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Abstract—In the diverse usage scenarios of mobile networks, we have different performance requirements on connection density and

user experienced data rate, andmodeling such diversity is crucial to the strategyevaluation in addressing the problemof high traffic load and

scalability of network resources. Therefore, it is necessary to build a network capabilitymodel in two dimensions of connection density and

user experienced data rate. This paper aims at addressing this challenge based on an investigation of network capability in large-scale

urban environments. First, our statistical study shows that the spatial distribution of these two parameters can be accuratelymodelled by the

log-normalmixture distribution. Second, we find that only six basic capability patterns exist among the 9,000 cellular base stations, which

indicates different levels of network capabilities. More importantly, these discoveries are similar in a cellular network deployed in a different

city. Therefore, based on these two discoveries, we build a network capabilitymodel that can generate synthetic base stationswith diverse

connection density and user experienced data rate. We believe that thismethodology ofmodeling network capability, with accuracy,

generality, and flexibility, can help telecommunication operators to design and standardizemobile networks of the next generation.

Index Terms—Capability modeling, clustering, connection density, data rate, mobile network measurement

Ç

1 INTRODUCTION

WITH the tremendous growth in connectivity, density
and volume of mobile traffic, both industry and aca-

demia are focusing on improving the performance and effi-
ciency of mobile cellular networks. To meet the demands of
a fully mobile and connected society, a broad range of usage
scenarios for future mobile networks are expected and each
of them has different network performance requirements.
For example, according to the published white paper [1], in
the scenario of broadband access in dense areas (e.g., pervasive
video), person-to-person or person-to-group video commu-
nication with extremely high resolution should be available
to every subscriber, where providing such large numbers of
concurrently active connections and high data rate will be a
challenge. When it comes to the scenario of massive Internet
of Things, a single macrocell may need to support 10,000 or
more low-rate devices with expected demands in machine-
to-machine communication [2]. Therefore, connection density
is a key performance parameter in the scenario of massive
Internet of Things, while high user experienced data rate is vital
in the scenario of broadband access in dense areas. Under these

contexts, it is vital to achieve diverse network performances
in terms of connection density and user experienced data rate.

The diverse mobile network usage scenarios discussed
above require a model on the two-dimensional space of con-
nection density and user experienced data rate. This model could
be built by the granularity of base station, as different usage
scenarios are achieved through the base stations with differ-
ent connection density and user experienced data rate in the future
mobile network. In this paper, we refer to the above two
parameters as the network capabilities of a base station. Using
this capability model, mobile operators can simulate the net-
work capabilities in each cell, including number of connected
devices and average access rate, which is extremely valuable
in cellular network planning and performance evaluation.

However, there exists no previous work on modeling net-
work capability from aspects of connection density and user exp-
erienced data rate. Mostly, cellular traffic dynamics are directly
characterized by stochastic process theories, such as batch
Markovian arrival process (BMAP) in [3], and multi-order
Markov chain in [4]. If we want to build a capability model
considering both connection density and user experienced data
rate, there still remain three challenging problems to solve:

� How to obtain and analyze connection density and user
experienced data rate of a real cellular network? A large-
scale trace data containing these two parameters is
vital in the analysis. Also, to build a capability model,
we need to consider the spatial distribution of connec-
tion density and user experienced data rate. These tasks
are challenging.

� How to extract the key patterns of connection density
and user experienced data rate from the trace data?
Note that we can combine the base stations with
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similar capability characteristics together and obtain
a handful number of groups. Then we can build
independent and also more accurate models for each
of these groups. Therefore, a suitable clustering
method is required, which helps us to understand
the network capability in these two dimensions.

� How to build a model with generality? Since our
analysis is measurement-driven, bias existed between
different datasets may impact our built model. For
example, if the dataset of cellular network is collected
in one certain city, then the methodology of building
model may only be workable in that dataset. There-
fore, we can consider checking the generality of our
modelingmethodology in different mobile networks.

To address the first challenge, we carry out a base-station-
level analysis of subscriber density and per-subscriber data-
traffic demand in our fine-grained and large-scale trace data,
which are collected from two mobile networks deployed in
Shanghai and Kunming respectively. Subscriber density and
per-subscriber demand correspond to the two key parameters
of network capability, connection density and user experienced
data rate. In our following study, we use a log-normal mixture
model to characterize the spatial distribution of these two
metrics. As for the second challenge, we adopt a 2-dimen-
sional clustering method, which is based on the work by
Mucelli et al. [5]. Then, for the third challenge, we show
that our log-normalmixturemodel and clusteringmethod are
general to both Shanghai and Kunming data, which implies
the generality of our modeling methodology. Moreover, the
traffic patterns of cellular base stations do correspond to the
urban functions of geographical locations [6]. Inspired by this,
we introduce this urban function context information into
our capabilitymodel. Our key contributions are threefold:

� First, we discover that the spatial distribution of
subscriber density and per-subscriber demand can be
accurately fitted by a log-normal mixture model. Our
theoretical proof shows that the product of subscriber
density and per-subscriber demand, i.e., traffic den-
sity, also follows a log-normal mixture distribution
spatially, which is further validated by empirical
data. In addition, the generality of this distribution
model is also verified across different cities.

� Next, our extensive analysis provides a precise
characterization of individual base station capability
and clusters base stations into several types (6 types
in Shanghai and 4 types in Kunming) according
to subscriber density and per-subscriber demand. We
also explore the relationship between the base station
capability and urban functional regions where base
stations are deployed.

� Finally, we build a base-station-level capability model
as the function of subscriber density and per-
subscriber demand. The highlight of our model is that
we only need to input the urban function context infor-
mation, and it can then generate synthetic base stations
with realistic diverse capabilities in terms of the two
key parameters. With an average error of 7 percent in
aggregate level and 19 percent in individual level, our
evaluation demonstrates that this model can reliably
and accurately quantify network capability, which
reduces the evaluation error by 57 percent. More
importantly, our model provides an insight on how to
improve the mobile network performance and effi-
ciency in diverse usage scenarios.

This paper is structured as follows. In Section 2 we dis-
cuss the related work. In Section 3, we detail the utilized
mobile network dataset and explain how we extract the use-
ful information, i.e., subscriber density and per-subscriber
demand in each cell. In Section 4, we analyze the spatial
distribution of these two key parameters. In Section 5, using
an unsupervised clustering algorithm, we identify the key
patterns of network capability. Based on these discoveries,
we build a capability model in Section 6. After discussing
the strength of our proposed model in Section 7, we summa-
rize our work and discuss future investigations in Section 8.

2 RELATED WORK

Works related to our work can be divided into three topics:
characterizations of the traffic distribution in a cellular net-
work, investigations of the cellular traffic patterns, and
models of the cellular traffic dynamics.

The spatial distribution of the cellular traffic has been
studied in the literature [7], [8], [9]. Gotzner et al. [7] found
that voice traffic in different cells of GSM networks can be
described by a log-normal distribution. As for modeling traf-
fic load in each cell, Lee et al. [8] demonstrated that the spa-
tial distribution of the traffic density can be accurately
modeled by a log-normal mixture distribution, while Wang
et al. [9] found that the per-cell mobile traffic volume (not
density) follows a trimodal distribution on both spatial and
temporal dimensions. Unlike these works, we also discuss
the reason behind the observedmixture of log-normal distri-
bution. As for the temporal distribution of mobile traffic,
Nan et al. [10] analyzed and statistically modeled the down-
link throughput per cell distributions over time and over dif-
ferent cells based on a real network throughput dataset.
Williamson et al. [11] identified power-law properties in the
distribution of packet call activities, using the data collected
from a CDMA2000 1x cellular data network. However, these
analyses confine to statistical fittings, and they are not suit-
able for considering temporal correlations in traffic dynam-
ics. Since the actual coverage area of a base station is difficult
to measure, Voronoi cell is widely used in computing the
traffic load density, where the edges of the Voronoi cells are
considered as the boundary when computing the coverage
area. Hoteit et al. [12] used the size of Voronoi cells when
analyzing per-cell content consumptions. Paul et al. [13]
investigated the correlation between size of Voronoi cell and
corresponding traffic load. Lee et al. [8] calculated the traffic
density in each Voronoi cell to represent the intensity of user
traffic demand. All Inspired by these, we apply the method
of Voronoi cells when computing the subscriber density.

Cellular traffic patterns have been extensively investi-
gated for understanding various perspectives of cellular
networks [6], [14]. Naboulsi et al. [14] defined categories of
mobile call profiles based on Call Detail Records (CDRs)
and then classified network usages accordingly. Unlike
Naboulsi’s work, our previous work [6] extracted the data
traffic patterns of large-scale base station (BS) towers by
combining three dimensional information (time, locations
of towers and traffic frequency spectrum) together, where
they observed a strong relationship between traffic patterns
and spatial context information. In this area of linking land
use with cellular traffic, many approaches were proposed
[15], [16], [17], all using call detail records. Soto et al. [15]
defined signatures as the activity aggregation in different
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time-scales (weekly and daily scale) and clustered BSs by
using these signatures, while Cici et al. [17] applied the
spectral decomposition of original cell phone activity series
before clustering. Unlike these works based on clustering,
Toole et al. [16] classified groups of locations with similar
zoned uses and mobile phone activity patterns. Moreover,
data collected from cellular networks deployed in different
cities or even countries are used to validate the generality
of relationship between land use and cell phone activity
patterns [18], [19]. Inspired by above works, when building
our capability model, we consider the relationship between
the network capability and urban functional regions where
base stations are deployed.

Due to wide usage in the cellular network simulation,
many models have been built to characterize cellular traffic
dynamics [3], [4], [5], [20]. Klemm et al. [3] introduced an
aggregated traffic model, batch Markovian arrival process
(BMAP), for UMTS networks, which is analytically tracta-
ble. Shafiq et al. [4] proposed a Zipf-like model to capture
the volume distribution of application traffic in celluar devi-
ces and then used a Markov model to characterize the
dynamics. Moreover, they further analysed machine-to-
machine traffic dynamics in a cellular network [20]. Mucelli
et al. [5] classified subscribers into 4 profiles according to
session number and traffic volume in a certain period. Then
a traffic usage model was built for each profile of subscrib-
ers in peak and non-peak time periods, respectively. By con-
trast, our work considers higher-level capability modeling
of mobile networks. For our problem of modeling network
capability, we adopt Mucelli’s methods of clustering.

Based on the original version of this work [21], follow-
ing fields are substantially enhanced. With a newly intro-
duced dataset covering a different city, we are able to
validate the generality of our modeling methodology. In
order to indicate the strength of our model, i.e., generating
synthetic BSs, a per-BS-level validation is performed. In
addition, we include more detailed analysis of network
capability in this paper.

3 DATASET AND KEY PARAMETERS

In this section, we provide details about our datasets.
In addition, we also introduce the needed preprocessing
to compute key parameters, i.e., subscriber density and
per-subscriber data demand.

3.1 Dataset
In order to carry out a measurement driven study, we use
two anonymous cellular traces collected in Shanghai and
Kunming (capital of a Chinese southwest province, Yunnan)
respectively, by one of the major operators in China.

The dataset Shanghai we investigated is collected from
the Charging Gateway Function (CGF) of a commercial 3G

cellular network deployed in Shanghai. It contains over
6:92� 108 logs recording the detailed mobile data usage of
700,000 subscribers and 9,181 cellular base stations, within
an interval of 31 days in August 2014. Each record of the
trace collects devices ID (anonymized), start-end time of
data consumption, base station (BS) ID, BS location and
traffic volume (byte). The total consumed data in a month is
2:8� 1015 Bytes and per-day consumed data of a BS is
9:8� 109 Bytes on average. It is notable that there exists a lot
of variation between cells, which we will detail in the subse-
quent analysis. As for the dataset Kunming, it is also a cellu-
lar trace with the similar format to the dataset Shanghai.
With a time range of one month, this dataset contains about
6,000 BSs and 400,000 subscribers.

We present several visualizations about basic characteris-
tics of the dataset Shanghai in Fig. 1. Subplots (a) and (b)
show the empirical Cumulative Distribution Function (CDF)
of interval time between two consecutive records and the
empirical Probability Density Function (PDF) of the number
of records per subscriber, respectively. From the results, we
can observe that 85 percent consecutive records happen in
less than 600 seconds and most of mobile users have more
than 1,000 records in a month. In addition, we also provide
statistics about BS deployment, including the distance
between two neighboring BSs and the density of BSs, in
Table 1. These fine-grained and large-scale datasets, includ-
ing information on both subscriber number and data con-
suming volume, enable us to carry out a comprehensive
study on the network capability.

Moreover, Shanghai and Kunming are significantly differ-
ent from each other. The former is the largest Chinese
metropolis, while the latter is a medium-sized city in south-
western China. Therefore, we are able to apply our model-
ing methodology in these two datasets collected from two
different cities, and thus validate its generality.

3.2 Key Parameters
As mentioned previously, subscriber density and average
data demand are the two key parameters to describe the
network capability. Subscriber density, corresponding to
connection density, can be computed by counting the number
of access subscribers during a certain period of time. As for
data traffic demand per subscriber, we define it as the con-
sumed data volume divided by the number of subscribers
of the cell during a certain period of time. Since user experi-
enced data rate is the actual data rate required for the user to
get a quality experience of the targeted application, it is
highly correlated to the actual consumed data. Thus our
defined per-subscriber data demand is a simple approxima-
tion for representing it.

Each BS delivers different coverage for cellular service. In
order to understand the real spatial distribution of connec-
tion devices or traffic demand, it is vital to consider the dif-
ferent area of cell coverage. As the actual area is difficult to
measure, Voronoi cell [22] is widely used in computing the

Fig. 1. Illustration of the quality of our dataset.

TABLE 1
BS Deployment Statistics

Dataset BS Distance (km) BS Density (km�2)

Mean Deviation Whole area Downtown

Shanghai 0.88 1.20 0.65 17.65
Kunming 0.98 0.70 0.12 7.90
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traffic load density [8], [12], [13]. Thus we obtain the area of
Voronoi cells drawn by using the locations of BSs. Let X
represent the whole network area. Further let K be the set
of BS indices and B ¼ bk; k 2 Kf g be the set of BSs. The Vor-
onoi cell Vk, associated with the BS bk, is the set of all the
points in X whose distances to bk are not greater than their
distances to any other BS bj with j 6¼ k. One limitation
of this methodology is the accuracy of Voronoi cells in
multi-tier cellular network. In Appendix A, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TMC.2017.2752159,
we demonstrate the reliability of using Voronoi cells, and
then provide the possible solutions to the above limitation.

In this way, we obtain the subscriber density by dividing
the number of subscribers with the area of the correspond-
ing Voronoi cell, denoted as SbiðtÞ (subscribers/km2) for
bi 2 B and 1 � t � 744, where t is the time sequence index.
The length of the duration is 1 hour, which explains why
the maximum is 744 ¼ 24� 31. Similarly, we denote the
per-subscriber demand as DbiðtÞ (bytes/subscriber) for
bi 2 B and 1 � t � 744. It is worth noting that the product of
subscriber density SbiðtÞ and data demand DbiðtÞ is the traf-
fic density, denoted as TbiðtÞ (bytes/km2), which represents
the degree of a per-cell traffic load.

4 NETWORK CAPABILITY ANALYSIS

In this section, we focus on three metrics of data traffic: traf-
fic density, subscriber density and average demand per sub-
scriber. The first two parameters are aggregated metrics of a
BS, while the third one is a per-subscribermetric. By showing
the heat maps, we provide a visual view on how they are
geographically distributed in the urban area. Then we pro-
pose a model to describe the spatial distributions of the
empirical data. The spatial distribution characterizes how
these metrics change and distribute among different cells.
Our main analyses are based on Shanghai data. After that, we
build the similar distributionmodel onKunming data.

4.1 Visualized Analysis
Fig. 2 shows the heat maps of the mean subscriber density,
average demandper subscriber and traffic density in amonth.
Since the empirical data are highly right-skewed, the log-
transformeddata are used to drawheatmaps. Subscriber den-
sity is high and concentrated in the city center, while it is rela-
tively low in the rural area. However, the heat map of average
demand per subscriber shows different characteristics: the
peak values spreadwidely, from the city center to rural area.

To further reveal the relationships among the three
parameters (traffic density, subscriber density and average
demand per subscriber), correlation coefficients are used to
test the correlations between them. The results show that
traffic density and subscriber density are highly correlated,
with the correlation coefficients greater than 0.9, which is
reasonable. As a result, their fraction, i.e., the demand per
subscriber, is expected to be fairly constant, which is con-
firmed by Fig. 2b where the monthly per-subscriber
demand values range from 36 to 180 MB (with a logarithm
between 17.4 and 19). Thus absolute values of correlation
coefficients between per-subscriber demand and the other
two parameters are less than 0.1, indicating the weak corre-
lation between per-subscriber demand and subscriber den-
sity or traffic density. This observation explains why Fig. 2

shows the similarity between traffic density and subscriber
density, but very different patterns for demand.

4.2 Spatial Distributions
Our next step is to model the spatial distributions of sub-
scriber density and average demand. Researchers [8] found
that the spatial distribution of per-cell traffic density can be
well fitted by a log-normal mixture distribution. We want to
know what is the reason behind this distribution. We first start
with investigating distributions of subscriber density and
average demand. Then we further answer this question by a
theoretical analysis of the traffic density distribution.

The probability density function (PDF) of the log-normal
mixture distribution with l components is:

fXðxÞ ¼
Xl

i¼1
pi logNðx;mi; siÞ; (1)

where logNðx;mi; siÞ is the ith log-normal distribution with
location parameter mi and scale parameter si, while pi is the
mixture proportion of the ith component and the sum of all
the mixture proportions is

Pl
i¼1 pi ¼ 1. The parameters

fmi; si; pigli¼1 can be obtained for example using the expecta-
tion maximization (EM) algorithm [23].

Considering the trade-off between accuracy and model
complexity, a log-normal mixture with three components
l ¼ 3 is used to fit both hourly subscriber density and
hourly demand. Fig. 3 shows both cumulative distribution
function (CDF) and complementary CDF (CCDF) of

Fig. 2. Geographical distributions of subscriber density (a), per-sub-
scriber demand (b), and traffic density (c).
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empirical data and fittedmodel, which indicates that the pro-
posed log-normal mixture distribution fits the empirical data
very well. Quantitatively, the Kolmogorov-Smirnov (K-S) test
is used to test the goodness of fit [24]. We test the distribution
fitting of the cell traffic in every hour in a day at 5 percent sig-
nificance level, and find that the log-normal mixture distribu-
tion is accepted all the time. The parameters of the models are
listed in Table 2. The median of hourly subscriber density is
about 300 (subscribers/km2), while the highest value can be
up to 104 (subscribers/km2). By looking at exponential values
of location parameters mi (i.e., the expectation of logX), we
observe group characteristics behind distributions of hourly
subscriber density and hourly demand. Specifically, the three
centroids of these two distributions are {164;221;4,447} (sub-
scribers/km2) and {0.36;1.76;1.98} (MB/subscriber) respec-
tively. In order to show that this characteristic is maintained
in different urban regions, we also use the log-normalmixture
model to fit the empirical distributions in resident region,
office region and entertainment region, as shown in Fig. 4.

Since the 3-component log-normalmixture distribution fits
well to both subscriber density and average demand, we
apply the similar distribution when fitting their joint distribu-
tion. The parameters are listed in Table 3. By comparing
between exponential values of mi, we observe that there exist
different levels of the network capability among thousands

of BSs. Some BSs serve more subscribers (near 2,200 subs-
cribers/km2) and these subscribers have higher data
demand (near 2MB/subscirber in an hour), while others only
serve few subscribers (near 114 subscribers/km2) or low-
demand subscribers (near 0.4MB/subscirber in an hour).

Moreover, it can be verified that the product of two inde-
pendent log-normal mixture distributed random variables
also follows a log-normal mixture distribution. We detail
the proof of following proposition in Appendix B, available
in the online supplemental material.

Proposition 1. Assume that X and Y are independent log-
normal mixture distributed variables with m and n compo-
nents, respectively. Let Z ¼ XY , then Z follows a log-normal
mixture distribution with m� n components. The parameters
of the distribution for Z are given by

pZi;j
¼ pXi

pYj ;
mZi;j

¼ mXi
þ mYj

;

s2
Zi;j
¼ s2

Xi
þ s2

Yj
;

8<
: (2)

for 1 � i � m and 1 � j � n.

As the correlation between subscriber density and average
demand isweak, it can be assumed that they are independent.
Thus the product of them, i.e., traffic density, follows a log-
normal mixture distribution with 9 components. We can use
the parameters given in Table 2 to compute the parameters of
the distribution for traffic density, which are listed in Table 4.
Fig. 5 shows the fitting of the empirical traffic density to the
computed log-normal mixture model. Furthermore, the K-S
test at 5 percent significance level also accepts this log-normal
mixture distribution. In other words, the per-cell traffic den-
sity also follows a log-normal mixture distribution spatially,
which is verified by both empirical data and theoretical proof.
With a lot of variation between cells, it can be seen from Fig. 5
that the median of per-cell traffic density is 109 byte/(hour
� km2), and the highest value can be up to 1012 byte/(hour
� km2). As shown in Tables 2 and 3, the group characteristics
of subscriber density and average demand are connected
with their log-normal mixture distributions. By multiplying

Fig. 3. Log-normal mixture fittings of the spatial distributions of sub-
scriber density and average demand, in the timescale of one hour, in
Shanghai. The circles represent the empirical data, and the solid lines
represent the fitted log-normal mixture distribution.

TABLE 2
Parameters of the Log-Normal Mixture Models for Subscriber

Density and Average Demand

Parameters Subscriber density Average demand

Location
parameters

m1 5.4094 14.5001
m2 5.1033 14.3824
m3 8.2199 12.7958

Scale
parameters

s1 1.5761 0.2798
s2 2.6085 0.8331
s3 1.2034 1.5647

Mixture
proportions

p1 0.4075 0.4543
p2 0.3950 0.4457
p3 0.1975 0.1000

Fig. 4. Log-normal mixture fittings of the spatial distributions of sub-
scriber density and average demand, in the timescale of one hour, in res-
ident region, office region, and entertainment region, respectively. The
circles represent the empirical data, and the solid lines represent the
log-normal mixture distribution.

TABLE 3
Parameters of Joint Distribution

Component pi mi si

Component 1 0.60 (4.74,14.38) ð2:80; 0:17; 0:17; 0:53ÞT
Component 2 0.33 (7.70,14.43) ð2:22;�0:01;�0:01; 0:05ÞT
Component 3 0.07 (1.59,12.93) ð5:65; 2:77; 2:77; 7:05ÞT
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them together, these characteristics are maintained in the traf-
fic density distribution.

4.3 Generality
To show that this log-normal mixture characteristic is gen-
eral to cellular networks deployed in different cities, we ana-
lyze hourly subscriber density and per-subscriber demand
of each BS in Kunming data similarly. The results of statistical
fittings are shown in Fig. 6. Similar to Fig. 3, the proposed
log-normal mixture distribution fits the empirical data very
well. Also, using the K-S test, we test these two distribution
fittings at 5 percent significance level, and find that the log-
normalmixture distribution is accepted all the time.

Though there exist differences between distributions in
Shanghai and Kunming, we can still observe some similari-
ties. Due to the various capability requirements in different
usage scenarios, both values of subscriber density and
average data demand are widely distributed in each city.
For example, majority of subscriber density values, about
90 percent in Shanghai and 60 percent in Kunming, are
within [1,104] (subscribers/km2). Thus, in order to meet
the requirements of different usage scenarios, it is vital to
achieve the various network capability from aspects of
subscriber density and average demand.

In a word, by using log-normal mixture distributions, we
are able to accurately fit the spatial distributions of sub-
scriber density, average data demand and traffic density.
Moreover, we demonstrate that this distribution model is
general to cellular networks in different cities, while the
specific parameters are different. All the above advantages
motivate us to choose this distribution model when generat-
ing synthetic BSs with the various network capability.

5 NETWORK CAPABILITY CLUSTERING

In this section, we provide insights into network service
capability by extracting its key patterns. Various network

capabilities are required for different cellular BSs, in terms
of subscriber density and per-subscriber data demand.
While some BSs only have a low subscriber density, others
serve a large amount of subscribers or even high-demand
subscribers. To analyze such different levels of the network
capability, we first conduct a 2-round clustering process on
thousands of BSs located in Shanghai based on the above
two key parameters. In each round only one parameter is
considered. Then, we investigate the generality of our clus-
tering methodology by clustering BSs located in Kunming.
Moreover, we reveal the relationship between clusters and
functional regions of BSs located in Shanghai.

5.1 Clustering Methodology
When clustering BSs, we first need to define the peak hours
because the network capability values during this period
indicate actual intensity. Our previous work [6] exploited
the spatial information embedded within mobile traffic by
identifying key urban functional regions, such as resident
region, transport region, office region, entertainment region
and comprehensive region. More specifically, each BS was
connected with the urban functional information of its
deployed region. It was found that hourly dynamics of BSs
in the same functional region follow the same pattern, with
similar peak and non-peak hours. Based on this finding, we
define the peak hour of BSs in a certain functional region as
the hour when the average traffic density in this region is
relatively higher, i.e., over 50 percent of its peak value. In
this way, the averages of subscriber density and demand,
i.e., SbiðtÞ and DbiðtÞ, for each BS during peak hours are
obtained, which are denoted by Spbia and Dpbia , respectively,
and they are computed as

Spbia ¼
1

jPij
X
t2Pi

SbiðtÞ; (3)

Dpbia ¼
1

jPij
X
t2Pi

DbiðtÞ; (4)

Fig. 5. Log-normal mixture fitting of the spatial distribution for traffic den-
sity, in the timescale of one hour. The log-normal mixture model is calcu-
lated by (2). The circles represent the empirical data, and the solid lines
represent the theoretical log-normal mixture distribution.

Fig. 6. Log-normal mixture fittings of the spatial distributions of sub-
scriber density and average demand, in the timescale of one hour, in
Kunming. The circles represent the empirical data, and the solid lines
represent the fitted log-normal mixture distribution.

TABLE 4
Parameters of the Log-Normal Mixture Model for Traffic Density

Parameters Location
parameters

Scale
parameters

Mixture
proportions

Component 1 19.9095 1.6001 0.1851
Component 2 19.7918 1.7828 0.1816
Component 3 19.6034 2.6235 0.1795
Component 4 19.4857 2.7383 0.1761
Component 5 22.7200 1.2355 0.0897
Component 6 22.6023 1.4636 0.0880
Component 7 18.2052 2.6301 0.0408
Component 8 17.8990 3.3522 0.0395
Component 9 21.0156 2.4251 0.0198
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where Pi denotes the set of peak hours for BS bi.
Since the best number of clusters is unknown, we choose

the agglomerative hierarchical clustering algorithm [25]. Each
BS is regarded as a vertex Vi with vertex value vi (the values
assigned to vertexes will be explained later). Each cluster is a
set of vertexes (BSs), denoted by Cn. The distance between
two vertexes Vi and Vj is dðVi;VjÞ ¼ jvi � vjj. Using the aver-
age linkage criterion, the distance between two clusters Cm

and Cn is measured as the average distance between vertexes
inCm and vertexes inCn, i.e., d Cm;Cnð Þ ¼ 1

Cmj j Cnj j
P

Vi2Cm;Vj2Cn
d

ðVi; VjÞ. Agglomerative hierarchical clustering starts by con-
sidering each vertex as a cluster. During each iteration, it cal-
culates the distances between all pairs of clusters and merges
the two clusters with the minimum distance into one cluster.
The clusters continue merging until all vertexes are included
in one cluster. In this way a hierarchical dendrogram is gener-
ated. In the next step, Silhouette criterion [26] is used to decide
where to cut the hierarchical dendrogram in order to get the
best separation among vertexes. Mathematically, silhouette
silðiÞ of a vertexVi is defined as

silðiÞ ¼ bðiÞ � aðiÞ
maxfaðiÞ; bðiÞg ; (5)

where aðiÞ is the average of the distance from Vi to all ver-
texes in the same cluster Cm and bðiÞ is the lowest average
of the distance from Vi to other clusters. Normally silðiÞ
ranges from -1 to 1, with a large value representing Vi is
similar to its own cluster and dissimilar to others. Thus an
average silðiÞ over all data is a measure of how appropri-
ately the data have been clustered.

Clustering of BSs are based on Spbia and Dpbia of each BS.
However, due to lack of knowledge of relationship between
Spbia and Dpbia , it is hard to define a suitable distance metric
in the 2-dimensional space. In order to characterize different
levels of the network capability in terms of Spbia andDpbia , we
perform the clustering process in two rounds, with only
one parameter considered in each round. In the first round,
each vertex is assigned the value Spbia of the BS. It divides
the BSs into two subscriber-density-based clusters, C1 and
C2, corresponding to low subscriber density and high sub-
scriber density. The second round goes inside C1 and C2,

respectively. Each vertex is assigned the value Dpbia of the
BS. In both C1 and C2, three average-demand-based sub-
clusters are found, with low demand, medium demand,
and high demand, respectively. Specifically, we give the
details of deciding the best number of clusters in Appendix
C, available in the online supplemental material. By varying
the thresholds, we obtain the maximal Silhouette values of
resulting clusters, i.e., 0.50 and (0.55,0.52), in the first and
second round, respectively.

Finally, combining the two rounds of clustering process,
we obtain six clusters. For the sake of representation, we
name them as follows: SL (sparse low), SM (sparse
medium), SH (sparse high), DL (dense low), DM (dense
medium) and DH (dense high). Sparse clusters contain BSs
that serve under 4,100 subscribers per km2, while dense BSs
of clusters serve more subscribers. As for average data
demand, low clusters contain BSs that serve subscribers
with a low demand of data, less than 1.5 MB per hour.
Boundary between medium and high clusters is about 4 MB
per hour. Moreover, we apply other criteria, i.e., Calinski-
Harabasz index and Davies-Bouldin index [27], to decide
the best number of clusters. Again we obtain 6 clusters. Due
to space constraints, we will not show all these results. Next
part better details our BS clusters.

5.2 Analysis of Clustering Results
In this part, we further analyze the clustering results. The clus-
tering results of BSs located in Shanghai are shown in Fig. 7,
where each BS is mapped onto the

�
Sbi ;Dbi

�
space. Rather

than plotting in scatter form,we depict the number of BS sam-
ples in the unit area of the ðSbi ;DbiÞ space, i.e., density, by the
brightness of color bar. For better illustration, the plotted
circles indicate 6 brightest areas, which are centroids of clus-
ters. It is also noteworthy that some BS samples are far away
from any clusters, like a bright area near (9000, 2), which rep-
resents a potential that there would be another cluster if more
BSs should serve over 10,000 subscribers per km2.

The six clusters exhibit different characteristics, in terms
of the network capability. Fig. 8 presents the temporal
dynamics of these capability parameters, i.e., SaðtÞ, DaðtÞ
and TaðtÞ, in each cluster. There are significant differences
on the time and duration of peak hours as well as the peak
values among different clusters, indicating different levels

Fig. 7. Clustering result of Shanghai data in the space of subscriber den-
sity and average demand, in the view of density.

Fig. 8. Temporal dynamics of average subscriber density, data demand
and traffic density in each cluster of Shanghai data. Each curve repre-
sents the average 24-hour dynamics of one BS cluster.
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of the network capability. Specifically, dense clusters have
higher SaðtÞ, while high clusters have higher DaðtÞ. Another
interesting observation is that subscriber density rises and
reaches its peak hours during daytime, and then drops to
low values at night, while average demand rises during
daytime and does not drop to low values until midnight.
This reveals that although subscriber density tends to be
low at night, subscribers still consume much data traffic
during night. These insights indicate that different peak and
non-peak time periods are needed to characterize the hourly
dynamics of subscriber density and average demand in
each cluster, which is discussed in Section 6.

The advantage of the 2-round clustering is capturing the
characteristics in terms of both subscriber density and aver-
age demand. To highlight this, we perform a comparative
analysis of a one-shot clustering. The details are provided in
Appendix C, available in the online supplemental material.

5.3 Generality
In this part, we repeat the above clustering process on
Kunming data. Unlike those in Shanghai, BSs located in
Kunming are clustered into four clusters, named as
SL (sparse low), SH (sparse high), DL (dense low) and
DH (dense high). The dynamics fSaðtÞ; DaðtÞ; TaðtÞg of each
cluster are plotted in Fig. 9.

Similarly, BSs in different clusters are with different net-
work capabilities from aspects of subscriber density and
average data demand. Thus we observe differences among
these dynamics plotted in Fig. 9. BSs in DH cluster have the
highest traffic density values, while traffic density values of
BSs in SL cluster are the lowest. Comparing with those of
Shanghai plotted in Fig. 8, different peak and non-peak peri-
ods between SaðtÞ andDaðtÞ are also observed. As for differ-
ences, as densely populated areas are common in a
metropolis, SaðtÞ of BSs in Kunming are significantly lower
than those in Shanghai, about 1,500 versus 10,000. Also, the
peak of daily traffic dynamics in Kunming always appears at
night, while that in Shanghai normally appears at about
12AM. To explain this, we look at both SaðtÞ and DaðtÞ in
Kunming. We find that DaðtÞ slowly rises to its peak at
night, even though SaðtÞ maintains a high level from day-
time to night.

Though the number of cluster is not applicable to another
city, the clustering process of mobile network capabilities is

applicable among different urban areas, indicating the gen-
erality of this methodology.

5.4 Differences among Urban Functional Regions
Our previous work [6] investigated the relationship between
the traffic pattern and urban functional regions where BSs
are deployed. More specifically, land use of regions can be
detected by clustering traffic profiles of BSs. Applying the
corresponding algorithm, each BS in our data is labeled with
an urban functional region. Inspired by this, it is necessary to
investigate differences of network capability among urban
functional regions. Table 5 shows the numbers of BSs in each
cluster and each functional region of Shanghai. A highly
asymmetric characteristic is observed: almost 50 percent of
BSs are in the SL cluster (low subscriber density and low
average demand), which is consistent with the right-skewed
log-normal mixture distributionwementioned previously.

To further investigate the relationship between the
ðSbi ;DbiÞ profile and the geographical location of BSs, sev-
eral parameters are defined to measure the relationship
between six clusters and five functional regions. Let Nm;n

denote the number of BSs in the mth functional region and
the nth cluster. Then

P6
j¼1 Nm;j is the total number of BSs in

the mth functional region. The mapping relation, Pm;n, is
defined to represent the proportion of the nth cluster of BSs
in themth region, which is given by

Pm;n ¼ Nm;nP6
j¼1 Nm;j

: (6)

We will use this parameter in the next section when we use
our model to generate synthetic BSs in different urban areas.
Table 6 shows the mapping relation Pm;n. It is clear that the
SL cluster is the main cluster in every functional regions,
except for transport region,where the SM is themain cluster.

In order to reveal the differences among various func-
tional regions, the relative proportion P 0m;n is defined as fol-
lows. First compute

Rm;n ¼ Nm;nP5
i¼1 Ni;n

; 8m;n: (7)

Fig. 9. Temporal dynamics of average subscriber density, data demand
and traffic density in each cluster of Kunming data. Each curve repre-
sents the average 24-hour dynamics of one BS cluster.

TABLE 5
Distribution of BSs in Different Clusters and Functional Regions

Types of BS SL SM SH DL DM DH Total

Resident 381 40 3 106 3 1 534
Transport 9 46 1 1 9 1 67
Office 481 340 103 145 85 23 1177
Entertainment 82 48 11 45 18 4 208
Comprehensive 359 109 13 170 30 4 685
Total 1312 583 131 467 145 33 2671

TABLE 6
Mapping Relation (%)

Types of BS SL SM SH DL DM DH

Resident 71.35 7.49 0.56 19.85 0.56 0.19
Transport 13.43 68.66 1.49 1.49 13.43 1.49
Office 40.87 28.89 8.75 12.32 7.22 1.95
Entertainment 39.42 23.08 5.29 21.63 8.65 1.92
Comprehensive 52.41 15.91 1.90 24.82 4.38 0.58
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Then

P 0m;n ¼ Rm;nP6
j¼1 Rm;j

: (8)

The definition of relative proportion P 0m;n eliminates the
differences in the absolute numbers of BSs in different clus-
ters, and thus it characterizes different patterns of sub-
scriber density and demand in different functional regions.
The values of P 0m;n are listed in Table 7. Compared with
Table 6, several different observations are made:

� In office regions, the relative proportion of SH clus-
ter is the highest, followed by DH cluster. This indi-
cates that office regions tend to handle heavier
average traffic demand by each subscriber.

� In entertainment regions, the relative proportion of
DL cluster is the highest, followed by DH cluster,
indicating that entertainment regions handle larger
numbers of subscribers. This is consistent with our
common sense that entertainment regions tend to
have denser population.

� In comprehensive regions, the relative proportion of
DM cluster is the highest, followed by SL cluster,
which indicates that the subscriber density in com-
prehensive regions is relatively higher than that in
other regions.

Since different regions have different proportions for each
cluster (measured by themapping function Pi;j), it is obvious
that these regions have different characteristics in subscriber
density and average data demand, and thus they have differ-
ent network capabilities. This observation will be utilized
in the next section to model the network capability in large-
scale environments. Moreover, since we already demon-
strated that BSs located inKunming can be similarly clustered
into four clusters, we can repeat the above analysis and char-
acterize the differences of network capability among urban
functional regions, i.e., mapping relation. Therefore, the gen-
erality of ourmodelingmethodology is still guaranteed.

6 NETWORK CAPABILITY MODELING

To build an accurate model for the urban network capabil-
ity, both capability parameters (fSbiðtÞ; DbiðtÞ; T biðtÞg) and
numbers of synthetic BSs need to be consistent with those of
real BSs. The schematic of our model is illustrated in Fig. 10.
The previous clustering process extracts several network
capability patterns among all BSs, each of which has unique
characteristics in terms of the number of access subscribers
during a certain period (subscriber density SbiðtÞ) and traffic
volume they consumed (data demand DbiðtÞ). Thus the idea
is to build a capability model which can generate different
types of synthetic BSs in terms of subscriber density SbiðtÞ
and average data demand DbiðtÞ, i.e., DH, DM, DL, SH,

SM and SL. With the input of urban function context infor-
mation, the first step (Section 6.1) is to compute the propor-
tion of each BS type in a given urban area, using mapping
relation Pm;n, i.e., relationship between network capability
and geographical context of BSs. Next for each type of BSs,
a certain number of synthetic BSs are generated, as dis-
cussed in Section 6.2. After that, we conduct evaluations on
the accuracy of our model compared to the original empiri-
cal data, in Section 6.3. Since our model is able to generate
individual BSs, validations in both aggregate and individual
level are considered. Finally, to investigate the performance
gain of building independent models on different type of
BSs, we compare it with a simplified model in Section 6.4.

In this section we focus on Shanghai data only. However,
given that both log-normal mixture distribution of network
capability and clustering method of BSs are workable in cel-
lular networks of different cities, we can easily extend our
modeling on other data.

6.1 Base Station Proportion Computation
Building a model of network capability in the given urban
area first requires us to generate different BS types. We com-
pute the proportion of each BS type, i.e., the probability used
in synthetic BS generation, which is denoted as Pcn for
1 � n � 6, corresponding to DH, DM, DL, SH, SM and SL,
respectively. The input is the proportion of the BSs deployed
in different urban functional regions, denoted as Prm for
1 � m � 5, corresponding to resident, transport, office, enter-
tainment and comprehensive regions, respectively. Recall
that we have already obtained the mapping relation Pm;n, i.e.,
the proportion of the nth type of BSs in themth region, which
are listed in Table 6.Pcn can be computed as follows

Pcn ¼
X5
m¼1

Prm � Pm;n: (9)

Then we generate a set S of synthetic BSs with jSj ¼ jBj.
Each type of synthetic BSs in S has the same proportion as
that in the original BS set B. The details of synthetic BS gen-
eration are given next.

6.2 Synthetic Base Station Generation
The process of generating synthetic BSs can be divided into
two parts, fitting (SbiðtÞ, DbiðtÞ) distributions and generating
synthetic BSs correspondingly. In our model, we focus on
the one-day dynamics of SbiðtÞ andDbiðtÞ. Thus we compute
the average one-day sequences in whole month, denoted as
Sbi
a ðthÞ andDbi

a ðthÞ, as

Sbi
a ðthÞ ¼

1

31

X31
j¼1

Sbiðth þ ðj� 1Þ � 24Þ; (10)

Dbi
a ðthÞ ¼

1

31

X31
j¼1

Dbiðth þ ðj� 1Þ � 24Þ; (11)

TABLE 7
Relative Proportion (%)

Types of BS SL SM SH DL DM DH

Resident 44.01 10.40 3.47 3.14 34.40 4.59
Transport 3.65 41.99 4.06 33.03 1.14 16.13
Office 11.01 17.51 23.61 17.61 9.32 20.93
Entertainment 10.96 14.43 14.72 21.76 16.89 21.25
Comprehensive 21.86 14.93 7.93 16.53 29.08 9.68 Fig. 10. Modeling Methodology.
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for 1 � th � 24, where ðth þ ðj� 1Þ � 24Þ represents the thth
hour in the jth day. Inspired by our findings that the net-
work capability of BSs differ significantly across different
periods, we add this characteristic in our model and design
a dividing mechanism. To ensure that each period is contin-
uous, we set 80 percent of maxfSbi

a ðthÞg and 60 percent of
maxfDbi

a ðthÞg as thresholds. As shown in Fig. 11, 3 continu-
ous periods are obtained for each type of BSs. Idle periods
represent periods when both Sbi

a ðthÞ and Dbi
a ðthÞ are under

the related thresholds, while in Busy periods they are both
above the thresholds. In Tail periods, Sbi

a ðthÞ are under its
threshold and Dbi

a ðthÞ are above its threshold. With decreas-
ing number of access subscribers, BSs in this period still
transmit fairly large amounts of data, which is between
Busy and Idle, because data demand per subscriber remains
high. Note that the fourth case will not happen because the
above-threshold periods ofDbi

a ðthÞ cover those of Sbi
a ðthÞ.

In Section 4, we use the log-normal mixture distribu-
tions to fit the empirical distributions of subscriber density
SbiðtÞ and data demand per subscriber DbiðtÞ in the original
data. Besides high accuracy, we also show that this law
holds true in different urban regions (Fig. 4) and even
cities (Fig. 6). Thus when fitting the synthetic spatial distri-
butions of SbiðtÞ and DbiðtÞ in each BS type, we naturally
choose this log-normal mixture model. More specifically,
we use the 2-dimensional log-normal mixture model to
preserve the correlation between subscriber density and
average data demand. In other words, we fit Sbi

a ðthÞ and
Dbi

a ðthÞ together.
Given type of BS and urban function region where it is

deployed, we obtain 3 CDFs for Idle, Busy and Tail periods.
Since the log-normal mixture fitting is already detailed in
Section 4, we skip this for space economy reason. Finally
we obtain the fitting parameters needed in the network
capability model.

We now briefly describe how to generate a synthetic BS
using the capability model, in Algorithm 1.With inputs of BS
number and fitted distributions, one-day dynamics of 3
parameters for each synthetic BS are generated. Since there
exists a strong correlation in temporal dynamics of each indi-
vidual BS, we need to carefully preserve this information.
For each hour th, we first map it to the corresponding period
n (line 5). Then we sample a possible 3-parameter set of

the size N based on the fitted distribution Ps�d
n (lines 7-11).

Considering that the traffic in current hour is similar to that
one hour ago, i.e., temporal correlation, high-capability BS is
always with higher capability in every hour. Thus we sort the

set fðS0bia ðthÞ;D0bia ðthÞ; T 0bia ðthÞÞg by the key T 0bia ðthÞ (line 12)

and obtain 24 sorted sets corresponding to 24 hours. The one-
day dynamics of 3 parameters for N BSs are constructed by
iteratively connecting 24 elements, each of which is selected
from the corresponding set (lines 15 to 19).

Algorithm 1. Synthetic Base Station Generation

Input: Base station number N , Fitted distributions Ps�d
n of

period n, for n ¼ 1; 2; 3
Output: Synthetic base stations bi with capability parameters

(S0bia ðthÞ, D0bia ðthÞ, T 0bia ðthÞ), for i ¼ 1; 2; :::; N and
th ¼ 1; 2; :::; 24

1: Initialize :
2: c½l�  setðÞ; l ¼ 1; 2; :::; 24
3: for th ¼ 1 to 24 do
4: //Map hour th to the corresponding period n.
5: n periodðthÞ
6: //Sample possible set of 3 parameters for N BSs.
7: form ¼ 1 to N do
8: S0ma ðthÞ; D0ma ðthÞ  sampleðPs�d

n Þ
9: T 0ma ðthÞ  S0ma ðthÞ �D0ma ðthÞ
10: c½th�:addððS0ma ðthÞ; D0ma ðthÞ; T 0ma ðthÞÞÞ
11: end for
12: sortðc½th�; key ¼ T 0aðthÞÞ
13: end for
14: //Construct one-day dynamics of 3 parameters for N BSs.
15: for i ¼ 1 to N do
16: for th ¼ 1 to 24 do
17: S0bia ðthÞ; D0bia ðthÞ; T 0bia ðthÞ  c½th�½i�
18: end for
19: end for

6.3 Model Validation

6.3.1 Aggregate Level Validation

We now evaluate the accuracy of our method of building
model, in the aggregate level. Though our model outputs 3
parameters, traffic density equals the product of subscriber
density and average demand. Thus we only perform the
validation of the traffic density, which is a good representa-
tion of validating other 2 parameters. For each type of DH,
DM, DL, SH, SM and SL, we generate a set of 10,000 syn-
thetic BSs based on the fitted log-normal mixture distribu-
tion. Each synthetic data set contains subscriber density and
average demand of BSs in a certain cluster in 24 hours. In
Fig. 11, we evaluate the model performance by comparing
the synthetic traffic density dynamics for each type gener-
ated by the model with the original empirical dynamics.
The one-day dynamics are plotted in 3 periods, i.e., Idle,
Busy and Tail. It can be seen from Fig. 11 that the traffic
density dynamics of the synthetic BSs have similar patterns
to those of the original real BSs.

Next we evaluate how consistent the 6-type synthetic
traffic density is by comparing its distribution with that of
the original real BSs in the set B. To this aim, we use the
Bhattacharyya (BH) measure or distance [5], which quanti-
fies the similarity between two probability distributions

Fig. 11. Performance on modeling aggregated dynamics. Synthetic
dynamics of average traffic density for each type of BSs are plotted,
along with the original empirical ones.
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pðxÞ and p0ðxÞ. For discrete probability distributions, the BH
measure is defined by

rðp; p0Þ ¼
X
x2X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðxÞp0ðxÞ

p
; (12)

while for continuous probability distributions, it is given by

rðp; p0Þ ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðxÞp0ðxÞ
p

dx: (13)

In order to satisfy all the metric axioms, we use an alterna-
tive distance metric based on the BH measure defined as

dðp; p0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rðp; p0Þ

p
: (14)

Note that dðp; p0Þ ¼ 0 iff p ¼ p0, indicating two identical
distributions.

Let M denote the set of 31 days in the dataset (from 1st
August to 31st August), and H denote the set 24 hours in a
day. H is further divided into 3 subsets, denoted as Hm for
m ¼ 1; 2; 3, which correspond to Idle, Busy and Tail periods,
respectively. In the sequel, the PDF of traffic density is
denoted by pXm

n ðxÞ, wherem represents the time period Hm,
n denotes the BS type (DH,DM,DL, SH, SM or SL), andX
represents the dataset.

For each BS in type n, a synthetic dataset of subscriber
density and average demand for one day is generated,
based on the log-normal mixture distribution model. We
then obtain the synthetic traffic density of each BS by multi-
plying the subscriber density and average demand. The
PDFs of traffic density in the synthetic dataset are denoted
as

�
pSmn

�
, while the PDFs of average traffic density over

31 days in the original dataset are denoted as
�
pAm
n

�
and the

PDFs of the original traffic density in a given dayD 2M are
denoted as

�
pDm
n

�
.

With distributions of both synthetic data
�
pSmn

�
and orig-

inal data
�
pAm
n

�
,
�
pDm
n

�
, how to define a criterion of distance

is still questionable. To evaluate our traffic density model,
we first compute dðpAm

n ; pSmn Þ, the distance between the traf-
fic density distributions of averaged original data and syn-
thetic day S, in terms of BS types n and time periods m.
Then, we compute dðpAm

n ; pDm
n Þ for D 2M, the distance

between the distributions of averaged original data and 31
days D 2M in the original trace. In this way, dðpAm

n ; pSmn Þ <
dðpAm

n ; pDm
n Þ, for all possible D, indicates that the distance

between synthetic and original data is always smaller than
that within original data itself. Fig. 12 plots dðpAm

n ; pSmn Þ and
dðpAm

n ; pDm
n Þ, where there are 18 figures for 6 BS types and

3 time periods. Finally, we also compute the probability of
dðpAm

n ; pSmn Þ < dðpAm
n ; pDm

n Þ for all possible fD;m; ng, which
is over 0.95. Thus the error of our model, i.e., d

�
pAm
n ; pSmn

�
, is

sufficiently small.
Based on the above aggregated-level evaluations, we

have demonstrated that our model performs well on charac-
terizing the traffic density of BSs, in terms of both dynamics
and statistical distribution.

6.3.2 Per-BS Level Validation

In order to further evaluate performance in per-BS level, we
now provide a use case in a real-world cellular network
deployed in Shanghai. The input is the distribution of urban
functional regions and the number of BSs deployed in each
region, i.e., Prm listed in Table 8. Using the mapping rela-
tion Pm;n listed in Table 6, the probabilities of 6 BS types Pcn
can be computed by (9). Then subscriber density and per-
subscriber data demand of synthetic BSs, i.e., ðS0bia ðthÞ;
D0bia ðthÞÞ, are generated by applying Algorithm 1. The out-
put is the network capability dynamics in the scales of BS
and whole urban area, i.e., fðS0bia ; D0bia ; T 0bia gÞ and ðS0a;D0a;
T 0aÞ. Since our generated BSs are sorted according to their
network capability values, we also process similarly on
original BSs to match them with those synthetic BSs.

In Fig. 13, we first plot the subscriber density, average
demand and traffic density of the whole urban area, i.e.,
averaging over all the BSs. More specifically, we compare
the synthetic subscriber density, average demand and traffic
density fS0aðthÞ; D0aðthÞ; T 0aðthÞg, generated by our model,

Fig. 12. Performance on modeling statistical distributions. Horizontal solid lines are Bhattacharyya distances between the traffic density distributions
of original average and synthetic day, while dashed curves are Bhattacharyya distances between the traffic density distributions of original average
and 31 days in the original trace.

TABLE 8
Percentage of BSs Deployed in Each Region

Functional Regions Index Percentage

Resident 1 17.55%
Transport 2 2.58%
Office 3 45.72%
Entertainment 4 9.35%
Comprehensive 5 24.81%
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with the empirical fSaðthÞ; DaðthÞ; T aðthÞg, produced from
the original trace data. It can be seen from Figs. 13a and 13b
that our model accurately describes the one-day dynamics
of subscriber density and average demand. By multiplying
subscriber density and average demand, we obtain the simi-
lar result in traffic density, as can be seen from Fig. 13c.

Onemain advantage of our model is that it not only simu-
lates the network capability of the whole urban area, but also
can generate synthetic BSs with the various network capabil-
ity. To evaluate this, we compute the Root Mean Square
Error (RMSE) between synthetic capability and original ones,
i.e., fS0bia ðthÞ; D0bia ðthÞ; T 0bia ðthÞg and fSbi

a ðthÞ; Dbi
a ðthÞ; T bi

a ðthÞg,
for each BS. Note that we normalize these three parameters
by maximum values of their original data. The result is
shown in Fig. 14a, using box-plot. Comparatively, we also
list the mean values of these RMSE versus those in the aggre-
gate level, corresponding to Fig. 13, in Fig. 14b. Though
higher than aggregate RMSE values, RMSE values of BS indi-
viduals are acceptable considering that there are thousands
of BSs. According to Fig. 14a, 25 percent of RMSE values for
S0bia ðthÞ, D0bia ðthÞ and T 0bia ðthÞg are lower than 0.1487, 0.1690
and 0.1205 respectively, while a few of them are close to
those of the aggregate RMSE. More importantly, our model
not only generates synthetic traffic load in each cell, but also
provides more detailed information on the various network
capability among BSs, such as number of access subscribers
and intensity of traffic demand.

6.4 Model Comparison
The key process in building our model is to extract typical
patterns of subscriber density and average demand by clus-
tering BSs. Then we build an independent capability model
for each cluster of BSs. However, how high is the gain by con-
sidering clustering strategies in building the model? To indicate
this, we use a simplified model, which ignores the capability
differences among BS clusters, for comparison. More specif-
ically, when generating synthetic BSs, we input all samples
of subscriber density and average demand to obtain fitted
distributions, rather than fitting an independent distribu-
tion for each BS cluster.

The results of model comparison are shown in Fig. 15.
Similar to Fig. 13, here we also plot 3 dynamics of subscriber
density, average demand and traffic density, with dashed
curves and solid curves representing our proposed model
and original data respectively. The added dotted dashed
curves represent the comparative model, from which we
observe the relatively worse performance. Quantitatively
we compute the RMSE of both proposed and comparative
model respectively, listed in Table 9. The RMSE value of
traffic density in our proposed model is only 0.0655, which
is reasonably lower than 0.1528 in comparative model and
achieves a decrease of 57.1 percent.

In a word, our network capability model is more accu-
rate, with the clustering process on subscriber density and
average demand of BSs.

7 DISCUSSION

In this section, we will further discuss the strength of our
network capability model. The advantages are fourfold:

Accuracy. The accuracy of our proposed model is guaran-
teed because of two main reasons. First, our statistical analy-
ses show that spatial distributions of both subscriber
density and average demand can be well fitted by log-
normal mixture models. We also validate the accuracy by
the K-S test. Second, with the help of an clustering process,
we are able to accurately characterize the network capability
by building the independent model for each typical BS clus-
ters. Therefore, we believe that this model can simulate
accurate capability of cellular network, without the need of
large-scale real traffic records.

Generality. Since the datasets of most previous works are
collected from only one certain area, there exists an inevita-
ble selection bias in their model. Thus the practical applica-
tion of these models is questionable. With the help of two
datasets collected from two different cities, Shanghai and
Kunming, we verify that both techniques of fitting spatial

Fig. 13. Network capability modeling performance: (a) subscriber density, (b) average demand, and (c) traffic density. The dashed curve represents
the result based on the synthetic BS set S, while the solid curve represents the result based on the original BS set B.

Fig. 14. (a) RMSE between synthetic network capability and original capa-
bility of BSs. (b) Mean values of individual RMSEversus aggregate RMSE.
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distribution and clustering BSs are workable in two data-
sets, indicating the generality of our modeling methodol-
ogy. Here the generality means that we are able to build
similar models, including log-normal mixture distribution
of capability parameters and capability-based BS clusters, to
characterize cellular networks across different cities, while
the specific values of parameters are different across mod-
els. It is noteworthy that our proposed model is designed
based on a single-tier architecture adopted in 3G networks.
Accordingly, we discuss this limitation in Appendix A,
available in the online supplemental material. We also pro-
vide some possible solutions which ensure the generality of
our modeling methodology when applied in other cellular
networks using the multi-tier architecture.

Flexibility. Our concepts of subscriber density and average
data demand, and the corresponding modeling methodology
guarantee the flexibility of this capabilitymodel.More specifi-
cally, it can flexibly generate synthetic BSs according to the
specific capability requirement in a usage scenario. In future
mobile networks, the capability requirement for BSs depends
a lot on the specific usage scenario. For example, the IoT
service requires a BS supporting the large subscriber density,
while the high-revolution video service results in a huge
data demand of subscribers. Thus, by using the established
capability model, we are able to generate synthetic BSs with
different levels of the network capability.

Extensive Applications. With the individual BS modeling,
we are able to generate the synthetic network capability of
each BS, i.e., nearly real-world subscriber density, average
data demand and traffic density. Given the type of a cell,
including network capability and urban functional informa-
tion, we apply the corresponding established model. Finally
we are able to reconstruct an urban mobile network with
synthetic base stations in terms of access subscribers and
their average demand.

Our network capability model has extensive applications
in cellular network planning, operation and maintenance.
Different from the aggregated model, our BS-level model
can be helpful in the specific area, like a cell or an urban func-
tional region. In terms of network planning, for example,

facing the increasing demand of video content consumption
in one area, the telecommunication operator can use our
model to generate several synthetic BSs with capabilities
of high data demand (such as SH and DH BSs) and then
evaluate the network performance. As for network opera-
tion, similarly, by generating synthetic BSs, the operator can
test the scheme of network resources allocation in a certain
area. Once built, we can directly use the model in the above
applications, where the cumbersome process of repeatedly
collecting and preprocessing trace data can be skipped.

8 CONCLUSION

In this paper, we investigate the capability of mobile cellular
data networks in large-scale urban environments.Our investi-
gation reveals two important discoveries. First, the spatial
distribution of both subscriber density and average traffic
demand in each cell can be accurately fitted by log-normal
mixture models. Second, using an unsupervised clustering
method, we find that large scale base stations can be clustered
into several distinct types according to subscriber density and
average traffic demand. Inspired by these two observations,
we build a data network capabilitymodel and use this to gen-
erate real base stations with the diverse network capability.
More importantly, we verify that the above two observations
are general in cellular networks deployed in different cities,
indicating the generality of our proposed model. Our evalua-
tions show that the synthetic trace presents a consistent
behavior with the original dataset, which demonstrates
that our model is precise and flexible. With high accuracy,
generality and flexibility, our network capability model
has extensive applications in cellular network planning,
operation and maintenance. In the future, we will focus
more on practical applications of this network capability
model. Besides, considering the limitation of using Voronoi
cells, we will focus on applying more accurate method of
estimating cell coverage in the network capability analysis.
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