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Abstract—Because of severe network congestion experienced during peak hours in the urban area, dynamic time-dependent pricing

has been proposed by some mobile operators to shift users’ data usage from peak hours to off-peak time slots. We look at the

performance of time-dependent pricing on a large scale cellular network comprising ten thousand base stations. Our investigation

reveals two important observations. First, time-dependent pricing performs well in reducing the peak-average ratio of the overall traffic

of the network. However, the single price used by the network does not achieve good performance when we look at base stations in

specific regions, such as office regions. Second, we observe that location is another important factor that affects the traffic profile of a

base station. Therefore, location information should be considered for designing a pricing strategy as well. We propose a framework

that combines both spatial and temporal traffic patterns for data pricing. Our simulation on ten thousand base stations suggests that our

proposed scheme is able to achieve an average of 16 percent smaller peak-to-average ratio. With over 15 percent smaller peak-to-

average ratio of more than half of base stations in office regions, the performance is 2� better than that achieved by the state of the art

time-dependent data pricing systems.

Index Terms—Cellular data usage, network economics, network measurement, time-dependent pricing

Ç

1 INTRODUCTION

WITH the popularity of smartphones, tablets, and
media-rich applications, mobile data traffic has been

growing significantly over the past ten years. Global mobile
data traffic is expected to surpass 24.3 exabytes per month
by 2019, 10� larger than the traffic served by existing cellu-
lar infrastructure [1]. Serving such a large amount of traffic,
mobile operators experience severe network congestion,
especially during peak hours in urban areas. On the other
hand, data collected from our collaborative operator shows
that the traffic usage in one day exhibits a “tide” phenome-
non. The usage in peak hours can reach five times more the
level of off-peak hours, which causes a waste of bandwidth
resource in off-peak periods. All of these motivate the inves-
tigation of migrating mobile data traffic from peak hours to
off-peak time slots.

Dynamic time-dependent pricing (TDP) is one of the pro-
posed solutions, which offers a lower price in time slots when
less traffic is observed [2]. With incentives, some mobile
users are willing to shift their data usage from peak hours to
off-peak time slots not only because of the lowered cost of

data usage, but also because many popular mobile applica-
tions, such as cloud data synchronization, are delay tolerant
and thus users are willing to postpone their data usage. In
order to understand how to design a time-dependent pricing
system, Joe-Wong et al. [3] establishes a theoretic framework
based on gaming and optimization theories to understand
how a mobile operator should balance the benefit of traffic
reduction and the potential revenue lost due to reduced traf-
fic. Ha et al. [4] designs and deploys a time-dependent pricing
system in a small scale cellular network which includes fifty
3G users, where significant peak-hour traffic reduction is
observed. However, despite the rich literature, the perfor-
mance of time-dependent pricing on a large scale cellular net-
work in an urban area remains unknown because of the lack
of large scale evaluation and deep analysis.

Despite the above limited understanding, our investiga-
tion is also motivated by a key observation—time is not the
only factor that should be considered in designing a data
pricing system. Some researchers have identified that signif-
icant cellular traffic variation can be observed as well across
various locations in an urban area [5], [6]. For example,
when peak traffic is observed at office regions, the traffic of
residential regions is relatively low because people com-
mute from home to office. Such variation across locations is
analogous to the variation of traffic across time, which moti-
vates a design that includes location or spatial information
into the design of data pricing. However, the adoption of
spatial information is not easy because of the spatial and
temporal distributions of cellular traffic correlate with each
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other, which complicates our analysis. For example, the traf-
fic profile of a base station deployed in a residential region
is very different from that of an office region. A natural
question to ask is that how should we design a data pricing
system which is able to include both temporal and spatial
factors for determining the data price. More specifically, we
ask the following questions in this paper:

� How should a mobile operator assign incentives to
users in an urban cellular network? The intuition of
incentive assignment comes from balancing the cost
of incentives and the potential benefit of traffic
reduction.

� What is the performance of time-dependent pricing
on a large scale cellular network? We would like to
look at several performance metrics, including net-
work capacity, operational cost, etc, to give a compre-
hensive understanding of time-dependent pricing.

� How to include spatial information into a data pric-
ing model? We focus on the combination of time-
dependent pricing with the spatial distribution of
mobile traffic.

� How to take advantage of the spatial-temporal corre-
lation of mobile traffic to mitigate network conges-
tion from both spatial and temporal dimensions?

Our key contributions are:

� We study the performance of time-dependent pricing
on a large scale cellular network. Our investigation
reveals that time-dependent pricing performs well in
reducing the peak-average ratio of overall cellular
traffic within a network comprising ten thousand
base stations. Our benchmark on network capacity
and operational cost reveals important insights about
the effectiveness of time-dependent data pricing.

� We find that a single unified price used by a whole
cellular network does not achieve good performance
for base stations in specific regions. This conclusion
comes from our investigation of geographical loca-
tion context embedded in traffic patterns of base
stations. Five types of base stations, whose traffic
patterns are mapped to the resident, transport, office,
entertainment, and non-specific regions, are identi-
fied. We find time-dependent data pricing performs
well for base stations deployed in residential and
entertainment regions. However, poor performance
is observed for base stations deployed in transport
and office regions. Our further analysis reveals fun-
damental factors that contribute to this observation.

� We propose a framework that is able to combine spa-
tial context information and time for determining
the data price. Our simulation suggests that the
proposed model is able to achieve over 15 percent

smaller peak-to-average ratio of traffic for 50 percent
base stations in office regions, 2� better than the per-
formance of pure time-dependent pricing system.

2 MOTIVATION

Severe network congestion is observed bymanymobile oper-
ators [1], especially during peak hours. As a result, time-
domain patterns of cellular traffic have been extensively
investigated and leveraged for reducing the network conges-
tion. Fig. 1a shows the normalized traffic of 10,000 base sta-
tions in an urban areawhere peak traffic is observed between
12 AM and 9 PM. In contrast, only 15 percent of the peak traf-
fic is observed between 2 and 6 AM. Such significant traffic
variance across a day inspires designs that target atmigrating
traffic from peak hours to off-peak time slots. Time-depen-
dent pricing is one of the proposed solutions which suggests
an operator providing lower prices, named incentives in
some context, for encouraging users to use their data plan
during off-peak hours. TUBE [3], [4] is one of the time-depen-
dent pricing systems which is able to achieve a significant
amount of peak-to-average ratio reduction when a smaller
number of mobile users are evaluated. However, despite the
significant benefit, we observe some limitations of current
time-dependent pricing systems, including the lack of analy-
sis on the cost of incentives, the incomplete analysis of net-
work capacity, etc.We summarize the comparison in Table 1,
which motivates a deep analysis of the time-dependent pric-
ing systems, especially when the scale of network is large.

Another factor that motivates our investigation is an
important observation—time is not the only factor that
impacts the traffic profile of cellular networks. Fig. 1b shows
the traffic patterns of three base stations deployed in three
different urban regions, including residential, transport and
office.We find an interesting observation—the peak traffic of
each curve occurs at different time. In weekdays, the peak
traffic of the base station deployed in a residential
and an office region appears around noon and evening,
respectively, while that of the base station deployed in a

Fig. 1. Traffic profile of base stations. (a) Shows the normalized traffic of
the whole cellular network within a day. (b) Shows the traffic of three
base stations deployed in three locations.

TABLE 1
The Comparisons of TDP Works

Work Data scale Evaluated Performance Metrics Pricing Factors Perspective

Traffic pattern Peak-to-average ratio Transfer traffic Pricing cost Link capacity Overall Base stations

TUBE [4] 50 users
p p � � � p �

Ours 10,000 base stations
p p p p p p p
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transport region appears around 9 AM and 6 PM, much dif-
ferent from the previous two cases. A similar difference can
be observed as well for weekends’ traffic. Therefore, the geo-
physical location of base station deployment also affects the
amount of the traffic served, which motivates our design of
including spatial information in determining the data price.

In this paper, we first look at the performance of time-
dependent pricing on a large scale cellular network. Our
deep analysis reveals several limitations of pure time-
dependent pricing, including limited traffic migration for
some base stations, etc. Motivated by this analysis, we
exploit the spatial information embedded within mobile
data traffic by identifying several key urban functional
regions. Then we propose a framework that is able to
include spatial information of base stations when designing
a time-dependent data pricing strategy. Our simulation on
10,000 base stations shows significant traffic reduction com-
pared to the case of pure time-dependent pricing.

3 DATASET AND BACKGROUND

3.1 Dataset

In order to carry out a measurement driven study, we use an
anonymous cellular trace from about 10,000 cellular base sta-
tions deployed in Shanghai by one of the major operators in
China, within an interval of 4 weeks in August 2014. Records
of the trace contain detailed mobile data usage of 700,000
users, including the device’s ID (anonymized), start-end time
of data consumption, the base station (BS) ID, BS location and
traffic volume (byte). This fine-grained dataset, including
both information on the data consuming volume and time
duration, enables us to carry out the pricing study. On the
other hand, the large-scale trace, which contains 6:92� 108

logs in total, 2:23� 107 logs per day and 32 logs per user on
average, guarantees the credibility of our investigation.

Based on the massive dataset, a two-step preprocessing
procedure is conducted as follows. In order to evaluate the
impact of the pricing scheme on BS traffic pattern, the first
step is to sort the trace by BS ID. After that, we compute
data traffic usage within each minute (i.e., 1,440 segments
in one day) for BS. Specifically, for a log with a duration of
several hours, we assume the data volume is uniformly
distributed during this period. Then we obtain average
volume per minute by uniformly dividing up the traffic
volume. Each BS’s traffic logs are segmented accordingly
and then the per-minute traffic usage is aggregated. The
segmented traffic usage will be used in computing optimal
time-dependent prices.

With the above data preprocessing, we visualize the spa-
tial traffic distribution of base stations at different time. As
shown in Fig. 2, the colored area in each figure shows the
basic shape of Shanghai, which indicates that the cellular
network recorded in our dataset covers the whole city.
Besides, the spatial differentiation of traffic varies with
time, corresponding to the fact that users’ behavior of data
consumption differs both temporally and spatially. Thus,
with the aid of this large-scale reliable traffic data, we are
able to dive into a thorough study of data pricing.

3.2 Pricing Model

In order to compute optimal prices for different time, we use
the cost-minimizing time-dependent pricing model for the

operator, which was developed in TUBE [3], [4]. The cost of
the operator can be divided into two parts, the pricing cost
Cp and exceeding capacity Ce. Without loss of generality, we
suppose that the deferred time of data consumption is no
longer than one day. Thus, by minimizing the weighted sum
of these two parts, we can compute a group of pricing
rewards (i.e., reduced prices) fpi; i ¼ 1; . . . ; ng, where we
divide one day into n periods. As for data usage, Ti denotes
the average of original per-minute usage in period i (i.e.,
without TDP), while that under TDP is ti. The unit of both Ti

and ti are byte/s. To compute the deferred time, we denote
the time from periods k to i as bik, bik � i� k ð mod nÞ. If
i < k, then bik ¼ i� kþ n, representing deferring from
period k in one day to period i of the next day.

Suppose that the operator’s network has a single bottle-
neck capacity denoted by A, which is often limited by the
aggregation link out of the access network or the access net-
work itself. Since the operator normally adopts a cap then
metered pricing scheme [4], the data usage not reaching the
cap need to be subtracted from the network capacity A in
each period. Thus, we change capacity A to Ai, the available
capacity in period i, which is time-dependent but indepen-
dent of price.With capacityAi, the cost of exceeding capacity
can be denoted by Ce ¼

Pn
i¼1 fðti �AiÞ, where function f

represents the fraction due to daily capacity exhaustion [3].
To characterize the transferred traffic because of pricing

rewards, waiting function is defined as vsðp; tÞ : R2 ! R, to
measure the probability of waiting a period of t given the
reward p and session type s. Suppose that each session s

Fig. 2. Spatial distribution of cellular traffic in an urban area across differ-
ent time.
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has bandwidth vs in period k, then the traffic amount of ses-
sion s deferred by bik (i.e., from k to i) is vsvsðpi; bikÞ.

Based on the above definitions, the operator’s optimiza-
tion problem for time-varying rewards pi can be formulated
as follow:

min
Xn
i¼1

pi
Xn

k¼1;k 6¼i

X
s2k

vsvsðpi; bikÞ
 !

þ fðti �AiÞ
" #

;

s:t: ti ¼ Ti �
X
s2i

vs
Xn

k¼1;k6¼i
vsðpk; bkiÞ þ

Xn
k¼1;k6¼i

X
s2k

vsvsðpi; bikÞ;

var: pi; i ¼ 1; . . . ; n;

(1)

which corresponds to Proposition 1 in [3], and we omit the
detailed proof. The first part in the minimization objective
represents Cp, and in each period i it equals reward pi times
transferred traffic from other n� 1 periods to i. The second
part is Ce. As for usage ti under TDP, it equals original
usage Ti minus those transferred to other n� 1 periods and
then add the amount of newly coming usage.

Proposition 2 in [3] proves that minimizing cost in (1) is
equivalent to maximizing the profit, which makes this pric-
ing scheme reasonable for the operator. To ensure that this
optimization problem is convex, waiting function vsðp; tÞ
and cost function f are set as follows:

vsðp; tÞ ¼Ws
p

ðtþ 1Þas ; (2)

fðti �AiÞ ¼ � max ti �Ai; 0½ �: (3)

The value of vsðp; tÞ, i.e., the probability of deferrals,
increases with reward p and decreases with deferred time t.
The patience index as is characteristic of time sensitivity for
session s, i.e., larger as means more sensitivity and thus
smaller probability. The value of as should represent users’
different sensitivity to different type of sessions. For exam-
ple, file backup can be easily deferred while live broadcast
cannot. Thus we set typical values of as for sessions, with
sample sessions and distribution for each as listed in Table 2.
According to above analysis, we set as of file backup and
live broadcast as 0.5 (minimal) and 5 (maximal), respec-
tively. These settings are widely used in time-dependent
pricing systems [3], [7], [8]. We further discuss them in
Appendix A, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TSC.2017.2713779. The normalization constant

Ws is chosen as ðPn
t¼1 pm=ðtþ 1ÞasÞ�1, where pm represents

the maximum possible reward determined by the maxi-
mum marginal cost of exceeding capacity. By doing this, we
ensure that the computed vsðp; tÞ measures different proba-
bilities of deferring traffic for different amounts of time and
session types. As for the cost function f of exceeding capac-
ity shown above in (3), � can be seen as the weight of Ce.
Higher � indicates that the operator will consider Ce more
in the optimization.

4 METHODOLOGY

The time-dependent pricing optimization model introduced
above (see (1)) accurately describes operator’s cost and
ensures computational tractability. However, if we want to
evaluate the optimal rewards pi based on our collected traf-
fic dataset, there remain three challenges:

� How to model the user’s behavior when offered a
group of rewards pi? In our dataset, each log is a
record for data consumption by a certain user. Since
waiting function in (2) represents the probability of
deferrals for a certain session in one period, it cannot
be directly used to model the deferrals of data con-
sumption in each record.

� How to analyze and evaluate the performance of
TDP in alleviating traffic tide? Performance metrics,
pricing factors and perspective of evaluations are
needed to be investigated.

� How to simulate operators’ pricing and users’ defer-
rals in the system? We need to consider specific algo-
rithm and implementation of our evaluation, even
with the realistic traffic consumption record.

Thus, in this section, we first extend the waiting function
of (2) and use it to describe the probability of users’ defer-
rals under TDP (Section 4.1). Then, we define a series of per-
formance metrics utilized in our evaluation (Section 4.2).
Finally, we solve the optimization problem through convex
optimization and implement a simulation of users’ deferral
behavior based on Monte Carlo method [9] (Section 4.3).
The extensively used notions by following sections is sum-
marized in Table 3.

4.1 Modelling User’s Behavior

Each log in our dataset records traffic usage of a user, which
includes the information of the user, base station, as well as
duration and volume of data consumption. Thus, we need

TABLE 2
Sample Session and Distribution for Each Patience Index

as Example of an application session P ðasÞ
0.5 File backup. 0.204
1 Non-critical software update. 0.258
1.5 Non-critical file download. 0.215
2 Website browsing. 0.026
2.5 Online purchases. 0.048
3 Movie download for immediate viewing. 0.015
3.5 Critical file download or software update. 0.078
4 Checking email. 0.041
4.5 Television program streaming. 0.041
5 Live sporting event. 0.074

TABLE 3
A Summary of Extensively Used Notions

Symbol Meaning Symbol Meaning

bik time deferred from
period k to i

pai weighted average
of pi

Ra peak-to-average
ratio (PAR)

DT transferred traffic

RCðRaÞ relative change
of PAR

RCðT Þ transferred traffic
ratio

� exceeding capacity
weight

r network capacity
coefficient

vsðp; tÞ waiting function pu unit pricing cost
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to model the deferral probability of data consumption in
one record under TDP, given the time-varying rewardsfpig.

For each data consumption of any user in period k, the
probability distribution of session type s (i.e., patience index
as) is P ðasÞ shown in Table 2, and the deferred time bik fol-
lows the distribution of fvsðpi; bikÞg. More specifically, we
extend the meaning of fvsðpi; bikÞg to model users’ specific
experience of data consumption, which is one traffic record
in our dataset. However, the duration of a record varies
from a few seconds to several hours, i.e., several periods, or
even longer. Thus, fpig cannot be applied to this situation.
The weighted average of fpig, denoted by pai , considering
duration of data consumption, are defined as follows:

pai ¼
Pkþm�1

j¼k ujpiþj�kPkþm�1
j¼k uj

; (4)

where fuj; j ¼ k; kþ 1; . . . kþm� 1g represents each period
usage of this m-period record starting in period k. Then we
use (4) to replace pi in (2), and obtain

vsðpai ; bikÞ ¼Ws
pai

ðbik þ 1Þas : (5)

The above is the probability model for users’ deferrals of
data consumption under rewards fpai g, which will be used
in the following simulation.

4.2 Metrics for Evaluation

In our evaluation, we divide the day into n periods and use
(3) as the cost function of exceeding capacity. Here the
“capacity” is a threshold, instead of a physical link capacity,
above which the traffic usage has the risk of approaching
the physical capacity. Since operators often target the usage
to be no more than 70 to 80 percent of the actual capacity,
we set the network capacity in each period as

Ai ¼ A ¼ r max
i2½1;n�

ðTiÞ; (6)

which is a constant, linear to the maximum of original usage
Ti with linear coefficient r 2 ½0:5; 0:9� characterizing the
capacity based on the knowledge in the actual network. As
for the pricing cost Cp, we define pu as the unit cost of pric-
ing, which is formulated as

pu ¼ Cp=
Xn
k¼1

Tk; (7)

i.e.,Cp divided by total usage. By varying exceeding capacity
weight �, capacity coefficient r and unit pricing cost pu in (3),
(6) and (7), respectively, we are able to analyze their impact
on TDP performance. Note that we can vary pu by adding an
inequality constraint on expected per-unit pricing cost
p0u ¼ Cp=

Pn
k¼1 Tk � b in the optimization problem (1), where

Cp and fTkg are defined accordingly. Then the actual values

of pu are calculated based on the simulation result.
Now, we consider the performance metrics used in our

evaluation. First we define peak-to-average ratio (PAR),
denoted by Ra. Ra, as well as its relative change before and
after TDP, denoted by RCðRaÞ, can directly indicate the
degree of traffic “tide”. Their definitions are as follows:

RaðTiÞ ¼ max
i2½1;n�

ðTiÞ=Ti; RaðtiÞ ¼ max
i2½1;n�

ðtiÞ=ti (8)

and

RCðRaÞ ¼ RaðTiÞ �RaðtiÞ
RaðTiÞ ; (9)

where positive RCðRaÞ indicates alleviation of “tide”.
Besides PAR, we also consider metrics for the transferred
traffic. Based on measurement in Fig. 1a, we observe that
overall traffic is relatively high between 10 AM and 10 PM.
Thus, we mark total traffic volume in these periods as Tbusy,
and mark the rest as Tidle. The decreased and increased
amount of traffic in busy and idle periods, denoted as DTbusy

and DTidle, are defined respectively as follows:

DTbusy ¼ tbusy � Tbusy; DTidle ¼ tidle � Tidle: (10)

On the other hand, in Fig. 1b we show the different traffic
patterns of base stations, which means different busy and
idle periods. Thus, we measure the sum of decreased traffic
volume in any period when the usage decreases under TDP.
Then we divide this sum by total original usage to obtain the
transferred traffic ratioRCðT Þ, which is defined as follows:

RCðT Þ ¼
P

i2L Ti � tiPn
k¼1 Tk

; where L ¼ ljtl < Tl; l 2 ½1; n�f g:

(11)

Higher RCðT Þ represents more transferred traffic and indi-
cates better TDP performance. Transferred traffic is an
important performance indicator used in mobile data off-
loading, where the data is transferred using WIFI APs or
other terminal-to-terminal network instead of a cellular net-
work. Intuitively, decreasing the PAR requires transferred
traffic between busy and idle periods. However, by refer-
ring to the latter, we are able to see how large the volume of
transferred traffic is, instead of a single PAR value. Some-
times more transferred traffic does not imply a lower PAR.

4.3 Evaluation Approach

In the optimal time-dependent pricing, we consider the
optimization problem described in (1), and ensure its con-
vexity by setting related functions as (2) and (3). Specifi-
cally, we solve this problem by Disciplined convex programs
in CVX, a package for specifying and solving convex pro-
grams [10], [11].

As for the modeling of users’ deferral behavior, the
deferred time twill be computed for each data consumption
record in our dataset, given the start period st, weighted
rewards pai and session-type s. We use Monte Carlo method
[9] to simulate this process, which is shown in Algorithm 1.
Since our records lack information on session-type s, we
regard it as a random variable and its distribution P ðasÞ is
listed in Table 2. Thus, the inputs of Algorithm 1 are start
period st, weighted rewards pai and cumulative distribution
of session-type F ðasÞ, which can be easily computed by
P ðasÞ. The algorithm can be divided into two steps. The first
step is to determine session-type s by its cumulative distribu-
tion F ðasÞ. The second step is to determine whether to defer
or how long to defer. With session-type s and rewards pai , the
probability of deferring for t periods is vsðpastþt; tÞ, which is
based on our probability model defined in (5). After these
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two steps, the deferred time t is obtained, and t ¼ 0 means
that user does not choose to defer the data consumption.

Algorithm 1. Monte Carlo Method for Time Deferrals
Simulation

Input: start time st, Session-type cumulative distribution
F ðasÞ, for s ¼ 1; 2; 3 . . . j, weighted rewards pai , for
i ¼ 1; 2; 3 . . .n

Output: Time deferred t
Initialize:
t 0; k 0; stop false
// r1 is a random number in ½0; 1�
r1  randð0; 1Þ;

// determine the type of session according to F ðasÞ:
while stop ¼¼ false do
k kþ 1
if F ðak�1Þ < r1 � F ðakÞ then
stop true
as  ak

r2  randð0; 1Þ;
for k ¼ 1 to n do
// determine how long to defer.
if
Pk�1

m¼1 vsðpastþm;mÞ < r2 �
Pk

m¼1 vsðpastþm;mÞ then
t k
break;

// if t ¼ 0, then user doesn’t choose to defer.
Return t

Our system overview of the simulation is shown in Fig. 3.
In the pricing procedure, operators use original traffic pat-
tern Ti (i.e., traffic usage without TDP) as the input to com-
pute the optimal rewards pi based on cost-minimizing
model, given network capacity coefficient r, exceeding
capacity weight � and expected unit pricing cost p0u. Then,
under the time-varying rewards pi, weighted average
rewards pai are computed by (4) for each record of data con-
sumption. After that, a two-step Monte Carlo simulation
based on Algorithm 1 is conducted for each record. The first
step is session determination based on F ðasÞ. After obtain-
ing session-type s, the decision-making process based on

fvsðpastþt; tÞg simulates the user’ decision on whether to
defer data consumption and how long to defer.

5 MAIN RESULT

In this section we use the cost-minimizing TDP model to
compute the optimal rewards and simulate users’ deferral
behavior of data consumption based on our extension of
this model. Initially, we conduct a thorough evaluation and
analysis for TDP performance in alleviating traffic tide
(Section 5.1). Then, by understanding the relationship
between the base station traffic patterns and urban func-
tional regions (Section 5.2.1), we investigate the limitation of
the TDP scheme in a spatial heterogeneous cellular traffic
and reveal corresponding reasons (Section 5.2.2). Finally,
we propose and evaluate a spatial TDP scheme which has
better performance in alleviating traffic tide (Section 5.3).

5.1 Pricing Based on Overall Traffic

Now, we compute the optimal time-varying rewards based
on the overall traffic usage Ti, and we use each traffic record
as input to simulate deferrals of data consumption. After
that, we can obtain the traffic usage under TDP and com-
pare its difference with original usage. Here we divide one
day into 48 periods and each period is half an hour, and set
the maximum pricing reward pm ¼ 1:5. We vary some pric-
ing factors, including unit pricing cost pu, network capacity
coefficient r and exceeding capacity weight �, in the follow-
ing investigations.

5.1.1 Effect and Rationality

Under the condition of r ¼ 0:7, � ¼ 3 and no constraint on
pu, we plot the traffic usage and optimal time-varying
rewards in Figs. 4a and 4b, respectively.

In Fig. 4a, according to the network capacity, original traf-
fic consumption (solid curve) is over capacity from 8 AM to
11 PM. After TDP, we can observe the time-shifting of traffic.
Traffic consumption (dot-dashed curve) drops under capac-
ity after 8 PM. From 0 to 8 AM, consumption is higher than
those without TDP. Since the waiting function vs decreases
with the deferred time, data consumption after 8 PM is much
easier to defer to the earlymorning of next day.

The relationship between the optimal pricing rewards
and original traffic pattern is shown in Fig. 4b. Here we plot
with y-axes on both two sides, where the left one corre-
sponds to bar plot of rewards and the right one corresponds

Fig. 3. System overview.

Fig. 4. Performance of time-dependent pricing. (a) The traffic profile
before and after TDP. (b) The bar plot of optimal rewards with the origi-
nal traffic profile.
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to traffic usage. We find that rewards are not offered in
those over-capacity periods, which is reasonable. Besides,
the reward reaches its maximum at about 1 AM. In order to
incentivize more time-shifting of data, it remains a high
value until 7 AM.

These results illustrate that TDP is effective and rational
by decreasing the gap between maximum and minimum
usage and thus alleviate the traffic tide. To further under-
stand this, we analyze the relationship between its perfor-
mance with the pricing factors of pu, r and �.

5.1.2 Pricing Cost

It is straightforward that operators’ pricing cost has impact
on the performance. Thus, we add inequality constraints on
expected per-unit pricing cost p0u into the optimization
problem. Then based on the simulation result we compute
the actual pu. To quantitatively characterize the alleviation
of traffic tide, we measure the performance by PAR (Ra)
and transferred traffic (DTbusy;DTidle) defined in (8) and (10).
Their relationships with pu are shown in Fig. 5, where
curves are obtained by setting different r and �.

First of all, we find that there exists a maximum pricing
cost pu, given the fixed r and �. When pu increases, trans-
ferred traffic increases, which reduces the number of over-
capacity periods and Ce. However, when pu is high enough,
the reduced amount of Ce can no longer make up the
increased amount of Cp. In this case, pu reaches maximum
in cost-minimizing pricing optimization. This obtains the
optimal pu.

The interrelationship between the transferred traffic
DTbusy ðDTidleÞ and pricing cost pu is shown in Fig. 5a, with
DTidle corresponding to the left y-axe and DTbusy correspond-
ing to the right one. DTidle increases with pu, while DTbusy

decreases with equal absolute values. When comparing the
results of different network capacity, r ¼ 0:7 and r ¼ 0:85,
we observe significantly better performance when r ¼ 0:7,
which will be discussed afterwards.

The peak-to-average ratio (Ra) versus pricing cost (pu)
with different r and � are plotted in Fig. 5b. In general,
higher pu indicates decrease of Ra. With r ¼ 0:7 and � ¼ 6,
Ra drops from 1.519 to 1.299, i.e., 14.5 percent, and the unit
cost pu is 1.044 per byte. Besides, the optimal pu increases in
higher weight of capacity exceeding cost (� ¼ 6). This indi-
cates that operators are willing to make higher pricing cost
because Ce dominates the operators’ cost.

5.1.3 Network Capacity

We set network capacity coefficient r as a group values of
f0:5; 0:55; . . . 0:85; 0:9g. As for pricing cost pu, we choose two
different pu for each r: one is optimal, i.e., no constraint on
pu, and the other is non-optimal. exceeding capacity weight
is set as � ¼ 3. The obtained results under two group of
rewards are plotted in Figs. 6a, 6b, and 6c.

As shown in Fig. 6a, pu reaches its maximum when
r ¼ 0:7. What’s interesting here is that pu is quite low when
r is both large (r ¼ 0:9) and small (r ¼ 0:5), while the rea-
sons behind these two cases are quite different. When r is
small (i.e., low capacity), Ce is extremely high, which makes
it useless for operators to offer higher rewards. In contrast,
there is no need for operators to cost money in pricing with
high capacity, since the total cost is already minimum.
Besides, non-optimal pu for each r is smaller than that of the
optimal one.

When we focus on the performance under different net-
work capacity in Figs. 6b and 6c, we find similar results
with pu. When network capacity is low or high, the volume
of transferred traffic is relatively low. On the other hand, all
the PAR values under the optimal rewards and different
capacity are close to 1.4, but we can still find a lower PAR
when r ¼ 0:7 and r ¼ 0:8.

Based on these results in the three cases of pu, DT and Ra,
we demonstrate that TDP has more significant performance
with the middle network capacity, i.e., r ¼ 0:7. Thus, in the
following evaluation, we set network capacity as r ¼ 0:7.

5.1.4 Analysis in Base Station Scale

We already show that operators can significantly alleviate
the overall traffic fluctuations by implementing TDP. How-
ever, the whole cellular network consists of thousands of

Fig. 5. Benchmark the performance of time-dependent pricing. (a)
Transferred traffic of busy/idle periods versus pricing cost pu with differ-
ent capacity coefficient r and � ¼ 3. (b) The peak-to-average ratio Ra

versus pricing cost pu with different r and �.

Fig. 6. Understanding the impact of network capacity on the perfor-
mance of time-dependent pricing and the CDF plot of PAR for 100 BSs.
(a), (b) and (c) are plots of pricing cost pu, transferred traffic of busy/idle
periods and peak-to-average ratio Ra versus network capacity coeffi-
cient r, respectively, with optimal rewards and non-optimal rewards.
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BSs, and each one has its own traffic pattern. Thus, we need
to evaluate the performance of TDP in the scale of BSs.

We randomly select 100 BSs from our dataset, and run a
simulation for each BS with the same optimal rewards
shown in Fig. 4b. Then, we compute PAR (Ra) of each BS
before and after TDP. The CDFs, i.e., P ðRa < rÞ, are plotted
in Fig. 6d, where the solid and dot-dashed curves are distri-
butions of Ra before and after TDP, respectively. Compar-
ing these two curves, we find that the decrease of Ra is not
significant, which indicates a relatively poor performance in
the BS scale. This is quite different from those results we
observe in the overall traffic.

Based on this finding, we can make the following infer-
ence. For different types of BSs, there are significant differ-
ences in traffic patterns. Thus, TDP based on overall traffic
pattern is not applicable to all types of BSs. In next section,
we focus on analysing the underlying reasons.

5.2 Reasoning the Performance of TDP

5.2.1 Urban Functional Region Identification

Since TDP performance may depend on the traffic patterns,
it is meaningful to extract the basic traffic patterns that exist
in the different cellular BSs. In different urban functional
regions, users’ activities will have different impacts on their
data consumption, which causes the different traffic pat-
terns in BSs. Based on the above observation about the
urban functional region and traffic pattern of BS, we iden-
tify the key traffic patterns among thousands BSs according
to their traffic profiles.

In order to get the profile, we take the time-domain traffic
logs of thousands of BSs as input and convert time-varying
traffic profile of each BS into a vector. Then, base on the vec-
torized data, we run an unsupervisedmachine learning algo-
rithm for identifying the key patterns of BS traffic. The
pattern identifier addresses one key challenge of the mining

process—unknown patterns, by exploiting the agglomera-
tive hierarchical clustering algorithm [12]. The basic idea of
hierarchical clustering is iteratively merging the nearest two
clusters. It first considers each input point as a cluster and
then bottom-up iteratively merges the nearest two clusters
until the distance between two clusters is above the threshold
value. The distancemetric is the euclidean distance and aver-
age-linkage is used tomeasure the distance between clusters.

As the number of traffic patterns is unknown, a key ques-
tion is when should the identifier stop its clustering. In our
system, we use Davies-Bouldin index [13] to explicitly
inform the identifier that the optimum number of patterns
has been identified. Davies-Bouldin index is utilized
because it measures both the separation of clusters and
cohesion within clusters, which mathematically guarantees
good clustering result. The mathematical formulation of
Davies-Bouldin index is as follows:

min
1

N

XN
i¼1

max
N

j¼1;j6¼i
Si þ Sj

Mi;j
;

s:t: Mi;j ¼ jjBi �Bjjj2;

Si ¼ 1

Li

XLi

n¼1
jjXi �Bijj2;

(12)

where the objective function is the Davies-Bouldin index,Xi

is the vectorized data of each cellular BS, Bi is the centroid
of each cluster, N is the number of clusters and Li is the
numbers of BSs within the ith cluster. We minimize the
Davies-Bouldin index by considering two factors—distance
between clustersMi;j and distance from the each point to its
centroid within the ith cluster Si. Quantitatively, we also
plot the variation of Davies-Bouldin index under different
stopping thresholds in Appendix B, available in the online
supplemental material. It can be shown that a minimum
Davies-Bouldin index is obtained when the threshold
equals 16.33. The optimum number of patterns is identified,
which is five, shown in Table 4.

After obtaining five clusters, our next step is to investi-
gate the embedded geophysical location context in each
cluster. For space economy reason, we leave it to Appendix
C, available in the online supplemental material. Fig. 7
shows the geophysical density map of BSs in each cluster
where deep color stands for higher density. The points of
interests (POI) distribution of the highest density point in
each cluster is summarized in Table 5. We obtain the follow-
ing geophysical labels for the five clusters.

Resident Regions. Fig. 7 shows that BSs in this cluster
(green color) are mainly distributed on the surrounding
regions of the city. In addition, the highest density point, A,

TABLE 4
Percentage of BSs in Each Cluster

Functional Regions Cluster Index Percentage

Resident 1 17.55%
Transport 2 2.58%
Office 3 45.72%
Entertainment 4 9.35%
Non-specific 5 24.81%

Fig. 7. Geophysical distribution of the five types of base stations across
Shanghai.

TABLE 5
Distribution of POI at Chosen Point

Point Points of Interest

Resident Transport Office Entertain

A 195 0 19 51
B 68 2 56 36
C 151 1 1,016 157
D 16 0 108 2,165
E 59 0 179 26
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is located in a large resident region. Table 5 also shows that
the number of residential points in A is more than others.
Therefore,we label the region covered by this cluster’s BSs
as the residential region.

Transport Regions. In Fig. 7, second cluster’s highest den-
sity point B is close to three subway stations and one over-
pass. In addition, Table 5 shows that around location B the
number of transport POI is higher than the rest even though
its absolute number is small. Therefore, we label this cluster
as the transport region.

Office Regions. Fig. 7 shows that the highest density point
C is a well-known business district in Shanghai. This loca-
tion mark is also verified by the third row of Table 5 where
office POI points are dominant for the region 200 m from C.
As a result, we label this cluster as the office region.

Entertainment Regions. The highest density point D in
Fig. 7 is a large shopping mall and entertainment park in
Shanghai. Table 5 also shows that its number of entertain-
ment POI points is more than the rest. Therefore, we label
this cluster as the entertainment region.

Non-Specific Regions. Fig. 7 shows the BS density map of
the last cluster, where we observe uniform distribution of
BSs across the city. In addition, the highest density point, E,
is a non-specific region, which includes all kinds of urban
functions, including residential region, offices, etc. The POI
distribution of point E does not suggest obvious land mark
either. Therefore, it is labeled as the non-specific region.

Then we select traffic data of several BSs for each type
from our dataset, which, specifically, are 100 transport BSs
and 200 BSs for each of the remaining four types. Our fol-
lowing evaluations are based on these selected data.

5.2.2 TDP in Spatial Heterogeneous Traffic

To verify our inference that TDP is not applicable to all
types of BSs, we first apply the same TDP scheme, obtained
by overall traffic pattern, in traffic data of five types of BSs.

As we shown in Fig. 5, operators are willing to make higher
pricing cost with higher weight of capacity exceeding cost
(� ¼ 6). Thus, in order to highlight the performance of TDP
scheme such as smaller PAR value, we set � ¼ 6 in the fol-
lowing analysis of time-dependent pricing scheme. The
optimal rewards are plotted in Fig. 8a. Since � is higher in
this case, operators are more willing to make higher cost in
pricing, which explains much higher rewards compared to
those in Fig. 4b. Especially from 1 to 7 AM, the rewards
reach its maximum pm ¼ 1:5 to incentivize as many time-
shifting of data as possible.

Figs. 8b, 8c, 8d, 8e, and 8f show the different performance
of TDP in five types of BSs. For each type, the gap between
maximumusage andminimum usage, denoted as Tm, before
and after TDP are listed in Table 6. Comparing original traffic
profile and that under TDP for the five BS types, we find sig-
nificant differences, which are discussed as follows.

� Resident: The original traffic consumption is higher
during the night and reaches its two local maxima at
12 AM and 22 PM. Under TDP, the number of over-
capacity periods decreases from 12 to 9, and Tm

drops by 54.8 percent, i.e., from 47.0 to 21.3 MBps.
� Transport: For original traffic profile, the two local

maxima are corresponding to the commuting hours
at 8 AM and 6 PM, respectively. The traffic profile is
nearly unchanged under TDP, and Tm only decreases
from 7.84 to 6.97MBps.

Fig. 8. Understanding the performance of time-dependent pricing on base stations deployed in the five urban functional regions. (a) Optimal rewards,
� ¼ 6, based on overall traffic pattern. (b) to (f) are the traffic profile of resident, transport, office, entertainment and non-specific BSs, respectively.
Traffic profile under TIP (solid curve) and TDP (dot-dashed curve), as well as the network capacity (dashed curve) are included.

TABLE 6
Gap between Maximum Usage and
Minimum Usage (MBps) in Fig. 8

BS Type Resident Transport Office Entertain. Non-specific

Original 47.0 7.84 32.6 27.6 45.2
TDP 21.3 6.97 22.2 17.9 25.3
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� Office: The original profile is opposite to that of resi-
dent and reaches the peak value at about 10 AM, and
traffic under TDP still retains this profile. Tm

decreases from 32.6 to 22.2 MBps, i.e., 31.7 percent.
� Entertainment: The original traffic consumption is

high from the afternoon to 8 PM at night. After TDP,
these periods remain over-capacity.

� Non-specific: The original profile is similar to that of
overall traffic. Although the over-capacity periods
still occupy half a day, Tm in these BSs drops by 44.1
percent.

When focusing on TDP performance in alleviating traffic
fluctuations, we find that the effect in resident and non-spe-
cific BSs are significant. Tm decreases over 44 percent, which
indicates that large amounts of traffic in peak periods has
been transferred to off-peak periods. As for other BSs, espe-
cially the transport and office BSs, the performance gain is
relatively less apparent.

The results above verify that TDP performance in allevi-
ating traffic tide differs in five types of BSs. To quantita-
tively characterize this difference, we measure the relative
change of PAR (RCðRaÞ) and transferred traffic ratio
(RCðT Þ) defined in (9) and (11), respectively. The boxplot of
RCðRaÞ and RCðT Þ are shown in Figs. 9a and 9b. In the box-
plot figure, the middle line of a box indicates the median,
and the lower and upper side of the box are the first (25 per-
cent) and third (75 percent) quartile, which are denoted by
q1 and q3. The outliers are values outside 1:5� ðq3 � q1Þ
range above q3 or below q1.

The medians in Fig. 9a are 13.58, 15.09, 7.63, 12.32 and
13.28 percent for each type, which represents that there are
50 percent of BSs have higher PAR reductions than these
values. Obviously, the PAR reduction in the transport BSs is
the smallest. As for the other four types of BSs, the third (75
percent) quartiles q3 are 20.83, 24.44, 18.64 and 21.73 percent,
respectively, which indicates a poor TDP performance for
office BSs. In a word, RCðRaÞ is small in both transport and
office BSs, while for other three types, 25 percent of these
BSs have 20 percent lower PAR and some of their PARs
even drop over 50 percent.

Similarly, transferred traffic ratio in Fig. 9b also differs in
five types of BSs. The volume of transferred traffic in trans-
port and office BSs is lower than that of other three types of
BSs. 25 percent of these BSs transfer over 15 percent traffic

volume from peak periods to off-peak periods, and some of
RCðT Þ can increase up to 25 percent.

In summary, we evaluate the performance of applying
TDP based on overall traffic pattern in spatial heteroge-
neous traffic, and find obvious performance enhancement
in resident and entertainment BSs. As for other two types,
i.e., office and transport, the TDP performance is poor. As
we mentioned before, traffic pattern of transport and office
BSs is obviously different from those of overall traffic, this
explains why TDP has poor performance when applied to
these two types of BSs. According to our statistics in Table 4,
45.72 percent of BSs are classified into office type, which is a
significant proportion. Thus, these BSs cannot be neglected
when applying TDP.

5.3 Spatial Time-Dependent Pricing

We have demonstrated that TDP based on overall traffic
pattern has poor performance when applied to the transport
and office BSs. In order to eliminate this limitation on apply-
ing TDP, we propose a framework of spatial TDP that is able
to introduce spatial context information into the time-vary-
ing pricing model. More specifically, we compute the opti-
mal time-varying rewards for each type of BSs based on
their own traffic pattern instead of overall traffic pattern.
Based on our understanding of TDP performance and traffic
pattern of BSs, this spatial TDP should have better perfor-
mance on alleviating traffic tide in a spatial heterogeneous
cellular network. To validate this, we compare its impact
with that of TDP based on overall traffic pattern, by measur-
ing their performance for different types of BSs. For simplic-
ity, we denote the spatial TDP as S-TDP , and the TDP based
overall traffic as O-TDP . To control the variables between
O-TDP and S-TDP , the constraint on expected per-unit
pricing cost p0u is added in pricing optimization to ensure
that the pricing cost for these two schemes are equal. As
shown in Fig. 10, we compute the mean values of PAR rela-
tive change RCðRaÞ and transferred traffic ratio RCðT Þ for
all BSs under O-TDP and S-TDP . By comparing RCðRaÞ
under two pricing schemes, we observe that, except resident
BSs and non-specific BSs, the other three types of BSs have
lower PAR values under S-TDP , with higher RCðT Þ values.
Specifically, mean values of RCðRaÞ and RCðT Þ in all BSs
under S-TDP and O-TDP are 16 and 13 percent versus 14
and 8 percent respectively. As for transferred traffic ratio

Fig. 9. Characterizing the performance of time-dependent pricing on base stations deployed in the five urban functional regions. (a) and (b) are the
PAR relative change RCðRaÞ and transferred traffic ratio RCðT Þ for each type of BSs.
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RCðT Þ, though the overall mean values are 13.21 versus 8.21
percent, we observe that many BSs such as transport and
office BSs have lower RCðT Þ under S-TDP , even with
higher RCðRaÞ. This indicates that lower PAR value does
not always imply larger volume of transferred traffic.

For more specific comparison, we choose resident and
office type, since the TDP performance differs widely
between these two types and their proportion in our dataset
is up to 63.27 percent. Similar to the analysis on TDP
applied to five types of BSs, to quantitatively characterize
the performance, we measure the relative change of PAR
(RCðRaÞ) and transferred traffic ratio (RCðT Þ), respectively,
for resident and office BSs under O-TDP and S-TDP . The
performance is shown in Fig. 11 by boxplots.

For resident BSs, the medians of RCðRaÞ under O-TDP
and S-TDP are 13.73 and 12.73 percent, respectively, while
for office BSs the medians are 8.23 and 15.93 percent. It is

apparent that these two schemes have similar performance
in decreasing PAR when applied to resident BSs. However,
by applying S-TDP , 50 percent of office BSs double their
RCðRaÞ, i.e., up to 15.93 percent. Moreover, 25 percent of
office BSs have 24 percent smaller PAR and some of their
PARs even drop 50 percent.

Similar to the RCðRaÞ, the RCðT Þ of resident BSs under
S-TDP is also similar to that under O-TDP , though the
median decreases from 11.74 to 9.15 percent. As for office
BSs, the median and third quartile q3 rise up to 12.05 and
15.07 percent, respectively. This indicates that 25 percent of
these BSs transfer over 15 percent of traffic volume from
peak periods to off-peak periods. Besides, similar to the
RCðT Þ shown in Fig. 10, we observe that in Fig. 11 resident
BSs have a smaller volume of transferred traffic under
S-TDP , while the RCðRaÞ is similar.

In a word, by comparing the performance of these two
different TDP schemes, we find that S-TDP has significant
performance in alleviating traffic tide when applied to those
poor-performed BSs under O-TDP (such as office BSs). As
for those well-performed BSs under O-TDP (such as resi-
dent BSs), these two schemes have similar performance. To
investigate the reason behind this, we focus on comparing
their traffic patterns and pricing rewards.

For both resident and office BSs, O-TDP is just the same
as TDP in Fig. 8a. Two different optimal rewards of S-TDP
are plotted in Figs. 12a and 12b, respectively. Since the traf-
fic patterns of resident and office are just the opposite, the
time-varying rewards of S-TDP for these two types of BSs
are obviously different from each other. For resident BSs,
high reward is mainly offered from 10 PM to early morning

Fig. 10. Mean values of PAR relative change RCðRaÞ and transferred
traffic ratio RCðT Þ for different BSs, respectively, under O-TDP and
S-TDP .

Fig. 11. PAR relative change RCðRaÞ and transferred traffic ratio RCðT Þ for resident and office BSs under O-TDP and S-TDP .

Fig. 12. Optimal pricing rewards of S-TDP in resident and office BSs,
repectively (� ¼ 6, r ¼ 0:7).
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of the next day, which is quite similar to that of O-TDP .
Thus, S-TDP have similar performance to O-TDP when
applied to resident BSs. On the contrary, traffic pattern of
the office BSs is completely different from overall traffic pat-
tern, which causes different rewards between O-TDP and
S-TDP . This explains why office BSs have lower PAR and
transfer higher volume of traffic under S-TDP .

In summary, our results demonstrate that the spatial
TDP scheme, which is implemented based on urban func-
tional regions where BSs are deployed, can significantly
alleviate traffic tide in a cellular network of the urban envi-
ronment. The main information we used is the geophysical
context embedded within different types of BS traffic pat-
terns. Also, considering that the optimization problem in
our proposed scheme is similar to that in pure TDP scheme,
the selection of � and r should not impact the effectiveness
of our scheme.

One concern about our spatial TDP scheme is that users
may be confused due to different prices across BSs. How-
ever, by designing assistant tools such as a mobile App,
users can be released from the price selection issue. Specifi-
cally, one can set up a budget cap of data plan in the
designed App. Once the volume of consumed data exceeds
it, the App will make the best choice according to dynamic
prices in the coming periods. Then, the user can choose
whether to defer according to the App’s recommendation.
Also, by decreasing the number of divided periods in one
day, pricing schemes can be less dynamic and more conve-
nient for users. Another limitation is that users’ willingness
to delay their usage may be affected by the fact that users
can move between different locations. Specifically, in order
to reduce cost, a user could experience a different price
within the same timeslot simply by moving between
two urban functional regions, like the office and resident
regions. Due to miss of the related user mobility data, it is
hard for us to consider this in our pricing scheme and
we leave it as future work. Lastly, due to the net-neutrality
regulations in the US, it is also noteworthy that our pricing
scheme may encounter some regulatory restrictions.

6 RELATED WORK

Cellular traffic patterns have been extensively investigated
for understanding various perspectives of cellular networks.
Cici et al. [14] analyzed the relationship between the applica-
tion interests andmobility patterns based on 280,000 users of
a 3Gmobile network. Lee et al. [6] demonstrated that the spa-
tial distribution of the traffic density can be approximated by
a log-normal or Weibull distribution, while Wang et al. [15]
found that mobile traffic followed a trimodal distribution on
both spatial and temporal dimensions. Our previous work
[16] quantitatively characterized the phenomenon of traffic
tide in a large city-scale mobile network. In this work,
through an analysis of large scale mobile traffic, we discover
the interaction between urban functional regions and traffic
patterns of base stations. Based on this observation, we com-
bine both spatial and temporal information for determining
the price of mobile data usage.

Time-dependent pricing has been studied in electricity
and transport systems for decades [17], [18]. Actually, it
was used in telephony networks for a long time [19].

Inspired by these pioneer research, time-dependent pricing
is used by many operators for operating cellular networks
as well. The use of time-dependent pricing in cellular net-
work can be classified into two categories. The first type
focuses on theoretical analysis. Jiang et al. [20] presented a
game-theoretic analysis of how to balance the trade-off
between profit maximizing for an operator and social wel-
fare maximizing for an unselfish “social planner”. Ghanem
et al. [21] focused on decreasing peak loads and enhancing
the network revenue. Batubara et al. [22] demonstrated that
this kind of pricing schemes can maximize operators’ profit,
as well as users’ Grade-of-service (GoS). Zhang et al. [23]
studied the impact of three traditional pricing scheme (flat-
rate, usage-based and cap then metered) on both users and
operators when combined with TDP. The second type is
system validation based on small deployment. A real-time
TDP system called TUBE is designed and deployed in a
small scale cellular network which includes fifty 3G users
and an operator [4]. Though Palaios et al. [24] observed cor-
relations between spectrum use and socio-economical fac-
tors, i.e., geophysical location context, there has been no
documented works on utilizing spatial traffic patterns in
determining the time-varying price. With the help of an
extensive simulation on a large scale cellular network of
10,000 BSs, we propose a data pricing framework combining
both spatial and temporal traffic pattern.

Our previous work [25] presents the traffic characteristics
of a large-scale cellular network dataset, and motivates loca-
tion-dependent pricing by carrying out a tutorial style of
trace-driven analysis on time-dependent pricing. While in
this paper, we propose a technical framework that is able to
combine spatial context information and time for determin-
ing the data price, and carry out an extensive evaluation on
network capacity and operational cost to reveal important
insights about the effectiveness of the proposed framework.

7 CONCLUSION

In this paper, we investigate the performance of time-depen-
dent pricing on a large scale cellular network deployed in an
urban area. Our investigation reveals two important discov-
eries. First, a single price used by the time-dependent pricing
system does not perform well for base stations deployed in
specific locations, such as residential regions. Second, in
addition to time, spatial information, such as urban function
regions, should be included in the design of a data pricing
model. Inspired by the two observations, we propose a
framework that is able to dynamically combine both tempo-
ral and spatial information for determining the price of cellu-
lar data. Our simulation shows that we are able to reduce
traffic peak-to-average ratio by an average of 16 percent.
When applied in office regions, the performance is 2� better
than that of pure time-dependent pricing scheme. In our
future work, we aim to improve this pricing scheme by con-
sidering users’ willingness to delay their usage when they
canmove between different locations. To fulfill this, not only
the traffic and services information, but also the individual
mobility data of users are required.
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