
PlatoGL: Effective and Scalable Deep Graph Learning System for
Graph-enhanced Real-Time Recommendation

Dandan Lin

Shijie Sun

danieslin@tencent.com

cedricsun@tencent.com

WeChat, Tencent Inc.

Shenzhen, China

Jingtao Ding
∗

Department of Electronic

Engineering, Tsinghua University

Beijing, China

dingjt15@tsinghua.org.cn

Xuehan Ke

Hao Gu

elviske@tencent.com

nickgu@tencent.com

WeChat, Tencent Inc.

Shenzhen, China

Xing Huang

Chonggang Song

healyhuang@tencent.com

jerrycgsong@tencent.com

WeChat, Tencent Inc.

Shenzhen, China

Xuri Zhang

Lingling Yi

ninjazhang@tencent.com

chrisyi@tencent.com

WeChat, Tencent Inc.

Shenzhen, China

Jie Wen

Chuan Chen

welkinwen@tencent.com

chuanchen@tencent.com

WeChat, Tencent Inc.

Shenzhen, China

ABSTRACT
Recently, graph neural network (GNN) approaches have received

huge interests in recommendation tasks due to their ability of learn-

ing more effective user and item representations. However, existing

GNN-based recommendation models cannot support real-time rec-
ommendation where the model keeps its freshness by continuously

training the streaming data that users produced, leading to neg-

ative impact on recommendation performance. To fully support

graph-enhanced large-scale recommendation in real-time scenarios,

a deep graph learning system is required to dynamically store the

streaming data as a graph structure and enable the development

of any GNN model incorporated with the capabilities of real-time

training and online inference. However, such requirements rule out

existing deep graph learning solutions. In this paper, we propose

a new deep graph learning system called PlatoGL, where (1) an

effective block-based graph storage is designed with non-trivial

insertion/deletion mechanism for updating the graph topology in-

milliseconds, (2) a non-trivial multi-blocks neighbour sampling

method is proposed for efficient graph query, and (3) a cache tech-

nique is exploited to improve the storage stability. We have de-

ployed PlatoGL in Wechat, and leveraged its capability in various

content recommendation scenarios including live-streaming, article

and micro-video. Comprehensive experiments on both deployment

performance and benchmark performance (w.r.t. its key features)

demonstrate its effectiveness and scalability. One real-time GNN-

based model, developed with PlatoGL, now serves the major online

traffic in WeChat live-streaming recommendation scenario.

∗
Jingtao Ding is the corresponding author. Work done while at Tencent.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA.
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00

https://doi.org/10.1145/3511808.3557084

CCS CONCEPTS
• Information systems → Recommender systems; Network
data models; Collaborative filtering; Personalization.

KEYWORDS
Graph Neural Network; Real-time Recommendation; Deep Graph

Learning System

ACM Reference Format:
Dandan Lin, Shijie Sun, Jingtao Ding, Xuehan Ke, Hao Gu, Xing Huang,

Chonggang Song, Xuri Zhang, Lingling Yi, Jie Wen, and Chuan Chen. 2022.

PlatoGL: Effective and Scalable Deep Graph Learning System for Graph-

enhanced Real-Time Recommendation. In Proceedings of the 31st ACM Inter-
national Conference on Information and Knowledge Management (CIKM ’22),
October 17–21, 2022, Atlanta, GA, USA. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3511808.3557084

1 INTRODUCTION
As one of the most successful and well-known applications of ma-

chine learning, personalized recommendation system has become

an indispensable part in wide areas of user-oriented web services,

including e-commerce [29, 38], video streaming [5, 21, 39], live

streaming [25], news delivery [24, 41], etc. By accurately modeling

user preferences from their historical interactions (e.g., click, watch)
and other side information (e.g., user-user social relation and item-

attribute), the recommendation system can help users finding their

interested items from massive amount of candidates, which greatly

alleviates the so-called information overload problem. To achieve

this goal, it is essential for a recommendation model to learn effec-

tive user/item representations from collected interactions and rich

side information. Since both user-item interactions and other side

information have graph structure, graph neural network (GNN)

algorithms [12, 28, 32] have been considered as promising solu-

tions for user/item representation learning in recommendation

systems [9, 14, 30, 31]. In industry practices, GNN based recommen-

dation systems have been successfully deployed in a wide variety

of scenarios, e.g., product recommendation in e-commerce [7, 16]

and content recommendation in social media [37, 43].

https://orcid.org/0000-0002-2490-101X
https://doi.org/10.1145/3511808.3557084
https://doi.org/10.1145/3511808.3557084

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA. Dandan Lin et al.

Although GNN-based recommendation models currently show

their effective representation learning, their recommendation power

is still underestimated since existing deployed GNN models are

static by fixing the graph topology and cannot support real-time
recommendation. Note that supporting real-time recommendation

is a crucial capability for content recommendation scenarios where

user interest is highly dynamic and non-stationary [3, 15, 33]. For

example, a micro-video user may first watch sports related feeds

that are out of her long-term interest and then quickly switch to a

trending news feed due to her rising attention on current affairs.

Above issue, known as concept drift [8], calls for a power recommen-

dationmodel that can learn user preference in real-time. Specifically,

it should fulfill the following two tasks: (1) continuously training

with the newly coming data (termed the streaming data) to capture

users’ instant interests and demands, termed the real-time training
phase, and (2) quickly inferring a user’s up-to-the-minute prefer-

ences in-millisecond, termed the online inference phase. Currently,
real-time DNN-based recommendation systems have been widely

adopted in industrial content recommendation scenarios (including

Youtube [36], Kuaishou [33] and etc.) to improve user engagement

and platform profit. Thus, it is equally important for GNN-based

recommendation models to capture user interests in real-time.

Unlike traditional DNNmodels, the development of GNNmodels

requires a deep graph learning system that provides the distributed

graph storage for large-scale graphs and computation capabilities

to facilitate GNN training [40, 44]. However, existing deep graph

learning solutions [17, 18, 22, 40, 44] cannot incorporate GNN-based

recommendation models with the capabilities of real-time training

and online inference due to the following challenges:

• How to enable the deployment of a constantly-training
GNN model? Unlike traditional GNN model training that keeps

the graph data unchanged, the real-time training phase of a GNN

model requires a dynamically-updating graph whose topology

is continuously-updated immediately users’ latest interactions

(i.e., interests) are captured. However, the deployment of such

models is non-trivial. Firstly, to guarantee freshness of graph

information, a graph learning system need to support constant

and high-frequency graph updates in real-time where the updates

should be finished in milliseconds for large-scale graphs with

billion nodes. Secondly, as each model is constantly updated and

their memory cost largely depends on graph scale, it requires a

maintenance mechanism to avoid unlimited memory increasing

in the circumstance of multi-model simultaneous training.

• How to meet the stringent requirements on supporting
GNN model inference on the fly? Compared with the real-

time training, the online inference phase of a GNN model is far

more challenging to be implemented for a graph learning sys-

tem in terms of query efficiency and storage stability. Firstly, the
model online serving has a stringent latency requirement so as

to provide the recommendation responses to users in millisec-

onds. To achieve the in-milliseconds online inference, a deep

graph learning system should provide the capability of efficient

graph query, i.e., efficiently retrieving neighborhood of a spe-

cific node. It is because each GNN model involves a necessary

operation, i.e., message passing which aggregates the messages

from neighbours of a source node to get the representation of

this source node [12]. Secondly, the stability of the graph storage

has a significant impact on the online serving quality of a model.

Specifically, if the graph storage is crashed and not available at

some time point, the online inference of a GNN model must be

delayed, leading to a poor user experience. To bypass above chal-

lenges, an easy solution for GNN-based recommendation models

is to complete the message passing operations offline and use the

static user/item representations for online prediction [16, 37],

making the recommendation results insensitive to user real-time

preferences.

To solve these challenges, we consider four key requirements
that a real-time graph learning system shouldmeet: (1) In-milliseconds
Dynamically-updating. The dynamic updating of graph should sat-

isfy a latency of milliseconds in a billion-scale graph. (2) Low Mem-
ory Consumption. From an economical cost perspective, one has to

keep a low memory consumption for the simultaneous training of

multiple GNN models. (3) Ultra-high Query Efficiency. As a key pro-

cedure in the real-time training and online inference phases, graph

query should be of high efficiency, like finding the neighbourhood

of a node. (4) High Storage Stability. The graph storage should be

stable with high tolerance to guarantee online recommendation

service. However, all of existing deep graph learning systems fail to

satisfy above four key requirements simultaneously (more discus-

sions could be found in Section 2.2). In this paper, we propose the

first industrial deep graph learning system PlatoGL that satisfies

above four key requirements simultaneously, setting the stage for a

large-scale GNN-based real-time recommendation system. PlatoGL

has been deployed inWechat
1
, the largest social networking service

in China, and supports various content recommendation scenarios.

The following shows our contributions.

• We propose a new storage layer calledMKVGraph inside PlatoGL

to store multiple GNN-related data. Specifically, in MKVGraph,
we design an effective block-based neighborhood storage with

non-trivial insertion and deletion mechanisms to dynamically

update the graph topology data in a latency of milliseconds.

• We design a novel and non-trivial multi-block neighbour sam-
pling method with indexing structures to efficiently sample the

neighborhood of nodes in the graph, satisfying the ultra-high

query efficiency requirement.

• We apply a cache strategy to reduce the number of concurrent

graph queries to the graph storage, which keeps the online graph

storage safe under huge number of queries per second, and thus,

improves the storage stability.

• We have developed a real-time GNN recommendation model with

our PlatoGL system in WeChat live-streaming recommendation

scenario and conducted online A/B test to show its superiority

over a static GNN model without real-time capability. Now, the

real-time GNNmodel serves in the major online traffic inWeChat.

• Comprehensive experiments showed that PlatoGL satisfies above

four key requirements.

2 BACKGROUND AND EXISTING SOLUTIONS
In this section, we firstly introduce background of the problem

studied in this paper, and next present existing large-scale deep

graph learning frameworks along with their limitations.

1
https://www.wechat.com/en

https://www.wechat.com/en

PlatoGL: Effective and Scalable Deep Graph Learning System for Graph-enhanced Real-Time Recommendation CIKM ’22, October 17–21, 2022, Atlanta, GA, USA.

2.1 Background
We start with a simple directed weighted graph G(V , E,W) where

V and E represent the set of nodes and edges,respectively; and

W: E → R+ is a function that assigns a weight𝑤𝑢𝑣 to an edge 𝑒𝑢𝑣
linking from node 𝑢 to node 𝑣 . For each node 𝑢, let N𝑢 denote the

set of 𝑢’s neighbours. In this paper, we consider the heterogeneous
graph with multiple types of nodes and/or edges, which is common

in real-world recommendation scenarios. Besides, to support the

real-time recommendation, the graphs evolve with time, which

is formally defined as follows. Given a time interval 𝑡 , a dynamic
graph can be considered as a series of graphs {G (𝑡) |𝑡 ∈ [1,𝑇]}
where G (𝑡) is a heterogeneous graph at timestamp 𝑡 .

General recommendation problem. A common paradigm for

general recommendation models is to reconstruct users’ historical

interactions by the representations of users and items. Formally,

we formulate the problem as follows:

Definition 1 (Recommendation Problem). Given a heteroge-
neous graph G and the user-item interaction matrix Y = {𝑦𝑢𝑖 : 𝑢 ∈
V𝑈 , 𝑖 ∈ V𝐼 , 𝑒𝑢𝑖 ∈ E} where V𝑈 and V𝐼 are the node sets of users
and items, respectively. The recommendation problem aims to predict
the unknown rating between user 𝑢 and item 𝑖 .

GNN-based recommendation method. GNN approaches could

be basically formulated asmessage passing [10, 12, 28, 31, 40], where
nodes in the graph propagate their messages to other neighbours

and compute their own representations (i.e., in form of embedding)

by aggregating the received messages from their neighbours as well.

Given a heterogeneous graph G, we denote the feature vector of
user node 𝑢 as h(0)𝑢 whose value is usually assigned as its attribute

vector f𝑢 . To get the representation of node 𝑢 at layer 𝑙 , a GNN

approach performs the computations as follows:

h(𝑙+1)𝑢 = 𝑔(h(𝑙)𝑢 ,
⊕

𝑖∈N𝑢

𝑓 (h(𝑙)𝑢 ,h(𝑙)
𝑖
)), (1)

where 𝑓 (·),
⊕
(·), and 𝑔(·) are customized functions (i.e., neural

network modules) for calculating messages from each neighbour

of node 𝑢, aggregating the messages of all neighbours of node 𝑢,

and updating the representation of node 𝑢, respectively. In the

literature [2, 11–13, 44], as aggregating all neighbours of node 𝑢

is infeasible in large-scale graphs, a sampling method to sample a

proportion of neighbours is adopted to enhance the efficiency of

the GNN algorithms without sacrificing much accuracy. Similarly,

the representation of item node 𝑖 is obtained as follows:

h(𝑙+1)
𝑖

= 𝑔(h(𝑙)
𝑖
,
⊕

𝑢∈N𝑖

𝑓 (h(𝑙)
𝑖
,h(𝑙)𝑢)). (2)

Generally, a GNN-based recommendation model denoted asM can

be divided into three parts: 𝐿-layered user representations {h(𝑙)𝑢 },
𝐿-layered item representations {h(𝑙)

𝑖
} and scoring function F that

takes {h(𝑙)𝑢 } and {h
(𝑙)
𝑖
} as inputs to compute the 𝑢-𝑖 preference

score 𝑦𝑢𝑖 by a customized neural network module.

GNN-based recommendation in real-time scenarios. In real-

time recommendation scenarios, a GNN modelM (𝑡) works on a

dynamic graph G (𝑡) during both training and inference periods, as

M (𝑡) is expected to learn up-to-the-minute user preference from

G (𝑡) that receives constant updates from streaming data. That is,

at the timestamp 𝑡 , they exploit the topological information in the

graph G (𝑡) for the sampling, aggregating and updating operations.

2.2 Existing Deep Graph Learning Frameworks
In industries, there are several deep graph learning systems tailored

for GNN-based recommendation, e.g., AliGraph [44], Euler [17],

Plato [18], and DistDGL [40]. However, all of them fail to satisfy

the four key requirements simultaneously, and thus cannot sup-

port the real-time recommendation scenarios. Firstly, all these sys-

tems directly store the graph in a cluster of physical machines

(termed graph servers) by using the graph partition methods (like

METIS [19]). However, such graph storage cannot support the

in-milliseconds dynamic updates since the graph needs to be re-

partitioned and re-deployed from scratch in graph servers when an

edge is inserted/deleted in the graph. To our best knowledge, no

efficient solution for dynamic graph partition is involved in these

systems. Secondly, most solutions, like AliGraph and Plato, build

independent graph storage for different recommendation models

even the models exploit the same graph data. It takes a huge mem-

ory cost since there are possibly over hundreds of models running

in a specific industrial scenario. Thirdly, for neighbourhood sam-

pling, both AliGraph and Plato need to read all neighbours of a

node from different graph serves into memory for computations,

leading to a fairly high time cost for queries, and they also use a

memory-expensive sampling method which brings a heavy burden

of the resource usage. Finally, for these systems, the graph storage

is far away from the high stability since they cannot leverage the

light-weight storage replication mechanism to keep a safe storage

under extreme scenarios. Comparatively, our PlatoGL system can

avoid those issues with novel and non-trivial designs in terms of

both graph storage and neighbour sampling.

3 SYSTEM OVERVIEW
In this section, we first introduce the architecture of PlatoGL and

then present how to build a real-time graph-enhanced recommen-

dation system with PlatoGL.

3.1 Architecture of PlatoGL
Based on the GNN general architecture described in Section 2, we

construct the system architecture of the PlatoGL platform, as shown

in Figure 1. On the whole, it consists of two layers: (i) the graph
storage layer called MKVGraph, which stores graph topology, at-

tributes information of nodes or edges, indexing structures for fast

samplings and a cache for caching frequently-used attributes or

edges. Note that our storage layer is based on online cloud stor-

age system [42] and decoupled with concrete GNN models, and

so, multiple simultaneously trained GNN models using the same

training data can interacts with a single graph storage, avoiding the

redundant graph storage. (ii) the TF-based operators layer, which
designs several basic operators of GNN algorithms inside the gen-

eral Tensorflow (TF) computation framework, namely Sampling,
Aggregating and Updating.

3.2 Real-time Recommendation with PlatoGL
In this part, we demonstrate how a real-time GNN-based recom-

mendation system with PlatoGL work in terms of real-time training

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA. Dandan Lin et al.

TF-based
Operators

General Tensorflow Sampling Aggregating Updating

Graph
Storage

Block-based
Storage of Edges

Indexing Structures
for Fast Sampling

Separate Storage
of Attributes

Caching Frequently-used
Attributes / Edges

GNN
Algorithms GraphSage GAT Newly-designed GNNAlgorithms

Figure 1: Overview of PlaotGL (the red dashed rectangle).

and online reference, with a workflow shown in Figure 2. At the

very bottom in Figure 2 is the logging service that captures users

behaviours (e.g., clicking a list of items) in the recommendation

scenarios. Above logging, the green part is our PlatoGL system

where the graph storage MKVGraph works round the clock, i.e.,
(1) dynamically updating the graph topology with the real-time

streaming data, and (2) efficiently answering the graph queries from

GNN models. Thus, due to such two abilities of PlatoGL system,

the real-time training and online inference become feasible.

Real-time Training. The top-left yellow part in Figure 2 shows

the workflow of real-time training process with the real-time data

stream. The streaming data provides labeled instances (i.e., ⟨𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚⟩
pairs) for training a real-time GNN model (along with the corre-

sponding features of users/items). Specifically, it performs the fol-

lowing three steps subsequently: (i) calling the TF-based operators

to sample neighbourhood of the users (or items) that model re-

quires; (ii) calling the TF-based operators to aggregate and update

the user (or item) embeddings; and (iii) starting the loss computa-

tions and model parameter updating process. In the meantime, the

constantly-updating model is deployed into services with very low

latency by exploiting Ekko [27].
Online Inference. the top-right yellow part in Figure 2 shows the

online inference process. Whenever a user request is posted, the

recommendation system firstly retrieves corresponding features of

the user and candidate items, and then sends ids of the user and

items along with their features to the deployed GNN recommen-

dation model for prediction. Note that online prediction of GNN

model would again involve the graph queries for retrieving the

neighbourhood or attributes. Since a recommendation model could

be used in different stages, i.e., recall stage or ranking stage, the

prediction output can be either an embedding vector that can be

used for nearest-neighbor-search in recall, or a scalar score that can
be directly used for ranking candidate items.

4 DETAILS OF PLATOGL SYSTEM
In this section, we elaborate the design of our PlatoGL system.

Specifically, Section 4.1 elaborates how PlatoGL stores the graph-

relevant data. Section 4.2 introduces how PlatoGL efficiently sam-

ples the data from the graph storage. Section 4.3 presents a caching

technique in PlatoGL. All these techniques make PlatoGL system

satisfy the four requirements for the real-time recommendation

tasks simultaneously.

4.1 Graph Storage: MKVGraph
4.1.1 Overview of MKVGraph. Existing deep graph learning sys-

tems adopt the graph partition methods to split the input graph

to multiple partitions with a minimal number of edges across par-

titions. However, it is difficult to do the dynamic graph update

in a latency of milliseconds since they need the graph partition

from scratch. To meet the in-milliseconds dynamically-updating

requirement, we propose a straightforward but effective storage

MKVGraph which abandons the graph partition method for dis-

tributing billion-scale graphs in different servers. To be specific,

MKVGraph stores the graph topology in the format of key-value
pairs based on a large-scale in-use cloud-based online-data storage

system (termed PaxosStore) in WeChat [42]. Note, the key-value
pairs stores the data as a tuple of ⟨ key, value ⟩ where key is glob-

ally unique and value is the result stored in the key. Such design

possesses three advantages: (i) PaxosStore system helps to put the

key-value pair data to different graph servers without considering

the graph partition; (ii) PaxosStore is equipped with a light-weight
storage replication mechanism for improving the storage stability;

and (iii) PaxosStore is cloud-based so that all the graph data be

available online. Besides, inMKVGraph, we also design a new block-
based storage as well as non-trivial methods for how to efficiently

insert/delete the data into/from the storage to guarantee efficient

dynamic graph updating (see Section 4.1.2). Finally,MKVGraph pro-

vides different storage for different types of information to reduce

the space cost (see Section 4.1.3).

4.1.2 Topology Storage. MKVGraph stores the graph topology in

the form of edges where a dangling node without neighbour can be

regarded as a special case. In literature, there are two solutions to

store edges as key-value pairs: either (1) one key-value pair stores

one edge (i.e., one neighbour of a source node), or (2) one key-value
pair store all neighbours of a source node. However, both solutions

have severe limitations. The first one suffers from huge memory

cost while the second one suffers from the query perspiration and

insert amplification issues when a hub node (with a large amount

of neighbours) is queried. Because it needs to visit all neighbours

of a node even if some neighbours are not concerned. To tackle

these issues, we design a block-based key-value storage. Its basic

idea is to partition the neighbours of node 𝑠 into multiple blocks of
fixed-size where each block contains a subset of neighbours of node

𝑠 . Hence, for hub nodes, its neighbours are in multiple blocks while

for small nodes (with a few neighbours) in a single block. Although

this method seems to be straightforward, how to efficiently process

the dynamic updates is non-trivial since we need to balance the

number of neighbours in each block (to be introduced later).

Figure 3 shows the block-based storage. The key is a tuple with

multiple-bytes. Specifically, for any node 𝑠 ∈ V and its neighbours

set N𝑠 , the key is K = ⟨𝑠, 𝐾𝑇𝑦𝑝𝑒, 𝑓𝐸 , 𝑏⟩ where 𝑠 is the unique iden-
tifier (ID) of source node, 𝐾𝑇𝑦𝑝𝑒 is the key type, 𝑓𝐸 is the edge

type in heterogeneous graphs, and 𝑏 is the ID of block. For easy

reference, 𝑏 is assigned by the largest ID of neighbour in the block.

Note that for edge storage, the key type is ‘edge’ for distinguish-
ing from the attribute storage or indexing storage. Besides, the

size of a block is application-specified. In our implementation for

WeChat recommendation services, we store at most 256 neighbours

in one block. The corresponding value is a block which contains

two parts: header which stores the overal information in this block,

and neighbour units which store each neighbour. To be specific, the

header stores the information of this block and it is a tuple with

PlatoGL: Effective and Scalable Deep Graph Learning System for Graph-enhanced Real-Time Recommendation CIKM ’22, October 17–21, 2022, Atlanta, GA, USA.

Users’ positive behaviours Logs

mkvGraph
(dynamic update)

Offline dataReal-time Streaming

PlatoGL

Real-time Training

Graph Query

GNN Model
User id

Item id

Customized
Tensorflow

Function Call

Train & Eval
User features

Item features

Online Inference

Latest
Model

Save Model

User Request

User id

User features

User Features
Processing

User embedding

Response

Item Ranking

Nearest
Neighbour
Search

PredictionFunction Call

Figure 2: Workflow of a PlatoGL-aided real-time recommendation system, where “Online Inference” shows the recall stage.
multiple-bytes, namely, ⟨𝐶𝑢𝑛𝑖𝑡 ,𝐶𝑤 , 𝑝𝑏⟩ where 𝐶𝑢𝑛𝑖𝑡 is the number

of neighbour units in this block, 𝐶𝑤 is the sum of weight held by

each neighbour in this block, and 𝑝𝑏 is a probabilistic value to sam-

ple this block (to be introduced in Section 4.2). For each neighbour

unit in the block, its form is designed as a tuple ⟨𝑡, 𝑝𝑡 ⟩ where 𝑡 is a
neighbour 𝑡 ∈ N𝑠 of source node 𝑠 and 𝑝𝑡 is a probabilistic value
for sampling node 𝑡 (to be elaborated in Section 4.2). For a dangling

node without neighbour, then its corresponding value is a block

containing the header only.

Insert operation.When a block to be inserted is not full, the inser-

tion is easy. However, the case becomes complicated when the block

is full since it requires to balance the trade-off between insertion

efficiency and graph query efficiency. If we directly add a new block

and insert the new neighbour there, the number of neighbours in

each block might be extremely imbalance where some blocks are

full while others have only few. Besides, we also consider not to in-

crease unlimitedly the number of blocks of a source node. To tackle

above issues, we propose an insertion mechanism by splitting the

blocks of a source node in a balanced format. Its basic idea is that

each block has the expected number of neighbours after splitting,

which avoids multiple block-splitting operations in the future. Al-

gorithm 1 describes the pseudocode of this mechanism where ℎ𝑖𝑔ℎ

and 𝑙𝑜𝑤 denotes the largest and smallest number of neighbours

allowed in the block, respectively. Each newly-produced block con-

tains only
ℎ𝑖𝑔ℎ+𝑙𝑜𝑤

2
neighbours except the last block whose number

of neighbours might be smaller than
ℎ𝑖𝑔ℎ+𝑙𝑜𝑤

2
.

Delete operation. In general, the delete is also easy. However,

when the number of neighbours in a block reaches the allowed

smallest value, the deletion is challenging since it needs to keep

all blocks balanced. To achieve this goal, we propose a deletion

mechanism by merging the current block with one of the nearest

blocks which contains fewer neighbours. Note that a block has at

most two nearest blocks. Algorithm 2 describes the pseudocode.

After merging, if the size of a new block exceeds the largest value,

then a splitting operation on this block will be performed.

4.1.3 Separate Attribute Storage. A heterogeneous graph in real-

world scenarios usually carries the attribute information on both

Algorithm 1: Insertion-Split

Input: ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤, current block 𝐵, the function𝐶𝑛𝑡 () to compute the

number of neighbours in a block

Output: A list of split blocks 𝑟𝑒𝑠 ;

1: 𝑁 ← (ℎ𝑖𝑔ℎ + 𝑙𝑜𝑤)/2; // the expected number of neighbours in a block

2: 𝑖 ← 0; // the index of block

3: 𝑟𝑒𝑠 ← ∅; // a vector of split blocks
4: 𝐵𝑠𝑝𝑙𝑖𝑡 ← 𝐵; // the block after removing neighbours.

5: while (𝐶𝑛𝑡 (𝐵𝑠𝑝𝑙𝑖𝑡) − 𝑖 · 𝑁) > ℎ𝑖𝑔ℎ do
6: 𝑏𝑒𝑔𝑖𝑛 ← 𝑖 · 𝑁 ; 𝑒𝑛𝑑 ← (𝑖 + 1) · 𝑁 ;

7: 𝑟𝑒𝑠 [𝑖] ← the neighbours in 𝐵 with index from 𝑏𝑒𝑔𝑖𝑛 to 𝑒𝑛𝑑 ;

8: 𝑖 ← 𝑖 + 1;
9: Update 𝐵𝑠𝑝𝑙𝑖𝑡 by removing the neighbours in 𝑟𝑒𝑠 [𝑖];
10: if 𝐶𝑛𝑡 (𝐵𝑠𝑝𝑙𝑖𝑡) > 𝑖 · 𝑁 then
11: 𝑟𝑒𝑠 [𝑖] ← the remaining neighbours in 𝐵;

12: return 𝑟𝑒𝑠 ;

Algorithm 2: Deletion-Merge

Input: ℎ𝑖𝑔ℎ, current block 𝐵, the function𝐶𝑛𝑡 () to compute the number

of neighbours in a block, the function𝐺𝑒𝑡𝑆𝑚𝑎𝑙𝑙𝑒𝑟𝑁𝑒𝑖𝑏𝑙𝑜𝑐𝑘 () to find

the block which is nearest to 𝐵 and contains fewer neighbours

Output: The new block 𝐵𝑛𝑒𝑤 ;

1: 𝐵𝑜𝑙𝑑 ← GetSmallerNeiblock(𝐵);

2: 𝐵𝑛𝑒𝑤 ← the neighbours in both 𝐵𝑜𝑙𝑑 and 𝐵;

3: if 𝐶𝑛𝑡 (𝐵𝑛𝑒𝑤) > ℎ𝑖𝑔ℎ then
4: return Insertion-Split(𝐵𝑛𝑒𝑤);

5: return 𝐵𝑛𝑒𝑤 ;

nodes and edges. Since the attributes on different nodes/edges al-

ways overlap, we store the attribute information separately from

the graph topology. The attributes of nodes/edges in GNN algo-

rithms can be classified into two types: (1) the sparse features, i.e.,
the corresponding vectors have only one non-zero value; (2) the

dense features, i.e., their vectors contain many non-zero values.

However, if the sparse features are stored in the same format as

the dense features, the resources must be wasted largely. Thus, we

design different storage format for the sparse and dense features.

Figure 4a shows the storage of sparse attribute for a node 𝑠 , which

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA. Dandan Lin et al.

𝑠! KType 𝑓" 𝑏! 𝐶#$%& 𝐶' 𝑝(!Header:

𝑡! 𝑝&"Unit:

… …

Key Value

𝑠% KType 𝑓" 𝑏%

𝑠$ KType 𝑓" 𝑏$

…

𝑡$# 𝑝&$#Unit:

…

…

Figure 3: The edges storage for each node 𝑠𝑖 in the graph
where 𝑖 ∈ [1, 𝑛] and 𝑛𝑠 is the number of neighbours of node 𝑠.

𝑠 KType 𝑓!

Key

…

Value

𝐼𝐷"! 𝑉𝐿"!Unit: 𝐼𝐷"" 𝑉𝐿""
𝐼𝐷"# 𝑉𝐿"#

(a) The storage of sparse attributes for a node 𝑠 where 𝐼𝐷𝑎𝑖 and and
𝑉𝐿𝑎 are the identifier and the non-zero value of attribute 𝑎.

𝑠 KType 𝑓!

Key

𝐼𝐷"
…

Value

𝐶#$%&Header:

𝑉𝐿' 𝑉𝐿(Unit: 𝑉𝐿%

(b) The storage of dense attributes for a node 𝑠 where 𝐶𝑢𝑛𝑖𝑡 is the
number of non-zero values.

Figure 4: The storage of node attributes in MKVGraph.

saves space cost by removing the zero values. Figure 4b plots the

storage of dense attributes for a node 𝑠 by storing all the non-zero

values of an attribute in one key-value format. In terms of edges,

the format is similar to that of nodes except that it contains the

information of edge type and target node. Due to space limit, we

skip the details here.

4.2 Sampling
For the weighted neighbour sampling, existing deep graph learn-

ing systems are not efficient since they need to retrieve all the

neighbours of a source node from different graph servers into mem-

ory and directly adopt a memory-expensive sampling methods

Alias [23, 35] which needs to construct a sampling table in memory

to store the probability of each neighbour. Besides, the efficient

weighted neighbour sampling becomes more challenging in our

case since our block-based storage format will partition the neigh-

bours of a node into several blocks even if all blocks are in the same

graph server. To handle these challenges, we use a two-step sam-

pling strategy as follows: (1) sampling a block w.r.t a source node,

and (2) sampling a neighbour from the sampled block. To avoid

the memory cost brought by Alias method, we adopt the Inverse
Transform Sampling (ITS) method [35] where no extra sampling

table is needed. On contrary, we can compute the probability of a

node/block to be sampled when we insert the node/block in our

graph storage MKVGraph, i.e., 𝑝𝑏 and 𝑝𝑡 introduced in Section 4.1.2,

reducing the memory cost largely.

ITS method. In the following, we present how to compute the

sampling probability of a node. Suppose a node 𝑠 has 𝑛𝑠 neighbours,

which constructs the set of edges as {𝑒0, 𝑒1, ..., 𝑒 |𝑛𝑠−1 | }. Specifically,
the sample probabilities are computed as the prefix sum based

𝐶(0) 𝐶(1) 𝐶(2) 𝐶(3)

𝑤!! 𝑤!! 𝑤!! 𝑤!!

𝑤!" 𝑤!" 𝑤!"

𝑤!# 𝑤!#

𝑤!$

0.20
0.30

0.43

0.63
0.53

s edge
Key

4 0.63 0.63Header:

0 0.20Unit:

Value

1Unit: 0.30

2Unit: 0.43 3Unit: 0.63

3X

(a) The key-value format storing the
neighbours of node 𝒔.

(b) Inverse Transform
Sampling for node 𝒔.

Figure 5: Running example of neighbour sampling.

𝑠 KType 𝑓!

Key
𝐶"#$% 𝐶&Header:

…

Value

𝑏' 𝑝(!Unit: 𝑏)"*+ 𝑝(#"$%

Figure 6: Indexing structure for sampling a neighbour of a
node 𝑠 where 𝐵𝑠 is the number of blocks for node 𝑠, 𝑏𝑖 id the
𝑖-th block of node 𝑠, and 𝑝𝑏𝑖 is the sampling probability of
block 𝑏𝑖 .
on the weight𝑤𝑒 on each edge 𝑒 , i.e., 𝐶 (𝑖) = ∑𝑖

𝑗=0𝑤𝑒 𝑗 for the 𝑖-th

neighbour. Next, the sampling is performed by generating a random

number 𝑟 in [0,𝐶 (𝑛𝑠 − 1)) and finding the smallest 𝑖 where𝐶 (𝑖) > 𝑟
using binary search, producing 𝑒𝑖 as the sampled edge. Figure 5

shows a running example when the neighbours of the source node

𝑠 are stored in only one block.

Example 1. Suppose that a source node 𝑠 has four neighbours
whose ID are 0, 1, 2, and 3, respectively. and the weights on edges
are supposed as follows: 𝑤𝑒0 = 0.20, 𝑤𝑒1 = 0.10, 𝑤𝑒2 = 0.13 and
𝑤𝑒3 = 0.20. Figure 5a shows the storage of these four edges linked
from node 𝑠 to each neighbour in MKVGraph. In the value, the header
includes the information of 4 neighbour units, 0.63 weights, and that
the probability of sampling this block is 0.63, respectively. In each
neighbour unit, it contains the ID of neighbour and the sampling
probability of current neighbour. For example, for node 0, its prob-
ability is 0.20, which is equal to the weight of itself; for node 1, its
sample probability is the sum of 𝑤𝑒0 and 𝑤𝑒1 , i.e., 0.30. Figure 5b
shows the sampling procedure. For each neighbour, its sample proba-
bility is plotted, namely,𝐶 (0),𝐶 (1),𝐶 (2),𝐶 (3). Next, a random value
𝑟 ∈ [0, 0.63) is selected. If 𝑟 = 0.53, then node 3 is selected as the
result since it is the smallest 𝑖 satisfying the inequality that 𝐶 (𝑖) > 𝑟 .

Indexing structure. Since node 𝑠 might have multiple blocks, we

propose an indexing structure to accelerate the process of sampling

a block for such nodes, as shown in Figure 6. Note that this indexing

structure is updated immediately the graph storage finishes the

dynamic insertion/deletion. Theorem 1 shows the time complexity

for sampling a neighbour from multiple blocks.

Theorem 1. The time complexity to sample the neighbourhood of
a source node 𝑠 is 𝑂 (log(𝑛𝑠)).

Proof. Let 𝑐 be the size of a block. Sampling a block takes

log(𝐵𝑠) time cost and sampling a neighbour in the sampled block

takes at most log(𝑐) time by using binary search. So, the total time

cost is (log(𝐵𝑠) + log(𝑐)). Since 𝐵𝑠 ≤ 𝑛𝑠 and 𝑐 ≤ 𝑛𝑠 , the total time

cost is at most 2 log(𝑛𝑠). □

PlatoGL: Effective and Scalable Deep Graph Learning System for Graph-enhanced Real-Time Recommendation CIKM ’22, October 17–21, 2022, Atlanta, GA, USA.

Datasets Relations (𝑆-𝑇) #𝑆 #𝑇 #edges #A

WeChat

(ours)

User-Live 340M 2.3M 2.5B 11

User-Article 535.7M 1.8M 3.8B 8

User-Video 706.3M 17.0M 9.0B 8

Live-Live 2.3M 2.3M 46M 4

User-User 1.0B 1.0B 8.6B 7

OGBN Product-Product 2.4M 2.4M 61.9M 100

Reddit Post-Community 233.0K 233.0K 114M 602

Twitch User-Streamer 15.5M 465K 124M 2

Table 1: Dataset statistics where 𝑆 (or𝑇) stands for the source
(or target) node of a relation, # denotes the set size and A
denotes the attributes. (𝐾 = 10

3,𝑀 = 10
6, 𝐵 = 10

9)
4.3 Caching Technique
Here, we propose a caching technique in PlatoGL, which reduces

the number of concurrent requests to MKVGraph, making the

graph storage stable and robust. For the heterogeneous graphs,

our caching technique contains two parts: (1) caching the neigh-

bourhood of a node, and (2) caching the attributes of a node. Since

both parts are similar in terms of technical contributions, we elabo-

rate here how to cache the attributes of a node.

The intuitive idea is to store the attributes of a node that are

frequently-used in a cache. For usage, if the attributes of a node

are not cached, a call to MKVGraph is needed. Two operations

are queried for caching: Cache-Set which inserts the values into

the caching and Cache-Get which retrieves the values from the

caching. In Cache-Set, we use two important parameters: one is

cache size, the other is cache expire time. The cache size limits the

number of attributes to be cached and the cache expire time indi-

cates whether or not the attributes in the cache should be updated.

In Cache-Get, for a query of attributes, if the expire time exceeds

the current timestamp, it will send the request to the MKVGraph

for the results. Otherwise, the attributes are directly returned.

5 EXPERIMENTS
In this section, we comprehensively evaluate the proposed PlatoGL

system in two aspects, i.e., deployment performance in a real-world

recommendation system and benchmark performance (w.r.t. its key
features) on collected datasets.

5.1 Experimental Setup
Evaluation Platform. We evaluate PlatoGL over a cluster with

20 servers, among which 8 are used for training a GNN recommen-

dation model and the rest for graph data storage. Servers used in

model training are equipped with 256GB DRAM and two 2.50GHz

Intel(R) Xeon(R) Platinum 8255C CPUs, each of which has 48 cores.

If not specified, each server is equipped with 6 training worker pro-

cesses and 3 parameter server process. As for the storage servers,

each is equipped with 192GB DRAM and one 2.60GHz AMD EPYC

7K62 90-core CPU. Note the replication factor is set as 3, thus there

are actually another 24 storage servers for backup.

Datasets. To evaluate the benchmark performance of PlatoGL,

we use one production dataset (termedWeChat) and three public

datasets, i.e., OGBN [1], Reddit [12] and Twitch [25], all of which are
large-scale. Table 1 shows the statistics. Notice that our production

datasetWeChat is retrieved from three content recommendation

scenarios in Wechat App (article, micro-video and live-streaming),

which contains a large-scale heterogeneous graph with 1.2 billion
nodes and 23.9 billion edges in total. Specifically, WeChat dataset
contains five kinds of relations (i.e., edges): (i) User-Live that a user
interacted with a live room in the live-streaming service; (ii) User-
Article that a user read or clicked an article in the official-account

service; (iii) User-Video that a user watched a video in the video-

sharing platform; (iv) Live-Live which is the relationship between

two live-rooms in the live-streaming service; and (v) User-User
which is the friendship between two users in WeChat.

Baselines of Live-streaming Recommendation. To evaluate

the deployment performance of PlatoGL in a real-world real-time

recommendation scenario, we adopt the live-streaming recommen-

dation service in WeChat which recommends a list of live-rooms

to users. We have two baselines: (1) a real-time two-tower DNN
model (termed DSSM) [36], which computes the user embeddings

and items embeddings separately; and (2) a Static GNN model with-

out real-time capability (termed MvDGAE) [43], which is effective

in the cold-start recommendation task where the new user has little

item interactions by regarding the cold-start as a missing data prob-

lem. Both base models have been already deployed in WeChat live-

streaming recommendation service. Besides, the hyper-parameters

of both base models are best-tuned. The GNN architecture could

be found in [43]. In the following, we introduce how to deploy

the static GNN model MvDGAE in live-streaming recommendation

scenario. This static model is incrementally trained and updated in

a daily manner. Specifically, for the model serving on 𝑑𝑎𝑦-𝑇 , the

training process uses the interaction logs on𝑑𝑎𝑦-(𝑇 −1) andWechat
graph data on 𝑑𝑎𝑦-(𝑇 − 2) (to avoid information leaking). Compara-

tively, after deploying our PlatoGL system, we can train a real-time
GNN model whose architecture is the same as the static GNNmodel.

Differently, real-time model is constantly trained by learning user

behavior from the up-to-the-minute data stream, as well as the

dynamically updatedWechat graph data stored in PlatoGL.

Model settings. For fair comparison, we use the same model archi-

tecture (i.e., MvDGAE) for both static and real-time GNN models.

Besides, both of them are set up with the same hyper-parameters.

Firstly, the embedding dimension of MvDGAE is set to 128, the

dropout rate is 0.2, the learning rate is 0.05, and the batch size is

1024. Secondly, the heterogeneous graph we used isWeChat dataset
in Table 1 where five relations are listed. We also leverage the meta-

paths extracted from the heterogeneous graphs to guide the GNN

to obtain aggregated embedding of users/items. From the perspec-

tive of user, we used the following meta-paths: (1) User-Live, (2)

User-Video, (3) User-Article, and (4) User-User-Live; From the per-

spective of item (i.e., Live in our scenario), we used the following

meta-paths: (1) Live-Live and (2) Live-User-Live. For each hop in

above meta-paths, we sample 50 neighbours for a node.

Metrics for Recommendation. To show the effectiveness of

real-time recommendation on our live-streaming services, three

real-world metrics are used: (1) user-click-through-rate (uctr), i.e.,
#𝑢𝑠𝑒𝑟𝑠−𝑤ℎ𝑜−𝑐𝑙𝑖𝑐𝑘𝑒𝑑
#𝑢𝑠𝑒𝑟−𝑤ℎ𝑜−𝑣𝑖𝑒𝑤𝑒𝑑

, which is the ratio of users who clicked at least

one recommended item over the total number of users that have

been recommended a list of items ; (2) pageview-click-through-

rate (pctr), i.e., #𝑐𝑙𝑖𝑐𝑘𝑠−𝑜𝑛−𝑖𝑡𝑒𝑚𝑠
#𝑣𝑖𝑒𝑤𝑠−𝑜 𝑓 −𝑖𝑡𝑒𝑚𝑠

, which is the ratio of the times

that users clicked on an item over the total number of times that

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA. Dandan Lin et al.

Model uctr pctr watch-time

real-time DNN +0.00% +0.00% +0.00%

Static GNN +0.305% +0.603% +1.108%

Real-time GNN +0.496% +1.369% +2.582%
Table 2: Online A/B test recommendation results.

(a) Accuracy (b) Latency and throughput

Figure 7: Performance results of PlatoGL-aided real-time
GNN recommendation (“q.”/“p.” denotes query/prediction).
the recommended items have been viewed to the users; (3) watch-

time [25], which records the dwelling time that users watched on

recommended items. For all metrics, the larger the values, the better

the recommendation model. Besides, we also adopt the commonly

used Recall@𝐾 as an evaluation metrics and set 𝐾 as 100.

Metrics for Efficiency. Three metrics are used to evaluate graph

updating and query efficiency of our PlatoGL system: (1) mean
time, which is the average computational time cost among 1000

operations; (2) p90 and (3) p99, which are the time cost at the 90-th

and 99-th percentile over 1000 operations, respectively.

5.2 Real-time Recommendation
In this section, we evaluate the effectiveness of newly deployed

real-time GNN-based recommendation model by comparing with

the in-use real-time DNNmodel and static GNNmodel. We conduct

an online A/B test over one week during April 2022, where nearly

15.5 million users are involved.

User Engagement. Due to commercial confidentiality and secrecy

agreement, we use the results of the real-time DNN model as the

base and only show the relative improvement rate of the static

GNN model and the real-time GNN model, respectively, as shown

in Table 2. The results demonstrate the effectiveness of training and

serving GNN model in real-time. Specifically, the real-time GNN
model achieves the best performance among three models in terms

of uctr, pctr and watch-time. Compared with the real-time DNN

model, the real-time GNN model has better performance by 2.582%
in terms of watch-time. Meanwhile, compared with the static GNN
model, the real-time one also achieve high watch-time by up to
1.474%. Notice that in industrial recommendation scenarios, gain of

1% is a substantial improvement [4, 34, 39]. Aided by PlatoGL that

dynamically updates the graph data and enables online learning of

GNN, the real-time model can use the newly graph topology for

training and take into account the user’s instant interests, i.e., solv-
ing concept-drift problem. Now, the real-time GNN model serves

the major online traffic in live-streaming recommendation.

Model Accuracy. Except the overall improvement in online evalu-

ation, we also investigate the model accuracy of two models. Specif-

ically, we firstly split the offline daily test data into each hour, and

(a) Reddit. (b) Wechat.

Figure 8: Time cost of dynamic graph update vs batch size.

then use the available models before a specific hour ℎ for predic-

tion and evaluation on the test data of ℎ𝑜𝑢𝑟 -ℎ, i.e., the static model

trained on data of the last day and the real-timemodel updated until

ℎ𝑜𝑢𝑟 -ℎ. As observed from Figure 7a that shows the recommenda-

tion results in one day w.r.t. Recall@100 metric, the real-time GNN
model achieves better performance by up to 4 times. Note that
the offline improvement is much higher than that in the online A/B

test due to two reasons: (1) the online evaluation contains a ranking
stage after the recall stage where the ranking stage would alter the

prediction score of items (which is widely used in industry); and

(2) the online evaluation used different metrics, i.e., uctr and pctr

are more sophisticated than Recall@100. From the results, we can

observe that performance of the real-time model is rather steady

across the whole day (blue), while that of the static model is rela-

tively higher in peak hours of evening (orange). As most of training

data is generated during these hours, the static model might be bi-

ased towards users’ behaviors in these periods, while the real-time
model can always capture up-to-the-minute user preference during

a whole day.

System Performance. Figure 7b demonstrates PlatoGL’s system

throughput QPS (i.e., the number of inference requests) and the

mean and tail latency (𝑝99) over time, respectively. For comparison,

we provide the results of graph query latency (blue/grey) and model

prediction latency that contains query-related latency (orange). As

illustrated by the curve of QPS, during the correspond peak in the

evening, model prediction latency increases from 30𝑚𝑠 to 34𝑚𝑠 ,

while graph query latency still maintains at a steady and low level,

around 5𝑚𝑠 . This indicates that the deployed PlatoGL successfully

handles the peak traffic and helps the whole recommendation sys-

tem respond quickly to user requests.

5.3 Evaluation of Key Features in PlatoGL
5.3.1 Dynamic Updates. To evaluate the performance of inserting

the new edges to the graph storage, we test the insert time cost by

varying the batch size which is the number of edges to be inserted

each time. For each batch-level insertion, we conduct 1000 times.

From Figure 8, we can observe that even with 2048 edges, the graph

could be updated by taking less than 80 millisecond, satisfying the

in-millisecond dynamically-updating requirement. Besides, on the

largest graph WeChat, when 256 edges are newly-inserted, it takes

only 24 milliseconds. It is due to the power of our efficient inser-

tion mechanism and block-based key-value store (which updates

only several blocks of a source node instead of all neighbours).

5.3.2 Sampling. To evaluate the performance of neighbour sam-

pling, we test the query time cost by varying the batch size. For

each node in the batch, we sampled 50 neighbours. Figure 9 shows

PlatoGL: Effective and Scalable Deep Graph Learning System for Graph-enhanced Real-Time Recommendation CIKM ’22, October 17–21, 2022, Atlanta, GA, USA.

(a) WeChat. (b) Reddit.

(c) Twitch. (d) Theory performance.
Figure 9: Time cost of neighbour sampling.

(a) WeChat. (b) OGBN.

Figure 10: Effect of caching technique: Hit Rate / Mean Query
Time vs Cache Size where expire time is fixed as 600s.
the query time cost of sampling the neighbours for a source node

on different datasets. The results show that even with 2048 source

nodes, our system can answer the queries by taking less than 40
milliseconds in terms of mean query time on all datasets. Specif-

ically, in WeChat dataset, in terms of mean query time, PlatoGL

takes only 10 and 22 milliseconds to sample the neighbours of

1024 and 2048 source nodes, respectively, which is very efficient for

real-time training and online inference. It is because our multi-block

neighbour sampling strategy can do the hierarchical sampling on

the neighbours of a node without touching all blocks in the graph

storage. In addition, to verify that our experimental results are

consistent with the theoretical time complexity (i.e., Theorem 1),

we conduct an experiment by testing the sampling time cost w.r.t

the neighbour size of a source node (which are synthetic). The

neighbour size is varied from 128 to 524,288. Figure 9d shows the

results where the grey dotted line plots the theory result (i.e., linear
to x-axis), and the blue and orange ones show the experimental

results. We can see that the experimental results are always smaller

than the theoretical one, which is consistent with theory.

5.3.3 Caching. Here, we evaluate the effectiveness of the caching
technique. We cache the attributes of nodes in the graph, and con-

sider a request to return the attribute of a node with caches. We

randomly sample 1000 source nodes from graph. Two metrics are

used: (1) hit rate, which is the ratio of the requests that can be found

in cache over the total number of requests and (2) mean query time,
which is the average time cost.

(a) WeChat. (b) OGBN.

Figure 11: Effect of caching technique: Hit Rate / Mean Query
Time vs Cache Expire Time where cache size is fixed as 500K.

Figure 10 plots the results by varying the cache size on WeChat

and OGBN datasets. The results demonstrate that the hit rate in-

creases as the cache size increases. For the largest dataset (i.e.,
WeChat), the hit rate is nearly 100% even though the cache cached

20,000 nodes only. Thus, our caching technique can consume less

memory cost without sacrificing the accuracy. Figure 11 shows the

results by varying the cache expire time. When the expire time

increases from 10 seconds to 30 seconds, the hit rate (query time

resp.) increases (decreases resp.) as the expire time increases. It is

because the longer the expire time, the more information could

be found in cache. However, the hit rate and query time become

steady when the expire time set over 30 seconds. It indicates that

we could set a proper expire time for caching.

6 OTHER RELATEDWORK
In this section, we review the literature about GNN approaches for

recommendation. Note that in terms of the literature about existing

deep graph learning systems, we have already discussed them in

Section 2.2. The GNN approches are various, some of which are

designed for the homogeneous graphs while others for the hetero-

geneous ones. In terms of the homogeneous graphs, GCN [20] and

GraphSage [12] can be considered as the basic GNN algorithms by

using the convolutional operations. To be specific, GCN [20] in-

corporates neighbors’ feature representations using convolutional

operations while GraphSage [12] provides an inductive approach to

combine structural information with node features. For the hetero-

geneous graph with multiple types of vertices and/or edges, Meta-

path2Vec [6] and HERec [26] formalize meta-path based random-

walks to construct the heterogeneous neighborhood of a node and

then leverage skip-gram models to perform node embeddings. Note

that in this paper, we do not focus on in the perspective of algorithm

design, e.g., the GNN approaches for the dynamic graphs, but focus

on the general deep graph learning system. Due to the space limit,

please refer to the surveys [2, 9, 11–13, 31, 44] for more literature.

7 CONCLUSION
In this paper, we design the first industrial deep graph learning

platform called PlatoGL that can support real-time GNN-based rec-

ommendation tasks. With sophisticated designs in terms of graph

topology storage, attributes storage, neighbourhood sampling and

caching, comprehensive experiments on both deployment perfor-

mance and benchmark performance (w.r.t. its key features) demon-

strate its effectiveness and scalability for real-time recommendation

scenarios.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA. Dandan Lin et al.

REFERENCES
[1] K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal, Y. Prabhu, and M. Varma. 2016.

The extreme classification repository: Multi-label datasets and code. http:

//manikvarma.org/downloads/XC/XMLRepository.html

[2] H. Cai, V. W Zheng, and K. C.-C. Chang. 2018. A comprehensive survey of

graph embedding: Problems, techniques, and applications. TKDE 30, 9 (2018),

1616–1637.

[3] B. Chandramouli, J. J. Levandoski, A. Eldawy, and M. F. Mokbel. 2011. Streamrec:

a real-time recommender system. In SIGMOD. 1243–1246.
[4] M. Chen, A. Beutel, P. Covington, S. Jain, F. Belletti, and E. H Chi. 2019. Top-k

off-policy correction for a REINFORCE recommender system. InWSDM. 456–464.

[5] P. Covington, J. Adams, and E. Sargin. 2016. Deep neural networks for youtube

recommendations. In Recsys. 191–198.
[6] Y. Dong, N. V Chawla, and A. Swami. 2017. metapath2vec: Scalable representation

learning for heterogeneous networks. In SIGKDD. 135–144.
[7] S. Fan, J. Zhu, X. Han, C. Shi, L. Hu, B. Ma, and Y. Li. 2019. Metapath-guided

heterogeneous graph neural network for intent recommendation. In KDD. 2478–
2486.

[8] I. Gama, J.and Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia. 2014. A

survey on concept drift adaptation. ACM computing surveys (CSUR) 46, 4 (2014),
1–37.

[9] C. Gao, Y. Zheng, N. Li, Y. Li, Y. Qin, J. Piao, Y. Quan, J. Chang, D. Jin, X. He, et al.

2021. Graph neural networks for recommender systems: Challenges, methods,

and directions. arXiv preprint (2021).
[10] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. 2017. Neural

message passing for Quantum chemistry. In ICML. 1263–1272.
[11] P. Goyal and E. Ferrara. 2018. Graph embedding techniques, applications, and

performance: A survey. Knowledge-Based Systems 151 (2018), 78–94.
[12] W. L. Hamilton, R. Ying, and J. Leskovec. 2017. Inductive representation learning

on large graphs. In NIPS. 1025–1035.
[13] W. L Hamilton, R. Ying, and J. Leskovec. 2017. Representation learning on graphs:

Methods and applications. arXiv. (2017).
[14] X. He, K. Deng, X.Wang, Y. Li, Y. Zhang, andM.Wang. 2020. Lightgcn: Simplifying

and powering graph convolution network for recommendation. In SIGIR. 639–
648.

[15] Y. Huang, B. Cui, W. Zhang, J. Jiang, and Y. Xu. 2015. Tencentrec: Real-time

stream recommendation in practice. In SIGMOD. 227–238.
[16] Z. Huang, M. Tao, and B. Zhang. 2021. Deep Inclusion Relation-aware Network

for User Response Prediction at Fliggy. In KDD. 3059–3067.
[17] Alibaba Inc. 2020. Euler Framework for Deep Graph Learning. https://github.

com/alibaba/euler.

[18] Tencent Inc. 2019. PlatoGraph Framework for Graph Algorithms. https://github.

com/Tencent/plato.

[19] G. Karypis and V. Kumar. 1995. METIS–unstructured graph partitioning and

sparse matrix ordering system, version 2.0. (1995).

[20] T. N Kipf and M. Welling. 2017. Semi-supervised classification with graph convo-

lutional networks. ICLR (2017).

[21] C. Lei, Y. Liu, L. Zhang, G. Wang, H. Tang, H. Li, and C. Miao. 2021. SEMI: A

Sequential Multi-Modal Information Transfer Network for E-Commerce Micro-

Video Recommendations. In KDD. 3161–3171.
[22] A. Lerer, L. Wu, J. Shen, T. Lacroix, L. Wehrstedt, A. Bose, and A. Peysakhovich.

2019. Pytorch-biggraph: A large scale graph embedding system. Proceedings of
Machine Learning and Systems 1 (2019), 120–131.

[23] W. Lin. 2019. Distributed algorithms for fully personalized pagerank on large

graphs. In WWW. 1084–1094.

[24] D. Liu, J. Lian, Z. Liu, X. Wang, G. Sun, and X. Xie. 2021. Reinforced Anchor

Knowledge Graph Generation for News Recommendation Reasoning. In KDD.
1055–1065.

[25] J. Rappaz, J. McAuley, and K. Aberer. 2021. Recommendation on Live-Streaming

Platforms: Dynamic Availability and Repeat Consumption. In Recsys. 390–399.
[26] C. Shi, B. Hu, W. X. Zhao, and S Y. Philip. 2018. Heterogeneous information

network embedding for recommendation. TKDE 31, 2 (2018), 357–370.

[27] C. Sima, Y. Fu, M.-K. Sit, L. Guo, X. Gong, F. Lin, J. Wu, Y. Li, H. Rong, P.-L. Aublin,

et al. 2022. Ekko: A {Large-Scale} Deep Learning Recommender System with

{Low-Latency} Model Update. In OSDI. 821–839.
[28] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. 2018.

Graph Attention Networks. In ICLR.
[29] M. Wang, Y. Lin, G. Lin, K. Yang, and X. Wu. 2020. M2GRL: A multi-task multi-

view graph representation learning framework for web-scale recommender sys-

tems. In KDD. 2349–2358.
[30] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua. 2019. Neural graph collabora-

tive filtering. In SIGIR. 165–174.
[31] S.Wu, F. Sun,W. Zhang, and B. Cui. 2020. Graph neural networks in recommender

systems: a survey. arXiv preprint (2020).
[32] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. 2020. A comprehensive

survey on graph neural networks. TNNLS 32, 1 (2020), 4–24.
[33] M. Xie, K. Ren, Y. Lu, G. Yang, Q. Xu, B. Wu, J. Lin, H. Ao, W. Xu, and J. Shu.

2020. Kraken: memory-efficient continual learning for large-scale real-time

recommendations. In SC. 1–17.
[34] J. Yang, X. Yi, D. Cheng, L. Hong, Y. Li, S. Wang, T. Xu, and E. H Chi. 2020. Mixed

negative sampling for learning two-tower neural networks in recommendations.

In Companion Proceedings of the Web Conference 2020. 441–447.
[35] K. Yang, M. Zhang, K. Chen, X. Ma, Y. Bai, and Y. Jiang. 2019. Knightking: a fast

distributed graph random walk engine. In SOSP. 524–537.
[36] X. Yi, J. Yang, L. Hong, D. Z. Cheng, L. Heldt, A. Kumthekar, Z. Zhao, L. Wei, and

E. H Chi. 2019. Sampling-bias-corrected neural modeling for large corpus item

recommendations. In Recsys. 269–277.
[37] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L Hamilton, and J. Leskovec. 2018.

Graph convolutional neural networks for web-scale recommender systems. In

KDD. 974–983.
[38] S. Yu, Z. Jiang, D. Chen, S. Feng, D. Li, Q. Liu, and J. Yi. 2021. Leveraging Tripartite

Interaction Information from Live Stream E-Commerce for Improving Product

Recommendation. In KDD. 3886–3894.
[39] Z. Zhao, L. Hong, L. Wei, J. Chen, A. Nath, S. Andrews, A. Kumthekar, M. Sathi-

amoorthy, Xinyang Yi, and E. H Chi. 2019. Recommending what video to watch

next: a multitask ranking system. In Recsys. 43–51.
[40] D. Zheng, C. Ma, M. Wang, J. Zhou, Q. Su, X. Song, Q. Gan, Z. Zhang, and G.

Karypis. 2020. Distdgl: distributed graph neural network training for billion-scale

graphs. In IEEE IA3.
[41] G. Zheng, F. Zhang, Z. Zheng, Y. Xiang, N. J. Yuan, X. Xie, and Z. Li. 2018. DRN:

A deep reinforcement learning framework for news recommendation. In WWW.

167–176.

[42] J. Zheng, Q. Lin, J. Xu, C. Wei, C. Zeng, P. Yang, and Y. Zhang. 2017. PaxosStore:

high-availability storage made practical in WeChat. VLDB Endowment (2017).
[43] J. Zheng, Q. Ma, H. Gu, and Z. Zheng. 2021. Multi-view Denoising Graph Auto-

Encoders on Heterogeneous Information Networks for Cold-start Recommenda-

tion. In KDD. 2338–2348.
[44] R. Zhu, K. Zhao, H. Yang, W. Lin, C. Zhou, B. Ai, Y. Li, and J. Zhou. 2019. AliGraph:

a comprehensive graph neural network platform. VLDB Endowment (2019).

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://github.com/alibaba/euler
https://github.com/alibaba/euler
https://github.com/Tencent/plato
https://github.com/Tencent/plato

	Abstract
	1 Introduction
	2 Background and Existing Solutions
	2.1 Background
	2.2 Existing Deep Graph Learning Frameworks

	3 System Overview
	3.1 Architecture of PlatoGL
	3.2 Real-time Recommendation with PlatoGL

	4 Details of PlatoGL System
	4.1 Graph Storage: MKVGraph
	4.2 Sampling
	4.3 Caching Technique

	5 Experiments
	5.1 Experimental Setup
	5.2 Real-time Recommendation
	5.3 Evaluation of Key Features in PlatoGL

	6 Other Related Work
	7 Conclusion
	References

