the displayed spatio-temporal patterns vary sig-
nificantly, there are certain underlying laws that should be
common among them. This principle arises from the intuition
that human activity influences various spatio-temporal data
generated in urban settings, leading to the existence of uni-
versal patterns. For example, traffic speed and communication
networks exhibit distinct spatio-temporal patterns, yet both are
influenced by human mobility and therefore adhere to similar
underlying principles. Additionally, while temporal periodic
patterns vary across domains, they share fundamental concept
of repetition. Furthermore, city layouts vary considerably
between different urban areas, but the relationships among
various functional zones within cities may exhibit shared
characteristics. Therefore, the key to building a one-for-all
model is to capture, align and leverage these shared underlying
characteristics effectively, while accommodating both grid and
graph data structures.

To this end, we introduce UniST, a universal solution
for urban spatio-temporal prediction through advanced pre-
training and prompt learning. Notably, UniST achieves three
essential capabilities of:

1) Scalability across scenarios with diverse spatio-temporal
data, including various domains, cities, and data structures;

2) Effective pre-training to capture complex spatio-temporal
relationships;

3) utilizing spatio-temporal prompts to align underlying
shared patterns across scenarios.

UniST achieves the above capabilities through its holistic
design driven by four key components: data, architecture, pre-
training, and prompt learning. Firstly, we harness the rich
diversity inherent in spatio-temporal scenarios by leveraging
extensive data from various domains and cities. Secondly, we
design spatio-temporal patching to unify diverse data into a
sequential format, facilitating the utilization of the powerful
Transformer architecture. Thirdly, drawing inspiration from
large language and vision models [21], [22], UniST adopts
the widely-used generative pre-training strategy – Masked
Token Modeling (MTM). We further enhance the model’s
capability to capture complex spatio-temporal relationships by
employing multiple masking strategies that comprehensively
address multi-perspective correlations. Moreover, informed by
the established domain knowledge in spatio-temporal model-
ing, we design an innovative prompt learning approach. The
elaborated prompt network identifies underlying and shared
spatio-temporal patterns, adapting dynamically to generate
useful prompts. In this way, UniST aligns distinct data distri-

TABLE I: Comparison of UniST with other spatio-temporal
models regarding important properties.

Model Scalability(1) Few-shot Zero-shot Efficiency
PromptST [42] ✗ ✗ ✗ ✓
GPT-ST [43] ✗ ✗ ✗ ✓
STEP [44] ✗ ✗ ✗ ✓

ST-SSL [36] ✗ ✗ ✗ ✓
TrafficBERT [45] ✓ ✗ ✗ ✓

TFM [46] ✗ ✗ ✗ ✓
UrbanGPT [47] ✓ ✓ ✓ ✗
STG-LLM [48] ✗ ✗ ✗ ✗

UniST ✓ ✓ ✓ ✓

Note: (1) The model’s ability to leverage extensive datasets with diverse
formats for scaling up the performance.

butions of various datasets and advances towards developing a
one-for-all universal model. Our contributions are as follows:
• To our best knowledge, we are the first to address universal

spatio-temporal prediction by investigating the potential of
a one-for-all model in diverse spatio-temporal scenarios.

• We propose UniST that harnesses data diversity and achieves
universal spatio-temporal prediction through advanced pre-
training and prompt learning. It has made a paradigm shift
from traditional separate deep learning methods to a one-
for-all model.

• Extensive experiments demonstrate the generality and uni-
versality of UniST. It achieves new state-of-the-art perfor-
mance on various prediction tasks, particularly, superior
few-shot and zero-shot capabilities.

II. RELATED WORK

Urban Spatio-Temporal Prediction: Urban spatio-temporal
prediction [4], [5] aims to model and forecast the dynamic
patterns of urban activities over space and time. Deep learning
techniques has propelled significant advancements. A spec-
trum of models, including CNNs [11], [12], RNNs [23], [24],
ResNets [11], [25], MLPs [26], [27], GNNs [10], [28], [29],
Transformers [30]–[32], and diffusion models [16], [33], have
been introduced to capture spatio-temporal patterns. Simulta-
neously, cutting-edge techniques like meta-learning [34], [35],
contrastive learning [36], [37], and adversarial learning [38]–
[40] are also utilized. However, most approaches remain con-
strained by training separate models for each specific dataset.
Some studies [34], [35], [41] explore transfer learning between
cities, however, a certain amount of data samples in the target
city are still required. Current solutions are restrictive to
specified spatio-temporal scenarios and require training data,
while our model allows generalization across diverse scenarios
and provides a one-for-all solution.

Foundation Models for Spatio-temporal Data and Time
Series: Inspired by the remarkable strides in foundation
models for NLP [1], [2] and CV [18], [49], foundation models
for urban prediction have emerged recently. Some explorations
unlock the potential of large language models (LLMs) in
this context. Intelligent urban systems like CityGPT [50],
[51], CityBench [52] and UrbanGPT [47] have demonstrated
proficiency in addressing language-based tasks. Additionally,
LLMs are utilized for describing urban-related images [53]
to benefit downstream tasks and predict user activities [54].
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Moreover, the application of LLMs extends to traffic signal
control [55], showcasing their utility in tackling complex
spatio-temporal problems beyond languages. Recently, there
also has been great progress in foundation models for time
series [56]–[59]. Unlike time series characterized by a straight-
forward sequential structure, spatio-temporal data presents a
more intricate nature with intertwined dependencies across
both spatial and temporal dimensions. While exploring the in-
tegration of LLMs is promising, it’s important to recognize that
spatio-temporal data is not inherently generated by language.
Thus, developing foundation models specifically trained on
pure spatio-temporal data is also an important direction. In
Table I, we compare the essential properties of UniST with
other approaches employing pre-training, prompt learning, or
LLMs. UniST encompasses all these essential capabilities,
whereas other approaches have certain limitations.

Prompt Learning: Prompt learning has achieved superior
performance in large models [60], [61], with the goal of
enhancing the generalization capability of pretrained models
on specific tasks or domains. Typically, language models
usually use a limited number of demonstrations as prompts
and vision models often employ a learnable prompt network
to generate useful prompts, known as prompt learning. Our
research aligns with prompt learning, where spatio-temporal
prompts are adaptively generated based on spatio-temporal
patterns through a prompt network.

Addressing Data Scarcity in Urban Spatio-Temporal
Learning: Data scarcity [7], [62] poses a significant challenge
in urban spatiotemporal modeling, especially when dealing
with cities and regions that lack extensive historical data.
Researchers have explored multiple approaches to mitigate
this issue. One of the most common strategies is transfer
learning [7], [41], [62]–[65], where models are pretrained
on source cities with abundant data and then adapted for
use in target cities with limited data. Another approach to
address data scarcity is synthetic data generation [33], [66],
[67], which creates additional training data by mimicking the
statistical characteristics of real-world data. A more recent
approach involves developing models, such as UniST [20],
that can generalize across various cities without requiring city-
specific training [68]. Similar to foundational models in natural
language processing (NLP) and computer vision (CV) [18],
[69]. UniST’s “one-for-all” model approach allows it to adapt
flexibly to new urban contexts while maintaining performance
across a wide range of spatiotemporal conditions.

III. METHODOLOGY

A. Preliminary

Spatial and Temporal Partitions. We use a grid system
for spatial partitioning, dividing the city into equal, non-
overlapping areas defined by longitude and latitude on an
H × W map. For each area, the temporal dynamics are
recorded at certain intervals.
Spatio-Temporal Data. A spatio-temporal data X is defined
as a four-dimensional tensor with dimensions T×C×H×W .
T represents time steps. C represents the number of variables,
For instance, in the Taxi flow dataset, C = 2, where the

variables are inflow and outflow. In contrast, in the Cellular
dataset, C = 1, representing cellular network traffic. H and
W represent spatial grids. T , C, H , and W can vary across
different spatio-temporal scenarios.
Spatio-Temporal Prediction. For a specific dataset, given lh
historical observations for the grid map, we aim to predict
the future k steps. The spatio-temporal prediction task can be
formulated as learning a θ-parameterized model F : X[t:t+k] =
Fθ(X[t−lh:t]).
Few-Shot and Zero-Shot Predictions. The model is trained
on multiple source datasets and then adapted to a target dataset.
In few-shot learning, it is fine-tuned with a small amount
of target samples; in zero-shot learning, it makes predictions
without any fine-tuning.

B. Pre-training and Prompt Learning

Universal spatio-temporal prediction aims to empower a
single model to effectively handle diverse spatio-temporal
scenarios, requiring the unification of varied spatio-temporal
data within a cohesive model. This necessitates addressing
significant distribution shifts across datasets of different sce-
narios. To achieve this goal, we propose a framework for pre-
training and prompt learning, leading to a universal prediction
model, UniST. Figure 2 shows the overview architecture,
detailing UniST with two stages:
• Stage 1: Large-scale spatio-temporal pre-training. Dif-

ferent from existing methods limited to a single dataset,
our approach utilizing extensive spatio-temporal data from
a variety of domains and cities for pre-training.

• Stage 2: Spatio-temporal knowledge-guided prompt
learning. We introduces a prompt network for in-context
learning, where the generation of prompts is adaptively
guided by well-developed spatio-temporal domain knowl-
edge, such as spatial hierarchy and temporal periodicity.

C. Base Model

Our base model is a Transformer-based encoder-decoder
architecture. Through spatio-temporal patching, it can handle
diverse spatio-temporal data in a unified sequential format.

Spatio-Temporal Patching. The conventional Transformer
architecture is designed for processing 1D sequential data.
However, spatio-temporal data possesses a 4D structure.
To accommodate this, we first split the data into channel-
independent instances, which are 3D tensors. Then, we utilize
spatio-temporal patching to transform the 3D tensor, denoted
as X ∈ RL×H×W , into multiple smaller 3D tensors. If the
original shape is L×H ×W , and the patch size is (l, h, w),
the resulting sequence is given by Ex ∈ RL′×H′×W ′

, L′ =
L
l , H

′ = H
h ,W

′ = W
w .

This transformation involves a 3D convolutional layer with
a kernel size and stride both set to (l, h, w). The process can
be expressed as Ex = CONV3d(X), where Ex represents the
converted 1D sequential data. The sequence length of Ex is
L′ ×H ′ ×W ′.

Positional Encoding. As the original Transformer architec-
ture does not consider the order of the sequence, we follow the
common practice that incorporate positional encoding [21]. To
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Fig. 2: The overview architecture of UniST, which consists of two stages: (i) large-scale spatio-temporal pre-training, (ii)
spatio-temporal knowledge-guided prompt learning.

enhance generalization, we choose sine and cosine functions
rather than learnable parameters for positional encoding. This
encoding is separately applied to the two dimensions.

Encoder-Decoder Structure. The base model utilizes an
encoder-decoder framework inspired by Masked Autoencoder
(MAE) [22]. It processes input patches with a certain masking
ratio, where the encoder takes the unmasked patches and the
decoder reconstructs the image using the encoder’s output and
the masked patches. Our focus is on capturing comprehensive
spatio-temporal dependencies, including both high-level and
low-level relationships, with the goal of accurately predicting
values at specific time and space coordinates. Unlike MAE,
which uses a lightweight decoder for pre-training, our model
employs a full-sized decoder that plays a crucial role in both
pre-training and fine-tuning. It can be formulated as:

Eenc = ENCODER(Ex),

Ydec = DECODER(Eenc, Emask),

where Emask denotes embeddings of masked patches.

D. Spatio-Temporal Self-Supervised Pre-train

In pretrained language models, the self-supervised learning
task is either masking-reconstruction [21] or autoregressive
prediction [2]. Similarly, in vision models, visual patches
are randomly masked and the pre-training objective is to
reconstruct the masked pixels. To further augment the model’s
capacity to capture intricate spatio-temporal relationships and
intertwined dynamics, we introduce four distinct masking
strategies during the pre-training phase, which are shown in
the left box in the stage 1 of Figure 2. Suppose the masking
percentage is r, we explain these strategies as follows:
• Random masking. Patches are randomly masked to capture

fine-grained spatio-temporal relationships.

M ∼ U[0, 1], Ex = Ex[M < 1− r], M ∈ RL′×H′×W ′
.

• Tube masking. This strategy simulates scenarios where
data for certain spatial units is entirely missing across all
instances in time, mirroring real-world situations where
some sensors may be nonfunctional—a common occurrence.
The goal is to improve spatial extrapolation competence.

M ∼ U[0, 1], Ex = Ex[ : ,M < 1− r], M ∈ RH′×W ′
.

• Block masking. It involves the complete absence of an
entire block of spatial units across all instances in time.
The goal is to enhance spatial generalization ability.

M ∼ UNIFORM(1, 2),

Ex = Ex[ : ,
M − 1

2
H ′ :

M

2
H ′,

M − 1

2
W ′ :

M

2
W ′].

• Temporal Masking. By masking the future data, it compels
the model to reconstruct the future based solely on historical
information. It refines the model’s capability to capture
temporal dependencies from the past to the future.

M = CONCAT([1(1−r)L′×H′×W ′ , 0rL′×H′×W ′ ]),

Ex = Ex[M = 1].

By employing these diverse masking strategies, the model
can systematically enhance its modeling capabilities from a
comprehensive perspective, simultaneously addressing spatio-
temporal, spatial, and temporal relationships.

E. Spatio-Temporal Knowledge-Guided Prompt

Prompt learning plays a critical role in enhancing UniST’s
generalization ability. Before delving into the details of our
prompt design, it is essential to discuss why pre-trained models
can be applied to unseen scenarios.
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1) Spatial-Temporal Generalization: In urban prediction
tasks, the distributions of features and labels differ across
domains and cities, denoted as XA ̸= XB , YA ̸= YB ,
where X and Y denote features and labels, while A and B
represent different cities or domains. Taken A and B as a
simple example, generalization involves leveraging knowledge
acquired from the A dataset and adapt it to the B dataset. The
key point lies in identifying and aligning “related” patterns
between A and B datasets. While finding similar patterns for
an entire dataset may be challenging, we claim that identifying
and aligning fine-grained patterns is feasible. Specifically, we
provide some assumptions that applies to prompt-empowered
spatio-temporal generalization:

Assumption 1. For a new dataset B, it is possible to identify
fine-grained patterns related to the training data A.

XA ̸= XB , YA ̸= YB ,

∃xa ∈ XA, ya ∈ YA, ∃xb ∈ XB , yb ∈ YB , : xa ≈ xb, ya ≈ yb.

Assumption 2. Distinct spatio-temporal patterns correspond
to customized prompts.

P ∗
i ̸= P ∗

j if D(xi, xj) > ϵ,

D(P ∗
i , P

∗
j ) > D(P ∗

m, P ∗
n) if D(xi, xj) > D(xm, xn),

where xi denotes the fine-grained spatio-temporal pattern, P ∗
i

represents the prompt of xi, and D is the similarity between
xi and xj .

Assumption 3. There exists fθ that captures the mapping
relationship from the spatio-temporal pattern xi to prompt P ∗

i .

Pi = fθ(xi) where θ = argmin
θ

∑
i

DISTANCE(P ∗
i , fθ(xi)).

Based on these assumptions, our core idea is that for differ-
ent inputs with distinct spatio-temporal patterns, customized
prompts should be generated adaptively.

2) Spatio-Temporal Domain Knowledge: Given the afore-
mentioned assumptions, a critical consideration is how to
define the concept of “similarity” to identify and align shared
spatio-temporal patterns. Here we leverage insights from
well-established domain knowledge in spatio-temporal mod-
eling [5], [11], encompassing properties related to both space
and time. There are four aspects to consider when examining
these properties:
• Spatial closeness: Nearby units may influence each other.
• Spatial hierarchy: The spatial hierarchical organization im-

pacts the spatio-temporal dynamics, requiring a multi-level
perception on the city structure.

• Temporal closeness: Recent dynamics affect future results,
indicating a closeness dependence.

• Temporal period: Daily or weekly patterns exhibit similari-
ties, displaying a certain periodicity.
For simplicity, we provide some straightforward implemen-

tations, which are shown in the four networks in Figure 2,
i.e., NETtc, NETtp, NETsc, and NETsh. For the spatial
dimension, we first employ an attention mechanism to merge
the temporal dimension into a representation termed Es. Then,
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Fig. 3: Illustration of the prompt generation process.

to capture spatial dependencies within close proximity, a two-
dimensional convolutional neural network (CNN), i.e., NETsc,
with a kernel size of 3 is employed. To capture spatial
hierarchies, we utilize CNNs with larger kernel sizes, i.e.,
NETsh. These larger kernels enable the perception of spatial
information on larger scales, which facilitate to construct a
hierarchical perspective. As for the temporal dimension, we
employ an attention network, i.e., NETtc, to aggregate the
previous M steps denoted as Xc. Regarding the temporal
period, we select corresponding time points from the previous
N days, denoted as Xp. Subsequently, we employ another
attention network, i.e., NETtp, to aggregate the periodical
sequence, which captures long-term temporal patterns. The
overall process is formulated as follows:

Esc = CONV2D[3](Xs),

Esh = {CONV2D[2i + 1](Xs)}, i ∈ {2, 3, 4},
Etc = ATTENTION(Xc),

Etp = ATTENTION(Xp).

It is essential to emphasize that the learning of Esc, Esh, Etc,
and Etp is not restricted by our practice. Practitioners have
the flexibility to employ more complex designs to capture
richer spatio-temporal properties. For example, Fourier-based
approaches [70], [71] can be utilized to capture periodic
patterns.

3) Spatio-Temporal Prompt Learner: Given the repre-
sentations of properties derived from spatio-temporal do-
main knowledge, the pivotal question is how to generate
prompts—how does spatio-temporal knowledge guide prompt
generation? Here we utilize prompt learning techniques. While
prompt learning in computer vision [61] often train fixed
prompts for specific tasks such as segmentation, detection, and
classification. Due to the high-dimensional and complex nature
of spatio-temporal patterns, training a fixed prompt for each
case becomes impractical.

To tackle this issue, we draw inspirations from memory
networks [72] and propose a novel approach that learns a
spatial memory pool and a temporal memory pool. In the
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prompt learning process, these memory pools are optimized
to store valuable information about spatio-temporal domain
knowledge. As shown in Figure 3, the spatial and memory
pools are defined as follows:

KMs = {(ks,0,ms,0), (ks,1,ms,1), ..., (ks,N−1,ms,N−1)},
KMt = {(kt,0,mt,0), (kt,1,mt,1), ..., (kt,N−1,mt,N−1)},

where ks,i,ms,i, kt,i,mt,i, i ∈ {0, 1, ..., N − 1} are all learn-
able parameters, and the memory is organized in a key-value
structure following existing practice [72], [73].

Subsequently, useful prompts are generated based on these
optimized memories. This involves using the representations of
spatio-temporal properties as queries to extract valuable mem-
ory knowledge, i.e., pertinent embeddings from the memory
pool. Figure 3 illustrates the process, and it is formulated as
follows:

αsc = [ks,0; ks,1; ..., ks,N−1]E
T
sc, Psc =

∑
i

αsc,ims,i,

αsh = [ks,0; ks,1; ..., ks,N−1]E
T
sh, Psh =

∑
i

αsh,ims,i,

αtc = [kt,0; kt,1; ..., kt,N−1]E
T
tc, Ptc =

∑
i

αtc,imt,i,

αtp = [kt,0; kt,1; ..., kt,N−1]E
T
tp, Ptp =

∑
i

αtp,imt,i,

where Esc, Esh, Etc, Etp represent four representations related
to four types of spatio-temporal domain knowledge, and
Psc, Psh, Ptc, Ptp are the extracted prompts. This allows the
model to adaptively select the most useful information for
prediction. These prompts are then integrated into the input
space of the Transformer architecture, which are displayed in
the upper part of Figure 3.

F. UniST for Graph-based Data

UniST is quite versatile and can handle various types of
structural data. Besides grid-based data, it can also process
graph-based spatio-temporal data, where spatial units are
organized according to a graph structure. This organization
is common in spatio-temporal prediction, as city road maps
often serve as the topology. Graph-based spatio-temporal
data are often described as GST = (V, E ,A,X ), where (1)
V = v1, v2, . . . , vN denotes the set of nodes, with N being
the number of nodes. (2) E = eij = (vi, vj) denotes the set
of edges. (3) A is the adjacency matrix. (4) X represents the
time series data for each node. The spatio-temporal data for a
graph structure can be represented as X ∈ RT×N×1.

To adapt UniST to graph-based data, we adjusted the spatial
patch size to 1 and applied the same spatio-temporal patching
approach used for grid-based data. This allows us to adapt a
pretrained UniST model from grid-based data to graph-based
data by simply training an additional patching encoder.

G. Model Training

In training UniST, we utilize mean squared error (MSE)
as the loss function, which calculates the error between the
reconstructed masked portions and the ground truth values.
The MSE loss is formulated as follows:

L =
1

N

N∑
i=1

(Y i
dec − Ŷ i)2

where Ydec represents the output of the decoder, Y denotes
the ground truth, and N is the number of masked samples.
This loss function guides the model in minimizing the error
between predictions and actual values, thereby improving its
reconstruction accuracy.

The training process alternates across multiple datasets
and employs four distinct masking strategies. During each
iteration, we randomly select a dataset and a masking strategy,
enabling the model to perform gradient descent training under
diverse conditions. This method strengthens the model’s ro-
bustness by exposing it to various spatiotemporal scenarios,
while also reducing the risk of overfitting by ensuring the
model learns from a broad set of inputs and objectives. Let
D = {D1, D2, . . . , Dm} represent the datasets available for
training, and M = {M1,M2, . . . ,M4} denote the set of
masking strategies. We define L(di,mi) as the loss function
based on the selected dataset di and masking strategy mi, with
θ representing the model parameters. The complete training
process can be outlined as follows:

For i = 1 to N :

di ∼ Uniform(D), mi ∼ Uniform(M)

⇒ θ ← θ − η∇L(di,mi; θ)

where N represents the total training iterations, and η is the
learning rate.

H. Method Discussion

UniST effectively addresses complex spatio-temporal de-
pendencies through several key mechanisms. First, By em-
ploying a self-attention mechanism across the unified spatio-
temporal dimensions, the model gains the flexibility to learn
complex dependencies. This design allows it to identify rela-
tionships between any points in time and space without being
limited to predefined dimensions. Second, the integration of
spatio-temporal knowledge-guided prompts within the Trans-
former framework enhances the model’s ability to tailor its
predictions. These prompts facilitate adaptive responses based
on the unique characteristics of each spatio-temporal scenario,
allowing the model to manage dependencies more effectively.
Last but not least, the scalability of the Transformer architec-
ture enables it to handle spatio-temporal data of various forms.
This characteristic supports pre-training on a diverse array
of datasets, which helps the model to learn the underlying
structures and dependencies inherent in urban environments
comprehensively.
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TABLE II: Performance comparison of short-term prediction on seven datasets in terms of MAE and RMSE. We use the
average prediction errors over all prediction steps. Bold denotes the best results and underline denotes the second-best results.

TaxiBJ Crowd Cellular BikeNYC TrafficJN TDrive TrafficSH
Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

HA 53.77 29.82 17.80 6.79 72.94 27.57 11.41 3.43 1.38 0.690 150.2 74.5 1.24 0.771
ARIMA 56.70 39.53 21.87 10.23 81.31 40.22 12.37 3.86 1.20 0.651 211.3 108.5 1.17 0.769

STResNet 45.17 30.87 5.355 3.382 24.30 14.32 8.20 4.98 0.964 0.556 220.1 117.4 1.00 0.723
ACFM 37.77 21.59 4.17 2.34 22.79 12.00 3.93 1.67 0.920 0.559 98.1 51.9 0.833 0.566
STID 27.36 14.01 3.85 1.63 18.77 8.24 4.06 1.54 0.880 0.495 47.4 23.3 0.742 0.469

STNorm 29.37 15.71 4.44 2.09 19.77 8.19 4.45 1.66 0.961 0.532 54.3 47.9 0.871 0.579
STGSP 45.04 28.28 7.93 4.56 39.99 21.40 5.00 1.69 0.882 0.490 94.6 47.8 1.02 0.749

MC-STL 29.14 15.83 4.75 2.39 21.22 10.26 4.08 2.05 1.19 0.833 54.2 28.1 1.00 0.720
PromptST 27.44 14.54 3.52 1.54 15.74 7.20 4.36 1.57 0.953 0.490 47.5 22.8 0.811 0.523

MAU 38.14 20.13 4.94 2.35 39.09 18.73 5.22 2.06 1.28 0.697 48.8 22.1 1.37 0.991
PredRNN 27.50 14.29 5.13 2.36 24.15 10.44 5.00 1.74 0.852 0.463 54.9 25.2 0.748 0.469

MIM 28.62 14.77 5.66 2.27 21.38 9.37 4.40 1.62 1.17 0.650 51.4 22.7 0.760 0.505
SimVP 32.66 17.67 3.91 1.96 16.48 8.23 4.11 1.67 0.969 0.556 46.8 22.9 0.814 0.569
TAU 33.90 19.37 4.09 2.11 17.94 8.91 4.30 1.83 0.993 0.566 51.6 28.1 0.820 0.557

PatchTST 42.74 22.23 10.25 3.62 43.40 15.74 5.27 1.65 1.25 0.616 106.4 51.3 1.10 0.663
iTransformer 36.97 19.14 9.40 3.40 37.01 13.93 7.74 2.53 1.11 0.570 86.3 42.6 1.04 0.655

PatchTST(one-for-all) 43.66 23.16 13.51 5.00 56.80 20.56 9.97 3.05 1.30 0.645 127.0 59.26 1.13 0.679
UniST(one-for-all) 26.84 13.95 3.00 1.38 14.29 6.50 3.50 1.27 0.843 0.430 44.97 19.67 0.665 0.405

IV. PERFORMANCE EVALUATIONS

A. Experimental Setup

To evaluate the performance of UniST, we conducted ex-
tensive experiments on more than 20 spatio-temporal datasets.

Datasets. The datasets we used cover multiple cities, span-
ning various domains such as crowd flow, dynamic popu-
lation, traffic speed, cellular network usage, taxi trips, and
bike demand. Appendix Table VIII and Table IX provide
a summary of the datasets we used. These spatio-temporal
datasets originate from distinct domains and cities, and have
variations in the number of variables, sampling frequency,
spatial scale, temporal duration, and data size.

Baselines. We compare UniST with a broad collection of
state-of-the-art models for spatio-temporal prediction, which
can be categorized into five groups:

• Heuristic approaches. History average (HA) and ARIMA.
• Deep urban prediction approaches. We consider state-

of-the-art urban ST prediction models, including STRes-
Net [11], ACFM [12], MC-STL [37], STGSP [74],
STNorm [75], STID [27], and PromptST [42].

• Foundational models for traffic prediction. Given that
UniST is designed as a universal model, we selected state-
of-the-art foundational models for traffic prediction that
leverage self-supervised learning to ensure a fair compar-
ison. These models include GPT-ST [43], STEP [44], ST-
SSL [36], and an urban foundation model, UrbanGPT [47].
Although GPT-ST, STEP, and ST-SSL are termed founda-
tional models, they are limited to training on data with fixed
node structures, restricting them to datasets with a fixed
number of nodes. For UrbanGPT, we used the pretrained
model on multiple datasets and evaluated its performance
in zero-shot scenarios.

• Video prediction approaches. We compare with com-
petitive video prediction models from the popular bench-
mark, including PredRNN [23], MAU [76], MIM [77],
SimVP [78], and TAU [79].

• Multivariate time series forecasting approaches. We
consider state-of-the-art multivariate time series forecasting
models, including PatchTST [80] and iTransformer [81]. For

a fair comparison, we also train PatchTST for all datasets,
denoted as PatchTST(one-for-all).

• Meta learning approaches. To evaluate the generalization
capability, we consider meta-learning approaches including
MAML [82] and MetaST [35].
Metrics. We employed commonly used regression met-

rics, including Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE). For more detailed information of the
datasets, baselines, and metrics, please refer to Appendix A,
Appendix B, and Appendix D.

Parameter Settings. Table X shows the parameter details
of UniST with different sizes. During the training process, we
used the Adam optimizer for gradient-based model optimiza-
tion. The learning rate of the pre-training is set as 3e-4, and
the learning rate of the prompt tuning is set as 5e-5. The pre-
training learning rate is selected via grid searching in a set of
{1e − 3, 3e − 4, 1e − 4}, and the fine-tuning learning rate is
selected in a set of {1e−4, 5e−5, 1e−5}. Both in pre-training
and fine-tuning, we evaluate the model’s performance on the
validation set every ten epochs (∼all training instances). We
choose the model that performs best on the validation set for
evaluations on the testing set.

B. Short-Term Prediction

Setups: Following previous practices [58], [80], both the
input step and prediction horizon are set as 6, i.e., 6→ 6. For
baselines, we train a dedicated model for each dataset, while
UniST is evaluated across all datasets.

Results: Table II presents the short-term prediction results,
with a selection of datasets due to space constraints. The
complete results can be found in Table XII and Table XIII in
Appendix E. As we can observe from Table II, UniST consis-
tently outperforms all baselines across all datasets. Compared
with the best baseline of each dataset, it showcases a notable
average improvement. Notably, time series approaches such as
PatchTST and iTransformer exhibit inferior performance com-
pared to spatio-temporal methods. This underscores the impor-
tance of incorporating spatial dependency as prior knowledge
for spatio-temporal prediction tasks. Another observation is
that PatchTST(one-for-all) performs worse than PatchTST
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TABLE III: Performance comparison of long-term prediction
on three datasets. We use the average prediction errors over all
prediction steps. Bold denotes the best results and underline
denotes the second-best results.

TaxiNYC Crowd BikeNYC
Model RMSE MAE RMSE MAE RMSE MAE

HA 61.03 21.33 19.57 8.49 11.00 3.66
ARIMA 68.0 28.66 21.34 8.93 11.59 3.98

STResNet 29.54 14.46 8.75 5.58 7.15 3.87
ACFM 32.91 13.72 6.16 3.35 4.56 1.86
STID 24.74 11.01 4.91 2.63 4.78 2.24

STNorm 31.81 11.99 9.62 4.30 6.45 2.18
STGSP 28.65 10.38 17.03 8.21 4.71 1.54

MC-STL 29.29 17.36 9.01 6.32 4.97 2.61
MAU 26.28 9.07 20.13 8.49 6.18 2.13

PredRNN 21.17 7.31 19.70 10.66 5.86 1.97
MIM 63.36 29.83 15.70 8.81 7.58 2.81

SimVP 20.18 9.78 5.50 3.13 4.10 1.71
TAU 24.97 10.93 5.31 2.81 3.89 1.73

PatchTST 30.64 17.49 5.25 2.83 5.27 1.65
iTransformer 33.81 11.48 6.94 2.63 6.00 2.02

PatchTST(one-for-all) 34.50 10.63 6.39 2.92 6.02 1.83
UniST (one-for-all) 19.83 6.71 4.25 2.26 3.56 1.31

dedicated for each dataset, suggesting that the model struggles
to directly adept to these distinct data distributions. Moreover,
baseline approaches exhibit inconsistent performance across
diverse datasets, indicating their instability across scenarios.
The consistent superior performance of UniST across all
scenarios underscores the significant potential and benefits
of a one-for-all model. Moreover, it demonstrates UniST’s
capability to orchestrate diverse data, where different datasets
can benefit each other.

C. Long-Term Prediction

Setups: Here we extend the input step and prediction
horizon to 64 following [58], [80]. This configuration ac-
commodates prolonged temporal dependencies, allowing us to
gauge the model’s proficiency in capturing extended patterns
over time. Similar to the short-term prediction, UniST is
directly evaluated across all datasets, while specific models are
individually trained for each baseline on respective datasets.

Results: Table III shows the long-term prediction results.
Even with a more extended prediction horizon, UniST still
consistently outperforms all baseline approaches across all
datasets. Compared with the best baseline of each dataset,
it yields an average improvement of 10.1%. This highlights
UniST’s capability to comprehend temporal patterns effec-
tively and its robustness in generalizing across extended du-
rations. Table XIV in Appendix E illustrates the complete
results.

D. Few-Shot Prediction

Setups: The hallmark of large foundation models lies in
their exceptional generalization ability. The few-shot and zero-
shot evaluations are commonly employed to characterize the
ultimate tasks for universal time series forecasting [7], [59].
Likewise, the few-shot and zero-shot prediction capability is
crucial for a universal spatio-temporal model. In this section,
we assess the few-shot learning performance of UniST. Each
dataset is partitioned into three segments: training data, valida-
tion data, and test data. In few-shot learning scenarios, when

UniST (zero-shot)
UrbanGPT (zero-shot)

UniST (zero-shot)
UrbanGPT (zero-shot)

Fig. 4: (a) Few-shot performance of UniST and baselines on
Crowd and BikeNYC datasets using only 1% of the training
data. (b) Few-shot performance of UniST and baselines using
only 5% of the training data. The Dashed red lines denote the
zero-shot performance of UniST.

confronted with an unseen dataset during the training process,
we utilized a restricted amount of training data, specifically,
1%, 5%, 10% of the training data. We choose some baselines
with relatively good performance for the few-shot setting
evaluation, We also compare with meta-learning baselines,
i.e., MAML and MetaST, and pretraining and finetuning-based
time series method, i.e., PatchTST.

Results: Appendix Table XV to Table XVII illustrate the
overall few-shot results. Due to the space limit, Figure 4 only
illustrates the 1% few-shot learning results on two datasets. In
these cases, UniST still outperforms all baselines, it achieves
a larger relative improvement over baselines compared to
long-term and short-term predictions. The transferability can
be attributed to successful knowledge transfer in our spatio-
temporal prompt.

E. Zero-Shot Prediction

Setups: Zero-shot inference is a critical task for evaluating
foundation models’ generalization capabilities, as it assesses
performance on entirely new datasets without prior exposure.
In this context, after UniST is trained on a diverse collection
of datasets, we evaluate its performance on a completely novel
dataset with no prior training data. The test data used in
this scenario aligns with that of normal prediction and few-
shot prediction. Specifically, we include UrbanGPT [47] as a
competitive zero-shot baseline for comparison.

Results: Figure 4 presents a comparison between UniST
(in zero-shot mode) and baseline models in few-shot mode,
as well as a direct comparison with UrbanGPT [47]. As
shown, UniST achieves impressive zero-shot performance,
even surpassing many baselines that were trained with access
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TABLE IV: Performance comparision on two graph-based
datasets, e.g., METR-LA and Crowd-BJ datasets.

Model METR-LA Crowd-BJ
MAE RMSE MAE RMSE

STGCN 3.01 6.61 3.04 4.89
TrafficBert 3.53 5.72 3.16 4.11
STG-LLM 2.81 5.90 3.01 4.42
STNorm 2.98 6.23 3.12 4.76
GPT-ST 3.08 6.37 2.71 4.12
STEP 3.37 6.99 2.94 4.36

ST-SSL 2.80 5.58 2.78 4.15
STID 3.40 6.72 2.79 4.23

UniST(train from scratch) 2.56 6.19 2.45 3.68
UniST(finetune from grid data) 2.05 5.26 2.42 3.55

to the target dataset, indicated by red dashed lines. Notably,
UniST also outperforms UrbanGPT in zero-shot scenarios,
highlighting its robust generalization capabilities. We attribute
these surprising results to the powerful spatio-temporal transfer
capability. It suggests that for a completely new scenario,
even when the displayed overall patterns are dissimilar to
the data encountered during the training process, UniST can
extract fine-grained similar patterns from our defined spatial
and temporal properties. These findings underscore UniST’s
superior generalization ability in both few-shot and zero-shot
scenarios, demonstrating its potential for real-world applica-
tions in diverse and unseen contexts.

F. Prediction on Graph Data

Setups: The above prediction experiments use only grid-
based data, and it is notable that UniST has the ability
to generalize to graph-based data, which is very common
in the field of spatio-temporal modeling. It is important to
unify these two types of data formats. We evaluated UniST
on two widely used spatio-temporal graph datasets, METR-
LA [7], [83] and Crowd-BJ [7], [33], alongside state-of-
the-art baselines including STGCN [84], STNorm [75], and
STID [27]. We also compare with foundational models for
traffic prediction, including GPT-ST [43], STEP [44], and ST-
SSL [36]. For the graph-based data experiments, we tested
UniST in two ways: (1) training from scratch using graph-
based data, (2) fine-tuning a model pre-trained with grid-based
data.

Results: Table IV shows the comparison results on graph-
based data. We observe that UniST outperformed the baselines
significantly. UniST finetuned from grid data achieves an
average improvement of 19.2%. These results suggest its
capability to generalize to graph-based data. The performance
of UniST trained from scratch indicates that even within
a single dataset, our elaborated knowledge-guided prompts
facilitate learning useful patterns, which are then leveraged
for prediction. Additionally, the benefits of fine-tuning from
grid data highlight UniST’s effectiveness in capturing universal
spatio-temporal patterns shared between grid-based and graph-
based scenarios.

The inclusion of graph-based data further validates the uni-
versality of UniST, showcasing its adaptability to diverse ST
scenarios. This expansion highlights our overall framework,
including the detailed pre-training and fine-tuning processes,

TABLE V: Ablation studies on four masking strategies.

Prediction Imputation Spatial extrapolation
Complete 0.781 0.761 0.729

wo/ Random masking 0.796 1.72 0.761
wo/ Tube masking 0.787 0.788 0.817
wo/ Block masking 0.785 0.773 1.02

wo/ Temporal masking 1.44 0.772 0.742

CD SH CS JN
(b) Number of Embeddings

0.6

0.7

0.8

0.9

RM
SE

Num=128
Num=256
Num=512
Num=1024

Fig. 5: Ablation studies of varying the number of learnable
embeddings in the temporal and spatial memory pools on
four traffic speed datasets: Chengdu (CD), Shanghai (SH),
Changsha (CS), and Jinan (JN).

are highly versatile and can be flexibly applied to different
data formats. The promising results suggest that with more
data, UniST can further improve its capabilities and expand
its applicability across a wider range of tasks.

V. STUDY AND ANALYSIS ON UNIST

A. Ablation Study

1) Masking Strategies: We investigated the contribution
of each of the four masking strategies by comparing the
performance when all four strategies are employed with the
performance when one of the strategies is removed. We con-
ducted experiments on three spatio-temporal tasks: prediction,
imputation, and spatial extrapolation, using the TrafficCD
dataset. Prediction involves forecasting future values based on
historical data, imputation focuses on filling missing values
in incomplete data sequences, and spatial extrapolation aims
to predict values at unobserved spatial locations. We use Root
Mean Squared Error (RMSE) as the evaluation metric to assess
performance across these tasks.

The results, shown in Table V, indicate that training with all
four masking strategies achieved the best performance across
all three tasks. Removing the temporal masking strategy results
in the most significant performance decrease for the prediction
task, removing the random masking strategy leads to the
most significant performance decrease for the imputation task,
and removing the block masking strategy results in the most
significant performance decrease for the spatial extrapolation
task. These results are reasonable as each masking strategy is
designed to align with a specific task objective.

It is worth noting that despite the seemingly mismatched
nature of some masking strategies with certain spatio-temporal
tasks (e.g., random masking vs. prediction, temporal masking
vs. imputation, and temporal masking vs. spatial extrapola-
tion), we find that these masking strategies still contribute to
the performance of less related tasks. This indicates that the
masking strategies not only benefit their intended tasks but also
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UniST
UniST w/o tc
UniST w/o tp

UniST w/o sc
UniST w/o sh

Fig. 6: Ablation studies on four types spatial and temporal
knowledge extraction tc, tp, sc, and sh.

Fig. 7: Embeddings visualization of spatial and temporal
memory pools at the initial and final optimized states. The
embeddings exhibit obvious divergence.

have broader effects on the model’s general learning of spatio-
temporal dependencies and dynamics. For example, while ran-
dom masking may seem unrelated to causal prediction tasks, it
can help the model learn robust features that generalize well
across different time points. Additionally, temporal masking
can help the model better understand the temporal dynamics
when performing spatial extrapolation.

2) Knowledge-Guide Prompts: The prompts play an essen-
tial role in our UniST model. Here we investigate whether
the designed spatial and temporal properties sc, sh, tc, and tp
contribute to the final performance. We use sc to denote spatial
closeness, sh to denote spatial hierarchy, tp for temporal
periodicity, and tc for temporal closeness.

we compare the overall design that incorporates all four
properties with four degraded versions that individually re-
move sc, sh, tc, or tp . Figure 6 shows the results on four traffic
speed datasets. As we can observe, removing any property
results in a performance decrease. The contributions of each
spatial and temporal property vary across different datasets,
highlighting the necessity of each property for the spatio-
temporal design.

Additionally, we explore how the number of memory
units (embeddings) in the memory pool affects the model’s
performance, as shown in Figure 5. Here, the “number of
embeddings” specifically refers to the distinct memory units
that capture typical patterns for the model to extract, store, and
retrieve as needed, not the traditional embedding dimensions.
Increasing the memory units from 128 to 512 enhances perfor-
mance across all four datasets. Further increasing the number
to 1024 yields similar results to 512, suggesting that 512 is
the optimal choice.

B. Prompt Learner

In this section, we conduct in-depth analyses of the prompt
learner. To provide a clearer understanding, we leverage t-
Distributed Stochastic Neighbor Embedding (t-SNE) to visu-
alize the embeddings of both the spatial and temporal memory

(a) Crowd dataset (b) Traffic speed dataset
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(c) Crowd dataset (d) Traffic speed dataset

Fig. 8: (a) and (b): Comparison of the mean value of inputs
in each memory embedding, where the inputs assign the
highest attention weight to the memory embedding. (c) and
(d): Comparison of the attention weight on each memory
embedding for two distinct datasets.

pools. Specifically, we plot the initial state and the optimized
state in Figure 7. Notably, from the start state to the final
optimized state, the embeddings gradually become diverged
in different directions. This suggests that, throughout the
optimization process, the memory pools progressively store
and encapsulate personalized information.

Next, we delve into the memorized patterns of each em-
bedding within the temporal memory pool. Specifically, we
first select the inputs based on the attention weights. For
each embedding, we aggregate the corresponding input spatio-
temporal data with the highest attention weight. Then, we
calculate the mean value of the extracted spatio-temporal
data. Figure 8(a) and Figure 8(b) illustrate the results for two
datasets (Crowd and TrafficSH). As we can see, the memorized
patterns revealed in the prompt tool exhibit remarkable con-
sistency across different urban scenarios. This not only affirms
that each embedding is meticulously optimized to memorize
unique spatio-temporal patterns, but also underscores the ro-
bustness of the spatial and temporal memory pools across
different scenarios.

Moreover, we examine the extracted spatio-temporal
prompts for two distinct domains. Specifically, we calculate
the mean attention weight for each embedding in the context
of each dataset. Figure 8(c) and Figure 8(d) illustrate the
comparison results. As we can observe, the depicted attention
weight distributions for the two datasets manifest striking dis-
similarities. The observed distinctiveness in attention weight
distributions implies a dynamic and responsive nature in the
model’s ability to tailor its focus based on the characteristics of
the input data. The ability to dynamically adjust the attention
weights reinforces UniST’s universality.

C. Scalability

Since UniST is a unified model trained on diverse and
extensive data, understanding its scalability in relation to
data size and model capacity is crucial. Conducting ablation
studies with varying data sizes and model parameters not
only reveals the model’s adaptability to resource constraints
but also offers valuable insights for practitioners seeking to
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(a) TaxiBJ (b) TrafficSH

Fig. 9: Scalability of UniST with different model sizes.

Fig. 10: Comparison of attention weight distribution between
the training set and testing set of the CrowdNJ dataset.

Fig. 11: Comparison of attention weight distribution between
the the TaxiBJ dataset and SpeedSZ dataset.

develop foundation models. In our experiments, we investigate
the relationship between model performance, data scale, and
model size, as illustrated in Figure 9. We evaluated three model
configurations: small (∼5M parameters), medium (∼15M pa-
rameters), and large (∼60M parameters), relative to dataset
sizes (20%, 40%, 60%, 80%, and 100%).

Key observations reveal that larger models exhibit faster
initial convergence during early training stages and maintain a
performance edge as data scales increase. Notably, from 60%
to 100% of the dataset, larger models demonstrate a steeper
performance improvement, suggesting enhanced scalability
with data. While we classify the 60M parameter model as
”large” in our context, it’s important to acknowledge that it
is modest compared to the scale of large language or vision
models [18], [69]. However, even at this scale, the model
shows remarkable generalization capabilities and universality.
While the current dataset size is insufficient to fully capture
scaling laws, our approach shows significant potential for
further development as larger datasets become available.

D. Analysis of Distribution Shifts

In real-world applications of prediction, spatio-temporal
data often differ significantly in their patterns due to factors
such as location, domain, and data collection conditions. For

Fig. 12: Comparison of attention weight distribution between
the the CrowdNJ dataset and the CellularNJ dataset.

a universal model like UniST, which is designed to generalize
across diverse datasets, effectively managing distribution shifts
is crucial to maintaining robust performance. Prompt-based
learning provides a flexible mechanism for adapting to these
shifts by dynamically adjusting model behavior based on the
unique characteristics of each dataset.

To gain insights into how UniST handles distribution shifts,
we conduct a detailed analysis of the generated prompts across
different datasets. By examining attention weights on the
embeddings within the memory pool and visualizing their
distribution, we can understand how UniST captures and
adapts to variations in data distribution. For each dataset,
we compute the attention weights on the embeddings in the
memory pool and visualize the distribution of these weights
in Figures 10 to 12. Specifically, the attention weight analysis
is based on the model whose performance is evaluated in
Table II. We have selected three typical scenarios to explore:

1) Training and Testing Sets of One Dataset: This analysis
aims to investigate the model’s ability to generalize within
a familiar dataset.

2) Two Datasets from Different Domains in the Same City:
Understanding how the model adapts its prompt generation
across different but related datasets can provide insights
into its domain-specific learning.

3) Datasets from Different Cities and Domains: This sce-
nario highlights the model’s ability to leverage knowledge
learned previously and generate useful prompts adaptively.

As shown in Figures 10 to 12, our analysis reveals com-
pelling insights into the effectiveness of our prompting mech-
anism in handling distribution shifts. Specifically, we observed
that similar prompts are consistently generated for datasets
exhibiting similar spatio-temporal patterns. For instance, the
prompts generated for the training and testing sets of a single
dataset, as well as for the testing sets of two datasets from
different domains within the same city, are similar. This
consistency in prompt generation suggests that our model ef-
fectively captures and leverages the underlying spatio-temporal
patterns shared between these datasets. Meanwhile, our model
generates distinct prompts for scenarios involving datasets
from different cities and domains, indicating its ability to
adapt to diverse spatio-temporal contexts. This adaptability is
crucial for handling distribution shifts, as it allows the model
to flexibly adjust its prompt generation strategy based on the
unique characteristics of each dataset.



12

TABLE VI: Performance on different noise levels with sine-
cosine positional encoding.

TaxiBJ Crowd Cellular BikeNYC TrafficSHNoise level
0 26.841 3.00 14.294 3.506 0.6650

0.1% 26.846 3.038 14.297 3.507 0.6651
1% 26.90 3.039 14.390 3.534 0.6653

10% 28.76 3.29 14.91 3.695 0.6877
Best baseline 27.36 3.85 16.48 3.93 0.742

TABLE VII: Performance on different noise levels with learn-
able positional encoding.

TaxiBJ Crowd Cellular BikeNYC TrafficSHNoise level
0 27.02 3.31 15.054 3.609 0.686

0.1% 27.032 3.310 15.068 3.607 0.6860
1% 27.29 3.589 16.544 3.696 0.6911

10% 43.80 11.436 70.360 8.173 1.228
Best baseline 27.36 3.85 16.48 3.93 0.742

E. Performance under Noise Perturbations

The model’s ability to handle noisy data is necessary to
ensure reliable predictions. Therefore, we conduct experiments
to evaluate UniST’s robustness against noisy data. Specifically,
we introduced Gaussian noise with varying levels of intensity
to the input data and assessed UniST’s performance under
these conditions. We considered three levels of noise: Gaussian
noise randomly sampled from a 0.1% normal distribution,
Gaussian noise randomly sampled from a 1% normal distribu-
tion, and Gaussian noise randomly sampled from a 10% nor-
mal distribution. These noise levels represent varying degrees
of data corruption, simulating real-world scenarios where data
can be noisy or contain irregularities.

The results, as detailed in Table VI, demonstrate that
UniST consistently outperforms baseline models even in the
presence of noise perturbations (where the best baseline has
no noise perturbation). This suggests that UniST is capable of
effectively handling noisy data, which is crucial for ensuring
reliable predictions, especially in real-world scenarios where
data can be messy or contain irregularities.

Moreover, we examine how different positional encoding
methods affect the model’s robustness. We compare the use of
two positional encoding methods: learnable embeddings and
sine-cosine encoding. The results in Table VII show the perfor-
mance with learnable embeddings, while Table VI shows the
performance with sine-cosine encoding. Comparing these two
sets of results, we observe that sine-cosine encoding exhibits
more robust performance against noise perturbations. Specif-
ically, learnable embeddings show a significant performance
reduction with increased noise perturbation and perform worse
than the best baseline model.

VI. CONCLUSION

In this work, we address an important problem of build-
ing a universal model UniST for urban spatio-temporal pre-
diction. By leveraging the diversity of spatio-temporal data
from multiple sources, and discerning and aligning underly-
ing shared spatio-temporal patterns across multiple scenarios,
UniST demonstrates a powerful capability to predict across

all scenarios, particularly in few-shot and zero-shot settings.
A promising direction for future work entails the integration of
various spatio-temporal data formats, such as grid, sequence,
and graph data. Our study inspires future research in spatio-
temporal modeling towards the universal direction.
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APPENDIX

A. Datasets

1) Basic Information: Here we provide more details of the
used datasets in our study. We collect various spatio-temporal
data from multiple cities and domains. Table VIII summarizes
the basic information of the used datasets, and Table IX reports
the basic statistics. Specifically, values for Crowd and Cellular
datasets in Table II, Table III, Table XIV, Table XV and
Figure 4 should be scaled by a factor of 103.

2) Data Preprocessing: For each dataset, We split it into
three non-overlapping periods: the first 70% of the period was
used as the training set, the next 15% as the validation set, and
the final 15% as the test set. To ensure no overlap between
train/val/test sets, we removed intermediate sequences. We
have normalized all datasets to the range [−1, 1]. The reported
prediction results are denormalized results.

B. Baselines

• HA: History average uses the mean value of historical
data for future predictions. Here we use historical data of
corresponding periods in the past days.

• ARIMA: Auto-regressive Integrated Moving Average model
a widely used statistical method for time series forecasting.
It is a powerful tool for analyzing and predicting time series
data, which are observations collected at regular intervals
over time.

• STResNet [11]: It is a spatio-temporal model for crowd flow
prediction, which utilizes residual neural networks to model
the temporal closeness, period, and trend properties.

• ACFM [12]: Attentive Crowd Flow Machine model is
proposed to predict the dynamics of the crowd flows. It
learns the dynamics by leveraging an attention mechanism to
adaptively aggregate the sequential patterns and the periodic
patterns.

• STGSP [74]: This model propose that the global informa-
tion and positional information in the temporal dimension
are important for spatio-temporal prediction. To this end, it
leverages a semantic flow encoder to model the temporal
relative positional signals. Besides, it utilizes an attention
mechanism to capture the multi-scale temporal dependen-
cies.

• MC-STL [37]: It leverages an state-of-the-art training tech-
niques for spatio-temporal predition, the mask-enhanced
contrastive learning, which can effectively capture the re-
lationships on the spatio-temporal dimension.

• MAU [76]: Motion-aware unit is a video prediction model.
it broadens the temporal receptive fields of prediction units,
which can facilitates to capture inter-frame motion correla-
tions. It consists of an attention module and a fusion module.

• PredRNN [23]: PredRNN is a recurrent network-based
model. In this model, the memory cells are explicitly decou-
pled, and they calculate in independent transition manners.
Besides, different from the memory cell of LSTM, this
network leverages zigzap memory flow, which facilitates to
learn at distinct levels.

• MIM [77]: Memory utilize the differential information
between adjacent recurrent states, which facilitates to model

the non-stationary properties. Stacked multiple MIM blocks
make it possible to model high-order non-stationarity.

• SimVP [78]: It is a simple yet very effective video predic-
tion model. It is completely built based on convolutional
neural networks and uses MSE loss. It serves as a solid
baseline in video prediction tasks.

• TAU [79]: Temporal Attention Unit is the state-of-the-
art video prediction model. It decomposes the temporal
attention into two parts: intra-frame attention and inter-
frame attention, which are static and dynamical, respec-
tively. Besides, it introduces a novel regularization, i.e.,
differential divergence regularization, to consider the impact
of inter-frame variations.

• STID [27]: It is a MLP-based spatio-temporal prediction
model, which is simple yet effective. Its superior perfor-
mance comes from the identification of the indistinguisha-
bility of samples in spatio-temporal dimensions. It demon-
strates that it is promising to design efficient and effective
models in spatio-temporal predictions.

• STNorm [75]: It proposed two types of normalization
modules: spatial normalization and temporal normalization.
These two normalization methods can separately consider
high-frequency components and local components.

• PatchTST [80]: It first employed patching and self-
supervised learning in multivariate time series forecasting.
It has two essential designs: (i) segmenting the original time
series into patches to capture long-term correlations, (ii)
different channels are operated independently, which share
the same network.

• iTransformer [81]: This is the state-of-the-art multivari-
ate time series model. Different from other Transformer-
based methods, it employs the attention and feed-forward
operation on an inverted dimension, that is, the multivariate
correlation.

• MAML [82]: Model-Agnostic Meta-Learning is an state-of-
the-art meta learning technique. The main idea is to learn a
good initialization from various tasks for the target task.

• MetaST [35]: It is an urban transfer learning approach,
which utilizes long-period data from multiple cities for
transfer learning. by employing a meta-learning approach, it
learns a generalized network initialization adaptable to target
cities. It also incorporates a pattern-based spatial-temporal
memory to capture important patterns.

• PromptST [42]: It is the state-of-the-art pre-training and
prompt-tuning approach for spatio-temporal prediction.

C. Algorithms

We provide the training algorithm for spatio-temporal pre-
trianing on multiple datasets in Algorithm 1. We also present
the prompt fine-tuning algorithm in Algorithm 2.

D. Implementation Details

1) Evaluation Metrics: We use commonly used regression
metrics, Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE), to measure the prediction performance. Sup-
pose Y = Y1, ..., YM are ground truth for real spatio-temporal
data, Ŷ = Ŷ1, ..., ŶN are the predicted values by the model,
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TABLE VIII: The basic information of the used datasets.

Dataset Domain City Temporal Duration Temporal interval Spatial partition

TaxiBJ Taxi GPS Beijing, China

20130601-20131030

Half an hour 32× 32
20140301-20140630
20150301-20150630
20151101-20160410

Cellular Cellular usage Nanjing, China 20201111-20210531 Half an hour 16 * 20
TaxiNYC-1 Taxi OD New York City, USA 20160101-20160229 Half an hour 16 * 12
TaxiNYC-2 Taxi OD New York City, USA 20150101-20150301 Half an hour 20 * 10
BikeNYC-1 Bike usage New York City, USA 20160801-20160929 One hour 16 * 8
BikeNYC-2 Bike usage New York City, USA 20160701-20160829 Half an hour 10 * 20

TDrive Taxi trajectory New York City, USA 20150201-20160602 One hour 32× 32
Crowd Crowd flow Nanjing, China 20201111-20210531 Half an hour 16 * 20

TrafficCS Traffic speed Changsha, China 20220305-20220405 Five minutes 28× 28
TrafficWH Traffic speed Wuhan, China 20220305-20220405 Five minutes 30× 28
TrafficCD Traffic speed Chengdu, China 20220305-20220405 Five minutes 28× 26
TrafficJN Traffic speed Jinan, China 20220305-20220405 Five minutes 32× 18
TrafficNJ Traffic speed Nanjing, China 20220305-20220405 Five minutes 32× 24
TrafficSH Traffic speed Shanghai, China 20220127-20220227 Five minutes 28× 32
TrafficSZ Traffic speed Shenzhen, China 20220305-20220405 Five minutes 24× 18
TrafficGZ Traffic speed Guangzhou, China 20220305-20220405 Five minutes 32× 26
TrafficGY Traffic speed Guiyang, China 20220305-20220405 Five minutes 26× 28
TrafficTJ Traffic speed Tianjin, China 20220305-20220405 Five minutes 24× 30
TrafficHZ Traffic speed Hangzhou, China 20220305-20220405 Five minutes 28× 24
TrafficZZ Traffic speed Zhengzhou, China 20220305-20220405 Five minutes 26× 26
TrafficBJ Traffic speed Beijing, China 20220305-20220405 Five minutes 30× 32

TABLE IX: The basic statistics of the used datasets.

Dataset Min value Max value Mean value Standard deviation
TaxiBJ 0.0 1285 107 133
Cellular 0.0 2992532 75258 149505

TaxiNYC-1 0.0 1517 32 94
TaxiNYC-2 0.0 1283 37 102
BikeNYC-1 0.0 266 9.2 18.1
BikeNYC-2 0.0 299 4.4 14.6

TDrive 0.0 2681 123 229
Crowd 0.0 593118 21656 40825

TrafficCS 0.0 22.25 6.22 4.79
TrafficWH 0.0 22.35 6.22 4.68
TrafficCD 0.0 22.25 7.33 4.36
TrafficJN 0.0 25.04 5.72 4.71
TrafficNJ 0.0 24.82 5.38 4.73
TrafficSH 0.0 21.83 7.92 3.86
TrafficSZ 0.0 22.12 5.11 4.75
TrafficGZ 0.0 25.16 5.26 4.79
TrafficGY 0.0 28.89 5.95 7.03
TrafficTJ 0.0 25.24 6.32 5.05
TrafficHZ 0.0 29.50 3.81 4.38
TrafficZZ 0.0 23.26 6.67 4.32
TrafficBJ 0.0 22.82 6.30 4.22

and N is the number of total testing samples, These two
metrics can be formulated as follows:

RMSE(Y , Ŷ ) =

√√√√ 1

N

N∑
i

(
Yi − Ŷi

)2

,

MAE(Y , Ŷ ) =
1

N

N∑
i

∣∣∣Yi − Ŷi

∣∣∣ ,
(1)

2) Prompt-Tuning: The prompt-tuning stage aims to train a
effective prompt network, which generates customized prompt
for specific spatio-temporal pattern. We propose to leverage

four types of spatio-temporal knowledge: (i) spatial closess
(sc), (ii) spatial hierarchy (sh), (iii) temporal closeness (tc),
and (iv) temporal period (tp). These knowledge-guided fea-
tures are extracted from the input sequence. The input is
the historical spatio-temporal sequence, the output is the
predicted future spatio-temporal sequence, and the objective is
to minimize the distance between the predicted results and real
data. Specifically, we use the widely adopted mean squared
error loss function with l2 regularization on the parameters
in UniST to prevent over-fitting, which can be formulated as
follows
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TABLE X: The parameter details of UniST with different sizes evaluated in ablation studies.

Model #Encoder Layers #Decoder Layers Hidden Dimension (Encoder) Decoder Hidden Dimension (Decoder)
2M Params 2 2 64 64
8M Params 4 3 128 128

10M Params 6 4 128 128
15M Params 8 8 128 128
30M Params 6 6 256 256

Algorithm 1 Spatio-temporal Pre-training

0: Input: Dataset D = {D1, D2, . . . , DM}, base spatio-
temporal prediction model F , and loss function L.

0: Initialize: Learnable parameters θ for the model F .
0: for epoch ∈ {1, 2, . . . , Niter} do
0: Randomly sample a dataset Dm and a mini-batch X

from Dm.
0: Randomly choose a masking strategy M from the four

strategies.
0: Mask the input X into Xm

0: Compute the reconstructions ŷ ← Fθ(Xm)
0: Compute the MSE loss L ← L(ŷ, y)
0: Update the model’s parameters θ ← update(L; θ)
0: end for=0

Algorithm 2 Prompt Tuning

0: Input: Dataset D = {D1, D2, . . . , DM}, parameters of
pre-trained base model θ, and loss function L

0: Initialize: Learnable parameters ϕ for the prompt network
G.

0: Load the pretrained model parameters θ.
0: Fix the parameters of the attention and feed-forward layers

of the base model Fθ.
0: for epoch ∈ {1, 2, . . . , Niter} do
0: Randomly sample a dataset Dm and a mini-batch

(X,Y ) from Dm.
0: Generate the prompt P for the mini-batch P ← Gϕ(X).
0: Add the prompt to the input space Xp = X + P .
0: Compute the predictions ŷ ← Fθ(Xp)
0: Compute the MSE loss L ← L(ŷ, Y )
0: Update the model’s parameters γ ← update(L; γ), θ ←

update(L; θ)
0: end for=0

L =
1

M

∑
(ŷ − y)2 + λ

∑
θ∈Θ

∥θ∥2 (2)

where ŷ and y are ground truths and model predictions, respec-
tively; Θ denotes the set that contains all model parameters.

3) Baseline Implementation: We compare UniST with a
broad collection of state-of-the-art models for spatio-temporal
prediction, which can be categorized into five groups as intro-
duced in Section IV-A. If we consider the scalability to diverse
data formats, i.e., different spatio-temporal data shapes, these
baselines can be categorized into two groups: (i) approaches
that are scalable with different spatio-temporal scales, such
as PatchTST, MAML, and MetaST, and (ii) approaches that
are non-scalable, including deep urban prediction approaches,

video prediction approaches, and iTransformer. Most baselines
are not scalable to different data shapes because they require
a fixed number of spatial grids or variables, as seen in CNN-
based approaches, MLP-based approaches, and multivariate
time series models. Due to the varied data shapes, non-scalable
baselines cannot be trained using all datasets, so we train
separate models for each dataset.

For the scalable baseline, PatchTST [80], it utilizes a
channel-independent patch time series Transformer architec-
ture, allowing it to be applied to datasets with varied spatio-
temporal shapes. To ensure a fair comparison, we train both
separate models and a single ”one-for-all” model, as shown in
Table II.

Notably, there are two baselines employ pretraining and
finetuning: PatchTST [80] and PromptST [42]. However,
PromptST requires a fixed number of nodes, limiting its flex-
ibility across different data formats. In contrast, the channel-
independence of PatchTST allows it to handle varied data
shapes. While PromptST is a state-of-the-art pre-training and
prompt-tuning approach, it lacks generalization ability across
different datasets.

4) Experimental Design: In our experimental design, we
incorporate four distinct prediction tasks: short-term predic-
tion, long-term prediction, few-shot prediction, and zero-shot
prediction. This design aligns with established practices in
foundation models for time series forecasting [58], [59], [80].
The short-term and long-term prediction tasks are conducted
without transfer learning settings. In these tasks, the model
is trained on a set of N datasets and then evaluated on the
corresponding testing sets from these datasets. This setup
enables us to directly assess the model’s performance across
multiple datasets using a single universal model.

Furthermore, the few-shot and zero-shot prediction tasks are
designed to evaluate the model’s generalization capabilities. In
these tasks, the model learns from a set of source datasets to
build a pretrained model and a memory pool, which is then
utilized for prediction on target datasets. The key difference
between the few-shot and zero-shot settings lies in the fine-
tuning process on the target dataset. In few-shot prediction,
the model undergoes a limited fine-tuning process using a
small percentage of the target dataset’s training data, while
in zero-shot prediction, the model directly applies the pre-
trained model and memory pool to make predictions on the
target dataset without any fine-tuning.

These four tasks collectively offer a comprehensive evalu-
ation of the model’s performance and its ability to generalize
across diverse spatio-temporal datasets.
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TABLE XI: Comparison of computational cost and memory cost between different approaches. The training time denotes the
time cost to train all instances with one epoch.

Model STResNet ACFM STID STNorm STGSP MC-STL MAU PredRNN MIM SimVP TAU PatchTST iTransformer UniST
Model Size (M) 2.51 1.90 1.63 1.15 5.51 6.35 10.55 17.07 26.24 9.96 9.55 2.59 25.27 6.71

Memory Cost (MB) 1475 1671 1715 2539 1459 1607 1579 1065 1241 1039 1075 2859 2935 2875
Training Time (min) 0.057 0.561 0.054 0.461 0.078 0.311 0.828 0.455 0.836 0.224 0.224 0.338 0.093 1.4 (20+ datasets)

Total Training Time (hour) ∼6 ∼6 ∼14 ∼16 ∼24 ∼22 ∼30 ∼40 ∼50 ∼30 ∼30 ∼15 ∼16 ∼12
Inference Time (min) 0.011 0.026 0.007 0.070 0.006 0.013 0.026 0.015 0.024 0.013 0.010 0.031 0.012 0.034

Note: The total training time represents the overall training duration for all datasets, and is an estimate denoted by the symbol∼.

Fig. 13: Visualization of different spatio-temporal datasets: Firstly, the high-dimensional data is reduced to a two-dimensional
vector using t-SNE. Subsequently, the embeddings are visualized in clusters using the k-means clustering method.

E. Additional Results

1) Model Efficiency: Table XI shows a detailed comparison
of the computational and memory costs of UniST against
baselines. The results show that the model size and memory
cost of UniST are comparable to those of other approaches.
Although UniST’s per-epoch training time is longer due to the
multi-dataset pre-training process, its overall total training time
remains efficient. Notably, UniST consistently outperforms the
baselines across all datasets with just a single model, achieving
an excellent balance between efficiency and performance.

2) Dataset Similarity: To assess the similarities among the
datasets used in our study, we employed a two-step process.
First, we reduced the dimension of the spatio-temporal data
using t-SNE, a technique for dimension reduction. This al-
lowed us to visualize the datasets in a lower-dimensional
space. Second, we applied the k-means clustering method to
the reduced data to identify clusters of similar spatio-temporal
patterns.

The results of our visualization in Figure 13 revealed
interesting insights. We found that certain datasets, such as
the Crowd data and Cellular data in Nanjing, exhibited similar
spatio-temporal patterns. Similarly, the Bike data and Taxi
data in New York City showed similarities in their patterns.

However, most datasets from different cities or domains ex-
hibited distinct spatio-temporal patterns, indicating significant
distribution shifts. These observations highlight the powerful
generalization ability and universality of our approach across
datasets with significantly distinct spatio-temporal patterns.

3) Additional Prediction Results: Table XII∼Table XVII
report addition prediction results.
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TABLE XII: Performance comparison of short-term prediction on seven datasets in terms of MAE and RMSE. We use the
average prediction errors over all prediction steps.

TaxiNYC-1 BikeNYC-2 TaxiNYC-2 TrafficBJ TrafficNJ TrafficWH TrafficSZ
Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

HA 57.07 18.57 15.68 7.17 52.84 15.74 1.033 0.582 1.593 0.774 1.351 0.645 0.791 0.416
ARIMA 55.39 20.94 25.01 13.63 62.9 29.56 1.32 0.735 1.30 0.709 1.51 0.748 0.821 0.445

STResNet 29.45 17.96 7.18 3.94 22.16 12.06 0.828 0.547 1.03 0.635 0.903 0.568 0.709 0.465
ACFM 23.35 11.54 5.99 3.094 14.48 6.39 0.706 0.44 0.888 0.515 0.784 0.471 0.573 0.35
STID 17.75 7.03 5.70 2.711 17.37 7.35 0.724 0.431 0.847 0.459 0.78 0.436 0.576 0.33

STNorm 21.26 8.14 6.47 3.03 19.02 7.17 0.727 0.428 0.904 0.476 0.81 0.445 0.666 0.369
STGSP 28.13 10.29 14.20 7.38 29.10 10.14 0.736 0.444 0.883 0.491 0.804 0.473 0.86 0.52

MC-STL 18.44 9.51 6.26 3.40 16.78 8.50 0.975 0.709 1.13 0.78 1.1 0.773 0.83 0.615
MAU 28.70 11.23 6.12 2.95 19.38 7.27 1.12 0.797 0.978 0.545 1.37 0.917 0.826 0.523

PredRNN 16.53 5.80 6.47 3.08 19.89 7.23 0.651 0.376 0.852 0.457 0.74 0.421 0.58 0.335
MIM 18.83 6.866 6.36 2.89 18.02 6.56 2.62 2.14 4.65 3.39 3.86 3.15 2.22 1.40

SimVP 16.63 7.51 5.96 2.92 15.10 6.54 0.664 0.408 0.861 0.481 0.779 0.475 0.583 0.359
TAU 16.91 6.85 5.98 2.89 15.35 6.80 0.70 0.44 0.89 0.528 0.747 0.444 0.576 0.353

PatchTST 41.34 13.10 12.33 5.30 37.76 11.13 0.935 0.512 1.379 0.658 1.17 0.561 0.718 0.370
iTransformer 36.73 13.11 9.86 4.50 33.03 11.22 0.876 0.490 1.18 0.60 1.10 0.542 0.718 0.378

PatchTST(one-for-all) 44.43 14.56 13.62 6.03 41.04 12.61 0.964 0.524 1.42 0.675 1.22 0.581 0.739 0.375
UniST (ours) 15.32 5.65 5.50 2.56 12.71 4.82 0.689 0.387 0.845 0.421 0.762 0.396 0.513 0.264

TABLE XIII: Performance comparison of short-term prediction on seven datasets in terms of MAE and RMSE. We use the
average prediction errors over all prediction steps.

TrafficTJ TrafficGY TrafficGZ TrafficZZ TrafficCS TrafficCD TrafficHZ
Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

HA 1.61 0.824 1.79 0.726 0.996 0.52 1.47 0.857 1.31 0.676 1.12 0.668 0.765 0.342
ARIMA 2.02 1.59 1.91 1.16 1.37 0.76 1.78 0.998 1.66 0.923 1.54 0.907 0.803 0.364

STResNet 1.12 0.714 1.32 0.799 0.796 0.515 1.03 0.693 0.986 0.651 0.867 0.576 0.669 0.406
ACFM 0.959 0.574 1.10 0.599 0.701 0.418 0.839 0.526 0.842 0.529 0.757 0.493 0.575 0.316
STID 0.976 0.549 1.04 0.544 0.665 0.362 0.838 0.502 0.855 0.5 0.715 0.44 0.546 0.282

STNorm 0.973 0.533 1.12 0.508 0.693 0.373 0.885 0.538 0.91 0.511 0.786 0.489 0.556 0.260
STGSP 0.989 0.572 1.09 0.649 0.733 0.419 0.831 0.505 0.978 0.587 0.776 0.497 0.616 0.331

MC-STL 1.22 0.856 1.82 1.36 1.04 0.775 1.14 0.81 1.14 0.819 1.00 0.733 0.842 0.606
MAU 0.988 0.549 1.14 0.595 0.74 0.415 1.42 0.934 1.31 0.791 1.25 0.919 0.743 0.377

PredRNN 0.971 0.53 1.16 0.608 0.71 0.42 0.853 0.508 0.909 0.572 0.815 0.513 0.602 0.288
MIM 3.44 2.51 5.68 4.53 3.43 2.80 2.05 1.56 3.57 2.71 2.75 2.26 1.92 1.23

SimVP 1.00 0.597 1.13 0.632 0.667 0.399 0.838 0.526 0.835 0.507 0.775 0.495 0.549 0.301
TAU 1.01 0.606 1.11 0.604 0.65 0.378 0.839 0.527 0.869 0.543 0.768 0.495 0.539 0.289

PatchTST 1.44 0.722 1.58 0.634 0.894 0.448 1.31 0.742 1.18 0.599 1.00 0.577 0.696 0.305
iTransformer 1.26 0.675 1.39 0.621 0.846 0.428 1.19 0.696 1.09 0.572 0.941 0.541 0.66 0.30

PatchTST(one-for-all) 1.49 0.740 1.66 0.684 0.931 0.469 1.35 0.752 1.23 0.620 1.04 0.602 0.726 0.325
UniST (ours) 0.958 0.510 1.03 0.458 0.648 0.325 0.832 0.482 0.791 0.423 0.711 0.415 0.530 0.236

TABLE XIV: Performance comparison of long-term prediction on four datasets in terms of MAE and RMSE. We use the
average prediction errors over all prediction steps.

TaxiBJ Cellular BikeNYC-2 TDrive
Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE

HA 74.07 43.79 77.29 31.89 15.84 7.97 144.65 72.48
ARIMA 100.76 56.04 83.66 35.96 15.29 7.25 270.05 140.80

STResNet 51.36 36.08 33.87 20.87 12.73 7.16 163.88 112.27
ACFM 35.49 22.46 26.40 13.24 13.00 7.09 88.76 42.19
STID 36.98 23.19 22.98 11.71 12.75 8.37 83.70 37.66

STNorm 33.78 19.89 71.05 32.14 12.16 5.99 100.43 49.50
STGSP 70.31 42.76 67.07 31.16 14.50 7.66 83.70 37.26

MC-STL 38.23 26.86 39.74 27.04 12.72 7.96 100.55 59.18
MAU 85.58 60.61 75.84 32.78 12.42 5.82 137.17 76.17

PredRNN 43.89 27.42 46.68 24.96 9.72 4.37 175.32 104.79
MIM 38.10 25.82 79.20 39.27 10.02 4.60 107.06 43.67

SimVP 33.53 19.28 23.84 12.90 10.89 5.51 91.13 39.46
TAU 34.88 19.94 23.00 12.72 11.53 6.11 91.54 41.96

PatchTST 30.64 17.49 23.39 12.42 11.13 5.07 92.03 38.89
PatchTST(one-for-all) 31.58 18.67 27.94 10.89 10.71 4.74 111.56 50.57

iTransformer 32.89 18.60 29.329 11.963 11.54 5.19 93.87 40.16
UniST (ours) 30.46 17.95 20.64 10.43 11.91 5.06 90.60 37.01
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TABLE XV: Performance comparison in few-shot and zero-shot (only UniST) settings on the Crowd dataset in terms of MAE
and RMSE. 1% , 5%, and 10% denote that only the percentage of training data is utilized. We use the average prediction
errors over all prediction steps.

10% 5% 1%
Model RMSE MAE RMSE MAE RMSE MAE
ATFM 19.842 11.446 19.923 11.687 21.166 12.643

STNorm 14.668 7.050 14.884 7.723 35.959 29.585
STID 14.676 7.280 14.975 8.671 25.905 19.610

PredRNN 19.604 9.668 20.186 10.190 24.901 13.142
SimVP 14.093 7.101 14.167 8.550 14.252 8.776
TAU 14.229 7.140 14.456 8.411 14.919 9.096

MAML 14.089 7.180 14.795 8.154 14.334 8.608
MetaST 13.801 6.847 14.220 7.442 14.242 7.949

PatchTST 14.060 6.787 14.142 6.811 14.491 7.227
UniST (few-shot) 13.411 6.365 13.859 6.542 13.952 6.581
UniST (zero-shot) 14.665 7.051 14.665 7.051 14.665 7.051

TABLE XVI: Performance comparison in few-shot and zero-shot (only UniST) settings on the BikeNYC dataset in terms of
MAE and RMSE. 1% , 5%, and 10% denote that only the percentage of training data is utilized. We use the average prediction
errors over all prediction steps.

10% 5% 1%
Model RMSE MAE RMSE MAE RMSE MAE
ATFM 8.026 3.511 10.438 4.582 11.876 5.990

STNorm 7.42 2.70 10.21 4.17 12.94 5.20
STID 6.97 3.49 12.46 7.56 15.08 9.38

PredRNN 11.05 4.00 11.29 4.46 12.58 4.75
SimVP 6.570 2.691 8.525 3.174 8.661 3.721
TAU 7.06 3.07 8.74 3.28 8.50 3.72

MAML 6.49 2.31 8.89 3.68 8.98 3.91
MetaST 6.21 2.18 8.22 3.03 8.58 3.60

PatchTST 9.14 2.68 10.09 2.88 9.74 3.86
UniST 5.318 1.668 6.113 1.964 7.811 2.72

UniST (zero-shot) 9.06 3.63 9.06 3.63 9.06 3.63

TABLE XVII: Performance comparison in few-shot and zero-shot (only UniST) settings on the TaxiBJ dataset in terms of
MAE and RMSE. 1% , 5%, and 10% denote that only the percentage of training data is utilized. We use the average prediction
errors over all prediction steps.

10% 5% 1%
Model RMSE MAE RMSE MAE RMSE MAE
ATFM 50.631 33.035 55.770 39.205 64.590 44.928

STNorm 39.35 22.48 42.67 26.78 44.76 28.24
STID 34.53 20.54 37.39 24.35 47.94 31.94

PredRNN 84.28 58.52 97.74 73.40 92.21 66.76
SimVP 35.114 20.87 37.42 23.131 40.465 24.95
TAU 37.70 22.69 39.77 25.73 41.98 26.48

MAML 36.24 20.91 36.12 23.47 40.11 24.79
MetaST 35.42 18.65 35.21 21.74 39.08 23.88

PatchTST 44.03 22.69 44.24 22.62 46.43 24.77
UniST 27.59 15.18 31.19 17.58 35.09 20.62

UniST (zero-shot) 51.4 33.1 51.4 33.1 51.4 33.1
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