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ABSTRACT

Symbolic regression, a task discovering the formula best fitting the given data, is
typically based on the heuristical search. These methods usually update candi-
date formulas to obtain new ones with lower prediction errors iteratively. How-
ever, since formulas with similar function shapes may have completely differ-
ent symbolic forms, the prediction error does not decrease monotonously as the
search approaches the target formula, causing the low recovery rate of existing
methods. To solve this problem, we propose a novel search objective based on
the minimum description length, which reflects the distance from the target and
decreases monotonically as the search approaches the correct form of the target
formula. To estimate the minimum description length of any input data, we de-
sign a neural network, MDLformer, which enables robust and scalable estima-
tion through large-scale training. With the MDLformer’s output as the search
objective, we implement a symbolic regression method, SR4MDL, that can ef-
fectively recover the correct mathematical form of the formula. Extensive ex-
periments illustrate its excellent performance in recovering formulas from data.
Our method successfully recovers around 50 formulas across two benchmark
datasets comprising 133 problems, outperforming state-of-the-art methods by
43.92%. Experiments on 122 unseen black-box problems further demonstrate its
generalization performance. We release our code at https://github.com/
tsinghua-fib-lab/SR4MDL.

1 INTRODUCTION

Symbolic regression (SR) is a task that uncovers interpretable mathematical formulas to describe the
underlying relationships within observational data, which is widely used for promoting scientific
discovery or facilitating the modeling of diverse phenomena in many fields, such as dynamical
systems (Quade et al., 2016; Chen et al., 2019; Cornelio et al., 2023; Angelis et al., 2023; Ding
et al., 2024), materials science (Wang et al., 2019; Schmelzer et al., 2020; Weng et al., 2020; Sun
et al., 2019), etc. (Liu et al., 2024; Neumann et al., 2020; Shi et al., 2022). Formally, SR aims at
finding a symbolic function f from the given data (x, y), where x = [x1, x2, ..., xD] ∈ RN×D and
y ∈ RN×1 are observed N samples points of independent and dependent variables. The discovered
formulas consist of mathematical symbols like +,−,×, and ÷, whose specific form can provide
corresponding insights into the patterns behind the data. To find the formula that best fits the data
in the symbolic space, the most typical methods to SR are based on heuristic search, in particular,
the genetic programming (GP) algorithm (Augusto & Barbosa, 2000), which executes evolution
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iteratively to enhance the fit of candidate formulas to the given data. There is now a large body
of commercial and open-source software (Dubčáková, 2011; Stephens, 2016; Cranmer, 2023), as
well as many influential works (Schmelzer et al., 2020; Weng et al., 2020; Liu et al., 2024), that
developed based on the heuristic search-based SR methods.

However, while existing SR methods can identify formulas with high accuracy (R2 > 0.99 for over
90% of cases in SRbench (Cavalab, 2022)), their effectiveness in discovering the optimal formula
with the lowest prediction error is limited (only around 20% success rate), even in noise-free data.
This is because these methods optimize the candidate formulas’ prediction errors (Makke & Chawla,
2024), which does not lead to the target formula with the minimum prediction error. As illustrated in
Figure 1, the mean squared error of a candidate formula (fi) does not decrease monotonically when
its form approaches the target one. This is because formulas with similar symbolic structures can
exhibit rather different functional shapes in the numerical space. On the other hand, two formulas
with similar functional shapes can have entirely different symbolic forms. This indicates that the
SR task lacks an optimal substructure (Cormen et al., 2022), that is, the target formula with the
minimum prediction error cannot be achieved by simply making small adjustments to formulas
with sub-optimal prediction errors. This high nonlinearity of the relationship between a formula’s
mathematical form and its functional shape results in a divergence between the direction of reducing
prediction error and the direction toward the target formula. This complexity makes it difficult for
existing methods to identify the formula with correct mathematical forms.

To solve this problem, in this work we proposed a new search objective inspired by the minimum
description length (MDL) (Kolmogorov, 1963), which represents the size of the simplest model
used to describe the data, or, in SR, the minimum number of symbols required for the target formula
y = f(x). If each mathematical symbol is regarded as a transformation step, then MDL describes
the number of transformations needed to go from the independent variable, x, to the dependent
variable, y. Therefore, the search with minimal MDL as the optimization objective has an optimal
substructure (Cormen et al., 2022): only when the correct transformation is executed can the MDL
reduce, thus the search direction of MDL reduction is always consistent with the direction leading
to the target formula (see Figure 1). However, MDL has been shown to be incomputable (Vitányi,
2020), indicating that no algorithm can provide an accurate MDL for arbitrary input. Neverthe-
less, the capacity of neural networks as universal approximators (Nielsen, 2015) indicates that, with
sufficient data, a suitably designed neural network can effectively learn the complex mapping from
the data to its MDL. To this end, we developed a Transformer-based neural network, MDLformer.
Through large-scale training on over 130 million symbolic-numeric pairs using a carefully designed
training strategy that aligns the numerical space with the symbolic space, MDLformer has gained
the ability to estimate the MDL of any given data. With the search objective provided by the large-
scale trained MDLformer, we implement a new SR method based on the Monte Carlo tree search
algorithm (Browne et al., 2012), a heuristic search algorithm that has been proven to be suitable
for use in conjunction with neural networks successfully by many works (Silver et al., 2016; 2017;
Kamienny et al., 2023).

We conduct extensive experiments to illustrate the excellent performance of our approach in recov-
ering formulas from data. Across two problem sets with 133 formulas, our method successfully
recovers around 50 of them, outperforming state-of-the-art methods by 43.92%. We also find this
result robust to noise: even if we add noise with an intensity of 10% to the data, the recovery rate
of our method is still higher than the recovery of other methods in the absence of noise. We also
test our method on the black-box problem sets, finding it can discover formulas that describe the
data with lower description length and higher accuracy than other methods. Further analysis of the
MDLformer demonstrates its scalable and robust capability for accurate predictions of the MDL,
which explains the outstanding performance of our SR method.

2 RELATED WORK

Heuristic search methods. Traditionally, symbolic regression approaches are mainly based on the
genetic programming (GP) algorithms(Langdon & Poli, 2013), which maintains a set of symbolic
formulas and iteratively updates these candidate formulas via mutation and crossover operations. To
this day, there have been plenty of GP-based symbolic regression toolkits developed, such as Eureqa
(Dubčáková, 2011), GPlearn (Stephens, 2016), PySR (Cranmer, 2023), and so on (Schmidt & Lip-
son, 2010; de Franca & Aldeia, 2021; La Cava et al., 2016; Arnaldo et al., 2014; Virgolin et al., 2019;
2021; Burlacu et al., 2020; Zhong et al., 2018; Zhang et al., 2022; Augusto & Barbosa, 2000; Kartelj
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Figure 1: Comparison of the two search objectives. In the searching route leading to the target,
f∗, the prediction error (measured by the mean square error, MSE) does not decrease monotonically
as the candidate formula’s form gets closer to the target one, whereas the minimum description
length (MDL) does. Here, ϕi denotes the function f∗ = ϕi(x, fi) and C[ϕi] is its complexity.

& Djukanović, 2023; Smits & Kotanchek, 2005; Searson et al., 2010). In these years, people have
begun to use reinforcement learning algorithms for symbolic regression, including Monte-Carlo
tree search (MCTS) (Sun et al., 2022), double Q-learning (Xu et al., 2024), and deep reinforcement
learning (DRL) (Petersen et al., 2021; Tenachi et al., 2023). These methods start from the empty
formula and iteratively select appropriate mathematical symbols to fill in until a complete formula is
obtained. Some works combine multiple methods to achieve better symbol regression (Mundhenk
et al., 2021; Jin et al., 2020; McConaghy, 2011; Landajuela et al., 2022). These search algorithms,
however, all face the problem that the prediction errors usually do not decrease monotonically from
the initial state to the ground-truth formula. Although recent methods introduced formula complex-
ity as a regularization term alongside the prediction error (Sun et al., 2022; Cranmer, 2023), this
problem persists and their recovery rates remain low. In contrast, our approach addresses this prob-
lem by optimizing the minimum description length (MDL), which decreases monotonically along
the path to the target formula.
Neural network-assisted search methods. Recently, some works have attempted to enhance the
search methods by utilizing the powerful fitting capabilities of neural networks. For example, Mund-
henk et al. (2021) proposes to train an RNN by deep reinforcement learning to generate the initial
candidate formulas in genetic algorithms for speeding up evolution. While Kamienny et al. (2023)
utilizes a Transformer pre-trained as a next-symbol predictor to provide promising search directions
for the Monte Carlo tree search algorithm. Although these works still take prediction error as the
search goal and thus do not have optimal substructure, they inspire us to combine pre-trained neu-
ral networks with search algorithms. AIFeynman shows another way to combine neural networks
and search algorithms (Udrescu & Tegmark, 2020; Udrescu et al., 2020): it discovers symmetry
properties in data by fitting it with neural networks and, based on this, converts the search for the
target formula into searches for several smaller subformulas. However, leveraging hand-designed
symmetry properties summarized on the Feynman dataset, AIFeynman cannot be adapted to other
datasets without these properties, and these rules are sensitive to noise, making AIFeynman’s recov-
ery rate decrease significantly on noisy data (Cavalab, 2022). As a comparison, our method can also
be regarded as a method of recursively simplifying the target function, since the decrease of MDL
indicates a candidate formula f as a subformula of the target one. Identifying subformulas based
on MDLformer’s output rather than hand-designed rules, our method does not rely on specific prior
knowledge and is more robust to noise.
Regression and generative methods using neural networks. In addition to using neural networks
to assist search, some works proposed neural network-based regression methods. They design fully
connected neural networks with mathematical functions, such as sin, exp,×, as activation layers.
After fitting weight parameters to the input data, they can extract mathematical formulas from the
networks Kim et al. (2020); La Cava et al. (2019); Kubalı́k et al. (2023). However, due to us-
ing mathematical functions like exponential and logarithmic functions as activation layers, these
methods usually face numerical instability problems such as gradient explosion. Other works are
based on generative methods. They use large-scale pre-trained Transformers to generate symbolic
sequences as target formulas from the data directly.(Biggio et al., 2021; Kamienny et al., 2022; Mei-
dani et al., 2023; Bendinelli et al., 2023; d’Ascoli et al., 2022). Once pre-trained, these methods
can directly generate target formulas without searching or extra training. Therefore, they are usually
faster than other methods. However, it is still difficult for them to obtain the target formula with
the correct form, since small changes in the input data can lead to completely different objective
functions (Kamienny et al., 2023). As a comparison, based on the search method, our approach
can improve the results through extended running durations, and the utilization of the MDL search
objective enhances its efficiency, allowing it to achieve a high recovery rate for the target formula
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within a reasonable timeframe. Many recent studies focus on neural symbolic reasoning, i.e., using
neural networks for symbolic reasoning(van Krieken et al., 2023). Despite their similar names, this
task is different from symbolic regression, which we detailed discussed in Appendix A.

3 LEARNING TO ESTIMATE FORMULA COMPLEXITY WITH MDLFORMER

3.1 MDLFORMER

MDLformer
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Figure 2: Schematic diagram of the architecture and learning process of MDLformer.
The design of MDLformer is rooted in the recent development of Transformer models, which have
been proven to be able to encode numeric observation data into latent space, which can be further
used for inferring corresponding symbolic formulas (Kamienny et al., 2022). Meidani et al. (2023)
further find that, by aligning the latent spaces of two Transformer models that encode numeric data
and symbolic formulas, respectively, it’s possible to predict cross-model properties. Here we exploit
this approach to cross-modally predict the length of the corresponding symbolic formula, i.e., the
minimum description length (MDL), based on numeric observational data,

As depicted in Figure 2, the MDLformer,MΦ, integrates an embedder, a Transformer encoder, an
attention-based pooling, and a multilayer perceptron (MLP) as readout head, to map the input data
x ∈ RN×D and y ∈ RN×1 into its MDL, C[f ], where f denotes the simplest symbolic function that
describes y = f(x) and C[f ] is its complexity, i.e., the number of symbols required to express f .
Embedding. We first pad x into RN×Dmax with zeros since the number of features D can vary.
We then tokenize the input data using base-10 floating-point notation. Specifically, we round each
value to 4 significant digits and then split it into three parts: sign (+, -), mantissa (0.000 ∼ 9.999),
and exponent (E-100 ∼ E+100). For example, a value 54.321 is represented as a sequence
[+,5.432,E+1]. The input data is tokenized into N × (Dmax + 1)× 3 tokens, which, increases
with N and Dmax, challenges the quadratic complexity of Transformers. Therefore, we sample no
more than Nmax pairs from each row of x and y and then embed each x-y pair into the latent space
with a fixed dimensionality df to feed into the Transformer encoder.
Encoding. We leverage a Transformer encoder (Vaswani et al., 2017) to process the embedded
numeric input. Notably, we remove the positional encoding in the numeric encoder since each item
in the input sequence represents a pair of x-y data and their order is thus not important, which aligns
with the previous practices (Biggio et al., 2021; Kamienny et al., 2022; Meidani et al., 2023).
Pooling. To map the Transformer encoder’s outputs, V ∈ RN×df , into a fixed-size represen-
tation, we adopt an attention-based pooling mechanism (Santos et al., 2016). Specifically, we
use a learnable weight, w ∈ Rdf , to calculate an attention weight for each row vi ∈ V by
ai = softmax(w · vi), where the softmax is conducted along the sequence dimension N . Then, we
add them up with ai as weights to get the final representation: n =

∑
i aivi.

Reading out. After pooling we obtain a compact representation for the whole numeric input, which
can be used to predict cross-model properties (Meidani et al., 2023). Here we predict the MDL with
a multilayer perceptron that uses ReLU as the activation layer.

3.2 TRAINING DATA GENERATION

The training of the MDLformer relies on plenty of paired numeric and symbolic data, which is
generated during the learning process on the fly. During the whole process, we generate a total of
about 131 million pairs of input data.

Generate symbolic formulas. We generate symbolic formulas with the algorithm proposed by
Kamienny et al. (2022) to ensure diversity: First, we sample the number of features, D ∼

4



Published as a conference paper at ICLR 2025

U{0, · · · , Dmax}. Then, we randomly combine them with b binary operators and further sample
u unary operators to insert into the random position of the resulting formula. Finally, we add non-
similar transformations to each position of the formula: fi 7→ aifi+bi, where fi are subformulas of
f , ai and bi are sampled from U [−100, 100]. To ensure that f is in its simplest form, we simplify it
with sympy, an open-source Python package for algebra processing. The number of operators, vari-
ables, and parameters in the simplified f is its length, and therefore, is the MDL of (x, y = f(x)).

Generate numeric data. After generating the formula, we sample the number of features, D, from
U{1 · · ·Dmax} and generate numeric data for D independent variables: x ∈ RN×D ∼ P . Then, we
calculate corresponding numeric data for the dependent variable: y = f(x) ∈ RN×1. Considering
that f ’s domain cannot be the whole RD when it contains specific operators, such as logarithm or
square root, some of the sample points in x may not be in its domain and lead to invalid dependent
variable values. Therefore, we discard invalid values in y and the corresponding rows in x, ensuring
each sample point of x lies in the domain of f . We also find that the choice of P can significantly in-
fluence the performance of MDLformer when using it for symbolic regression. We use the Gaussian
mixture model (GMM) as suggested by Kamienny et al. (2022), which takes the sum of C Gaussian
distributions with random mean and variance and normalizes them as the distribution P . To further
improve the diversity of numerical data and enhance its prediction performance in actual symbolic
regression, we also considered another sampling method, that is, generating it by a function trans-
formation on hidden variables z. Specifically, we first sample z ∈ RN×K from a GMM distribution,
and then generate a random symbolic function g ∼ FK×D following the methods introduced above,
and finally operate the hidden variable with the function to obtain x = g(z) ∈ RN×D. This design
comes from the fact that, when using MDLformer for symbolic regression, we need to estimate the
minimal description length of the transformation results obtained by operating symbolic functions
on the input data x.

3.3 CROSS-MODAL LEARNING FOR FORMULA COMPLEXITY

With the generated formulas fi and data (xi, yi), we train the MDLformer using two learning objec-
tives, including a primary objective that predicts the accurate MDL and an auxiliary objective that
aligns the numeric latent space and the symbolic latent space, as depicted in Figure 2.

Primary learning objective for prediction. To train the MDLformer for predicting the correspond-
ing minimum description length (MDL) based on numerical input, we optimize the mean square
error, Lpred, between MDLs estimated by the MDLformer and ground-truths:

Lpred =
1

B

B∑
i=1

(C[fi]−MΦ(xi, yi))
2
, (1)

where B denotes the batch size, C[fi] is the complexity of the symbolic function fi.

Alignment as an auxiliary learning objective. The auxiliary objective, proposed by Meidani et al.
(2023), aims to facilitate a mutual understanding of both numeric and symbolic domains and thus
empower better cross-modal prediction. Specifically, as suggested by Meidani et al. (2023), we
introduce a symbolic encoder to map the prefix notation of f into a compact representation s, which
has a structure similar to the numeric encoder, as depicted in Figure 2. The latent spaces of these
two encoders are aligned by optimizing a symmetric cross-entropy loss over similarity scores:

Lalign = −

(
B∑
i=1

log
exp(ni · si/τ)∑B
j=1 exp(ni · sj/τ)

+

B∑
i=1

log
exp(si · ni/τ)∑B
j=1 exp(si · nj/τ)

)
, (2)

where B is the batch size, τ is the temperature parameter, si and ni are encoded representations of
i-th numeric data and symbolic function, respectively. Note that this loss is calculated per batch.

Training Strategy We adopt a two-step training strategy: First, we train the MDLformer with the
auxiliary objective and the generated formula-data pairs, where the numeric data is sampled from
the GMM. ii) Then, we use the primary objective to train the MDLformer on the numeric data
generated by operating symbolic functions on latent variables. The first step aligns the latent space
of the numerical encoder and the symbolic encoder and thus provides a good start for the numerical
encoder to predict the formula length in the symbolic space cross-modally. Based on this, the second
step uses a data distribution that is closer to the actual symbolic regression used, allowing the data
encoder to estimate the description complexity of the input data accurately.
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4 MDL-GUIDED SYMBOLIC REGRESSION WITH MDLFORMER
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Figure 3: Comparison of existing search methods and our method. x ∈ RN×D and y ∈ RN×1

are observational data, Fp×q denotes all possible symbolic functions mapping from RN×p to RN×q .
i ∈ Nn denotes the indexes of candidate formulas (in a total of n), while k denotes the number of
loops (terminated at round K). Tk,i are algorithm-specific symbolic functionals, like crossover and
mutation operations in GP, whose concrete operations in different search algorithms are summarized
in Table 3. ϕθ are simple functions (like linear functions) with parameters θ that map f into FD×1.

In this section, we explain how the trained MDLformer can help symbolic regression discover tar-
get formulas with correct mathematical forms more easily. The main idea is to change the search
direction from the direction of prediction error reduction to the direction of minimum description
length (MDL) reduction. This leads to the property of optimal substructure and makes it easier for
the existing search algorithms to search for the target formula with the correct form.

4.1 SEARCHING FOR MINIMUM DESCRIPTION LENGTH

As depicted in Figure 3, existing search-based methods focus on the update-and-select loops over
a set of candidate formulas: after generating an initial formula set, {f0,i ∈ FD×1}, these methods
generate algorithm-specific symbolic functionals Fk,i : FD×1 → FD×1 (such as the crossover and
mutation in genetic programming, see D for details.) to creating new candidate formulas: f ′

k+1,i =

Fk,i(fk,i), and select resulting functions with low prediction errors for the next round of iteration.
This update-and-select loop is repeated iteratively until a formula with a low enough prediction
error is encountered, at that point the loop will terminate and this formula will be read out as a
result: f∗ = argminf ∥y − f(x)∥2.

In contrast, instead of maintaining a candidate set of target formulas, we maintain a candidate set of
subformulas of the target formula, {fk,i ∈ FD×Dk,i

}, where k represents the number of iterations
and i represents the sample index. For a candidate f , each of its item f (d) denotes a part of the
target, i.e., f∗ = ϕ(f) = ϕ(f (1), f (2), · · · , f (Dk,i)). ϕ reflects the transformation required from
f to the target formula f∗, while its complexity, C[ϕ], evaluates the “distance” between f and f∗.
Therefore, by selecting f with low MDL estimated by the MDLformer, MΦ(f(x), y) ≈ C[ϕ],
during the update-and-select loops, the remaining transformation ϕ can be simplified iteratively, and
thus the candidates f will get “closer” to the target one. For an fK,i that is sufficiently close to
f∗ after K iterations, the remaining transformation from fK,i to f∗ can be described by a simple
parameterized function ϕθ accurately (θ are parameters). Formally speaking, we find

(f̂ , θ̂) = argmin
f∈{fK,i},θ

∥y − ϕθ(f(x))∥2 (3)

from the candidate set to determine the target formula: f∗ = ϕθ̂(f̂).

4.2 IMPLEMENTATION

In this work, we implement our method based on the Monte Carlo tree search (MCTS) (Browne
et al., 2012) because of its application in symbolic regression task (Sun et al., 2022) as well as its
successful combination with neural networks in numerous studies (Kamienny et al., 2023; Silver
et al., 2016; 2017). MCTS is a classical heuristic search algorithm that maintains a search tree
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with each node representing a candidate formula and updates the tree through four steps: selection,
expansion, simulation, and backpropagation. The vast majority of our implementations are consis-
tent with the existing practice of using MCTS for symbolic regression (Sun et al., 2022), except
that the upper confidence bound (UCB) to guide the search is based on MDLformer’s output (see
Appendix D for details). For the remaining transformation ϕθ, we use the simplest linear function:

ϕθ(fk,i) =

Dk,i∑
d=1

θdf
(d), (4)

where f (d) ∈ FD×1 is the d-th item of fk,i. Though it is possible to use functions in other forms,
such as multiplications or polynomials, or even brute force searches used by AIFeynman (Udrescu
& Tegmark, 2020), we find that even the simplest linear functions work well enough as long as
MDLformer’s estimation is accurate enough.

5 EXPERIMENTS

This section is divided into three parts. The first two parts evaluate the effectiveness of our symbolic
regression method on 133 ground-truth problems and 122 black-box problems with comparison to
state-of-the-art symbolic regression methods. The final part gives an in-depth discussion of the
MDLformer’s performance in estimating MDL.

5.1 SYMBOLIC REGRESSION ON GROUND-TRUTH PROBLEMS

Table 1: Recovery rate and search time of different methods in both Strogatz and Feynman
datasets. Each experiment is conducted at ten random seeds and four noise levels.

Type Method
Strogatz (14 problems) Feynman (119 problems)

R. Rate ↑ Time (s) R. Rate ↑ Time (s)

Regression FEAT (La Cava et al., 2019) 0.19% 636.6 0.00% 1532

Generative
NeurSR (Biggio et al., 2021) 1.79% 15.71 2.44% 24.78
E2ESR (Kamienny et al., 2022) 3.78% 4.044 10.40% 4.576
SNIP (Meidani et al., 2023) 6.79% 1.457 1.60% 2.196

Search-
based

GPlearn (Stephens, 2016) 9.21% 966.2 16.89% 3349
AFP (Schmidt & Lipson, 2010) 10.90% 160.7 17.51% 3845
AFP-FE (Schmidt & Lipson, 2010) 12.86% 9532 20.80% 25138
EPLEX (La Cava et al., 2016) 6.02% 446.8 10.10% 11548
SBP-GP (Virgolin et al., 2019) 2.44% 20089 2.88% 28933
GP-GOMEA (Virgolin et al., 2021) 8.46% 1100 10.32% 3456
Operon (Burlacu et al., 2020) 4.29% 83.58 7.97% 2656
SPL (Sun et al., 2022) 8.12% 363.7 10.48% 263.3
DSR (Petersen et al., 2021) 18.05% 784.3 18.60% 1042
RSRM (Xu et al., 2024) 4.43% 133.2 15.40% 127.1
AIFeynman2 (Udrescu et al., 2020) 15.27% 241.3 27.24% 708.6
BSR (Jin et al., 2020) 0.38% 25346 0.70% 30635

Ours 66.78% 338.3 33.93% 660.5
(+6.82 formulas) (+7.96 formulas)

Experimental Settings To evaluate the capability of our method to recover formulas from data, we
conduct experiments on SRbench (La Cava et al., 2021) as most of the previous work does, which
contains 14 Strogatz problems (Strogatz, 2018) and 119 Feynman problems (Udrescu & Tegmark,
2020) with known ground-truth underlying formulas. We compare 16 baseline algorithms split into
three types: the generative methods and the regression methods, both of which are based on neural
networks, as well as the search methods using genetic programming or reinforcement learning. (see
Appendix E.1.1 for details). For each algorithm on each problem, we test its performance from 10
fixed random seeds at 4 different noise levels: ϵ = 0.0, 0.001, 0.01, 0.1.

Experimental Results The experiment results are provided in Table 1, where our method reaches
the top recovery rate in both problem sets with reasonable search time. In the Strogatz problem
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set, our method improves the Recovery Rate from 15.27% to 66.17%, increasing nearly three times.
In the Feynman problem set, our method also improves the Recovery Rate by 11.94%. Overall,
our method recovers around 50 formulas out of 133, outperforming the best baseline (around 35
formulas by AIFeynman2) by 43.92%. We also observe that search-based algorithms outperform
generative and regression methods. This could be because the latter is designed to produce formulas
fitting data accurately, rather than formulas with correct forms. On the other hand, the former can
improve search results by simply running for a longer period, while the latter cannot(Kamienny
et al., 2023), causing the former’s higher recovery rates.

In Figure 4 we also plot the recovery rate of all methods at different noise levels (see Appendix E.1.2
for details). On the Strogatz problem set, our method has the highest recovery rate, significantly
surpassing other methods. On the Feynman problem set, however, AIFeynman2 shows a higher
recovery rate than our methods when the noise level is 0.0. This is because AIFeynman2 designs a
series of rules based on the characteristics of formulas in the Feynman problem set to help search for
formulas. In contrast, as a general method with no reliance on any prior knowledge, our method can
be directly applied to different problem sets. Furthermore, unlike AIFeynman, which experiences a
sharp decline in performance due to the failure of hand-designed rules in the presence of noise, our
method is robust to noise: Even at the maximum noise level (ϵ = 0.1), our method still outperforms
other methods without noise, including the AIFeynman2 on the Strogatz dataset.

0% 20% 40% 60% 80%
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SNIP†
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SBP-GP
Operon
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Ours
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Target Noise
0.000
0.001
0.01
0.1

0% 10% 20% 30% 40% 50% 60%
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Feynman Dataset

Target Noise
0.000
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Figure 4: Recovery rate at different noise levels. † and ‡ denote generative and regression
methods, the others are search methods. The error bars depict the 95% confidence interval.

5.2 SYMBOLIC REGRESSION ON BLACK-BOX PROBLEMS
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Figure 5: Pareto fronts on black-box dataset.
†, ‡, and ∗ denote generative, regression, and
decision-tree methods, respectively, the others are
search methods. The colored lines mark the Pareto
front in different ranks, from bottom left (best) to
upper right (worst).

Experimental Settings To verify the general-
ization ability of our method, that is, whether
it can be adopted on data collected from the
real world, rather than generated from formu-
las, we also test our method on 122 black-box
problems from Penn Machine Learning Bench-
mark (PMLB) (Olson et al., 2017). We split
the data of each problem into 75% training set
and 25% test set, and, instead of recovery rate,
we evaluate the results using the Pareto front
that balances the test set accuracy and the for-
mula complexity, which is a common practice
in SR tasks Cavalab (2022). For the baseline
methods, in addition to the three types of meth-
ods considered in the ground-truth problem set,
we also consider decision tree-based methods
(see Appendix E.1.1 for details), where the con-
structed decision trees are treated as a gener-
alized formula tree that uses conditional selec-
tion as operators and the number of nodes in the
trees are used as the formula complexity.

Experimental Results The overall perfor-
mance of our method and other baselines is
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shown in Figure 5, where we can see that, our method achieves a higher test set R2 with lower
model complexity than other methods and is thus sharing the first rank of the Pareto front with three
other search algorithms, that is, Operon (Burlacu et al., 2020), GP-GPMEA (Virgolin et al., 2021),
and DSR (Petersen et al., 2021). In contrast, decision tree methods or regression methods usually
construct formulas that are too complex and lack interpretability to describe the given data; while
generative methods are unable to iteratively optimize the results and thus have low test set accuracy.

5.3 MDLFORMER PERFORMANCE Table 2: Prediction perfor-
mance of MDLformer.

RMSE R2 AUC
3.9105 0.9035 0.8859

Experimental Settings To give an in-depth discussion about the
MDLformer’s estimation performance, we generate K = 1024
pairs of symbolic formulas and numeric data as described in Sec-
tion 3.2, where the independent variables x are sampled from GMM. Given that the relative relation-
ship of predicted values is more important than their absolute magnitudes when using MDLformer
to guide symbolic regression, we consider ranking metrics in addition to the commonly used root
mean squared error (RMSE) and coefficient of determination (R2). Particularly, we consider the
area under the ROC curve (AUC) (Fawcett, 2006), which assesses the likelihood that the predicted
values and true values maintain consistent ordering when randomly selecting pairs (formalized in
Appendix E.2.1). As shown in Table 2, the RMSE metric indicates an average error of 3.9, which is
only 15% of the average formula length of 25. The R2 and AUC are also close to 1.0, demonstrating
the excellent performance of MDLformer in predicting the complexity of formulas corresponding
to the data. We also provide the results of the other three metrics in Appendix E.2.1.
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3) 𝑑3 = 𝑈, 1 − cos 𝑑 × 𝑘 ∈ ℝ𝑁×2
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Figure 6: A case study of Feynman III.15.12
equation. A series of symbolic functions T ∗

i map
d0 ≡ x to d4 ≡ y iteratively. The red line shows
MΦ(di, y), the estimated MDL of each di. The
blue and white sectors show the estimated MDL
for all possible symbolic functions d′ = T ′(di),
where blue sections indicate T ′ with an estimated
MDL lower than T ∗, which can lead to incorrect
search paths. However, the occurrence of these
cases, as annotated by the percentage value, is
nearly negligible.

MDLformer indicates correct search direc-
tions. Here we use a case study to illustrate
that the minimum description length (MDL) es-
timated by MDLformer has the optimal sub-
structure, that is: 1) the subformula of the target
formula has a lower MDL than other formulas
and 2) the MDL monotonically decreases along
the construction route of the target formula f .
We consider the Feynman III.15.12 formula, a
typical example of successful recovery by our
method. As shown in Figure 6, we consider
the Feynman III.15.12 equation, a typical ex-
ample that our method successfully recovered
(See Appendix E.2.4 for more examples, in-
cluding both successful and failed). This equa-
tion can be obtained from four steps of transfor-
mations T ∗

1:4. Specifically, starting from d0 ≡
x, we iteratively operate the transformation T ∗

i
that eventually maps d0 to d4 ≡ y. For each
di, we estimate its MDL concerning y with
the MDLformer and plot the result in the red
line, finding the estimated MDL does mono-
tonically decrease as the formula form gets
closer to the target formula. For each di, we
also draw the estimated MDL of d′ = T ′(di)
for all possible symbolic functions T ′ as the
blue and white sectors. The blue parts show
those lower than the correct transformation re-
sult d∗i+1 = T ∗

i (di), which can lead to incor-
rect search paths. However, the proportion of
blue parts is quite low, indicating that the cor-
rect search direction aligns well with the direction of the steepest MDL decrease.

Ablation study on training strategy. Figure 7a shows the ablation experiment on the training strat-
egy. We considered three strategies to train the MDLformer with the alignment objective Lalign and
the prediction objective Lpred: 1) sequentially training for alignment and then prediction (i.e., the
training scheme described in Sec 3.3), 2) training for alignment and prediction concurrently, and 3)
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direct training for prediction without alignment. A total of 1000 training rounds were performed
for each of the three strategies, where for the first method, the first 500 rounds are for alignment
and the last 500 rounds are for prediction. Among them, the first two strategies have lower RMSE
than the last one, demonstrating that aligning numerical and symbolic spaces improves cross-model
prediction, which is consistent with the observation of previous work (Meidani et al., 2023). The
Sequential strategy has a lower RMSE than the Concurrent strategy, which may be because it is
more difficult to use both objectives at the same time. Figure 7b shows the relationship between the
prediction error and the number of input points N , demonstrating that more data can help MDL-
former predict the minimum description length more accurately. However, a larger N can lead to an
increase in inference time, thus we choose N = 200 to balance the accuracy and efficiency.

Consistent predictive capability across task difficulty. In Figure 7d,e,f we measure the predictive
performance of MDLformer on formulas of different difficulty, indicated by 1) the number of vari-
ables, 2) the number of unary operators, and 3) the number of binary operators. Although RMSE,
consistent with intuition, increases with the formula difficulty. But considering that more difficult
formulas can have longer lengths, we additionally plot the ratio of RMSE to the average formula
length, L̄, in the graph. It can be seen that as the formula difficulty increases, the normalized RMSE
remains basically unchanged, indicating that our MDLformer scales well with the formula difficulty.

Robustness against noise. In Figure 7c we add feature noise to the data of independent variables:
x← x+n, where n ∼ N (0, ησx) is additive noise with intensity proportional to the standard devia-
tion of x, σx. We find that although the RMSE increases with the noise intensity, the ranking metric,
AUC, basically remains unchanged as noise increases, suggesting that our method can identify the
relative magnitude of MDL even under noisy conditions. Considering that the search process relies
solely on the relative magnitude of estimated MDL, this explains the reason for the robustness of
our method to noise in Section 5.1.
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Figure 7: Ablation Study. The prediction performance of MDLformer with respect to a: trained
with three alignment strategies, b: number of input pairs N , c: feature noise η, d: number of
variables D, e: number of unary operators, and f: number of binary operators. In d,e,f we also plot
the RMSE normalized by the average formula length L̄.

6 DISCUSSION AND CONCLUSION

In this work, we introduce SR4MDL, a symbolic regression approach that optimizes for minimum
description length (MDL) rather than prediction error. Leveraging the impressive prediction capa-
bilities of MDLformer, it successfully recovers around 50 formulas across two benchmark datasets
comprising 133 problems, outperforming state-of-the-art methods by 43.92%. Additionally, it ranks
in the top tier for finding formulas that balance accuracy and complexity on a black-box problem set
with 122 problems. While SR4MDL showcases robustness and versatility in searching for correct
formulas in a near-optimal direction, it has notable limitations. First, the performance of MDL-
former on data with complex relationships needs to be improved. Second, although the increased
efficiency caused by the MDLformer makes our method faster than the regression methods, it is still
lower than generative methods. Despite these limitations, SR4MDL offers a wide range of capabili-
ties, making it a powerful tool for uncovering symbolic laws that underlie diverse complex systems
like city (Zhang et al., 2025), climate (Zhao et al., 2024), ecology (Holland et al., 2002), etc.
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A RELATIONSHIP WITH NEURAL-SYMBOLIC REASONING

Many recent studies focus on neural-symbolic reasoning, that is, adopting neural networks for sym-
bolic reasoning (van Krieken et al., 2023). These works focus on the problems that, between the
input feature x and target value y, there exists a symbolic ”concept” w that determines y in a
known way y = c(w). The knowledge of c can thus be used to help predict y and reason w behind
the input x. For example, if we wanna predict the sum of digits in a series of MNIST images x, we
can benefit from the knowledge that 1) each image xi contains a digit wi and 2) given all digits wi,
the sum y can be determined by y =

∑
i wi.

However, despite the similar names, neural-symbolic reasoning is a different task than symbolic
regression since no such symbolic concept exists between the input data (x, y) and the target formula
f in symbolic regression. This makes neural symbolic reasoning methods unsuitable for symbolic
regression tasks.

B TECHNICAL DETAILS OF MINIMUM DESCRIPTION LENGTH

The minimum description length (MDL) represents the size of the simplest model used to describe
the data(Kolmogorov, 1963). Although it is an abstract and incomputable concept in many fields, it
is rather concrete in the field of symbolic formulas. Specifically, for a pair of input-output data (x, y),
the minimum number of symbols (i.e., variables, operators, and parameters) required to describe the
target formula y = f(x) is its MDL, which is quite easy to calculate when (x, y) is generated by a
known formula f . For example, f(x) = x2+sin(x) contains five symbols: [x,□2,+, sin, x], so the
MDL of data (x, y = f(x)) is 5.

One question is how to ensure that the least number of symbols are used to describe f , that is, f
is in its simplest form. In Section3.2 we simplify the generated formulas with sympy, an open-
source Python package for algebra processing, before calculating its length as the training label.
The sympy package provides several ways to simplify a formula, such as expand that expands
a formula, factor that factors the formula, collect that collects common powers of a term
in an expression, etc. We simplify each formula with different methods and choose the shortest
simplification result as the simplest form of the formula. Manual checking on 100 simplification
results shows that sympy can reach human-level simplification, simplifying most of the formulas to
the shortest length that humans can do.

C DETAILS OF MDLFORMER

C.1 MODEL ARCHITECTURE OF MDLFORMER

The MDLformer integrates an embedder, a Transformer encoder, an attention-based pooling layer,
and a multilayer perceptron (MLP) as a readout head. The embedder first pad x ∈ RN×D to
RN×Dmax , where Dmax = 10, then concatenate it with y to obtain (x, y) ∈ RN×Dmax+1. The
results are tokenized to triplets of sign, mantissa, and exponent, and are then embedded to Di-
dimensional embedding space, forming the E ∈ RN×Dmax+1×3×Di , where Di = 64. To reduce
the length of the input sequence of the Transformer encoder, we adopt an MLP with a hidden layer
that maps E to E′ = RN×Df , where Df = 512. Without positional encoding, E′ is directly fed
into an 8-layer Transformer encoder with 8 heads and 512 hidden units, whose feed-forward layer
has a hidden size of 2048. The output of the Transformer encoder, V ∈ RN×Df , is then pooled to
n ∈ RDf through the attention-based pooling layer. The n is then fed into the read-out MLP with a
hidden layer to obtain the estimated MDLMΦ(x, y) ∈ R. We clip N to no more than Nmax = 200
at the input of MDLformer. There are 31.9 million trainable parameters in the MDLformer and 30.7
million trainable parameters in the Symbolic encoder used for the alignment training objective.

C.2 PRE-TRAINING OF MDLFORMER

We train the MDLformer in a two-step way: First, we use the alignment loss, Lalign, to train the
MDLformer for 100k steps. Then, we use the prediction loss, Lpred, to train the MDLformer for
another 30k steps. During the training, we use a batch size of 1024, which consumes CUDA memory
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of around 150G. We use a learning rate of 10−3 and the noam schedule (Vaswani et al., 2017), where
the warmup step is 4000. During the training, we use a dropout rate of 0.1. Trained on a machine
with 8 A100-SXM4-80GB GPUs and an AMD EPYC 7742 64-Core processor, the training lasted
41 hours, during which 131 million pairs of input data were generated.

D DETAILS OF OUR SR METHOD

We compare three different search methods in Table 3:

Genetic Programming (GP). GP (Stephens, 2016) maintains a set of candidate formulas, called
population. At the initialization step, a random generation algorithm generates initial candidates in
a given number as the starting population. In the update step, there are two kinds of functionals to
operate on these candidates: crossover and mutation. For the crossover, two candidates are sampled
from the population, whose random subformulas are then swapped with each other to obtain the new
candidates. For the mutation, a candidate is sampled from the population, whose random subformula
is replaced with another formula generated by a formula generator.

Monte Carlo tree search (MCTS). MCTS (Sun et al., 2022) maintains a search tree, where each
node represents a formula fi and some numbers, including total rewards Qi and total counts Ni.
At the beginning, the search tree contains only an “empty” formula f = □, where □ represents
a placeholder to be filled. In the update step, the MCTS algorithm starts from the root node and
uses the greedy algorithm to select a formula with the largest upper confidence interval (UCB) that
is not in the search tree. Specifically, it considers all possible formulas fi obtained by filling in a
mathematical symbol into a placeholder of current formulas and selects the one with the maximal
UCB

UCBi =
Qi

Ni
+

√
ln(
∑

i Ni)

Ni
, (5)

where
∑

i is the sum of all possible formulas. By iteratively repeating this selection until the selected
formula f∗

i is not in the search tree, MCTS finds the formula to be added to the candidate set in this
round. The placeholders in this formula (if any) are filled with random formulas to create several
complete formulas, whose averaged prediction errors in mean square error, R, are used to update Qi

for f∗
i and its ancestors:

Qi ← Qi +
ηC[f∗]

1 +R/σ2
y

, (6)

where η = 0.999, C[f∗] that evaluates the length of f∗ is used as a regular term, σy is the standard
deviation of y.

Our Method. Based on the MCTS algorithm, our method also maintains a search tree. The dif-
ference is that each node in the tree fi ∈ FD×Di

represents Di subformulas in the target formula,
where Di is no more than 10. For a node f = {f (1), · · · , f (Di)}, its child node set can be obtained
by applying all possible mathematical operators (e.g., +,×, sin) to all possible combinations of
{f (1), · · · , f (Di)}∪{x1, · · · , xD} and adding the results to f , with or without keeping the operands.
We set the root node of the search tree as f(x) = x ∈ FD×D. As an example, for a problem with
D = 2, we initialize the root node of the search tree as f0,1 = {x1, x2}, and its child node can be

f1,1 = {x1 + x2, x1, x2}, f1,2 = {x1 × x2, x1, x2}, f1,3 = {sinx1, x1, x2}, f1,4 = {sinx2, x1, x2},
f1,5 = {x1 + x2, x1}, · · · ,
f1,9 = {x1 + x2, x2}, · · · ,
f1,13 = {x1 + x2}, · · · , f1,16 = {sinx2}.

Starting from the root node, we obtain the node to be added to the search tree in each round by using
the greedy algorithm to select the f∗

i with maximal PUCT Silver et al. (2016):

PUCTi =
Qi

Ni
+ cpuct

1

MΦ(fi(x), y)

√∑
i Ni

Ni + 1
. (7)

where cpuct = 1.41, the index i denotes all possible formulas that can be obtained by operating an
unary or binary mathematical operator on 1 or 2 operands, which can be subformulas contained in
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the current node, variables, or numeric constants. Apart from these, the other parts are the same as
the traditional MCTS approach introduced above.

Table 3: Comparision of existing search regression methods and ours
Method Step (Initialize, Update, Select)

GP
{fi}i∈Population := {Randomly Generated f}
{fi}i ← {fi}i ∪ {Cross(fi, fj)}i,j ∪ {Mutate(fi)}i
{fi}i ← topkf∈{fi}i

∥y − f(x)∥2

MCTS
{fi}i∈MCtree := {□} (an empty formula without any operators)
{fi}i ← {fi}i∪{f∗

i }, where f∗
i has a maximum UCB selected by a greedy algorithm

-

Ours
{fi}i∈MCtree := {x}
{fi}i ← {fi}i ∪ {f∗

i }, f∗
i has a maximum PUCT selected by a greedy algorithm

-

E DETAILED EXPERIMENT RESULTS

E.1 SYMBOLIC REGRESSION

E.1.1 BASELINES

In our experiments, we considered a large number of baseline methods, both the ones that come with
SRbench and the most recently proposed ones, ensuring the breadth of comparison.

Search methods. The vast majority of the methods we compare are search-based algorithms.
Among them, genetic programming algorithms are the primary, including GPlearn (Stephens, 2016),
AFP & AFP-FE (Schmidt & Lipson, 2010), ITEA (de Franca & Aldeia, 2021), EPLEX (La Cava
et al., 2016), MRGP (Arnaldo et al., 2014), SBP-GP (Virgolin et al., 2019), GP-GOMEA (Virgolin
et al., 2021), and Operon (Burlacu et al., 2020). In addition to this, we also compare some recent ap-
proaches based on reinforcement learning, including SPL that leverages the Monte Carlo tree search
(Sun et al., 2022), DSR that relies on the deep reinforcement learning (Petersen et al., 2021), and
RSRM that uses a double Q-learning algorithm (Xu et al., 2024). Finally, recent approaches that
combine multiple search methods are also compared, including AI Feynman 2.0 (Udrescu et al.,
2020) and BSR (Jin et al., 2020),

Other methods. We compare a series of novel methods that leverage large-scale pre-trained
Transformer-based neural networks to predict the target formulas directly, including NeurSR (Big-
gio et al., 2021), E2ESR (Kamienny et al., 2022), and SNIP (Meidani et al., 2023).

Regression methods. We also include a neural network-based regression method, FEAT (La Cava
et al., 2019), For the experiment on the black box problem set, additional regression methods based
on linear regression, MLP fitting, and Kernel Ridge model are included as well.

Decision tree methods. For the experiment on the black box problem set, we also consider the
XGBoost (Chen & Guestrin, 2016), AdaBoost (Freund & Schapire, 1997), Random Forest (Rigatti,
2017), and LightGBM (Ke et al., 2017) model, which can be considered as a special type of formula
with discontinuous selection operators,

E.1.2 GROUND-TRUTH PROBLEM SET

We provided the detailed experiment results on the ground-truth problem set in Table 4, 5, 6, and 7,
finding the recovery rate of our method always outperforms other methods, while its running time
is always within a reasonable range. Note that although we provide complexity in these tables, it is
not that a smaller value is better, since the gound-truth formula itself has its length. We also provide
the Pareto fronts balancing “recovery rate – search time” and “test R2 – complexity” as in Figure 8,
finding our method always on the rank 1 of the Pareto front.
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E.1.3 BLACK-BOX PROBLEM SET

We provide the detailed result of the experiments on the black-box problem set as in Table 8, where
our method achieves the rank 1 of the Pareto front within a reasonable timeframe, meaning it can
balance the accuracy (measured by the test set R2) and simplicity (i.e., formula complexity) better
than other baseline methods.

Table 8: Complete experimental results of black box dataset.
Pareto Rank Method Test R2 ↑ Complexity ↓ Time (s) ↓

1

Operon 0.7945 65.69 2974
GP-GOMEA 0.7381 30.27 9636
NSSR (Ours) 0.6258 29.88 541.7
DSR 0.5625 9.465 36852

2

SBP-GP 0.7869 634 149344
FEAT‡ 0.7621 82.49 6432
EPLEX 0.7372 53.14 15796
AFP-FE 0.6400 36.04 6184
AFP 0.6333 34.89 6033
GPlearn 0.5390 19.06 24254
Linear‡ 0.4437 17.4 0.2447
NeurSR† 0.1228 13.33 11.7

3

XGB∗ 0.7496 20186 236
AdaBoost∗ 0.6939 9481 65.12
LGBM∗ 0.6410 5734 29.9
ITEA 0.6295 116.7 12183
SNIP† 0.3335 38.91 3.286
BSR 0.2725 22.52 59822

4

RandomForest∗ 0.6615 1517178 120.4
KernelRidge‡ 0.5952 1824 39.19
FFX 0.5575 1562 244.3
E2ESR† 0.3612 61.09 7.101

5
MRGP 0.5300 10802 165007
MLP‡ 0.5238 3882 30.49
AIFeynman2 0.2110 2240 86854

E.2 PREDICTION PERFORMANCE OF MDLFORMER

E.2.1 METRICS

In addition to the RMSE, R2, and AUC metrics we provided in the main text, we also considered
another three metrics as in Table 9. All metrics illustrate the excellent performance of MDLformer
in estimating the value of MDL. The definitions of these metrics are provided as follows:

• RMSE evaluates the average difference between the prediction value and the ground truth:

RMSE =

√√√√ 1

K

K∑
i

(yi − ŷi)2 (8)

• R2 evaluates the strength of the linear relationship between the predicted value and the
target value:

R2 = 1−
∑K

i (yi − ŷi)
2∑K

i (yi − ȳ)2
(9)
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• AUC is a ranking metric, which evaluates the likelihood that the predicted values and the
true values maintain consistent ordering when randomly selecting pairs:

ROC =

∑K
i

∑K
j ̸=i I((yi − yj)(ŷi − ŷj) > 0)

K(K − 1)
, (10)

where I is the indicator function.
• ρSpearman is another ranking metric, which is defined as

ρSpearman = 1−
6
∑K

i (ri − r̂i)
2

N(N2 − 1)
, (11)

where ri is the rank of yi, ranging from small to large, and the similar as r̂i.
• ρPearson , or the correlation coefficient, is a widely used metric for estimating the degree of

correlation between two variables, which is defined as

ρPearson =
cov(y, ŷ)

σyσŷ
=

∑K
i (yi − ȳ)(ŷi − ¯̂yi)√∑K

i (yi − ȳ)
√∑K

i (ŷi − ¯̂yi)
(12)

• NDCGR is a ranking metric that is defined as

NDCGR =

∑R
r (2

yîr − 1)/ log2(r + 1)∑R
r (2

yr − 1)/ log2(r + 1)
, (13)

where yr is the r-th smallest value in y, îr is the index of the r-th smallest value in ŷ, where
we chose R = 5.

RMSE R2 AUC ρSpearman ρPearson NDCG5

3.9105 0.9035 0.8859 0.9542 0.9506 0.7264

Table 9: Detailed Prediction performance of MDLformer.

E.2.2 ABLATION STUDY

We provide the AUC metric of the ablation study as in Figure 9, where we can find similar con-
clusions as in the main text. That is, 1) the sequential training strategy outperforms the other two
strategies, 2) the performance of MDL estimation increases as the number of input samples in-
creases, and 3) the RMSE performance decreases as the feature noise gets stronger while the AUC
performance keeps robust.
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Figure 9: AUC metric in ablation study.

In Section 3.2, we used a variety of methods to increase the diversity of generated data, including
sampling data dimensions D, randomizing formula length L, using Gaussian mixture models to
sample data distribution x ∼ GMM, etc. These designs enhance the diversity of the generated train-
ing data, and thus ensure the generalizability of our method on specific symbolic regression tasks.
To test the effectiveness of these designs, in Figure10 we test the recovery rate of our SR4MDL
method guided by the MDLformer trained with these designed ablated. We conduct experiments on
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the Strogatz dataset, with noise level ϵ = 0 and 10 random seeds. We considered three kinds of abla-
tion: 1) Data dimensions that replace the random dimension D ∼ U{1..10} by a constant dimension
D = 2; 2) formula lengths that reduce the maximal formula length Lmax from 50 to 10; and 3) data
distribution that sample data x from U(0, 1) rather than a more diverse Gaussian mixture model
(GMM). As shown in the figure, all ablations result in performance degradation, demonstrating the
effectiveness of our design.
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Figure 10: The recovery rate of MDLformer trained with ablated designs. We test the recovery
rate of our SR4MDL method guided by the MDLformer trained with ablated designs, including data
dimensions, formula lengths, and data distribution. The experiments are conducted on the Strogatz
dataset, with noise level ϵ = 0 and 10 random seeds.

E.2.3 PERFORMANCE WITH RESPECT TO TRAINING SAMPLE SIZE

To study the impact of training sample size on MDLformer’s predictive performance and com-
pare it with existing neural network-based generative symbolic regression methods, in Fig-
ure fig:evaluateMDLformer we plotted its prediction performance with respect to the number of
training samples, as well as the corresponding recovery rates on Strogatz dataset (noise level ϵ = 0,
on 10 random seeds). The prediction performance is measured by both the RMSE (blue line) and
the AUC (green line). Since our training is divided into two stages, where in the first stage MDL-
former is trained to align the numeric embedding space with the symbolic embedding space but not
learn to predict MDL, we only plot the performance curve of the second phase. At the beginning
of the second stage, the AUC is about 0.5 and the RMSE is about 25 (i.e., the average length of the
formulas in the training set), indicating that the MDLformer does not have the ability to predict the
MDL at this point.

As shown in the figure, the trend of RMSE-measured and AUC-measured prediction performance,
as well as the recovery rate, are basically the same during the training process: The model perfor-
mance and recovery rate improve sharply when the training sample size in the second stage reaches
106 (in total of 32 million) and improve again when the training sample size reaches 107 (in to-
tal of 41 million). This suggests that MDLformer requires sufficient data to accurately estimate
MDL, highlighting the importance of large-scale training corpus. Furthermore, when the data size
matches that used in E2ESR (Kamienny et al., 2022) (38.4 million), SNIP (Meidani et al., 2023)
(56.3 million), and NeurSR (Biggio et al., 2021) (100 million), the recovery rates reach 42%, 66%,
and 67%, respectively, which is substantially higher than those of the baseline methods (¡10%). This
demonstrates that the advantage of our approach lies in shifting the search objective from accuracy
to MDL instead of the training data volume. Finally, the model begins to converge at a data size of
60 million (in total, the same as below), and the performance does not differ much until 131 million.
This indicates that further improvements in future work may require optimizing the data generation
process rather than simply increasing the data volume.
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Figure 11: Prediction performance of MDLformer in different numbers of training samples
The figure only shows the second stage of the training process. 31M is the number of samples used
in the first stage of alignment training. For the convenience of comparison, we also mark the number
of training samples used by recent works, including NeurSR which uses 100 million samples(Biggio
et al., 2021), E2ESR which uses 38.4 million samples (Kamienny et al., 2022), and SNIP which uses
56.3 million samples(Meidani et al., 2023).

E.2.4 CASE STUDY

In this part, we provide more case studies to demonstrate the optimal substructure in MDLformer’s
estimation results and discuss how these results determine the success or failure of the SR4MDL
algorithm it guides.

In Figure 12 we provide a typical example in the Strogatz dataset – the Gilder-2 problem, where
our method efficiently recovers the target formula in a few seconds. As shown in the figure, as the
transformation T ∗

i iteratively maps d0 ≡ x to d3 ≡ y, the MDL of (di, y) estimated by MDLformer
monotonically decreases. At each point of di, all possible symbolic transformations T lead to an
estimated MDLMΦ(T (di), y) higher than the correct transformationMΦ(T

∗
i+1(di), y), suggesting

that there is no incorrect search path. This explains why our method only takes a few seconds to
recover this formula and achieves a significant recovery rate improvement on the Strogatz dataset.

0 1 2 3Step

1

2

3

4

5

6

E
s
ti
m

a
te

d
M

in
im

u
m

 D
e
s
c
ri
p
ti
o
n
 L

e
n
g
th

(0.0%)

(0.0%)

(0.0%)

𝑦 = 𝑓 𝑥1, 𝑥2 = 𝑥1 −
cos 𝑥2

𝑥1

0) 𝑑0 = 𝑥1, 𝑥2 ∈ ℝ𝑁×2 ≡ 𝑥

1) 𝑑1 = 𝑥1, cos 𝑥2 ∈ ℝ𝑁×2

2) 𝑑2 = 𝑥1, cos 𝑥2 /𝑥1 ∈ ℝ𝑁×2

3) 𝑑3 = 𝑥1 − cos 𝑥2 /𝑥1 ∈ ℝ𝑁×1 ≡ 𝑦

𝑑1

𝑑2

𝑑0 ≡ 𝑥

𝑑3 ≡ 𝑦

𝑇1
∗

𝑇2
∗

𝑇3
∗

Estimated MDL of all possible 𝑇

Ratio of 𝑇 with lower estimated MDL than 𝑇𝑖
∗(x.x%)

Estimated MDL of ground-truth 𝑇∗

All 𝑇 with lower MDL than 𝑇𝑖
∗ (incorrect search path)

strogatz_glider2

Figure 12: A case study of the Strogatz dataset. Here we consider the Gilde-2 problem, a typical
example where our method successfully recovers the target formula in a few seconds.

In Figure 13 we further provide two examples on the Feynman dataset, illustrating the performance
of our method on the problem of successfully discovering the target formula (left) and on the prob-
lem of failing to discover the target formula (right), respectively. As shown in the left plot, for
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Feynman I.18.4 where our method successfully recovered the target formula, the estimated min-
imum description length (MDL) monotonically decreases as the transformation gets closer to the
target formula (shown by the red line), and the transformations other than the correct T ∗

i result in
a larger MDL (shown by the white sectors). Transformations resulting in MDL lower than cor-
rect transformations can lead to incorrect search paths (shown by the blue sectors). However, there
are only a few incorrect transformations (annotated by the percentages), explaining the successful
recovery for this problem.

On the other hand, for the Feynman III.10.19 problem shown in the right plot of Figure 13, where our
method failed to recover the target formula, the estimated MDL does not decrease monotonically.
Specifically, it fails to notice that T ∗

1 : Bz 7→ B2
z and T ∗

6 : B2
x +B2

y +B2
z 7→

√
B2

x +B2
y +B2

z are
parts of the target formula. This may be because the square and root operations significantly change
the numeric distribution in di, leading to a decrease in MDLformer’s predictive performance. For
the same reason, at steps 1, 2, 3 (square operations), and 6 (root operation), a large number of
transformations (13.0% ∼ 66.9%) result in a lower MDL than the correct transformation, leading to
many incorrect search paths. This explains the failure of our method on this problem and suggests
that to further enhance our method, we have to improve its robustness to these non-linear operators
that significantly influence numeric distribution.
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Figure 13: A case study of success and failure examples in the Feynman dataset. Here we
consider the Feynman I.18.4 (left) and Feynman III.10.19 (right) problems, two typical examples of
successful and unsuccessful recovery by our methods, respectively.
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