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ABSTRACT
Urban spatio-temporal prediction is crucial for informed decision-
making, such as transportation management, resource optimiza-
tion, and public health strategy enhancement. Despite remark-
able breakthroughs in pretrained natural language models that
enable one model to handle diverse tasks, a universal solution
for spatio-temporal modeling remains elusive. Existing prediction
approaches are typically tailored for specific spatio-temporal sce-
narios, requiring task-specific model designs and extensive domain-
specific training data. In this study, we introduce UniST, a univer-
sal model designed for general urban spatio-temporal prediction
across a wide range of scenarios. Inspired by large language mod-
els, UniST achieves success through: (i) scalability across diverse
spatio-temporal data, (ii) effective pre-training to capture com-
plex spatio-temporal relationships, (iii) spatio-temporal knowledge-
guided prompts to enhance generalization capabilities. These de-
signs together unlock the potential of building a universal model
for various scenarios with powerful generalization capability. Ex-
tensive experiments on more than 20 spatio-temporal scenarios
demonstrate UniST’s efficacy in advancing state-of-the-art pre-
diction performance, especially in few-shot and zero-shot pre-
diction. The datasets and code implementation are released on
https://github.com/tsinghua-fib-lab/UniST.
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1 INTRODUCTION
Pre-trained foundation models have showcased remarkable suc-
cess in Natural Language Processing (NLP) [3, 50], particularly
excelling in few-shot and zero-shot learning [3, 25]. However, simi-
lar breakthroughs have not yet been achieved in the field of urban
spatio-temporal modeling [16, 51, 70]. In this paper, our goal is to
establish a foundation model for general urban spatio-temporal
prediction — specifically, to develop a universal spatio-temporal
model that offers superior performance and robust generalization
capabilities across diverse spatio-temporal scenarios. This entails
training a single model capable of effectively handling various ur-
ban contexts, such as transportation, cellular networks, and human
mobility, across different cities and domains.

The significance of such a universal model lies in its ability to
address prevalent data scarcity issues in urban areas. The varying
levels of digitalization across cities and domains often result in im-
balanced and incomplete datasets. Despite notable advancements in
existing spatio-temporal modeling approaches [1, 27, 33, 41, 64, 73],
their effectiveness is typically confined to specific domains within
a single city. The reliance on extensive training data further im-
pedes the model’s generalization potential. Consequently, current
solutions are still far from “universality”, and remain narrowly
applicable.

A universal spatio-temporal model must possess two essential
capabilities. Firstly, it must be capable of leveraging abundant and
rich data from urban scenarios for training. The training of the
foundational model should ensure the acquisition of ample and
rich information [2, 50, 56]. Second, it should demonstrate robust
generalization across diverse spatio-temporal scenarios. Especially in
scenarios with limited or no training data, the model can still work
well without obvious performance degradation [13, 56].

However, realizing the aforementioned capabilities faces sig-
nificant challenges unique to spatio-temporal data, which hinder
the direct application of current foundation models developed for
language and vision domains. The first challenge arises from the
inherent diverse formats of spatio-temporal datasets. Unlike lan-
guages with a natural and unified sequential structure or images
and videos adhering to standardized dimensions, spatio-temporal
data collected from different sources exhibit highly varied features.
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These include variable dimensions, temporal durations, and spatial
coverages that differ significantly, posing difficulties in standardiz-
ing their structure. The second challenge arises from high variations
in data distributions across multiple scenarios. Faced with highly dis-
tinct spatio-temporal patterns, the model may struggle to adapt to
these differences. Unlike language, which benefits from a shared
vocabulary, various cities or domains often operate on entirely dif-
ferent spatial and temporal scales, lacking common elements for
effective training and generalization.

Although the displayed spatio-temporal patterns vary signifi-
cantly, we believe that certain underlying spatio-temporal laws are
shared among these diverse scenarios. For instance, city layouts
vary significantly between different cities, but the relationships
between various urban functional areas may exhibit shared charac-
teristics. Similarly, while temporal periodic patterns differ across
domains, they share the fundamental concept of repetitive patterns.
Therefore, the key point of building a one-for-all model is to align
and leverage these shared while underlying characteristics.

To this end, we introduce UniST , a universal solution for ur-
ban spatio-temporal prediction through advanced pre-training and
knowledge-guided prompting. Notably, UniST achieves three es-
sential capabilities: (i) scalability across diverse spatio-temporal
data; (ii) effective pre-training to capture complex spatio-temporal
relationships; (iii) utilization of knowledge-guided prompts to align
underlying shared laws across scenarios.

UniST achieves the above capabilities through its holistic design
driven by four key components: data, architecture, pre-training,
and prompt learning. Firstly, we harness the rich diversity inherent
in spatio-temporal scenarios by leveraging extensive data from
various cities and domains. Secondly, we employ spatio-temporal
patching to unify diverse data into a sequential format, facilitating
the utilization of the powerful Transformer architecture. Thirdly,
drawing inspiration from large languageand vision models [10, 17],
UniST adopts the widely-used generative pre-training strategy –
masked token modeling. We further enhancing the model’s ca-
pability to capture complex spatio-temporal relationships by em-
ploying diverse masking strategies that comprehensively address
multi-perspective correlations. Moreover, informed by established
domain knowledge in spatio-temporal modeling, we design an in-
novative spatio-temporal knowledge-guided prompt mechanism.
This elaborated prompt network identifies underlying and shared
spatio-temporal properties, adapting dynamically to generate use-
ful prompts. In this way, UniST aligns distinct data distributions
of various datasets and advances towards developing a one-for-all
universal model. We summarize our contributions as:

• To our best knowledge, we are the first to address the universal
spatio-temporal prediction by investigating the potential of a
one-for-all model in diverse spatio-temporal scenarios.
• We propose UniST, which harnesses data diversity and achieves
universal spatio-temporal prediction through advanced pre-training
and prompt learning, marking a paradigm shift from traditional
methods to pre-trained foundational models.
• Extensive experiments demonstrate the generality and univer-
sality of UniST. It achieves new state-of-the-art performance on
various prediction tasks, particularly, superior transferability in
previously unseen scenarios.

Table 1: Comparison of UniST with other spatio-temporal
models regarding important properties.

Model Scalability(1) Few-shot Zero-shot Efficicency
PromptST [67] ✗ ✗ ✗ ✓

GPT-ST [30] ✗ ✗ ✗ ✓

STEP [45] ✗ ✗ ✗ ✓

ST-SSL [18] ✗ ✗ ✗ ✓

TrafficBERT [21] ✓ ✗ ✗ ✓

TFM [52] ✗ ✗ ✗ ✓

UrbanGPT [29] ✓ ✓ (2) ✓(2) ✗

STG-LLM [32] ✗ ✗ ✗ ✗

UniST ✓ ✓ ✓ ✓
(1) Whether can leverage diverse datasets with diverse formats.
(2) Restricted in the same city.

2 RELATEDWORK
Urban Spatio-Temporal Prediction. Urban spatio-temporal pre-
diction [51, 70] aims to model and forecast the dynamic patterns
of urban activities over both space and time. Deep learning tech-
niques has propelled significant advancements. A spectrum of mod-
els, including CNNs [28, 33, 64], RNNs [31, 53, 54], ResNets [64],
MLPs [44, 66], GNNs [1, 14, 69], Transformers [7, 8, 20, 62], and
diffusion models [63, 72], have been introduced to capture spatio-
temporal patterns. Simultaneously, cutting-edge techniques like
meta-learning [38, 61], contrastive learning [18, 65], and adversar-
ial learning [40, 49] are also utilized. However, most approaches
remain constrained by training separate models for each specific
dataset. Some studies [24, 37, 38, 61] explore transfer learning be-
tween cities, however, a certain amount of data samples in the
target city are still required. Current solutions are restrictive to
specified spatio-temporal scenarios and require training data, while
our model allows generalization across diverse scenarios and pro-
vides a one-for-all solution.

Foundation Models for Spatio-temporal Data and Time Se-
ries. Inspired by the remarkable strides in foundation models for
NLP [3, 50] and CV [2, 43], foundation models for urban scenarios
have emerged recently. Some explorations unlock the potential of
LLMs in this context. Intelligent urban systems like CityGPT [59]
and UrbanGPT [29] have demonstrated proficiency in addressing
language-based tasks. Additionally, LLMs are utilized for describing
urban-related images [60] to benefit downstream tasks and predict
user activities [15]. Moreover, the application of LLMs extends
to traffic signal control [26], showcasing their utility in tackling
complex spatio-temporal problems beyond languages. Recently,
there also has been great progress in foundation models for time
series [4, 22, 23, 71]. Unlike time series characterized by a straight-
forward sequential structure, spatio-temporal data presents a more
intricate nature with intertwined dependencies across both spatial
and temporal dimensions. We think that spatio-temporal data is
not inherently reliant on language. While the integration of LLMs
is both interesting and worthy of exploration, developing a founda-
tion model that specifically goes from spatio-temporal data, also
holds significant importance.

Prompt Learning. Prompting learning has achieved superior per-
formance in large models [19, 34, 42, 46]. The goal is to enhance the
generalization capability of pretrained models on specific tasks or
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Figure 1: The overview architecture of UniST, which consists of two stages: (i) large-scale spatio-temporal pre-trianing, (ii)
spatio-temporal knowledge-guided prompt learning.

domains. Typically, language models usually use a limited number
of demonstrations as prompts and vision models often employ a
learnable prompt network to generate useful prompts, known as
prompt learning. Our research aligns with prompt learning, where
spatio-temporal prompts are adaptively generated based on spatio-
temporal patterns through a prompt network.

3 THE UNIST MODEL
3.1 Preliminary
Spatial and Temporal Partitions.We use a grid system for spatial
partitioning, dividing the city into equal, non-overlapping areas
defined by longitude and latitude on an 𝐻 ×𝑊 map. Temporal
partitioning collects data at set intervals.
Spatio-Temporal Data. Spatio-temporal data 𝑋 is defined as a 4D
tensor with dimensions 𝑇 ×𝐶 × 𝐻 ×𝑊 , representing time steps,
variables, and spatial grids. 𝑇 , 𝐶 , 𝐻 , and𝑊 vary across scenarios.
Spatio-Temporal Prediction. For a specific dataset, given 𝑙ℎ his-
torical observations for the grid map, we aim to predict the future
𝑘 steps. The spatio-temporal prediction task can be formulated as
learning a 𝜃 -parameterized model F : 𝑋 [𝑡 :𝑡+𝑘 ] = F𝜃 (𝑋 [𝑡−𝑙ℎ :𝑡 ] ).
Few-Shot and Zero-Shot Predictions. The model is trained on
multiple source datasets and then adapted to a target dataset. In
few-shot learning, it is fine-tuned with a small amount of target
samples; in zero-shot learning, it makes predictions without any
fine-tuning.

3.2 Pre-training and Prompt Learning
Universal spatio-temporal prediction aims to empower a single
model to effectively handle diverse spatio-temporal scenarios, re-
quiring the unification of varied spatio-temporal data within a
cohesive model. This necessitates addressing significant distribu-
tion shifts across different datasets. To achieve this goal, we propose
a framework for pre-training and prompt learning, culminating in
the universal prediction model, UniST. Figure 1 shows the overview
architecture, detailing UniST across two stages:

• Stage 1: Large-scale spatio-temporal pre-training. Different
from existing methods limited to a single dataset, our approach
involves collecting extensive spatio-temporal data from a variety
of cities and domains for pre-training.
• Stage 2: Spatio-temporal knowledge-guided prompt learn-
ing.We introduces a prompt network for in-context learning. The
generation of prompts is adaptively guided by well-developed
spatio-temporal domain knowledge, such as spatial hierarchy
and temporal periodicity.

3.3 Base Model
The base model is a Transformer-based encoder-decoder architec-
ture. Through spatio-temporal patching, the base model can deal
with diverse spatio-temporal data in a unified sequential format.

Spatio-Temporal Patching. The conventional Transformer
architecture is designed for processing 1D sequential data. However,
spatio-temporal data possesses a 4D structure. To accommodate this,
we first split the data into channel-independent instances, which are
3D tensors. Then, we utilize spatio-temporal patching to transform
the 3D tensor, denoted as 𝑋 ∈ R𝐿×𝐻×𝑊 , into multiple smaller 3D
tensors. If the original shape is 𝐿 × 𝐻 ×𝑊 , and the patch size is
(𝑙, ℎ,𝑤), the resulting sequence is given by 𝐸𝑥 ∈ R𝐿

′×𝐻 ′×𝑊 ′
, 𝐿′ =

𝐿
𝑙
, 𝐻 ′ = 𝐻

ℎ
,𝑊 ′ = 𝑊

𝑤 .
This transformation involves a 3D convolutional layer with a

kernel size and stride both set to (𝑙, ℎ,𝑤). The process can be ex-
pressed as 𝐸𝑥 = Conv3𝑑 (𝑋 ), where 𝐸𝑥 represents the converted 1D
sequential data. The sequence length of 𝐸𝑥 is 𝐿′ × 𝐻 ′ ×𝑊 ′.

Positional Encoding. As the original Transformer architec-
ture does not consider the order of the sequence, we follow the
common practice [10] that incorporate positional encoding. To en-
hance generalization, we choose sine and cosine functions rather
than learnable parameters for positional encoding. This encoding
is separately applied to the spatial and temporal dimensions.

Encoder-Decoder Structure.The basemodel utilizes an encoder-
decoder framework inspired by Masked Autoencoder (MAE) [17].
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It processes input patches with a certain masking ratio, where the
encoder takes the unmasked patches and the decoder reconstructs
the image using the encoder’s output and the masked patches. Our
focus is on capturing comprehensive spatio-temporal dependen-
cies, including both high-level and low-level relationships, with
the goal of accurately predicting values at specific time and space
coordinates. Unlike MAE, which uses a lightweight decoder for pre-
training, our model employs a full-sized decoder that plays a crucial
role in both pre-training and fine-tuning. It can be formulated as:

𝐸𝑒𝑛𝑐 = G𝑒 (𝐸𝑥 ), 𝑌𝑑𝑒𝑐 = G𝑑 (𝐸𝑒𝑛𝑐 , 𝐸𝑚𝑎𝑠𝑘 ), (1)
where 𝐸𝑚𝑎𝑠𝑘 denotes the token embeddings for the masked patch,
G𝑒 and G𝑑 represent the encoder and decoder.

3.4 Spatio-Temporal Self-Supervised Pre-train
In pretrained language models, the self-supervised learning task is
either masking-reconstruction [10] or autoregressive prediction [3].
Similarly, in vision models, visual patches are randomly masked
and the pre-training objective is to reconstruct the masked pix-
els. To further augment the model’s capacity to capture intricate
spatio-temporal relationships and intertwined dynamics, we intro-
duce four distinct masking strategies during the pre-training phase,
which are shown in the left box in the stage 1 of Figure 1. Suppose
the masking percentage is 𝑟 , we explain these strategies as follows:
• Randommasking. This strategy is similar to the one used in
MAE, where spatio-temporal patches are randomly masked. Its
purpose is to capture fine-grained spatio-temporal relationships.

𝑀 ∼ U[0, 1], 𝐸𝑥 = 𝐸𝑥 [𝑀 < 1 − 𝑟 ], 𝑀 ∈ R𝐿
′×𝐻 ′×𝑊 ′

. (2)

• Tube masking. This strategy simulates scenarios where data
for certain spatial units is entirely missing across all instances in
time, mirroring real-world situations where some sensors may
be nonfunctional—a common occurrence. The goal is to improve
spatial extrapolation competence.

𝑀 ∼ U[0, 1], 𝐸𝑥 = 𝐸𝑥 [ : , 𝑀 < 1 − 𝑟 ], 𝑀 ∈ R𝐻
′×𝑊 ′

. (3)

• Block masking. A more challenging variant of tube masking,
block masking involves the complete absence of an entire block
of spatial units across all instances in time. The reconstruction
task becomes more intricate due to limited context information,
with the objective of enhancing spatial transferability.

𝑀 ∼ Uniform(1, 2), 𝐸𝑥 = 𝐸𝑥 [ : ,
𝑀 − 1
2

𝐻 ′ :
𝑀

2
𝐻 ′,

𝑀 − 1
2

𝑊 ′ :
𝑀

2
𝑊 ′] .

(4)
• Temporal Masking. In this approach, future data is masked,
compelling the model to reconstruct the future based solely on
historical information. The aim is to refine the model’s capability
to capture temporal dependencies from the past to the future.

𝑀 = Concat( [1(1−𝑟 )𝐿′×𝐻 ′×𝑊 ′ , 0𝑟𝐿′×𝐻 ′×𝑊 ′ ]), 𝐸𝑥 = 𝐸𝑥 [𝑀 = 1] .
(5)

By employing these diverse masking strategies, the model can
systematically enhance its modeling capabilities from a compre-
hensive perspective, simultaneously addressing spatio-temporal,
spatial, and temporal relationships.

3.5 Spatio-Temporal Knowledge-Guided Prompt
Prompt learning plays a critical role in enhancing UniST’s general-
ization ability. Before delving into the details of our prompt design,
it is essential to discuss why pre-trained models can be applied to
unseen tasks and domains.

3.5.1 Spatial-Temporal Generalization. In urban areas, the dis-
tributions of features and labels differ across cities and domains,
denoted as 𝑋𝐴 ≠ 𝑋𝐵, 𝑌𝐴 ≠ 𝑌𝐵 , where 𝑋 and 𝑌 denote features and
labels, while 𝐴 and 𝐵 represent different cities or domains. Taken
𝐴 and 𝐵 as a simple example, generalization involves leveraging
knowledge acquired from the𝐴 dataset and adapt it to the 𝐵 dataset.
The key point lies in identifying and aligning “related” patterns be-
tween𝐴 and 𝐵 datasets. While finding similar patterns for an entire
dataset may be challenging, we claim that identifying and align-
ing fine-grained patterns is feasible. Specifically, we provide some
assumptions that applies to prompt-empowered spatio-temporal
generalization, which are expressed as follows:
Assumption 1. For a new dataset B, it is possible to identify fine-
grained patterns related to the training data A.
𝑋𝐴 ≠ 𝑋𝐵, 𝑌𝐴 ≠ 𝑌𝐵,

∃𝑥𝑎 ∈ 𝑋𝐴, 𝑦𝑎 ∈ 𝑌𝐴, ∃𝑥𝑏 ∈ 𝑋𝐵, 𝑦𝑏 ∈ 𝑌𝐵, : 𝑥𝑎 ≈ 𝑥𝑏 , 𝑦𝑎 ≈ 𝑦𝑏 .
(6)

Assumption 2. Distinct spatio-temporal patterns correspond to cus-
tomized prompts.

𝑃∗𝑖 ≠ 𝑃∗𝑗 if 𝐷 (𝑥𝑖 , 𝑥 𝑗 ) > 𝜖,
𝐷 (𝑃∗𝑖 , 𝑃

∗
𝑗 ) > 𝐷 (𝑃∗𝑚, 𝑃∗𝑛) if 𝐷 (𝑥𝑖 , 𝑥 𝑗 ) > 𝐷 (𝑥𝑚, 𝑥𝑛),

(7)

where 𝑥𝑖 denotes the fine-grained spatio-temporal pattern, 𝑃∗
𝑖
repre-

sents the prompt of 𝑥𝑖 , and 𝐷 is the similarity between 𝑥𝑖 and 𝑥 𝑗 .
Assumption 3. There exists 𝑓𝜃 that captures the mapping relation-
ship from the spatio-temporal pattern 𝑥𝑖 to prompt 𝑃∗

𝑖
.

𝑃𝑖 = 𝑓𝜃 (𝑥𝑖 ) where 𝜃 = argmin
𝜃

∑︁
𝑖

Distance(𝑃∗𝑖 , 𝑓𝜃 (𝑥𝑖 )) .

Based on these assumptions, our core idea is that for different
inputs with distinct spatio-temporal patterns, customized prompts
should be generated adaptively.

3.5.2 Spatio-Temporal Domain Knowledge. Given the afore-
mentioned assumptions, a critical consideration is how to define the
concept of “similarity” to identify and align shared spatio-temporal
patterns. Here we leverage insights from well-established domain
knowledge in spatio-temporal modeling [64, 70], encompassing
properties related to both space and time. There are four aspects to
consider when examining these properties:
• Spatial closeness: Nearby units may influence each other.
• Spatial hierarchy: The spatial hierarchical organization impacts
the spatio-temporal dynamics, requiring a multi-level perception
on the city structure.
• Temporal closeness: Recent dynamics affect future results, indi-
cating a closeness dependence.
• Temporal period: Daily or weekly patterns exhibit similarities,
displaying a certain periodicity.
For simplicity, we provide some straightforward implementa-

tions, which are shown in the four networks in Figure 1, i.e., 𝑁𝑒𝑡𝑡𝑐 ,
𝑁𝑒𝑡𝑡𝑝 , 𝑁𝑒𝑡𝑠𝑐 , and 𝑁𝑒𝑡𝑠ℎ . For the spatial dimension, we first employ
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Figure 2: Illustration of the prompt generation process.

an attention mechanism to merge the temporal dimension into a
representation termed 𝐸𝑠 . Then, to capture spatial dependencies
within close proximity, a 2D convolutional neural network (CNN),
i.e., 𝑁𝑒𝑡𝑠𝑐 , with a kernel size of 3 is employed. To capture spatial
hierarchies, we utilize CNNs with larger kernel sizes, i.e., 𝑁𝑒𝑡𝑠ℎ .
These larger kernels enable the perception of spatial information on
larger scales, which facilitate to construct a hierarchical perspective.
As for the temporal dimension, we employ an attention network,
i.e., 𝑁𝑒𝑡𝑡𝑐 , to aggregate the previous M steps denoted as 𝑋𝑐 . Re-
garding the temporal period, we select corresponding time points
from the previous N days, denoted as 𝑋𝑝 . Subsequently, we employ
another attention network, i.e., 𝑁𝑒𝑡𝑡𝑝 , to aggregate the periodical
sequence, which captures long-term temporal patterns. The overall
process is formulated as follows:

𝐸𝑠𝑐 = Conv2𝐷 [3] (𝑋𝑠 ), 𝐸𝑠ℎ = {Conv2𝐷 [2𝑖 + 1] (𝑋𝑠 )}, 𝑖 ∈ {2, 3, 4},
(8)

𝐸𝑡𝑐 = Attention𝑡 (𝑋𝑐 ), 𝐸𝑡𝑝 = Attention𝑝 (𝑋𝑝 ). (9)

It is essential to emphasize that the learning of 𝐸𝑠𝑐 , 𝐸𝑠ℎ, 𝐸𝑡𝑐 , and
𝐸𝑡𝑝 is not restricted by our practice. Practitioners have the flexibility
to employ more complex designs to capture richer spatio-temporal
properties. For example, Fourier-based approaches [36, 58] can be
utilized to capture periodic patterns.

3.5.3 Spatio-Temporal Prompt Learner. Given the representa-
tions of properties derived from spatio-temporal domain knowledge,
the pivotal question is how to generate prompts—how does spatio-
temporal knowledge guide prompt generation? Here we utilize
prompt learning techniques. While prompt learning in computer vi-
sion [19] often train fixed prompts for specific tasks such as segmen-
tation, detection, and classification. Due to the high-dimensional
and complex nature of spatio-temporal patterns, training a fixed
prompt for each case becomes impractical.

To tackle this issue, we draw inspirations from memory net-
works [47] and propose a novel approach that learns a spatial mem-
ory pool and a temporal memory pool. In the prompt learning
process, these memory pools are optimized to store valuable in-
formation about spatio-temporal domain knowledge. As shown in
Figure 2, the spatial and memory pools are defined as follows:

𝐾𝑀𝑠 = {(𝑘𝑠,0,𝑚𝑠,0), (𝑘𝑠,1,𝑚𝑠,1), ..., (𝑘𝑠,𝑁−1,𝑚𝑠,𝑁−1)},
𝐾𝑀𝑡 = {(𝑘𝑡,0,𝑚𝑡,0), (𝑘𝑡,1,𝑚𝑡,1), ..., (𝑘𝑡,𝑁−1,𝑚𝑡,𝑁−1)},

(10)

where 𝑘𝑠,𝑖 ,𝑚𝑠,𝑖 , 𝑘𝑡,𝑖 ,𝑚𝑡,𝑖 , 𝑖 ∈ {0, 1, ..., 𝑁 − 1} are all learnable pa-
rameters, and the memory is organized in a key-value structure
following existing practice [47, 57].

Subsequently, useful prompts are generated based on these opti-
mized memories. This involves using the representations of spatio-
temporal properties as queries to extract valuable memory knowl-
edge, i.e., pertinent embeddings from the memory pool. Figure 2
illustrates the process, and it is formulated as follows:

𝛼𝑠𝑐 = [𝑘𝑠,0;𝑘𝑠,1; ..., 𝑘𝑠,𝑁−1]𝐸𝑇𝑠𝑐 , 𝑃𝑠𝑐 =
∑︁
𝑖

𝛼𝑠𝑐,𝑖𝑚𝑠,𝑖 ,

𝛼𝑠ℎ = [𝑘𝑠,0;𝑘𝑠,1; ..., 𝑘𝑠,𝑁−1]𝐸𝑇𝑠ℎ, 𝑃𝑠ℎ =
∑︁
𝑖

𝛼𝑠ℎ,𝑖𝑚𝑠,𝑖 ,

𝛼𝑡𝑐 = [𝑘𝑡,0;𝑘𝑡,1; ..., 𝑘𝑡,𝑁−1]𝐸𝑇𝑡𝑐 , 𝑃𝑡𝑐 =
∑︁
𝑖

𝛼𝑡𝑐,𝑖𝑚𝑡,𝑖 ,

𝛼𝑡𝑝 = [𝑘𝑡,0;𝑘𝑡,1; ..., 𝑘𝑡,𝑁−1]𝐸𝑇𝑡𝑝 , 𝑃𝑡𝑝 =
∑︁
𝑖

𝛼𝑡𝑝,𝑖𝑚𝑡,𝑖 ,

(11)

where 𝐸𝑠𝑐 , 𝐸𝑠ℎ, 𝐸𝑡𝑐 , 𝐸𝑡𝑝 represent four representations related to
four types of spatio-temporal domain knowledge, and 𝑃𝑠𝑐 , 𝑃𝑠ℎ, 𝑃𝑡𝑐 , 𝑃𝑡𝑝
are the extracted prompts. This allows the model to adaptively se-
lect the most useful information for prediction. These prompts are
then integrated into the input space of the Transformer architecture,
which are displayed in the upper part of Figure 2.

4 PERFORMANCE EVALUATIONS
4.1 Experimental Setup
To evaluate the performance of UniST, we conducted extensive
experiments on more than 20 spatio-temporal datasets. Due to the
page limit, we provide complete results in the arXiv version1.

Datasets. The datasets we used cover multiple cities, spanning
various domains such as crowd flow, dynamic population, traffic
speed, cellular network usage, taxi trips, and bike demand. ArXiv
Appendix A Table 4 and Table 5 provide a summary of the datasets
we used. These spatio-temporal datasets originate from distinct
domains and cities, and have variations in the number of variables,
sampling frequency, spatial scale, temporal duration, and data size.

Baselines.We compare UniST with a broad collection of state-
of-the-art models for spatio-temporal prediction, which can be
categorized into five groups:
• Heuristic approaches. History average (HA) and ARIMA.
• Deep urban prediction approaches. We consider state-of-
the-art urban ST prediction models, including STResNet [64],
ACFM [33], MC-STL [65], STGSP [68], STNorm [9], STID [44],
and PromptST [67].
• Video prediction approaches. We compare with competitive
video prediction models from the popular benchmark, including
PredRNN [54], MAU [6], MIM [55], SimVP [12], and TAU [48].
• Multivariate time series forecasting approaches. We con-
sider state-of-the-art multivariate time series forecasting models,

1https://arxiv.org/abs/2402.11838

https://arxiv.org/abs/2402.11838
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Table 2: Performance comparison of short-term prediction on seven datasets in terms of MAE and RMSE. We use the average
prediction errors overall prediction steps. Bold denotes the best results and underline denotes the second-best results.

TaxiBJ Crowd Cellular BikeNYC TrafficJN TDrive TrafficSH

Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

HA 53.77 29.82 17.80 6.79 72.94 27.57 11.41 3.43 1.38 0.690 150.2 74.5 1.24 0.771
ARIMA 56.70 39.53 21.87 10.23 81.31 40.22 12.37 3.86 1.20 0.651 211.3 108.5 1.17 0.769

STResNet 45.17 30.87 5.355 3.382 24.30 14.32 8.20 4.98 0.964 0.556 220.1 117.4 1.00 0.723
ACFM 37.77 21.59 4.17 2.34 22.79 12.00 3.93 1.67 0.920 0.559 98.1 51.9 0.833 0.566
STID 27.36 14.01 3.85 1.63 18.77 8.24 4.06 1.54 0.880 0.495 47.4 23.3 0.742 0.469

STNorm 29.37 15.71 4.44 2.09 19.77 8.19 4.45 1.66 0.961 0.532 54.3 47.9 0.871 0.579
STGSP 45.04 28.28 7.93 4.56 39.99 21.40 5.00 1.69 0.882 0.490 94.6 47.8 1.02 0.749
MC-STL 29.14 15.83 4.75 2.39 21.22 10.26 4.08 2.05 1.19 0.833 54.2 28.1 1.00 0.720
PromptST 27.44 14.54 3.52 1.54 15.74 7.20 4.36 1.57 0.953 0.490 47.5 22.8 0.811 0.523

MAU 38.14 20.13 4.94 2.35 39.09 18.73 5.22 2.06 1.28 0.697 48.8 22.1 1.37 0.991
PredRNN 27.50 14.29 5.13 2.36 24.15 10.44 5.00 1.74 0.852 0.463 54.9 25.2 0.748 0.469
MIM 28.62 14.77 5.66 2.27 21.38 9.37 4.40 1.62 1.17 0.650 51.4 22.7 0.760 0.505
SimVP 32.66 17.67 3.91 1.96 16.48 8.23 4.11 1.67 0.969 0.556 46.8 22.9 0.814 0.569
TAU 33.90 19.37 4.09 2.11 17.94 8.91 4.30 1.83 0.993 0.566 51.6 28.1 0.820 0.557

PatchTST 42.74 22.23 10.25 3.62 43.40 15.74 5.27 1.65 1.25 0.616 106.4 51.3 1.10 0.663
iTransformer 36.97 19.14 9.40 3.40 37.01 13.93 7.74 2.53 1.11 0.570 86.3 42.6 1.04 0.655

PatchTST(one-for-all) 43.66 23.16 13.51 5.00 56.80 20.56 9.97 3.05 1.30 0.645 127.0 59.26 1.13 0.679

UniST(one-for-all) 26.84 13.95 3.00 1.38 14.29 6.50 3.50 1.27 0.843 0.430 44.97 19.67 0.665 0.405

including PatchTST [39] and iTransformer [35]. We also train
PatchTST for all datasets, denoted as PatchTST(one-for-all).
• Meta learning approaches.We considerMAML [11] andMetaST [61]
for evaluations of the generalization ability.

Metrics.We employed commonly used regression metrics, in-
cluding Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE). For more detailed information on the datasets, baselines,
and metrics, please refer to arXiv Appendix A, B, and D.

4.2 Short-Term Prediction
Setups. In short-term prediction, both the input step and prediction
horizon are set as 6 following [22, 39]. For baselines, we train a
dedicated model for each dataset, while UniST is evaluated directly
across all datasets.

Results. Table 2 presents the short-term prediction results, with
a selection of datasets due to space constraints. The complete re-
sults can be found in Table 11 and Table 12 in arXiv Appendix E.
As we can observe from Table 2, UniST consistently outperforms
all baselines across all datasets. Compared with the best baseline
of each dataset, it showcases a notable average improvement. No-
tably, time series approaches such as PatchTST and iTransformer
exhibit inferior performance compared to spatio-temporal methods.
This underscores the importance of incorporating spatial depen-
dency as prior knowledge for spatio-temporal prediction tasks.
Another observation is that PatchTST(one-for-all) performs worse
than PatchTST dedicated for each dataset, suggesting that themodel
struggles to directly adept to these distinct data distributions. More-
over, baseline approaches exhibit inconsistent performance across
diverse datasets, indicating their instability across scenarios.

Table 3: Performance comparison of long-term prediction
on three datasets in terms of MAE and RMSE.

TaxiNYC Crowd BikeNYC

Model RMSE MAE RMSE MAE RMSE MAE

HA 61.03 21.33 19.57 8.49 11.00 3.66
ARIMA 68.0 28.66 21.34 8.93 11.59 3.98

STResNet 29.54 14.46 8.75 5.58 7.15 3.87
ACFM 32.91 13.72 6.16 3.35 4.56 1.86
STID 24.74 11.01 4.91 2.63 4.78 2.24

STNorm 31.81 11.99 9.62 4.30 6.45 2.18
STGSP 28.65 10.38 17.03 8.21 4.71 1.54
MC-STL 29.29 17.36 9.01 6.32 4.97 2.61

MAU 26.28 9.07 20.13 8.49 6.18 2.13
PredRNN 21.17 7.31 19.70 10.66 5.86 1.97
MIM 63.36 29.83 15.70 8.81 7.58 2.81
SimVP 20.18 9.78 5.50 3.13 4.10 1.71
TAU 24.97 10.93 5.31 2.81 3.89 1.73

PatchTST 30.64 17.49 5.25 2.83 5.27 1.65
iTransformer 33.81 11.48 6.94 2.63 6.00 2.02

PatchTST(one-for-all) 34.50 10.63 6.39 2.92 6.02 1.83

UniST (one-for-all) 19.83 6.71 4.25 2.26 3.56 1.31

4.3 Long-Term Prediction
Setups. Here we extend the input step and prediction horizon
to 64 following [22, 39]. This configuration accommodates pro-
longed temporal dependencies, allowing us to gauge the model’s
proficiency in capturing extended patterns over time. Similar to
the short-term prediction, UniST is directly evaluated across all
datasets, while specific models are individually trained for each
baseline on respective datasets.

Results. Table 3 shows the long-term prediction results. Even with
a more extended prediction horizon, UniST still consistently outper-
forms all baseline approaches across all datasets. Compared with
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UniST (zero-shot)

UniST (zero-shot)

Figure 3: (a) Few-shot performance of UniST and baselines on
Crowd and BikeNYC datasets using only 1% of the training
data. (b) Few-shot performance of UniST and baselines using
only 5% of the training data. The Dashed red lines denote the
zero-shot performance of UniST.

the best baseline of each dataset, it yields an average improvement
of 10.1%. This underscores UniST’s adept understanding of temporal
patterns and its robust ability to generalize to extended timeframes.
Table 13 in arXiv Appendix E illustrates the complete results.

4.4 Few-Shot Prediction
Setups. The hallmark of large foundation models lies in their ex-
ceptional generalization ability. The few-shot and zero-shot evalua-
tions are commonly employed to characterize the ultimate tasks
for universal time series forecasting [5, 22, 71]. Likewise, the few-
shot and zero-shot prediction capability is crucial for a universal
spatio-temporal model. In this section, we assess the few-shot learn-
ing performance of UniST. Each dataset is partitioned into three
segments: training data, validation data, and test data. In few-shot
learning scenarios, when confronted with an unseen dataset during
the training process, we utilized a restricted amount of training
data, specifically, 1%, 5%, 10% of the training data. We choose some
baselines with relatively good performance for the few-shot set-
ting evaluation, We also compare with meta-learning baselines, i.e.,
MAML and MetaST, and pretraining and finetuning-based time
series method, i.e., PatchTST.

Results. ArXiv Appendix Table 14 to 16 illustrates the overall few-
shot results. Due to the space limit, Figure 3 only illustrates the 1%
few-shot learning results on two datasets. UniST still outperforms
all baselines in few-shot learning scenarios, UniST achieves a larger
relative improvement over baselines compared to long-term and
short-term predictions. The transferability can be attributed to
successful knowledge transfer in our spatio-temporal prompt.

4.5 Zero-Shot Prediction
Setups. Zero-shot inference serves as the ultimate task for assess-
ing a model’s adaptation ability. In this context, after training on

Figure 4: Ablation studies on four traffic speed datasets:
Chengdu (CD), Shanghai (SH), Changsha (CS), and Jinan (JN).
(a) illustrates the results of removing a prompt guided by one
type of spatio-temporal knowledge. (b) presents the results
of varying the number of learnable embeddings in the tem-
poral and spatial memory pools.

a diverse collection of datasets, we evaluate UniST on an entirely
novel dataset—i.e., without any prior training data from it. The test
data used in this scenario aligns with that of normal prediction and
few-shot prediction.

Results. Figure 3 also compare the performance of UniST (zero-
shot) and baselines (few-shot). As observed, UniST achieves remark-
able zero-shot performance, even surpassingmany baselines trained
with training data that are highlighted by red dashed lines. We at-
tribute these surprising results to the powerful spatio-temporal
transfer capability. It suggests that for a completely new scenario,
even when the displayed overall patterns are dissimilar to the data
encountered during the training process, UniST can extract fine-
grained similar patterns from our defined spatial and temporal
properties. The few-shot and zero-shot results demonstrate the
data-efficient advantage of UniST.

5 STUDY ON UNIST
5.1 Ablation Study
The prompts play an essential role in our UniST model. Here we
investigate whether the designed spatial and temporal properties
contribute to the final performance. We use ’s’ to denote spatial
closeness and hierarchy, ’p’ for temporal periodicity, and ’c’ for
temporal closeness. we compare the overall design that incorporates
all three properties with three degraded versions that individually
remove ’s’, ’p’, or ’c’. Figure 4(a) shows the results on four traffic
speed datasets. As we can observe, removing any property results
in a performance decrease. The contributions of each spatial and
temporal property vary across different datasets, highlighting the
necessity of each property for the spatio-temporal design.

Additionally, we explore how the number of embeddings in the
memory pools affects the final performance. As seen in Figure 4(b),
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Figure 5: Embeddings visualization of spatial and temporal
memory pools at the initial and final optimized states. The
embeddings exhibit obvious divergence.

(a) Crowd dataset (b) Traffic speed dataset
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Figure 6: (a) and (b): Comparison of the mean value of inputs
in each memory embedding, where the inputs assign the
highest attention weight to the memory embedding. (c) and
(d): Comparison of the attention weight on each memory
embedding for two distinct datasets.

increasing the number from 128 to 512 improves performance across
the four datasets. When further increasing the number to 1024,
the performance remains similar to 512, suggesting that 512 is an
optimal choice.

5.2 Prompt Learner
In this section, we conduct in-depth analyses of the prompt learner.
To provide a clearer understanding, we leverage t-Distributed Sto-
chastic Neighbor Embedding (t-SNE) to visualize the embeddings of
both the spatial and temporal memory pools. Specifically, we plot
the initial state and the optimized state in Figure 5. Notably, from
the start state to the final optimized state, the embeddings gradually
become diverged in different directions. This suggests that, through-
out the optimization process, the memory pools progressively store
and encapsulate personalized information.

Next, we delve into the memorized patterns of each embedding
within the temporal memory pool. Specifically, we first select the
inputs based on the attention weights. For each embedding, we
aggregate the corresponding input spatio-temporal data with the
highest attention weight. Then, we calculate the mean value of the
extracted spatio-temporal data. Figure 6(a) and Figure 6(b) illus-
trates the results for two datasets (Crowd and TrafficSH). As we
can see, the memorized patterns revealed in the prompt tool ex-
hibit remarkable consistency across different urban scenarios. This
not only affirms that each embedding is meticulously optimized to
memorize unique spatio-temporal patterns, but also underscores

Figure 7: Left: training loss across five models with varying
parameter sizes. Right: performance evaluation of masked
patch reconstruction by increasing parameter sizes.

the robustness of the spatial and temporal memory pools across
different scenarios.

Moreover, we examine the extracted spatio-temporal prompts
for two distinct domains. Specifically, we calculate the mean at-
tention weight for each embedding in the context of each dataset.
Figure 6(c) and Figure 6(d) illustrates the comparison results. As
we can observe, the depicted attention weight distributions for the
two datasets manifest striking dissimilarities. The observed distinc-
tiveness in attention weight distributions implies a dynamic and
responsive nature in the model’s ability to tailor its focus based
on the characteristics of the input data. The ability to dynamically
adjust the attention weights reinforces UniST’s versatility and uni-
versality for diverse datasets.

5.3 Scalability
We analyze the scalability of our UniST model. Our investigation
specifically concentrates on observing changes in training loss and
prediction performance as we vary the model parameter size. Fig-
ure 7 depicts the training loss and testing RMSE of UniST with
varying parameter sizes. For training loss (left figure), we observe
two key characteristics: (i) across different parameter sizes, the
training loss consistently decreases and gradually converges with
increasing training steps; (ii) increazing the parameter size acceler-
ates the convergence of the training loss; (iii) there exist diminishing
marginal returns, indicating that the training loss cannot be indefi-
nitely reduced. The right figure illustrates the reconstruction RMSE
on the testing set, showing similar trends to the training loss.

6 CONCLUSION
In this work, we address an important problem of building a uni-
versal model UniST for urban spatio-temporal prediction. By lever-
aging the diversity of spatio-temporal data from multiple sources,
and discerning and aligning underlying shared spatio-temporal
patterns across multiple scenarios, UniST demonstrates a powerful
capability to predict across all scenarios, particularly in few-shot
and zero-shot settings. A promising direction for future work en-
tails the integration of various spatio-temporal data formats, such
as grid-based, sequence-based, and graph-based data. Our study
will inspire future research in spatio-temporal modeling towards
the universal direction.
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APPENDIX
A DATASETS
A.1 Basic Information
Here we provide more details of the used datasets in our study.
We collect various spatio-temporal data from multiple cities and
domains. Table 4 summarizes the basic information of the used
datasets, and Table 5 reports the basic statistics. Specifically, values
for Crowd and Cellular datasets in Table 2, Table 3, Table 13, Table 14
and Figure 3 should be scaled by a factor of 103.

A.2 Data Preprocessing
For each dataset, We split it into three non-overlapping periods:
the first 70% of the period was used as the training set, the next
15% as the validation set, and the final 15% as the test set. To ensure
no overlap between train/val/test sets, we removed intermediate
sequences. We have normalized all datasets to the range [−1, 1].
The reported prediction results are denormalized results.

We provide the training algorithm for spatio-temporal pre-trianing
on multiple datasets in Algorithm 1. We also present the prompt
fine-tuning algorithm in Algorithm 2.

B BASELINES
• HA: History average uses the mean value of historical data for
future predictions. Here we use historical data of corresponding
periods in the past days.
• ARIMA: Auto-regressive Integrated Moving Average modelis
a widely used statistical method for time series forecasting. It
is a powerful tool for analyzing and predicting time series data,
which are observations collected at regular intervals over time.
• STResNet [64]: It is a spatio-temporal model for crowd flow
prediction, which utilizes residual neural networks to model the
temporal closeness, period, and trend properties.
• ACFM [33]: Attentive Crowd Flow Machine model is proposed
to predict the dynamics of the crowd flows. It learns the dynamics
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Table 4: The basic information of the used datasets.

Dataset Domain City Temporal Duration Temporal interval Spatial partition

TaxiBJ Taxi GPS Beijing, China

20130601-20131030

Half an hour 32 × 3220140301-20140630
20150301-20150630
20151101-20160410

Cellular Cellular usage Nanjing, China 20201111-20210531 Half an hour 16 * 20

TaxiNYC-1 Taxi OD New York City, USA 20160101-20160229 Half an hour 16 * 12

TaxiNYC-2 Taxi OD New York City, USA 20150101-20150301 Half an hour 20 * 10

BikeNYC-1 Bike usage New York City, USA 20160801-20160929 One hour 16 * 8

BikeNYC-2 Bike usage New York City, USA 20160701-20160829 Half an hour 10 * 20

TDrive Taxi trajectory New York City, USA 20150201-20160602 One hour 32 × 32
Crowd Crowd flow Nanjing, China 20201111-20210531 Half an hour 16 * 20

TrafficCS Traffic speed Changsha, China 20220305-20220405 Five minutes 28 × 28
TrafficWH Traffic speed Wuhan, China 20220305-20220405 Five minutes 30 × 28
TrafficCD Traffic speed Chengdu, China 20220305-20220405 Five minutes 28 × 26
TrafficJN Traffic speed Jinan, China 20220305-20220405 Five minutes 32 × 18
TrafficNJ Traffic speed Nanjing, China 20220305-20220405 Five minutes 32 × 24
TrafficSH Traffic speed Shanghai, China 20220127-20220227 Five minutes 28 × 32
TrafficSZ Traffic speed Shenzhen, China 20220305-20220405 Five minutes 24 × 18
TrafficGZ Traffic speed Guangzhou, China 20220305-20220405 Five minutes 32 × 26
TrafficGY Traffic speed Guiyang, China 20220305-20220405 Five minutes 26 × 28
TrafficTJ Traffic speed Tianjin, China 20220305-20220405 Five minutes 24 × 30
TrafficHZ Traffic speed Hangzhou, China 20220305-20220405 Five minutes 28 × 24
TrafficZZ Traffic speed Zhengzhou, China 20220305-20220405 Five minutes 26 × 26
TrafficBJ Traffic speed Beijing, China 20220305-20220405 Five minutes 30 × 32

by leveraging an attention mechanism to adaptively aggregate
the sequential patterns and the periodic patterns.
• STGSP [68]: This model propose that the global information and
positional information in the temporal dimension are important
for spatio-temproal prediction. To this end, it leverages a semantic
flow encoder to model the temporal relative positional signals.
Besides, it utilizes an attention mechanism to cpature the multi-
scale temporal dependencities.
• MC-STL [65]: It leverages an state-of-the-art training techniques
for spatio-temporal predition, the mask-enhanced contrastive
learning, which can effectively capture the relationships on the
spatio-temporal dimension.

• MAU [6]: Motion-aware unit is a video predcitionmodel. it broad-
ens the temporal receptive fields of prediction units, which can
facilitates to capture inter-frame motion correlations. It consists
of an attention module and a fusion module.
• PredRNN [54]: PredRNN is a recurrent network-based model. In
this model, the memory cells are explicitly decoupled, and they
calculate in independent transition manners. Besides, different
from the memory cell of LSTM, this network leverages zigzap
memory flow, which facilitates to learn at distinct levels.
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Table 5: The basic statistics of the used datasets.

Dataset Min value Max value Mean value Standard deviation

TaxiBJ 0.0 1285 107 133

Cellular 0.0 2992532 75258 149505

TaxiNYC-1 0.0 1517 32 94

TaxiNYC-2 0.0 1283 37 102

BikeNYC-1 0.0 266 9.2 18.1

BikeNYC-2 0.0 299 4.4 14.6

TDrive 0.0 2681 123 229

Crowd 0.0 593118 21656 40825

TrafficCS 0.0 22.25 6.22 4.79

TrafficWH 0.0 22.35 6.22 4.68

TrafficCD 0.0 22.25 7.33 4.36

TrafficJN 0.0 25.04 5.72 4.71

TrafficNJ 0.0 24.82 5.38 4.73

TrafficSH 0.0 21.83 7.92 3.86

TrafficSZ 0.0 22.12 5.11 4.75

TrafficGZ 0.0 25.16 5.26 4.79

TrafficGY 0.0 28.89 5.95 7.03

TrafficTJ 0.0 25.24 6.32 5.05

TrafficHZ 0.0 29.50 3.81 4.38
TrafficZZ 0.0 23.26 6.67 4.32

TrafficBJ 0.0 22.82 6.30 4.22

• MIM [55]: Memory utilize the differential information between
adjacent recurrent states, which facilitates to model the non-
stationary properties. Stacked multiple MIM blcoks make it pos-
sible to model high-order non-stationarity.
• SimVP [12]: It is a simple yet very effective video predcition
model. It is completely built based on convulutional neural net-
works and uses MSE loss. It serves as a solid baseline in video
prediction tasks.
• TAU [48]: Temporal Attention Unit is the state-of-the-art video
predcition model. It decomposes the temporal attention into two
parts: intra-frame attention and inter-frame attention, which
are statical and dynamical, respectively. Besides, it introduces a
novel regularization, i.e., differential divergence regularization,
to consider the impact of inter-frame variations.

• STID [44]: It is a MLP-based spatio-temporal prediction model,
which is simple yet effective. Its superior performance comes
from the identification of the indistinguishability of samples in
spatio-temporal dimensions. It demonstrates that it is promis-
ing to design efficient and effective models in spatio-temporal
predictions.
• STNorm [9]: It proposed two types of normalization modules:
spatial normalization and temporal normalization. These two nor-
malizations can separately consider high-frequency components
and local components.
• PatchTST [39]: It first employed patching and self-supervised
learning in multivariate time series forecasting. It has two essen-
tial designs: (i) segmenting the original time series into patches
to capture long-term correlations, (ii) different channels are op-
erated independently, which share the same network.
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Algorithm 1 Spatio-temporal Pre-training

1: Input: Dataset 𝐷 = {𝐷1, 𝐷2, . . . , 𝐷𝑀 }, base spatio-temporal
prediction model 𝐹 , and loss function 𝐿.

2: Initialize: Learnable parameters 𝜃 for the model 𝐹 .
3: for 𝑒𝑝𝑜𝑐ℎ ∈ {1, 2, . . . , 𝑁𝑖𝑡𝑒𝑟 } do
4: Randomly sample a dataset 𝐷𝑚 and a mini-batch 𝑋 from
𝐷𝑚 .

5: Randomly choose a masking strategy 𝑀 from the four
strategies.

6: Mask the input 𝑋 into 𝑋𝑚
7: Compute the reconstructions 𝑦 ← 𝐹𝜃 (𝑋𝑚)
8: Compute the MSE loss L ← 𝐿(𝑦,𝑦)
9: Update the model’s parameters 𝜃 ← 𝑢𝑝𝑑𝑎𝑡𝑒 (L;𝜃 )
10: end for

Algorithm 2 Prompt Tuning

1: Input: Dataset 𝐷 = {𝐷1, 𝐷2, . . . , 𝐷𝑀 }, parameters of pre-
trained base model 𝜃 , and loss function 𝐿

2: Initialize: Learnable parameters 𝜙 for the prompt network 𝐺 .
3: Load the pretrained model parameters 𝜃 .
4: Fix the parameters of the attention and feed-forward layers of

the base model 𝐹𝜃 .
5: for 𝑒𝑝𝑜𝑐ℎ ∈ {1, 2, . . . , 𝑁𝑖𝑡𝑒𝑟 } do
6: Randomly sample a dataset 𝐷𝑚 and a mini-batch (𝑋,𝑌 )

from 𝐷𝑚 .
7: Generate the prompt 𝑃 for the mini-batch 𝑃 ← 𝐺𝜙 (𝑋 ).
8: Add the prompt to the input space 𝑋𝑝 = 𝑋 + 𝑃 .
9: Compute the predictions 𝑦 ← 𝐹𝜃 (𝑋𝑝 )
10: Compute the MSE loss L ← 𝐿(𝑦,𝑌 )
11: Update the model’s parameters 𝛾 ← 𝑢𝑝𝑑𝑎𝑡𝑒 (L;𝛾), 𝜃 ←

𝑢𝑝𝑑𝑎𝑡𝑒 (L;𝜃 )
12: end for

• iTransformer [35]: This is the state-of-the-art multivariate time
series model. Different from other Transformer-based methods,
it employes the attention and feed-forward operation on an in-
verted dimension, that is, the multivariate correlation.
• MAML [11]: Model-Agnostic Meta-Learning is an state-of-the-
art meta learning technique. The main idea is to learn a good
initialization from various tasks for the target task.
• MetaSTMetaST [61]: It is a urban transfer learning approach,
which utilizes long-period data from multiple cities for transfer
learning. by employing a meta-learning approach, it learns a
generalized network initialization adaptable to target cities. It
also incorporates a pattern-based spatial-temporal memory to
capture important patterns.
• PromptST [67]: It is the state-of-the-art pre-trianing and prompt-
tuning approach for spatio-temporal prediction.

C ALGORITHMS
D IMPLEMENTATION DETAILS
D.1 Evaluation Metrics
We use commonly used regression metrics, Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE), to measure the pre-
diction performance. Suppose 𝒀 = 𝑌1, ..., 𝑌𝑀 are ground truth for
real spatio-temporal data, �̂� = 𝑌1, ..., 𝑌𝑁 are the predicted values by
the model, and 𝑁 is the number of total testing samples, These two
metrics can be formulated as follows:

RMSE(𝒀 , �̂� ) =

√√√
1
𝑁

𝑁∑︁
𝑖

(
𝑌𝑖 − 𝑌𝑖

)2
,

MAE(𝒀 , �̂� ) = 1
𝑁

𝑁∑︁
𝑖

��𝑌𝑖 − 𝑌𝑖 �� , (12)

D.2 Parameter Settings
Table 6 shows the parameter details of UniST with different sizes.
During the training process, we used theAdamoptimizer for gradient-
based model optimization. The learning rate of the pre-training is
set as 3e-4, and the learning rate of the prompt tuning is set as 5e-5.
The pre-training learning rate is selected via grid searching in a
set of {1𝑒 − 3, 3𝑒 − 4, 1𝑒 − 4}, and the fine-tuning learning rate is
selected in a set of {1𝑒 − 4, 5𝑒 − 5, 1𝑒 − 5}. Both in pre-training and
fine-tuning, we evaluate the model’s performance on the valida-
tion set every ten epochs (∼all training instances). We choose the
model that performs best on the validation set for evaluations on
the testing set.

D.3 Prompt-Tuning
The prompt-tuning stage aims to train a effective prompt network,
which generates customized prompt for specific spatio-temporal
pattern. We propose to leverage four types of spatio-temporal
knowledge: (i) spatial closess (𝑠𝑐 ), (ii) spatial hierarchy (𝑠ℎ), (iii) tem-
poral closeness (𝑡𝑐 ), and (iv) temporal period (𝑡𝑝 ). These knowledge-
guided features are extracted from the input sequence. The input is
the historical spatio-temporal sequence, the output is the predicted
future spatio-temporal sequence, and the objective is to minimize
the distance between the predicted results and real data. Specifically,
we use the widely adopted mean squared error loss function with 𝑙2
regularization on the parameters in UniST to prevent over-fitting,
which can be formulated as follows

L =
1
𝑀

∑︁
(𝑦 − 𝑦)2 + 𝜆

∑︁
𝜃 ∈Θ
∥𝜃 ∥2 (13)

where𝑦 and𝑦 are ground truths andmodel predictions, respectively;
Θ denotes the set that contains all model parameters.

D.4 Baseline Implementation
We compare UniST with a broad collection of state-of-the-art mod-
els for spatio-temporal prediction, which can be categorized into
five groups as introduced in Section 4.1. If we consider the scala-
bility to diverse data formats, i.e., different spatio-temporal data
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Table 6: The parameter details of UniST with different sizes evaluated in ablation studies.

Model #Encoder Layers #Decoder Layers Hidden Dimension (Encoder) Decoder Hidden Dimension (Decoder)

2M Params 2 2 64 64

8M Params 4 3 128 128

10M Params 6 4 128 128

15M Params 8 8 128 128

30M Params 6 6 256 256

shapes, these baselines can be categorized into two groups: (i) ap-
proaches that are scalable with different spatio-temporal scales,
such as PatchTST, MAML, and MetaST, and (ii) approaches that are
non-scalable, including deep urban prediction approaches, video
prediction approaches, and iTransformer. Most baselines are not
scalable to different data shapes because they require a fixed num-
ber of spatial grids or variables, as seen in CNN-based approaches,
MLP-based approaches, and multivariate time series models. Due
to the varied data shapes, non-scalable baselines cannot be trained
using all datasets, so we train separate models for each dataset.

For the scalable baseline, PatchTST [39], it utilizes a channel-
independent patch time series Transformer architecture, allowing
it to be applied to datasets with varied spatio-temporal shapes. To
ensure a fair comparison, we train both separate models and a
single "one-for-all" model, as shown in Table 2.

Notably, there are two baselines employ pretraining and fine-
tuning: PatchTST [39] and PromptST [67]. However, PromptST
requires a fixed number of nodes, limiting its flexibility across
different data formats. In contrast, the channel-independence of
PatchTST allows it to handle varied data shapes. While PromptST
is a state-of-the-art pre-training and prompt-tuning approach, it
lacks generalization ability across different datasets.

D.5 Experimental Design
In our experimental design, we incorporate four distinct predic-
tion tasks: short-term prediction, long-term prediction, few-shot
prediction, and zero-shot prediction. This design aligns with es-
tablished practices in foundation models for time series forecast-
ing [22, 39, 71]. The short-term and long-term prediction tasks
are conducted without transfer learning settings. In these tasks,
the model is trained on a set of 𝑁 datasets and then evaluated on
the corresponding testing sets from these datasets. This setup en-
ables us to directly assess the model’s performance across multiple
datasets using a single universal model.

Furthermore, the few-shot and zero-shot prediction tasks are
designed to evaluate the model’s generalization capabilities. In
these tasks, the model learns from a set of source datasets to build
a pretrained model and a memory pool, which is then utilized
for prediction on target datasets. The key difference between the
few-shot and zero-shot settings lies in the fine-tuning process on
the target dataset. In few-shot prediction, the model undergoes a
limited fine-tuning process using a small percentage of the target
dataset’s training data, while in zero-shot prediction, the model
directly applies the pre-trained model and memory pool to make
predictions on the target dataset without any fine-tuning.

These four tasks collectively offer a comprehensive evaluation of
the model’s performance and its ability to generalize across diverse
spatio-temporal datasets.

E ADDITIONAL RESULTS
E.1 Analysis of Distribution Shifts
Here, we delve into a detailed analysis of the generated prompts
across different datasets. For each dataset, we compute the atten-
tion weights on the embeddings in the memory pool and visualize
the distribution of these weights in Figure 8 to Figure 9. We have
selected three typical scenarios to explore:

(1) Training and Testing Sets of One Dataset: This analysis
aims to investigate the model’s ability to generalize within a
familiar dataset.

(2) Two Datasets from Different Domains in the Same City:
Understanding how the model adapts its prompt generation
across different but related datasets can provide insights into
its domain-specific learning.

(3) Datasets from Different Cities and Domains: This scenario
highlights the model’s ability to leverage knowledge learned
previously and generate useful prompts adaptively.

As shown in Figure 8 to Figure 9, our analysis reveals compelling
insights into the effectiveness of our prompting mechanism in
handling distribution shifts. Specifically, we observed that similar
prompts are consistently generated for datasets exhibiting similar
spatio-temporal patterns. For instance, the prompts generated for
the training and testing sets of a single dataset, as well as for the test-
ing sets of two datasets from different domains within the same city,
are similar. This consistency in prompt generation suggests that
our model effectively captures and leverages the underlying spatio-
temporal patterns shared between these datasets. Meanwhile, our
model generates distinct prompts for scenarios involving datasets
from different cities and domains, indicating its ability to adapt to
diverse spatio-temporal contexts. This adaptability is crucial for
handling distribution shifts, as it allows the model to flexibly adjust
its prompt generation strategy based on the unique characteristics
of each dataset.

E.2 Performance under Noise Perturbations
The model’s ability to handle noisy data is necessary to ensure
reliable predictions. Therefore, we conduct experiments to evaluate
UniST’s robustness against noisy data. Specifically, we introduced
Gaussian noise with varying levels of intensity to the input data and
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Figure 8: Comparison of attention weight distribution between the training set and testing set of the CrowdNJ dataset. The
generated prompts assign attention weights on embeddings in the memory pool.

Figure 9: Comparison of attention weight distribution between the the TaxiBJ dataset and SpeedSZ dataset. The generated
prompts assign attention weights on embeddings in the memory pool.

Figure 10: Comparison of attention weight distribution between the the CrowdNJ dataset and the CellularNJ dataset. The
generated prompts assign attention weights on embeddings in the memory pool.

assessed UniST’s performance under these conditions. We consid-
ered three levels of noise: Gaussian noise randomly sampled from a
0.1% normal distribution, Gaussian noise randomly sampled from a
1% normal distribution, and Gaussian noise randomly sampled from
a 10% normal distribution. These noise levels represent varying
degrees of data corruption, simulating real-world scenarios where
data can be noisy or contain irregularities.

The results, as detailed in Table 7, demonstrate that UniST con-
sistently outperforms baseline models even in the presence of noise
perturbations (where the best baseline has no noise perturbation).
This suggests that UniST is capable of effectively handling noisy
data, which is crucial for ensuring reliable predictions, especially
in real-world scenarios where data can be messy or contain irregu-
larities.
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Table 7: Performance on different noise levels with sine-cosine positional encoding.

TaxiBJ Crowd Cellular BikeNYC TrafficSHNoise level

0 26.841 3.00 14.294 3.506 0.6650

0.1% 26.846 3.038 14.297 3.507 0.6651

1% 26.90 3.039 14.390 3.534 0.6653

10% 28.76 3.29 14.91 3.695 0.6877

Best baseline 27.36 3.85 16.48 3.93 0.742

Table 8: Performance on different noise levels with learnable positional encoding.

TaxiBJ Crowd Cellular BikeNYC TrafficSHNoise level

0 27.02 3.31 15.054 3.609 0.686

0.1% 27.032 3.310 15.068 3.607 0.6860

1% 27.29 3.589 16.544 3.696 0.6911

10% 43.80 11.436 70.360 8.173 1.228

Best baseline 27.36 3.85 16.48 3.93 0.742

Table 9: Comparison of computational cost and memory cost between different approaches. The training time denotes the time
cost to train all instances with one epoch.

Model STResNet ACFM STID STNorm STGSP MC-STL MAU PredRNN MIM SimVP TAU PatchTST iTransformer UniST

Model Size (M) 2.51 1.90 1.63 1.15 5.51 6.35 10.55 17.07 26.24 9.96 9.55 2.59 25.27 6.71

Memory Cost (MB) 1475 1671 1715 2539 1459 1607 1579 1065 1241 1039 1075 2859 2935 2875

Training Time (min) 0.057 0.561 0.054 0.461 0.078 0.311 0.828 0.455 0.836 0.224 0.224 0.338 0.093 1.4 (20+ datasets)

Inference Time (min) 0.011 0.026 0.007 0.070 0.006 0.013 0.026 0.015 0.024 0.013 0.010 0.031 0.012 0.034

Moreover, we examine how different positional encoding meth-
ods affect the model’s robustness. We compare the use of two posi-
tional encoding methods: learnable embeddings and sine-cosine en-
coding. The results in Table 8 show the performance with learnable
embeddings, while Table 7 shows the performance with sine-cosine
encoding. Comparing these two sets of results, we observe that
sine-cosine encoding exhibits more robust performance against
noise perturbations. Specifically, learnable embeddings show a sig-
nificant performance reduction with increased noise perturbation
and perform worse than the best baseline model.

E.3 Model Efficiency
Table 9 shows a detailed comparison of the computational and
memory costs of UniST against baselines. The results show that the
model size and memory cost of UniST are comparable to those of
other approaches. However, due to the multiple data pre-training
involved, the training time of UniST is longer compared to other
methods. Despite this, UniST consistently outperforms baselines on

all datasets with just one model. Thus, we consider the additional
training time acceptable given the superior performance achieved.

E.4 Dataset Similarity
To assess the similarities among the datasets used in our study, we
employed a two-step process. First, we reduced the dimensionality
of the spatio-temporal data using t-SNE, a technique for dimen-
sionality reduction. This allowed us to visualize the datasets in
a lower-dimensional space. Second, we applied the k-means clus-
tering method to the reduced data to identify clusters of similar
spatio-temporal patterns.

The results of our visualization revealed interesting insights. We
found that certain datasets, such as the Crowd data and Cellular data
in Nanjing, exhibited similar spatio-temporal patterns. Similarly,
the Bike data and Taxi data in New York City showed similarities
in their patterns. However, most datasets from different cities or
domains exhibited distinct spatio-temporal patterns, indicating
significant distribution shifts. These observations highlight the
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Figure 11: Visualization of different spatio-temporal datasets: Firstly, the high-dimensional data is reduced to a two-dimensional
vector using t-SNE. Subsequently, the embeddings are visualized in clusters using the k-means clustering method.
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Figure 12: Ablation studies on four types spatial and temporal knowledge extraction 𝑡𝑐 , 𝑡𝑝 , 𝑠𝑐 , and 𝑠ℎ .

powerful generalization ability and universality of our approach
across datasets with significantly distinct spatio-temporal patterns.

E.5 Additional Ablation Studies
E.5.1 Masking Strategies. We investigated the contribution of each
of the four masking strategies by comparing the performance when
all four strategies are employed with the performance when one
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Table 10: Ablation studies on four masking strategies.

Prediction Imputation Spatial extrapolation

Complete 0.781 0.761 0.729

wo/ Random masking 0.796 1.72 0.761

wo/ Tube masking 0.787 0.788 0.817

wo/ Block masking 0.785 0.773 1.02

wo/ Temporal masking 1.44 0.772 0.742

of the strategies is removed. We conducted experiments on three
spatio-temporal tasks: prediction, imputation, and spatial extrapo-
lation, using the TrafficCD dataset.

The results, shown in Table 10, indicate that training with all
four masking strategies achieved the best performance across all
three tasks. Removing the temporal masking strategy results in the
most significant performance decrease for the prediction task, re-
moving the random masking strategy leads to the most significant
performance decrease for the imputation task, and removing the
block masking strategy results in the most significant performance
decrease for the spatial extrapolation task. These results are reason-
able as each masking strategy is designed to align with a specific
task objective.

It is worth noting that despite the seemingly mismatched nature
of some masking strategies with certain spatio-temporal tasks (e.g.,
random masking vs. prediction, temporal masking vs. imputation,
and temporal masking vs. spatial extrapolation), we find that these
masking strategies still contribute to the performance of less related
tasks. This indicates that the masking strategies not only benefit
their intended tasks but also have broader effects on the model’s
general learning of spatio-temporal dependencies and dynamics.
For example, while random masking may seem unrelated to causal
prediction tasks, it can help the model learn robust features that
generalize well across different time points. Additionally, tempo-
ral masking can help the model better understand the temporal
dynamics when performing spatial extrapolation.

E.5.2 Knowledge-Guide Prompts. The prompts play an essential
role in our UniST model. Here we investigate whether the designed
spatial and temporal properties 𝑠𝑐 , 𝑠ℎ, 𝑡𝑐 , and 𝑡𝑝 contribute to the
final performance.We use 𝑠𝑐 to denote spatial closeness, 𝑠ℎ to denote
spatial hierarchy, 𝑡𝑝 for temporal periodicity, and 𝑡𝑐 for temporal
closeness.

we compare the overall design that incorporates all three proper-
ties with four degraded versions that individually remove 𝑠𝑐 , 𝑠ℎ, 𝑡𝑐 ,
or 𝑡𝑝 . Figure 12 shows the results on four traffic speed datasets. As
we can observe, removing any property results in a performance
decrease. The contributions of each spatial and temporal property
vary across different datasets, highlighting the necessity of each
property for the spatio-temporal design.

E.6 Additional Prediction Results
Table 11∼Table 16 report addition prediction results.
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Table 11: Performance comparison of short-term prediction on seven datasets in terms of MAE and RMSE. We use the average
prediction errors over all prediction steps.

TaxiNYC-1 BikeNYC-2 TaxiNYC-2 TrafficBJ TrafficNJ TrafficWH TrafficSZ

Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

HA 57.07 18.57 15.68 7.17 52.84 15.74 1.033 0.582 1.593 0.774 1.351 0.645 0.791 0.416
ARIMA 55.39 20.94 25.01 13.63 62.9 29.56 1.32 0.735 1.30 0.709 1.51 0.748 0.821 0.445

STResNet 29.45 17.96 7.18 3.94 22.16 12.06 0.828 0.547 1.03 0.635 0.903 0.568 0.709 0.465
ACFM 23.35 11.54 5.99 3.094 14.48 6.39 0.706 0.44 0.888 0.515 0.784 0.471 0.573 0.35
STID 17.75 7.03 5.70 2.711 17.37 7.35 0.724 0.431 0.847 0.459 0.78 0.436 0.576 0.33

STNorm 21.26 8.14 6.47 3.03 19.02 7.17 0.727 0.428 0.904 0.476 0.81 0.445 0.666 0.369
STGSP 28.13 10.29 14.20 7.38 29.10 10.14 0.736 0.444 0.883 0.491 0.804 0.473 0.86 0.52
MC-STL 18.44 9.51 6.26 3.40 16.78 8.50 0.975 0.709 1.13 0.78 1.1 0.773 0.83 0.615

MAU 28.70 11.23 6.12 2.95 19.38 7.27 1.12 0.797 0.978 0.545 1.37 0.917 0.826 0.523
PredRNN 16.53 5.80 6.47 3.08 19.89 7.23 0.651 0.376 0.852 0.457 0.74 0.421 0.58 0.335
MIM 18.83 6.866 6.36 2.89 18.02 6.56 2.62 2.14 4.65 3.39 3.86 3.15 2.22 1.40
SimVP 16.63 7.51 5.96 2.92 15.10 6.54 0.664 0.408 0.861 0.481 0.779 0.475 0.583 0.359
TAU 16.91 6.85 5.98 2.89 15.35 6.80 0.70 0.44 0.89 0.528 0.747 0.444 0.576 0.353

PatchTST 41.34 13.10 12.33 5.30 37.76 11.13 0.935 0.512 1.379 0.658 1.17 0.561 0.718 0.370
iTransformer 36.73 13.11 9.86 4.50 33.03 11.22 0.876 0.490 1.18 0.60 1.10 0.542 0.718 0.378

PatchTST(one-for-all) 44.43 14.56 13.62 6.03 41.04 12.61 0.964 0.524 1.42 0.675 1.22 0.581 0.739 0.375

UniST (ours) 15.32 5.65 5.50 2.56 12.71 4.82 0.689 0.387 0.845 0.421 0.762 0.396 0.513 0.264
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Table 12: Performance comparison of short-term prediction on seven datasets in terms of MAE and RMSE. We use the average
prediction errors over all prediction steps.

TrafficTJ TrafficGY TrafficGZ TrafficZZ TrafficCS TrafficCD TrafficHZ

Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

HA 1.61 0.824 1.79 0.726 0.996 0.52 1.47 0.857 1.31 0.676 1.12 0.668 0.765 0.342
ARIMA 2.02 1.59 1.91 1.16 1.37 0.76 1.78 0.998 1.66 0.923 1.54 0.907 0.803 0.364

STResNet 1.12 0.714 1.32 0.799 0.796 0.515 1.03 0.693 0.986 0.651 0.867 0.576 0.669 0.406
ACFM 0.959 0.574 1.10 0.599 0.701 0.418 0.839 0.526 0.842 0.529 0.757 0.493 0.575 0.316
STID 0.976 0.549 1.04 0.544 0.665 0.362 0.838 0.502 0.855 0.5 0.715 0.44 0.546 0.282

STNorm 0.973 0.533 1.12 0.508 0.693 0.373 0.885 0.538 0.91 0.511 0.786 0.489 0.556 0.260
STGSP 0.989 0.572 1.09 0.649 0.733 0.419 0.831 0.505 0.978 0.587 0.776 0.497 0.616 0.331
MC-STL 1.22 0.856 1.82 1.36 1.04 0.775 1.14 0.81 1.14 0.819 1.00 0.733 0.842 0.606

MAU 0.988 0.549 1.14 0.595 0.74 0.415 1.42 0.934 1.31 0.791 1.25 0.919 0.743 0.377
PredRNN 0.971 0.53 1.16 0.608 0.71 0.42 0.853 0.508 0.909 0.572 0.815 0.513 0.602 0.288
MIM 3.44 2.51 5.68 4.53 3.43 2.80 2.05 1.56 3.57 2.71 2.75 2.26 1.92 1.23
SimVP 1.00 0.597 1.13 0.632 0.667 0.399 0.838 0.526 0.835 0.507 0.775 0.495 0.549 0.301
TAU 1.01 0.606 1.11 0.604 0.65 0.378 0.839 0.527 0.869 0.543 0.768 0.495 0.539 0.289

PatchTST 1.44 0.722 1.58 0.634 0.894 0.448 1.31 0.742 1.18 0.599 1.00 0.577 0.696 0.305
iTransformer 1.26 0.675 1.39 0.621 0.846 0.428 1.19 0.696 1.09 0.572 0.941 0.541 0.66 0.30

PatchTST(one-for-all) 1.49 0.740 1.66 0.684 0.931 0.469 1.35 0.752 1.23 0.620 1.04 0.602 0.726 0.325

UniST (ours) 0.958 0.510 1.03 0.458 0.648 0.325 0.832 0.482 0.791 0.423 0.711 0.415 0.530 0.236

Table 13: Performance comparison of long-term prediction on four datasets in terms of MAE and RMSE. We use the average
prediction errors over all prediction steps.

TaxiBJ Cellular BikeNYC-2 TDrive

Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE

HA 74.07 43.79 77.29 31.89 15.84 7.97 144.65 72.48
ARIMA 100.76 56.04 83.66 35.96 15.29 7.25 270.05 140.80

STResNet 51.36 36.08 33.87 20.87 12.73 7.16 163.88 112.27
ACFM 35.49 22.46 26.40 13.24 13.00 7.09 88.76 42.19
STID 36.98 23.19 22.98 11.71 12.75 8.37 83.70 37.66

STNorm 33.78 19.89 71.05 32.14 12.16 5.99 100.43 49.50
STGSP 70.31 42.76 67.07 31.16 14.50 7.66 83.70 37.26
MC-STL 38.23 26.86 39.74 27.04 12.72 7.96 100.55 59.18

MAU 85.58 60.61 75.84 32.78 12.42 5.82 137.17 76.17
PredRNN 43.89 27.42 46.68 24.96 9.72 4.37 175.32 104.79
MIM 38.10 25.82 79.20 39.27 10.02 4.60 107.06 43.67
SimVP 33.53 19.28 23.84 12.90 10.89 5.51 91.13 39.46
TAU 34.88 19.94 23.00 12.72 11.53 6.11 91.54 41.96

PatchTST 30.64 17.49 23.39 12.42 11.13 5.07 92.03 38.89
PatchTST(one-for-all) 31.58 18.67 27.94 10.89 10.71 4.74 111.56 50.57

iTransformer 32.89 18.60 29.329 11.963 11.54 5.19 93.87 40.16

UniST (ours) 30.46 17.95 20.64 10.43 11.91 5.06 90.60 37.01
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Table 14: Performance comparison in few-shot and zero-shot (only UniST) learning settings on the Crowd dataset in terms of
MAE and RMSE. 1% , 5%, and 10% denote that only the percentage of training data is utilized. We use the average prediction
errors over all prediction steps.

10% 5% 1%

Model RMSE MAE RMSE MAE RMSE MAE

ATFM 19.842 11.446 19.923 11.687 21.166 12.643
STNorm 14.668 7.050 14.884 7.723 35.959 29.585
STID 14.676 7.280 14.975 8.671 25.905 19.610

PredRNN 19.604 9.668 20.186 10.190 24.901 13.142
SimVP 14.093 7.101 14.167 8.550 14.252 8.776
TAU 14.229 7.140 14.456 8.411 14.919 9.096

MAML 14.089 7.180 14.795 8.154 14.334 8.608
MetaST 13.801 6.847 14.220 7.442 14.242 7.949
PatchTST 14.060 6.787 14.142 6.811 14.491 7.227

UniST (few-shot) 13.411 6.365 13.859 6.542 13.952 6.581
UniST (zero-shot) 14.665 7.051 14.665 7.051 14.665 7.051

Table 15: Performance comparison in few-shot and zero-shot (only UniST) learning settings on the BikeNYC dataset in terms of
MAE and RMSE. 1% , 5%, and 10% denote that only the percentage of training data is utilized. We use the average prediction
errors over all prediction steps.

10% 5% 1%

Model RMSE MAE RMSE MAE RMSE MAE

ATFM 8.026 3.511 10.438 4.582 11.876 5.990
STNorm 7.42 2.70 10.21 4.17 12.94 5.20
STID 6.97 3.49 12.46 7.56 15.08 9.38

PredRNN 11.05 4.00 11.29 4.46 12.58 4.75
SimVP 6.570 2.691 8.525 3.174 8.661 3.721
TAU 7.06 3.07 8.74 3.28 8.50 3.72

MAML 6.49 2.31 8.89 3.68 8.98 3.91
MetaST 6.21 2.18 8.22 3.03 8.58 3.60
PatchTST 9.14 2.68 10.09 2.88 9.74 3.86

UniST 5.318 1.668 6.113 1.964 7.811 2.72
UniST (zero-shot) 9.06 3.63 9.06 3.63 9.06 3.63
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Table 16: Performance comparison in few-shot and zero-shot (only UniST) learning settings on the TaxiBJ dataset in terms of
MAE and RMSE. 1% , 5%, and 10% denote that only the percentage of training data is utilized. We use the average prediction
errors over all prediction steps.

10% 5% 1%

Model RMSE MAE RMSE MAE RMSE MAE

ATFM 50.631 33.035 55.770 39.205 64.590 44.928
STNorm 39.35 22.48 42.67 26.78 44.76 28.24
STID 34.53 20.54 37.39 24.35 47.94 31.94

PredRNN 84.28 58.52 97.74 73.40 92.21 66.76
SimVP 35.114 20.87 37.42 23.131 40.465 24.95
TAU 37.70 22.69 39.77 25.73 41.98 26.48

MAML 36.24 20.91 36.12 23.47 40.11 24.79
MetaST 35.42 18.65 35.21 21.74 39.08 23.88
PatchTST 44.03 22.69 44.24 22.62 46.43 24.77

UniST 27.59 15.18 31.19 17.58 35.09 20.62
UniST (zero-shot) 51.4 33.1 51.4 33.1 51.4 33.1
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