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Generating Daily Activities with Need Dynamics

YUAN YUAN, JINGTAO DING, HUANDONG WANG, and DEPENG JIN, Department of

Electronic Engineering, Tsinghua University, China

Daily activity data recording individuals’ various activities in daily life are widely used in many applica-

tions such as activity scheduling, activity recommendation, and policymaking. Though with high value, its

accessibility is limited due to high collection costs and potential privacy issues. Therefore, simulating human

activities to produce massive high-quality data is of great importance. However, existing solutions, including

rule-based methods with simplified behavior assumptions and data-drivenmethods directly fitting real-world

data, both cannot fully qualify for matching reality. In this article, motivated by the classic psychological the-

ory, Maslow’s need theory describing human motivation, we propose a knowledge-driven simulation frame-

work based on generative adversarial imitation learning. Our core idea is to model the evolution of human

needs as the underlying mechanism that drives activity generation in the simulation model. Specifically, a hi-

erarchical model structure that disentangles different need levels and the use of neural stochastic differential

equations successfully capture the piecewise-continuous characteristics of need dynamics. Extensive exper-

iments demonstrate that our framework outperforms the state-of-the-art baselines regarding data fidelity

and utility. We also present the insightful interpretability of the need modeling. Moreover, privacy preserva-

tion evaluations validate that the generated data does not leak individual privacy. The code is available at

https://github.com/tsinghua-fib-lab/Activity-Simulation-SAND.
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1 INTRODUCTION

Web applications such as Yelp1 and Meituan2 have greatly improved the quality of people’s daily
life and, at the same time, make it possible to record fine-grained activity data. For example, as
illustrated in Figure 1, the daily life of an individual is usually logged as an activity sequence, i.e.,
S = [a1,a2, . . . ,an], where each entry ai = (ti ,ki ) contains a timestamp ti ∈ R+ and a discrete
activity type ki ∈ C. Mining activity sequences is valuable for both research and industry in mod-
eling user behaviors and supporting a wide range of applications, like activity planning and recom-
mendation [5, 29, 67]. Despite its high value, only a limited scale of such data is open-sourced for
third-party researchers due to privacy-related restrictions on data sharing, which largely hinders
the development of downstream applications [31, 32]. Therefore, it is crucial to generate artificial
data of human activities by simulation, which can reduce reliance on expensive real data and avoid
privacy concerns. In this article, we study the problem of personalized user activity simulation that
models the individuals’ decision process of what activity to perform at what time, and then gener-
ates artificial personalized activity data correspondingly. In order to be publicly shared and used
as real-world data, the generated data is expected to be dissociated from real data, i.e., without
privacy concerns, and meanwhile capable of retaining data fidelity and utility.
Existing solutions to this problem can be classified into two categories, i.e., rule-based methods

and data-drivenmethods. Rule-basedmethods that simulate for activity scheduling [4, 7, 14, 34] have
a basic assumption that activities can be described by predefined rules derived from activity theo-
ries such as utility maximization [57]. However, real-world sequences exhibit complex transition
patterns between activities with time dependence and high-order correlations, which are difficult
to describe with prior simple rules [15]. Therefore, only relying on simplified assumptions makes
rule-based methods less qualified for modeling real-world activity behaviors. Instead, data-driven
methods tackle this problem by directly fitting real-world data. A series of sequential generative
methods have been developed, from classical probability models, such as Markov models [54], to
deep learning models, such as Recurrent Neural Networks (RNNs) [17] and Generative Ad-

versarial Imitation Learning (GAIL) [20]. Nevertheless, the above models cannot fully capture
the temporal dynamics underlying human daily activities due to the unrealistic inductive bias of
being time-invariant [55] or discrete updates only at observed time points [37]. Comparatively,
daily activities are always irregularly sampled and longer time intervals introduce larger uncer-
tainty between observations [37, 77], which requires a deeper understanding and fine-grained
characterization.
More importantly, there exist complex and various patterns in terms of temporal dynamics of

different activities, which are hard to discriminate from each other whenmixed together. For exam-
ple, as Figure 2 illustrates, time intervals of going to the “Concert” exhibit totally distinct patterns
compared with going to the “Workplace” that is highly similar to “All”. Although individuals lead
generally regular daily routines, some activities still occur occasionally but cannot be ignored.
However, with the overall distribution exhibiting long-tailed characteristics, the coarse-grained
learning paradigm of state-of-the-art data-driven methods can be easily biased by the uneven dis-
tribution and fail to adequately capture unique patterns of each activity. Therefore, to generate
faithful data that matches reality, it is better not to solely rely on the observed data that may
possibly reveal an overall but misleading activity pattern.
To address the above issues and achieve a realistic simulation, we propose a novel framework in-

formed by psychological theories and integrate activity-related knowledge into the state-of-the-art
GAILmethod. Our key idea is to highlight the intrinsic drives of activity decisions, namely,human

1https://www.yelp.com/
2https://about.meituan.com/
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Fig. 1. An example of daily activity sequences, where each entry contains information of the timestamp and

activity type.

Fig. 2. Interval distributions of different activities. Different activities inherently have distinct temporal

dynamics.

needs, which are well supported byMaslow’s need theories. Accordingly, human needs can be cat-
egorized into three levels: physiological needs, safety needs, and social needs. Guided by this knowl-
edge, we explicitly model human needs in a data-driven manner. We disentangle the needs behind
daily activities to fully capture the aforementioned complex patterns in empirical data. Specifically,
we simultaneously model each need dynamics with an alternating process between spontaneous

flow and instantaneous jump. For example, the accumulation of needs in evolution (flow) triggers
the occurrence of related activities while the decaying needs after satisfaction (jump) can restrain
tendencies towards specific activities.
In terms of the specific model design, the proposed GAIL-based framework consists of a discrim-

inator that provides reward signals and a generator that learns to generate high-quality activities
with a policy network. Particularly, we utilize Maslow’s Theory in our framework to enhance the
activity simulation with need modeling from the following two perspectives. First, to overcome
the challenge of complex activity patterns, we design a hierarchical structure in the modeling to
disentangle different need levels and explicitly incorporate the underlying influence of human
needs on activity decisions. Second, to address the limitations of RNN-based methods in modeling
continuous-time dynamics, we leverage Neural Stochastic Differential Equations [26] to capture
piecewise-continuous characteristics of need dynamics alternating between spontaneous flow and
instantaneous jump. The above need dynamics further serve as the states that define the policy
function, which calculates activity intensities based on the current need state and decides the next
action accordingly. In conclusion, our contributions can be summarized as follows:

—We are the first to explicitly model the intrinsic drives of activities, i.e., human needs, which
brings the synergy of psychological theories and data-driven learning;

—We propose a novel knowledge-driven activity simulation framework based on GAIL, lever-
aging Maslow’s theory to enhance the simulation reality by capturing need dynamics;

— Extensive experiments on two real-world datasets show the effectiveness of the framework
in generating synthetic data regarding fidelity, utility, and interpretability.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 2, Article 29. Publication date: February 2024.
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—We conduct comprehensive evaluations regarding privacy preservation, including unique-
ness testing, membership inference attacks, and differential privacy, which demonstrate that
the generated data does not leak user privacy.

Compared with the preliminary version [77], the following fields are substantially enhanced.
First, privacy issues are crucial for generating user-related data. In this article, we add a com-
prehensive evaluation of user privacy preservation in Section 4.8, including uniqueness testing,
membership inference attacks, and differential privacy. Second, to illustrate the model’s ability
in addressing the problem of uneven activity distributions, we add an extra study to investigate
the model’s performance regarding fine-grained metrics in Section 4.4. Third, to demonstrate the
model’s performance more intuitively and clearly, we add experimental results on a synthetic
dataset in Section 4.7, where the ground-truth needs are known and follow a certain pattern.

2 PRELIMINARIES

2.1 Problem Statement

Daily activity data can be defined as a temporal sequence of events S = [a1,a2, . . . ,an], where ai
is a tuple (ti ,ki ), ti denotes the timestamp and ki is the activity type, e.g., eating at restaurants,
working at companies, playing at sports centers. The problem of activity simulation can be defined
as follows:

Definition 1 (Human Activity Simulation). Given a real-world activity dataset, generate a realis-

tic activity sequence Ŝ = [â1, â2, . . . , ân] with a parameterized generative model.

2.2 Temporal Point Process

A temporal point process (TPP) [44] can be realized by an event sequence HT =

{(t1,m1), . . . , (tn ,mn ) |tn < T }. Here ti represents the arrival time of the event andmi is the event
mark. Let Ht denote the history of past events up to time t , the conditional intensity function
λ∗
k
(t ) (the kth event category) is defined as:

λ∗k (t ) = lim
Δt→0+

P(event of typek in[t , t + Δt]|Ht )

Δt
. (1)

Note that λ∗ (t ) =
∑
λ∗
k
(t ) denotes the total conditional intensity, deciding the arrival time without

considering event types. Then, the event type is sampled at the probability proportional to λ∗
k
(t ).

2.3 Neural Ordinary Differential Equations

Neural Ordinary Differential Equations (NODE) is a continuous-time neural network [10],
which describes the evolution of the latent state z(t ) over continuous time t ∈ R. Specifically, the
dynamics of systems can be captured by modeling the first-order ordinary differential equa-

tions (ODE)with neural networks. NODE has shown plausible performance in modeling dynamic
systems [12, 58, 60]. Specifically, the derivative of the latent state is modeled as:

dh(t ) = f (h(t ), t ;θ ) · dt , (2)

where h(t ) is the representation of the latent state at time t and f describes the derivative at time
t , which is parameterized by a neural network. In this way, the output of the system at time t1 can
be solved with an initial value at time t0 by an ODE solver:

z(t1) = z(t0) +

∫ t1

t0

f (z(t ), t ;θ ) · dt , (3)

In this work, we take the first attempt to characterize human needs with neural differential
equations.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 2, Article 29. Publication date: February 2024.



Generating Daily Activities with Need Dynamics 29:5

Table 1. The Description of Commonly Used Notations

Notations Descriptions

MDP Markov decision process

< S,A,T ,R > State space, action space, state transition and reward function.

z(t ) = {z1 (t ), z2 (t ), z3 (t )} Hierarchical need embedding process

F ,G Functions of Spontaneous flow and instantaneous jump

ci (t ), hi (t ) Internal embedding process and historical embedding process

λk (t ) Intensity function for the kth activity type

3 METHOD

We first introduce how we model human needs to motivate the framework design in Section 3.1,
then explain the Markov decision process modeling of the decision process in Section 3.2, and
finally elaborate on the framework details in Section 3.3. We also explain the commonly used
notations in Table 1.

3.1 Human Needs Modeling

Hierarchy of Needs. According to a classic theory in psychology, i.e., Maslow’s Theory [43], people
are motivated to achieve a hierarchy of needs, including physiological needs, safety needs, social
needs, esteem needs, and self-actualization needs, in a priority order, where higher levels of need
are modeled as long-term changes such as life stages. With the development of Maslow’s Theory,
the follow-up theories [8, 11, 56] have introduced flexibility in the hierarchy. For example, different
needs can be pursued simultaneously, and there exist transition probabilities between any pair of
needs. We do not take the top two need levels for esteem and self-actualization into consideration
because they are too abstract and their effects can only be observed in a long term.
Herewe classify individuals’ activities into three need levels, including physiological needs (level-

1), safety needs (level-2), and social needs (level-3), which are sufficient to depict patterns of daily
life [30, 31]. These three need levels are often triggered or satisfied in a short period, which are con-
sistent with daily activities that happen within a short term (a few hours). We provide descriptions
of each need level as follows:
— Physiological needs refer to biological requirements for survival, e.g., food, drink, and shelter.
The human body cannot function optimally without satisfying these needs.

— Safety needs refer to requirements for security and safety, e.g., education and employment.
Besides physiological needs, people expect their lives to be orderly, regular, and controllable.

— Social needs refer to requirements for spirits, e.g., entertainment and social relationships. After
meeting physiological and safety needs, people are also striving for spiritual satisfaction.
In our modeling, we follow Maslow’s Theory in a more flexible way, rather than the original

needs pursued in a rigid order. The fulfillment order can be flexible according to individual prefer-
ences and external circumstances. Based on well-respected need theories, each activity is explicitly
labeled with one of the need levels.3 The association between human needs and activities based
on expert knowledge bridges the gap between classic psychological theories and human behavior
modeling, which provides opportunities to model human needs computationally in a data-driven
manner.
Evolution of Needs. In real-world scenarios, human needs are not static but generally evolve with

time dynamically, which not only derive from spontaneous changes, but also can be interrupted
by happened activities. To better learn sequential activity patterns, it is essential to capture the

3We refer the readers to Section 4.1.2 for more details of the need annotation.
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Fig. 3. Illustration of the need evolution. Representations of three-level need states evolve continuously over

time until interrupted at the time when a corresponding activity happens (e.g., a(t1) corresponds to level-1).
Note that the need state is modeled by an embedding rather than a scalar, thus the jumps up and down do

not indicate an increase or decrease.

underlying mechanism of need dynamics. However, it is non-trivial because human needs cannot
be observed explicitly and are affected by various factors, such as activity relations and periodicity.
Besides, different from activities that happen one by one, need dynamics are more complicated
with synchronicity and competitiveness among different levels.

To effectively capture the underlying need dynamics, we innovatively capture piecewise-
continuous dynamics in human needs including spontaneous flow and instantaneous jump as
follows:

— Spontaneous flow denotes the continuous-time flow of need states. For example, needs for
some activities can accumulate without taking them for a long time. Meanwhile, needs can
also decay gradually as time goes by.

— Instantaneous jump models the influence of activities on the need states. For instance, the
happened activities can immediately change the evolutionary trajectory of the correspond-
ing need state.

Naturally, the two kinds of dynamics describe an active process of need evolution and need satis-
faction.
Particularly, the three levels are disentangled in dynamicmodeling, so they follow distinct evolu-

tion laws. Figure 3 illustrates the two evolution mechanisms of different need levels. Nevertheless,
it is challenging to learn such dynamics since needs are intrinsically unobserved and stochastic
with the coexistence of continuity and jump. To tackle this problem, we represent human needs
with a stochastic embedding process z(t ) defined as follows:

Definition 2 (Need Embedding Process). The need embedding processes are {zi (t ), i ∈ {1, 2, 3}, t ≥
0}, where zi (t ) is the representation of the ith need level at time t .

In the above definition, we depict human needs with an embedding process z(t ) instead of a
direct scalar value for stronger representation capabilities. Particularly, z(t ) is composed of three
components z1 (t ), z2 (t ), z3 (t ) that correspond to different need levels. Then the need embedding
process z(t ) with both spontaneous flow and instantaneous jump can be formulated as follows:

⎧⎪⎪⎨
⎪⎪
⎩

z(t + dt ) = z(t ) + F (t , z(t ))dt , no activity in [t , t + dt ),

lim
Δt→0+

z(ti + Δt ) = G (ti , z(ti ),k (ti )), with activity k at ti ,
(4)

where F and G4 control the spontaneous flow and instantaneous jump, respectively, and k (ti ) de-
notes the the occurred activity.

4The time-dependent variables in our modeling are all left continuous in t , i.e., lim
ϵ→0+

z(t − ϵ ) = z(t ).

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 2, Article 29. Publication date: February 2024.
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Fig. 4. Illustration of the SAND framework. The policy and discriminator networks are optimized adversari-

ally, and the state transition consists of two evolution mechanisms.

3.2 Sequential Decision Processes

The generation of activity sequences depends on individuals’ decisions on what activity to take
based on his/her own need state step by step. The whole process consists of a sequence of activity
decisions that aim to maximize the total received “reward” along the process. Here we model
the decision process as a Markov decision process (MDP) [65], and it is described by a 4-tuple
< S,A,T ,R >, where S is the state space, A is the action space, T is the state transition, and
R is reward function. The basic elements of MDPs are: (i) State represents the current need state;
(ii) Action is generated based on the state by sampling a time interval τ and an activity type k ;
(iii) Policy function decides the next activity time and type; (iv) State transition controls how
the state updates with two transit laws, i.e., spontaneous flow and instantaneous jump; and (v)
Reward function evaluates the utility of taking the action under the state, which is unknown
and has to be learned from the data.
Given the activity history st = {(ti ,ki )}ti<t , the stochastic policy function πθ (a |st ) samples an

interval time τ and an activity typek to generate the next activitya = (ti+1,ki+1), where ti+1 = ti+τ .
Then, a reward value is calculated and the state will be updated by an instantaneous jump. Besides,
there are also feedbacks of need states to the individual over time known as the spontaneous flow.

3.3 Proposed Framework: SAND

In this section, we present a novel framework, SAND, which Simulates human Activities with
Need Dynamics. Overall, it provides the synergy of need theories and imitation learning in simu-
lating the activity decision-making process. As shown in Figure 4, it learns the policy and reward
functions adversarially, where the need embedding process z(t ) plays an essential role in the loop.
We elaborate on the details of key components in the following sections.

3.3.1 Learning Need Dynamics. To model the need dynamics including the spontaneous flow

and instantaneous jump, we utilize neural stochastic differential equations [26] to describe such
continuity and discontinuity, where the need embedding process {zi (t ), i ∈ {1, 2, 3}, t ≥ 0} acts
as the latent state. Between activity observations, each zi (t ) flows continuously over time. Once
an activity happens, the corresponding need embedding process is interrupted by a state jump.
Different from directly modeling the changes of the hidden state like RNNs [69], neural differen-
tial equations model the derivative of z(t ) to better capture the continuous-time characteristics.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 2, Article 29. Publication date: February 2024.
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Fig. 5. Network architecture to learn need dynamics with both spontaneous flow and instantaneous jump.

(a) shows the spontaneous flow of ci (t ) and hi (t ) based on the derivatives
dci (t )
dt

and
dhi (t )
dt

. (b) illustrates

the instantaneous jump caused by the happened activity k .

Specifically, the derivative of the ith need state is formulated as follows:

dzi (t ) = fi (zi (t ), t ;θi ) · dt + ωi (zi (t ), ki (t ), t ;γi ) · dNi (t ), (5)

where fi and ωi are both parameterized by neural networks and control the spontaneous flow and
instantaneous jump of the ith need embedding process, respectively, and Ni (t ) records the number
of activities of the ith level up to time t . f andω in Equation (5) are implementations of the function
F and G defined in Equation (4). In particular, each state zi (t ) ∈ Rn is composed of two vectors:
(1) ci (t ) ∈ Rn1 encodes the internal need state, and (2) hi (t ) ∈ Rn2 encodes effects of the historical
activities.
Spontaneous Flow. The top part in Figure 5 shows the network design to model spontaneous flow.

The neural function fi in Equation (5) controls the spontaneous flow of the state zi (t ). Although
zi (t ) contains two vectors ci (t ) and hi (t ), they follow distinct continuous dynamics due to different
encoded information. Specifically, there is no constraint on the internal evolution of ci (t ), hence

we model
dci (t )
dt

by an MLP. On the other hand, due to the temporal decaying effect of historical
activities, we add constraints to the form of hi (t ) to model such an effect. Concretely, we use
another MLP followed by a Softplus activation layer to model the decay rate. The modeling of
derivatives can be formulated as follows:

dci (t )

dt
= MLP(ci (t ) ⊕ hi (t )), (6)

αi = σ (MLP(ci (t )), (7)

dhi (t )

dt
= −αihi (t ), (8)

where σ is the Softplus activation function to guarantee a positive decay rate, and ⊕ denotes the
vector concatenation.

Instantaneous Jump. The bottom part in Figure 5 illustrates the network design to model the in-
stantaneous jump introduced by happened activities. Specifically, the function ωi in Equation (5)

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 2, Article 29. Publication date: February 2024.
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Fig. 6. Network architecture of the policy function.

outputs the effects of the instantaneous jump, and it is modeled by an MLP in practice. As dis-
cussed before, the vector hi (t ) encodes the activity memory, and thus it is reasonable that the
instantaneous jump will only affect the vector hi (t ). As a result, an activity of the ith need level
gives rise to a change Δhi (t ) only to the corresponding activity memory embedding hi (t ), i.e.,
Δhj (t ) = 0,∀j � i and Δci (t ) = 0,∀i . The MLP takes in the concatenation of the activity embed-
ding k(t ) and the internal state ci (t ), and outputs the variation Δhi (t ) in the memory embedding
hi (t ), which is formulated as follows:

Δhi (t ) = MLP(k(t ) ⊕ ci (t )), (9)

lim
ϵ→0+

hi (t + ϵ ) = hi (t ) + Δhi (t ), (10)

where k(t ) denotes the activity associated with the ith need level.

3.3.2 Policy Function. Based on the activity intensity function λk (t ), the probability of activity
typek happenswithin the time interval [t , t+dt ) is as: P {activity k happens in[t , t+dt )} = λk (t ) ·dt .
The policy function is a mapping from the state to action that generates the arrival of the next
activity with the type conditioned on the current state. With the modeling of activity intensities,
the goal of the policy function is to generate intensities based on the need states z(t ). Figure 6
shows the network design of the policy function. Although the three need levels control specific
activities, they are not independent and can be pursued simultaneously, which may give rise to
competing activity choices. Therefore, the states of the three levels all affect the generation of the
next activity. In other words, the activity intensity λ∗

k
(t ) is conditioned on embedding processes of

all need levels. To model the interactions between different levels in determining the next activity,
we concatenate the three embedding processes zi (t ), i ∈ {1, 2, 3} and leverage an MLP to obtain
conditional activity intensities. Here we perform the sampling to obtain the time interval and the
activity type based on the total condition intensity and type distribution as:

λ∗ (t ) =
M∑
k=1

λk (t ), p (k |t ) =
λk (t )∑M
k=1 λk (t )

(11)

whereM is the number of activity types.

3.3.3 Reward Function. GAIL uses a reward function to evaluate the actions by comparing the
generated state-action pairs with the real pairs, which is modeled by a discriminator network. To
compare the real and generated pairs more effectively, we also adopt the historical sequence of
activities as part of the state, thus, the state in the discriminator is defined as sd = (z(t ), S). For
the sequence S, we consider the information of time intervals, hour, weekday, activity type, and
need. As a result, each element of S is a 5-tuple (xi ,hi ,wi , ci ,ni ), where xi ,hi ,wi , ci ,ni represents

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 2, Article 29. Publication date: February 2024.
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the time intervals, hour, weekday, activity type, and the need of the ith activity, respectively. In
addition, the action a is set as the time interval x since the last activity and the activity type c ,
i.e., a = (x , c ). Based on the above notations, the output of the discriminator can be defined as
Dϕ (sd ,a).

Through an embedding layer, we first transform the items in the historical sequence sd and the
action a into embeddings. Then we leverage an attention mechanism to aggregate the sequential
features. The concatenation of the sequential embedding, state z(t ) and action embedding is fed
into anMLPwith a sigmoid activation function. The discriminatorDϕ can be formulated as follows:

hs = Embedding(sd ), h
a = Embedding(a),

mj = uTα tanh(Wuh
s
j + bu ),

α j =
exp(mj )∑l

k=1 exp(mk )
,

es =
∑
i

α jh
s
j ,

d = Sigmoid(MLP(es ⊕ z(t ) ⊕ ha )),

(12)

where j denotes the jth item in the historical activity sequence, Wu and bu are parameters of the
linear layer, and μα is a learnable vector. In this way, the reward function can be expressed as
follows:

R (s,a) = logDϕ (sd ,a), (13)

3.4 Training and Simulation

3.4.1 Model Training. GAIL Training. The training procedure of GAIL is an iterative process
of learning a non-linear policy function πθ and a non-linear discriminator Dϕ . At each iteration,
the policy network generates activity sequences TG , and then each state-action pair is assigned
a reward provided by the discriminator. Then the parameters of the policy network are updated
with the reward via the PPO algorithm, which is widely used in reinforcement learning [61]. Sub-
sequently, the generated sequences TG and real-world sequences TE are used as the training data
to optimize discriminator parameters Dϕ with gradient ascent on the following loss function:

LD = E(s,a)∈TE logDϕ (s,a) + E(s,a)∈TG log(1 − Dϕ (s,a)). (14)

Therefore, the optimization of policy πθ and discriminator Dϕ is to solve a min-max problem
with the following objective:

max
ϕ

min
θ
−λH (πθ ) + Eπ [logDϕ (s,a))] + EπE [log(1 − Dϕ (s,a))], (15)

where Eπ represents the expected reward of the sequences under the policy π , and πE represents
the policy under the expert sequences.H (πθ ) is an entropy regularization term, controlling to find
the policy π with maximum causal entropy.
Pre-trainingMechanism. In order to accelerate the training procedure and improve the perfor-

mance of the adversarial framework, we first pre-train the embedding network of need dynamics
and policy network. In this way, we can enable the generator to preview the important interac-
tions between human needs and activities before GAIL training. To achieve this goal, we utilize
the log-likelihood loss function [26] as follows:

L = −
∑
j

logλ(z(τj )) −
∑
j

logp (kj |z(τj )) +
∫ tN

t0

λ(z(t ))dt , (16)

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 2, Article 29. Publication date: February 2024.
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Besides, we also pretrain the discriminator, where we randomly generate activity sequences as
fake data. With the fake data and real data, the discriminator is trained to distinguish them with a
binary classification loss.

3.4.2 Activity Simulation. After training the overall framework, we are able to perform activity
simulation. First, the states for the three need levels are randomly initialized. Then, the continuous
dynamics are calculated based on the learnedmodel parameters until an activity occurs, which also
introduces an instantaneous jump to the dynamical evolution. In this way, activities in a sequence
can be generated regressively. Algorithm 1 presents the simulation procedure.

ALGORITHM 1: Activity simulation with need dynamics (generating one individual as an
example)

Input: Parameter of the policy function π , start time t0, end time tn , initial need state zi (t0), i ∈ {1, 2, 3}.
Output: Activity sequence H
1: initialize t = t0,H = {}, zi = zi (t0), i ∈ {1, 2, 3}
2: while t < tn do

3: dt = AdpativeStepSize(zi , t , π )
4: (tnext,knext) = SimulateNextActivity(zi , t , π )
5: if tnext > t + dt then
6: zi = SpontaneousFlow(zi , dt , π ), i ∈ {1, 2, 3}
7: else

8: H = H ∪ {(tnext,knext)}
9: zi = SpontaneousFlow(zi ; dt ; π ), i ∈ {1, 2, 3}
10: zi = InstantaneousJump (zi , (tnext,knext), π ), i corresponds to the activity type knext
11: end if

12: t = t + dt
13: end while

4 EXPERIMENTS

In this section, we conduct extensive experiments to investigate the following research problems:

—RQ1: How does SAND perform in retaining the data fidelity and reflecting activity charac-
teristics compared with baseline solutions?

—RQ2: How do different components of SAND contribute to the final performance?
—RQ3: Can SAND generate high-quality synthetic data that benefit practical applications?
—RQ4: Does SAND memorize any identifying information and whether the generated syn-
thetic data leak user privacy?

4.1 Experimental Settings

4.1.1 Datasets. We conduct extensive experiments on two real-world datasets:

— Foursquare-NYC [72]. This dataset contains check-in activities to various POIs collected
from 2,000 users with 14 activity labels during the duration from 2012-05-01 to 2012-06-01.
We filter out users with less than 30 activities during this period. Each check-in behavior is
equivalent to an occurred activity, with the information of the anonymous user ID, times-
tamp, and venue category. In the same way, we use the venue category as the activity type.
Therefore, the activity types in this dataset contain the following categories: Arts and Enter-
tainment, Athletics and Sports, Clothing Store, College and University, Food, Food and Drink
Shop,Medical Center, Movie Theater, Nightlife Spot, Office, Outdoors and Recreation, Profes-
sional and Other places, School, Shop and Service. Figure 7 shows the statistical distribution.
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Fig. 7. The statistics of the Foursquare dataset. (a) Distribution of activity type with y-axis in log scale. (b)

Distribution of the number of activities.

—Mobile Operator. This dataset contains 10,000 users with 15 activity labels during the
duration from 2016-09-17 to 2016-10-17, which is collected in Beijing by a major mobile
operator in China. We filter out users with less than 50 activities in this period. The data
records the anonymous user ID, the visited location category, and the timestamp of each
visit. As activity data are characterized by visits to different types of locations, we use the
location category as the activity type. Specifically, the activity types in this dataset contain
the following categories: Company, Concerts, Culture and Art, Education, Entertainment,
Food, Government, Life Service, Market, Medicine, School, Shop, Sports, Travel, and
University. Figure 8 shows the statistical distribution.

As we can see, individuals do not distribute uniformly across different activities. There are more
visits to companies, residences, and schools, which are consistent with daily life patterns. It should
be pointed out that the activity of going home (visiting residential venues) is so sparse in the
Foursquare data that we do not consider it, which is different from the Mobile Operator Dataset.
Actually, flexible characterization of needs with activities also exhibits the generalization ability
of the proposed framework to different scenarios.
We take careful steps to consider ethical issues in using data: First, the Terms of Service for both

datasets include consent for research studies. Second, the research protocol has been reviewed and
approved by our local institutional board. All research data is sanitized for privacy preservation,
with limited access to authorized researchers bound by non-disclosure agreements.
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Fig. 8. The statistics of the mobile operator dataset. (a) Distribution of activity type with y-axis in log scale.

(b) Distribution of the number of activities.

4.1.2 Need Annotation. According to the definition and description of each need level in
Section 3.1, we ask three annotators to label each activity with one of the need levels. To en-
sure that correct expert knowledge is utilized, the three annotators all have expertise in related
knowledge, including a senior Ph.D. candidate and two postdocs with a background in psychol-
ogy and behavioral sciences. We choose the number of experts (three) following studies in NLP
with annotation tasks [64]. If the three experts disagree on the label, we will invite another expert
and start a discussion. Through this process, all activities obtain consistent labels. The annotation
approach has satisfied the requirement of our problem settings due to the small scale of activity
types. Generally speaking, there are limited activity types in daily life, thus, massively scalable an-
notation methods are not required in most cases. By leveraging the relationships between needs
and activities based on need theories, we classify each activity into one of the three levels, and it
is a knowledge-driven process.
Moreover, we provide scalable methods if more fine-grained activities are considered. First, we

can ask experts to provide detailed definitions, descriptions, and examples of relationships be-
tween activities and need levels. Then, we can use Amazon’s Mechanical Turk5 to obtain a reliable

5It is a crowdsourcing website to perform discrete on-demand tasks that computers are currently unable to do: https:

//www.mturk.com/.
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need-level label for each activity. Specifically, we assign a need-level label to an activity if two
annotators give consistent labels, and ask another annotator to judge it if annotators disagree on
the label. To assess the annotation reliability, we can compute the intra-class correlation [6]. In
this way, the utilization of expert knowledge is scalable.
This annotation approach offers potential benefits that extend beyond the scope of our current

algorithms. One notable application is in recommendation algorithms. By assigning need-level
labels to item categories, guided by psychological theories, we can harness these annotations to
capture users’ high-level demands, going beyond their low-level item preferences. This approach
represents a valuable means of expanding the significance of our research, while also offering
valuable insights to the wider research community.

4.1.3 Baselines. To evaluate the performance of the SAND framework, we compare it against
state-of-the-art baseline methods:

— Semi-Markov [38]. This classical probability model defines a state for every given time, not
just at the activity jump times, and builds a transition matrix to capture the first-order tran-
sition probabilities between activities.

—Hawkes Process [35]. It is a representative point process model, where the arrival of activity
causes the conditional intensity function to increase. All previously occurred activities affect
the intensity function explicitly.

— Neural Hawkes Process [44]. It is the neural extension to the Hawkes process, where the
intensities of multiple activities evolve according to a continuous-time LSTM, and thus it
allows past activities to affect the future in realistic ways.

— Transformer Hawkes Process (THP) [82]. It is another neural extension to the Hawkes process,
which utilizes the self-attention mechanism to capture long-term dependencies.

— Neural Jump Stochastic Differential Equations (NJSDE) [10]. This is the state-of-the-art
method to learn continuous and discrete dynamic behavior. We use this baseline without
the need modeling.

— LSTM [21]. It is widely used in sequence prediction. Here we combine an attention mecha-
nism with the recurrent network to capture the activity patterns.

— SeqGAN [74]. It is the state-of-the-art discrete generative model, which combines generative
adversarial nets with reinforcement learning.

— Generative Adversarial Imitation Learning (GAIL) [20]. This is a model-free imitation learn-
ing algorithm, which is the state-of-the-art method in imitating complex decision-making
processes.

4.1.4 Metrics. We measure whether synthetic data accurately reflects crucial characteristics of
the original, real-world data. Following the mainstream practice in previous works [15, 50], we
use essential metrics to describe activity patterns for comparing the statistical similarity between
the generated data and real-world data, including (1) ActInt: Time intervals between activities,
including type-free intervals (MacroInt) and type-aware intervals (MicroInt); (2) DailyAct: Daily
happened activities. It is the number of activities in one day for each individual; (3) ActType: The
overall distribution over different activity types; (4) Weekday: The overall time distribution over
the seven days; (5)Hour : The overall time distribution over the twenty-four hours. To get the quan-
titative evaluations on the fidelity of generated data, we use Jensen–Shannon divergence (JSD)
to measure the distribution similarity of the above patterns between the generated data and real-
world data, which is a widely used distance metric for comparing two distributions. Specifically,
the JSD is defined as follows:

JSD(P | |Q ) = H (M ) − 1

2
(H (P ) + H (Q )), (17)
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Table 2. Values of Hyper-parameters

Notations Descriptions

Number of need levels 3

Embedding size of MLPs 32

Embedding size of the need embedding process 24

Batch size 32

Replay buffer size (sequence-level) 128

Learning rate 3 × 10−4
Entropy coefficient in PPO 0.01

Optimizer Adam

ODE solver Jump Adams

where H is the Shannon entropy, p and q are distributions, and M =
p+q

2 . In our setup, lower
JSD denotes a closer distribution between synthetic data and real data, which indicates a better
generative model. In addition, the JSD is bounded by [0, 1] for two probability distributions with
the base 2 logarithm [39].

4.2 Parameter Settings

In our experiments, we all use two-layer MLPs with a hidden size of 32. The embedding size of
the vector ci (t ) and the embedding size vector hi (t ) are both set as 4. Therefore, the embedding
size of the need embedding process z(t ) is 24, i.e., (4 + 4) × 3, which is the concatenation
of states associated with different needs. Besides, the simulation is performed in batch, which is
set as 32. After training the policy network ten times, we train the discriminator once with the
accumulated state-action pairs. Thus, the number of inputs of the discriminator network is ten
times of the policy network. In addition, we set the learning rate as 3e-4 via searching in a set of
{1e−4, 3e−4, 1e−3, 3e−3}. Besides, we provide detailed values of the hyper-parameters in Table 2
for reproducibility. The proposed framework is implemented with Pytorch and trained on a Linux
server with eight GPUs (NVIDIA GTX 1080 * 8). In practice, our framework can be effectively
trained within 8 hours on a single GPU. As for some baselines that use CPUs, the models are
trained on a Linux server with two CPUs (Intel Xeon E5-2650 * 2).

4.3 Performance Comparison (RQ1)

4.3.1 Overall Performance. Table 3 reports the performance in retaining the data fidelity of our
framework and the eight competitive baselines on two real-world datasets. From the results, we
have the following findings:

—Our framework steadily achieves the best performance. SAND achieves the best per-
formance on the mobile operator dataset, by ranking first on five metrics and second on
one metric. For five metrics that rank 1st, SAND reduces the JSD by more than 20%. It also
shows superior performance on most of the metrics on the Foursquare dataset, which ranks
first on five metrics by reducing JSD by more than 40%. Meanwhile, it achieves comparable
performance with the best baseline on the other one metric.

— Time-invariant model performs poorly in simulating human activities. Semi-
Markov performs the worst in most cases. which indicates that the time-invariant assump-
tion fails to describe behavior transition laws due to the existence of complex temporal pat-
terns in daily activities.

— Learning from raw data alone is insufficient for a realistic simulation. The LSTM
model has a poor performance on the metrics of DailyAct and ActType, which means errors
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Table 3. Overall Performance of SAND and Baselines in Terms of the JSD-Based Metrics, and Lower

Results Are Better

Dataset Mobile Operator Foursquare

Metrics (JSD) MacroInt MicroInt DailyAct ActType Weekday Hour MacroInt MicroInt DailyAct ActType Weekday Hour

Semi-Markov 0.291 0.158 0.439 0.471 0.0042 0.051 0.334 0.055 0.485 0.101 0.0032 0.051

Hawkes 0.276 0.151 0.542 0.123 0.0039 0.051 0.073 0.024 0.530 0.026 0.0024 0.047

Neural Hawkes 0.026 0.143 0.125 0.0063 0.0036 0.052 0.072 0.041 0.119 0.012 0.0040 0.047

Neural JSDE 0.014 0.106 0.138 0.048 0.0033 0.051 0.041 0.033 0.056 0.0072 0.0022 0.046

THP 0.167 0.111 0.058 0.098 0.005 0.040 0.331 0.035 0.095 0.003 0.013 0.047

LSTM 0.110 0.136 0.513 0.342 0.0041 0.050 0.249 0.217 0.628 0.073 0.0033 0.051

SeqGAN 0.143 0.128 0.047 0.054 0.022 0.072 0.225 0.178 0.627 0.065 0.0034 0.051

GAIL 0.089 0.120 0.040 0.231 0.005 0.050 0.226 0.118 0.167 0.087 0.0049 0.062

SAND 0.0096∗ 0.084∗∗ 0.025∗∗ 0.036 0.002∗∗ 0.009∗∗ 0.018∗∗ 0.014∗∗ 0.062 0.0044∗∗ 0.00032∗∗ 0.0069∗∗

Bold denotes the best results and underline denotes the second-best results. ∗ and ∗∗ indicate that the improvement of

our approach is significant for p-value<0.05 and p-value<0.01, respectively.

Fig. 9. Weekday distributions of the real data, generated data by SAND, and generated data by the best

baseline.

can be accumulated in the step-by-step generation process. By contrast, SeqGAN and GAIL
improve the performance by using reinforcement learning and adversarial learning. For the
Foursquare dataset that is more sparse, their superiority is lost, which further suggests the
instability of purely data-driven methods.

— It is essential to model dynamic human needs. The neural Hawkes, THP, and neural
JSDE almost achieve the sub-optimal results on the two datasets, indicating the rationality
of characterizing events in continuous time by temporal point processes. However, without
investigating the deeper mechanism behind observed activities, their performance is still
limited.

In summary, the performance on two activity datasets demonstrates the superiority of the SAND
framework. By integrating the modeling of dynamic human needs in the GAIL framework, our
approach achieves promising performance on activity simulation.

4.3.2 Distribution Visualization. Besides, to better illustrate the performance gain, we visualize
the comparison distributions of the real data, generated data by SAND, and generated data by the
best baseline, i.e., NJSDE.Herewe select a representative temporalmetricwithout loss of generality
and show the results of the Foursquare dataset. Specifically, we take the weekday distribution as
an example in Figure 9. As we can observe, the weekday distribution of our framework is very
similar to the ground truth distribution.

4.3.3 Analysis of Model Efficiency. In this subsection, we compare the efficiency of differ-
ent approaches, including training time, inference time, and model size. Considering that the
performance of Semi-Markov and Hawkes models is far from satisfactory, we only compare the
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Table 4. Numerical Comparison of Different Methods in Terms

of Model Efficiency

Model Training time Inference time Model size

NJSDE ≈ 7 hours 0.505 min 0.058 MB

SeqGAN ≈ 10 hours 0.050 min 0.044 MB

GAIL ≈ 12 hours 0.074 min 0.050 MB

SAND ≈ 8 hours 0.513 min 0.078 MB

Fig. 10. Performance regarding the activity-wise JSD of the time interval.

model efficiency between our approach and state-of-the-art deep generative models, including
NJSDE, SeqGAN, and GAIL. Note that the model size calculates all neural networks used in the
framework, rather than the generator. Table 4 illustrates the numerical comparisons of our ap-
proach against other spatio-temporal techniques in terms of computation cost. As we can discover,
NJSDE and our model, which are both conditioned on neural differential equations, have similar
inference time and memory usage. These two methods have longer inference time due to the inte-
gral operation and Monte Carlo approximation when solving differential equations. Despite this,
the inference time is acceptable, and they achieve remarkably better performance. The generators
in SeqGAN and GAIL are RNN-based networks, so they have similar inference time and memory
usage. Our method learns the need dynamics by neural differential equations as the policy learn-
ing in the Markov decision process. While taking advantage of continuous-time modeling and
reinforcement learning, it does not add additional complexity obviously. The model converges
normally in practice and can be effectively trained within 12 hours on a single GPU(RTX-2080Ti).
We would like to note that our method achieves better performance with a comparable and ac-
ceptable overhead. Therefore, it can achieve a good balance between generation performance and
model efficiency.

4.4 Performance towards Uneven Distributions

Technically, the incorporation of the knowledge-driven mechanism can overcome the drawbacks
of existing purely data-driven methods such as being easily biased by uneven distribution. To
demonstrate the ability of our method to tackle uneven distributions, we evaluate the performance
regarding activity-wise JSD metrics. There exist uneven activity distributions in datasets (Sec-
tion 4.1.1), so the performance variation of different activities is associated with the model’s ability
to deal with long-tail observational data. Specifically, we select two activities with the highest ratio
and lowest ratio for the Foursquare dataset: Food and movie, then we compare the performance
related to these two activities of purely data-driven solutions and our methods. We include Seq-
GAN, GAIL, and SANDw/o needs as data-driven methods. Figure 10 demonstrates the comparison
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Table 5. Ablation Study on SAND Variants

Dataset Mobile Operator Foursquare

Metrics (JSD) MacroInt MicroInt DailyAct ActType Weekday Hour MacroInt MicroInt DailyAct ActType Weekday Hour

SAND 0.013∗ 0.084∗∗ 0.025∗∗ 0.036∗ 0.002∗∗ 0.009∗∗ 0.018∗ 0.014∗∗ 0.062 0.0044∗∗ 0.00032∗∗ 0.0069∗∗

SAND - GAIL 0.013 0.116 0.085 0.040 0.0031 0.051 0.039 0.028 0.202 0.0051 0.0018 0.0092

SAND - need 0.014 0.116 0.085 0.039 0.0035 0.050 0.019 0.030 0.0085 0.0072 0.0021 0.048

SAND - pretrain 0.015 0.110 0.059 0.190 0.004 0.048 0.070 0.025 0.161 0.064 0.0020 0.044

Bold denotes the best results and underline denotes the second-best results. ∗ and ∗∗ indicate that the improvement of

our approach is significant for p-value<0.05 and p-value<0.01, respectively.

results. As we can observe, our method maintains similar performance for infrequent activities,
while the first three data-driven methods suffer from significant degradation. The performance
comparison demonstrates that our knowledge-driven modeling is capable of capturing unique
patterns of different activities and is less biased by the overall but misleading activity patterns.

4.5 Ablation Studies (RQ2)

The proposed SAND framework consists of two key components: modeling need dynamics and
solving the MDPs with GAIL. Besides, we also use the pre-training mechanism. To further vali-
date whether they are indeed crucial for the final performance, we conduct ablation studies on
two datasets by comparing the performance of three variants of SAND, including SAND - need,

SAND - GAIL, SAND - pretrain. Specifically, SAND - need calculates the latent state as [26] with-
out modeling hierarchical human needs, SAND - GAIL removes the GAIL training framework, and
SAND - pretrain starts training from raw data without the pre-training mechanism.
The evaluation results are reported in Table 5. We can observe that SAND delivers the best

performance on five metrics compared with the variants that are removed with specific designs.
Without modeling need dynamics, the performance is reduced significantly, indicating the neces-
sity to consider intrinsic motivation in human activity simulation. Besides, removing the GAIL
framework also reduces the data fidelity, which suggests the strong modeling capabilities of gen-
erative adversarial mechanisms. In addition, the pre-training mechanism facilitates making full
use of the activity data and enables our framework to preview the dependencies and regularities
of daily activities before GAIL training, thus it also contributes to the final performance.

4.6 Case Studies (RQ3)

4.6.1 Practical Applications. In user-based applications, real-world activity records usually can-
not be directly shared due to privacy issues. Under this circumstance, SAND can be used to gen-
erate synthetic data to mask sensitive information while retaining the usability of real data. To
examine the utility of the generated synthetic data, we perform experiments with synthetic data
of two categories:

— Fully Synthetic Scenario. Only synthetic data is used in applications, which provides more
robust privacy protection.

—Hybrid Scenario. It combines real and synthetic data, which is widely used in data augmen-
tation settings.

We select a representative application [24, 45] based on the activity data: activity prediction, which
is fundamental to many activity-related problems, such as activity recommendation and planning.
We utilize a widely used model, LSTM with an attention mechanism, to predict individuals’

future activity types based on their historical sequence. As shown in Figure 11, compared with
the best baseline, the prediction performance on the dataset generated by our framework is much
closer to the performance on the real data, showing the retained utility of the generated data.
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Fig. 11. Activity prediction in the fully synthetic scenario.

Fig. 12. Activity prediction in the hybrid scenario. For different number of real-world sequences, i.e., 50, 100,

1,000, we all add 1,000 generated sequences for data augmentation.

However, with only 100 sequences at our disposal, data generated using various approaches con-
sistently exhibit subpar and similar performance. This implies this quantity is insufficient for effec-
tively training a prediction model. Figure 12 illustrates that the model trained on the augmented
data exhibits significantly better performance than that only trained on the real-world data. Mean-
while, the data augmented by SAND outperforms that by the best baseline. Moreover, the aug-
mented data becomes more useful when the real-world data is of small scale, e.g., only with 50 or
100 real-world sequences. These results validate the practical value of the synthetic data.

4.6.2 Interpretability of Dynamic Needs. To validate whether SAND can provide insightful in-
terpretability, we perform a case study on the learned intensity values of different need levels in
the simulation process. Figure 13 illustrates the simulated activity sequences of two individuals
for one week, together with the corresponding intensity values of three need levels. In terms of
the model interpretability, we have two main observations. First, the proposed SAND can generate
distinct but lifelike activity sequences that are hard to tell apart from real-world data. Specifically,
comparing Figures 13(a) and 13(b), the two synthetic individuals lead quite personalized lifestyles.
Individual 1 follows regular working routines with the intensity dynamics of the level-2 need
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Fig. 13. Case study of two generated activity sequences and the learned intensity of different need levels.

We select two representative individuals with different activity patterns.

varying periodically, while individual 2 enjoys more freedom without working, showing a con-
stantly low intensity of the level-2 need. Second, SAND can simulate human daily activity in an
interpretable way with need modeling. As observed from Figure 13, the occurrence of activity not
only changes the intensity of the corresponding need level but also affects other levels, indicating
that different need levels are interconnected by intensities derived from need states and trigger
activities in a cooperative manner. In summary, the above observations demonstrate the inter-
pretability of SAND for simulation outcomes, which is equally important in real-life applications.

4.7 Synthetic Evaluation

To better evaluate the proposed model’s capability in modeling the latent needs, we conduct ex-
periments on a synthetic dataset. The dataset is constructed manually, and individuals’ daily life
follows a working-recreation-going home rhythm. The occurrence time of specific activities ex-
hibits a certain pattern, which is generated following rules: (1) The population consists of 80%
white-collar workers and 20% students; (2) Between 6 am and 10 am, students commute to school;
while white-collar workers head to their workplaces (second-level need); (3) The period from
11 am to 2 pm is designated for lunch (first-level need) for both groups; (4) Between 2 pm and
5 pm, they engage in either continued study or work; (5) After 5 pm, individuals decide whether
to return home or engage in entertainment. These choices follow a Bernoulli distribution with
probabilities of (0.6, 0.4) for workers and (0.8, 0.2) for students.
Figure 14(a) compares the distribution of different activities between the synthetic dataset and

the dataset generated by our method. As we can observe, the two distributions are very similar to
each other, thus, our model is able to capture the population-wise activity distribution. Besides, we
explore the learned intensities of different activities to validate that themodel can properly capture
temporal patterns of different activities. Without loss of generality, we take three activities: going
home, working, and eating out, as examples, which are shown in Figure 14(b). As we can observe,

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 2, Article 29. Publication date: February 2024.



Generating Daily Activities with Need Dynamics 29:21

Fig. 14. Results of synthetic evaluation.

the intensity of working is high in the morning and afternoon, and the intensity of eating out
peaks at noon. In the meantime, the intensity of going home increases late in the afternoon. These
results are consistent with the logic of the synthetic dataset.

4.8 Protecting User Privacy (RQ4)

To prove that the generated daily activity sequence does not leak individual privacy, we perform
experiments from comprehensive aspects as follows:

— Uniqueness Testing [13, 71]. It shows that the generated daily activity sequence is not a simple
copy of the real sequence but a brand-new sequence.

—Membership Inference Attacks [40, 63]. Given a trained model and a set of data samples, the
Membership inference attack infers whether those samples were included in the training
dataset. Stronger privacy protection leads to a lower success rate.

—Differential Privacy (DP) [1, 3]. The released data should be similar whether a user’s data is
included in the training or not, which means the model are not highly dependent on any
individual data.

4.8.1 Uniqueness Testing. We randomly select sequences from generated data and compare
them with real sequences from the training set. We align the two sequences in the time dimen-
sion one by one and determine whether the activities at the corresponding time points are exactly
the same. The overlapping ratio is defined as the ratio of the number of identical activities to the
total sequence length. Next, we choose the real sequence that is the most similar to the gener-
ated one. We calculate the overlapping ration distribution and select the most similar 1, 3, and 5
real sequences for each generated sequence. Figure 15 presents the empirical cumulative distribu-
tion. For both datasets, more than 90% of the generated sequences cannot find any real sequences
with more than 40% overlapping ratio, which demonstrates that our framework indeed learns to
generate brand-new and unique trajectories rather than simply copying.

4.8.2 Membership Inference Attacks. The goal of such an attack is to determine whether those
samples were in the training dataset. We follow the settings as in [40] and [63]. To control the
impact of classification methods, we include three common-used classification algorithms: Logis-
tic Regression (LR), Support Vector Machine (SVM), and Random Forest (RF) to perform
attacks. The positive samples are individuals in the training data, while the negative samples are
not. The feature is the overlapping ratios of multiple runs. The metric is the success rate, which is
the percentage of successful trials in judging whether a sample is in the training dataset [40, 63].
Figure 16 shows the attack results. As we can observe, on both datasets, the attack success rate is
less than 0.53, which means the attacker can hardly infer whether individuals are in the training
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Fig. 15. The results of Uniqueness testing.

Fig. 16. Success rate of membership inference attack.

data from the generated data. The results above suggest the robustness of our framework to mem-
bership inference attacks.
In order to provide a more comprehensive evaluation of privacy preservation, we also examine

the generated data from baseline methods. Without loss of generality, we present the results of
membership inference attacks conducted on LSTM-generated data. Figure 17 compares the attack
success rates across different classification algorithms for two types of generated datasets: those
produced by our framework and those generated by LSTM models. As we can observe, the attack
success rate regarding our approach is significantly lower than that for LSTM. This finding sug-
gests that the adversarial training incorporated within the GAIL framework enhances the ability
to obfuscate distinctions between real-world and synthetic data.

4.8.3 Differential Privacy. A modelM is (ϵ,δ ) differentially private if for any pair of datasets D
and D ′ that differ in the activity data of a single user, it holds that [1, 3]:

M (z;D) ≤ eϵM (z;D ′) + δ

For the output z, M (z,D) denotes the probability distribution of z with the data D as the input.
Smaller values of ϵ and δ give more privacy. We examine the privacy budget of our proposed
model from the perspective of changes in the overlapping ratio. Specifically, the overlapping ratio
of each individual under the conditions that this individual is contained in the training dataset or
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Fig. 17. The results of Uniqueness testing.

Table 6. Statistics of ϵ for the Two Datasets

ϵ Mean Median 90th percentile

Mobile operator 1.429 0.872 3.747

Foursquare 0.9735 0.504 2.754

not is modeled by two Gaussian distributions respectively, which are then regarded asM (z,D) and
M (z,D ′) to calculate the privacy budget ϵ . For each user, we calculate the ϵ using TensorFlow Pri-
vacy [1, 3]. We list the statistical results of ϵ in Table 6. We can observe that without any additional
privacy-preserving mechanism, our model is able to have an average privacy budget ϵ ≈ 1, which
is typically considered a reasonable operating point for generative models [40], e.g., Apple uses a
privacy budget of 4.0.6 The privacy budget can be further enhanced by introducing DP-SGD [1] or
DP-GAN [40, 70].

5 RELATEDWORK

5.1 Human Activity Simulation

Solutions for activity simulation are mainly agent-based modeling [42] with rule-based meth-
ods [30–32, 47, 48, 53]. Specifically, these methods assume that human activities can be described
by limited parameters with explicit physical meaning and are governed by transition rules based on
psychology and social science theories.With simplified assumptions of human behaviors, agents in
the system can be assigned different goals, then they take actions to maximize different attributes.
For example, Kim et al. [32] propose that human actions are triggered by a cause and give rise to
corresponding effects. Besides, considering the multiple behaviors, the priorities of behaviors are
determined based on Maslow’s hierarchy of needs [30–32]. Despite the promising performance
under some circumstances, rule-based methods fail to capture complicated activity patterns due
to relying on simplified assumptions and thus usually fail to simulate activities in reality. The pur-
pose of activity simulation is different from that of activity prediction [24, 45, 73]. The former
emphasizes the simulation results to reproduce and reflect characteristics of real data, but should
not be too similar to real data with the goal of protecting user privacy, while the latter highlights to
what extent the model can recover the real data. Although deep learning approaches are proposed
for activity prediction [25, 49], the problem of simulating daily activities has been barely explored.

6https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
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Moreover, it’s important to distinguish between activity simulation and itinerary or trip planning
processes [9, 27]. Activity simulation involves the generation of realistic activity sequences for
a large population, whereas itinerary and trip planning revolve around creating trip plans that
adhere to user-provided constraints. These constraints typically include a selection of points of
interest (POIs), as well as considerations such as time and budget. In parallel, trip recommenda-
tion [28] and path prediction [81] focus on predicting the next location based on historical POI
data. In contrast, activity simulation stands apart by directly generating entire activity sequences
without relying on prior historical activities. Our problem is also different from time series pre-
diction [80], as we generate activities at irregular time intervals. This distinction underscores the
unique objectives and methodologies employed in these various aspects of location-based recom-
mendation systems.

5.2 Deep Generative Models for Activity Simulation

Deep generative models, such as generative adversarial networks (GAN) [16] and variational
autoencoder (VAE) [33], are promising solutions to simulation. Previous studies [22, 51, 62, 68, 79]
have also explored the ability of GAIL to simulate human decision process. Besides, a series of neu-
ral temporal point process models [10, 44, 76, 82] are proposed to model discrete events. Although
these models are mainly for discrete event prediction, the learned probability distribution provides
opportunities to perform event generation by the sampling operation. Recently, Gupta et al. [19]
propose attention-based temporal point process flows to model goal-directed activity sequences.
However, it is not appropriate for our research problems as daily activities cannot be represented
as a sequence of actions performed to achieve an explicit goal. We propose a knowledge-driven
framework based on GAIL, and the incorporation of psychological knowledge is realized by lever-
aging an ODE-based temporal point process.

5.3 Generative Models in Machine Learning

Generative models can be categorized into two types: explicitly generative models and implicit
generative models. For explicitly generative models, the idea is to minimize some notion of di-
vergence in terms of the data distribution [18]. For example, minimizing the KL divergence be-
tween the generated data by the model and the observational data is equivalent to performing
maximum likelihood estimation (MLE) on the observational data [46]. In contrast, generative
models based on adversarial learning have recently attracted much attention, such as GAN, GAIL,
and SeqGAN [16, 20, 74]. The objective is to generate data that cannot be distinguished from the
real data, thus, these models no longer need to specify an explicit density for the observational
data. Point process models [23, 44] are generally implicit generative models where the density of
the event is estimated. GAIL [20] is a typically implicitly generative model via training a policy
function and a reward function adversarially. Our proposed framework models the need dynam-
ics by characterizing the activity sequence as a point process and utilizes differential equations to
describe the temporal evolution. The pre-training on the point process leverages maximum like-
lihood, and the adversarial learning in GAIL further encourages the generation of more realistic
samples. The key idea of modeling dynamics human needs allows for hybrid learning by using
maximum likelihood and adversarial training to improve the final performance.

6 DISCUSSION AND CONCLUSION

In this article, we investigate the individual activity simulation problem by proposing a novel
framework SAND, which integrates deep generative models with well-respected psychological
theories. Extensive experiments on two real-world datasets show the superior performance of the
proposed framework. Our framework is not strictly limited to Maslow’s theories, instead, what we
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highlight is leveraging neural networks to learn the driving force behind human daily activities,
and the choice of knowledge or theory related to such driving force is quite flexible. For example,
ERF theory [2] claims that there exist three levels behind activities, including existence, relatedness,
and growth; some other theories [59] propose that several specific travel purposes lead to daily
activities. Importantly, effective modeling of human needs makes it possible to understand human
behaviors at a deeper level, which not only benefits the activity simulation in this work but also
contributes to many other problems of psychology-informed user modeling.
The proposed framework brings significant advantages to the state-of-the-art spatio-temporal

graph learning frameworks [36, 41, 66, 78]. The activity generator provides invaluable insights into
dynamic spatio-temporal graph learning within continuous domains, enhancing the comprehen-
sion of intricate, long-range spatio-temporal dependencies. Furthermore, the generated activity
data holds the potential to revolutionize decision-making across a multitude of domains. In the
realm of traffic prediction, the simulation of realistic movement patterns, including vehicle flow
and pedestrian activities, empowers practitioners to assess model robustness and strategy effec-
tiveness under diverse conditions. As a result, decision-makers can make more informed choices
related to trafficmanagement, infrastructure enhancements, and route optimization. In urban plan-
ning, synthetic human activity data proves instrumental in both the design and evaluation of urban
spaces. In the domain of social network analysis, synthetic human activity data equips researchers
to delve into the dynamics of social interactions, information dissemination, and the formation of
communities within networks.
For future work, it is promising to incorporate more advanced generative models to simulate

daily activities, such as diffusion models [75] and large language models [52].
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