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ABSTRACT
Mobile devices, especially smartphones, can support rich functions
and have developed into indispensable tools in daily life. With the
rise of generative AI services, smartphones can potentially trans-
form into personalized assistants, anticipating user needs and sched-
uling services accordingly. Predicting user intents on smartphones,
and reflecting anticipated activities based on past interactions and
context, remains a pivotal step towards this vision. Existing research
predominantly focuses on specific domains, neglecting the chal-
lenge of modeling diverse event sequences across dynamic contexts.
Leveraging pre-trained language models (PLMs) offers a promis-
ing avenue, yet adapting PLMs to on-device user intent prediction
presents significant challenges. To address these challenges, we
propose PITuning, a Population-to-Individual Tuning framework.
PITuning enhances common pattern extraction through dynamic
event-to-intent transition modeling and addresses long-tailed pref-
erences via adaptive unlearning strategies. Experimental results
on real-world datasets demonstrate PITuning’s superior intent pre-
diction performance, highlighting its ability to capture long-tailed
preferences and its practicality for on-device prediction scenarios.

CCS CONCEPTS
• Information systems→ Recommender systems; Personal-
ization; • Computing methodologies→ Machine learning.
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1 INTRODUCTION
Nowadays mobile devices, especially smartphones, have become a
major object that individuals interact with in their daily lives. For
example, users use their phones to monitor sleep, wake themselves
up, hail a car for commuting, watch short videos in rest time, pay
money at restaurants, etc., across most activities in one day. Empow-
ered by the recent booming of generative artificial intelligence (AI)
services (e.g., chatGPT [3]), the smartphone can further evolve into
a personalized assistant that can perceive user needs in advance and
timely schedule corresponding services. The key pathway toward
this future is the capability to predict smartphone users’ intents,
which refers to what activity they intend to do, based on their
previous action sequences and contextual information [16, 17].

Existing works mostly focus on predicting user intents within
one specific domain, for example, purchase intent in online plat-
forms [15, 18, 26, 43], search intent in search engines [37, 48],
pedestrian intention for robots or autonomous vehicles [1, 34].
To characterize complex dependencies between intent and context,
they leverage specific network architectures including feature in-
teraction networks [27, 41] or graph neural networks [15, 43]. In
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contrast, predicting users’ daily activity intent when using smart-
phones requires modeling diverse event sequences across dynamic
changing contexts, which generally rely on large-scale behavioral
data. However, with increasing concerns about data privacy leakage
and real-time serving latency, real-world prediction applications
usually adopt on-device model training and deployment, which
adds constraints on data scales and exacerbates the data lacking
issue.

Pretrained language models (PLMs) [3, 29], on the other hand,
provide a promising solution owing to their encoded knowledge
and commonsense reasoning capability acquired through exten-
sive training on diverse datasets. For example, if someone talks
about going jogging every morning, a PLM can infer that the in-
dividual values fitness, which might predict other health-related
behaviors. In this regard, PLMs have been successfully adapted
to other cross-domain tasks related to human behaviors, like rec-
ommender systems [2, 7, 45] and mobility trajectories [11, 20, 38].
Therefore, we propose to leverage PLMs for on-device user intent
prediction, i.e., adapting P LMs from the language domain into
the daily human behavior domain, which is non-trivial due to the
following three challenges:

• Population-level common behavioral patterns are hard
to extract from the noisy aggregation of diverse event
sequences. Predicting user intent based on their previous
action events requires the characterization of common tran-
sition patterns from event sequences to specific intent. How-
ever, not all events correlate to the generation of intent, i.e.,
information redundancy, and this changes with intent type.
Although transformer-based architecture has proven its use-
fulness in the sequential modeling of user events [30, 36], it
remains questionable whether common event-intent transi-
tion patterns shared among the population can be extracted
from the above noisy and redundant event sequences.
• Individual-level long-tailed preferences are hard to
capture by large LMs. Besides common behavioral patterns,
individual preference also matters a lot in predicting user
intent. For example, compared with public transport, car-
hailing might be a long-tailed choice globally, while favored
by a few users. However, long-tailed individual preferences
are prone to be overtaken by population-level patterns that
dominate the population’s behavioral data. This inevitably
leads to a biased model favoring those intents with a high
proportion after tuning a PLM. Existing works on aligning
LM for behavioral modeling [35] tend to construct tuning
tasks analogous to their counterparts in NLP like prompt
tuning [7] or instruction tuning [2, 53]. Without a specific
design, however, it is generally difficult to alleviate the above
bias problem of the long-tailed preferences given rather lim-
ited individual behavioral data.
• Designing a practical LM tuning framework to sup-
port on-device learning and inference of user intent is
difficult. Existing works have proposed a few cloud-device
collaboration approaches to achieve on-device prediction or
recommendation, mainly targeting device-side personaliza-
tion. Differently, the expected tuning framework is tailored
for pretrained LMs and should be able to leverage large-scale

population-level data efficiently and limited individual-level
data effectively.

In this paper, we propose a novel Population-to-Individual Tun-
ing framework (named PITuning) for adapting pretrained LM to on-
device user intent prediction. The core of the PITuning framework
is the population-level behavioral data tuning on a pretrained LM
that produces a powerful but gigantic global predictor at the cloud
side, and the individual-level tuning that adaptively distills this pre-
dictor into a lightweight user-specific predictor at the device side.
To solve the first challenge of extracting common behavioral pat-
terns at the population level, PITuning is designed to better capture
dynamic event-to-intent transition patterns, i.e., event-wise infor-
mation enhancement by an auxiliary event-reconstruction loss and
intent-wise attentive modeling on top of pretrained transformer.
As for the second challenge of capturing long-tailed preference
distribution at the individual level, PITuning is equipped with a
novel unlearning strategy for each user that first identifies a set of
intents, which are under-represented in population data but empha-
sizes unique preferences of this user and then remove the model’s
memorization on these intents. This further guarantees effectively
capturing long-tailed preference by tuning on individual behavioral
data at the device side. To summarize, our main contributions are
as follows.

• We provide a novel angle of adapting PLMs into the human
behavioral domain and further resolve the longstanding issue
of capturing long-tailed user preferences.
• We design a population-to-individual tuning framework for
PLM that extracts common behavioral patterns and captures
individual unique patterns simultaneously, compatible with
on-device prediction scenarios.
• Experiment results on two real-world datasets demonstrate
the superiority of our PITuning over state-of-the-art base-
lines in terms of intent prediction performance. Notably, the
outperformance regarding the macroscopic average of pre-
cision and recall is 24%-37%, underscoring its capability of
capturing long-tailed preference for individuals. Ablation
studies and in-depth analysis further support the rationality
behind specific method design, as well as the high practical-
ity in terms of efficiency and scalability.

2 PRELIMINARY
2.1 Data Analysis
We begin with a comprehensive data analysis. Initially, we ran-
domly sample 1,000 users to calculate their intent distribution. Sub-
sequently, we employ the KMeans method [9] to cluster users’
intent distribution and visualize the result using t-SNE [39], as il-
lustrated in Figure 1. Additionally, we present the population-level
intent distribution alongside the distribution for each cluster. From
the figure, we observe that intent distribution varies significantly
between clusters. This discrepancy undoubtedly complicates the
task of user-personalized modeling.

2.2 Problem Statement
Now we give a formal definition of our research problem:
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Clustering results of user intent distribution Population-level
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Figure 1: Distribution gap exists between population-level
preference and individual-level preference (by comparing
frequency histogram of user intent).

Figure 2: The workflow of PITuning framework.

Problem1 (User intent prediction). The behavior corresponding
to the 𝑖-th user intention can be represented as 𝑥𝑖 = (𝑢𝑖 , 𝑙𝑖 , 𝑡𝑖 , 𝑒𝑖 ),
indicating that a specific event 𝑒𝑖 takes place involving user 𝑢𝑖 at
location 𝑙𝑖 during time slot 𝑡𝑖 . Here, 𝑢𝑖 , 𝑙𝑖 , 𝑡𝑖 , and 𝑒𝑖 refer to the
user ID, location ID, time slot ID, and event ID, respectively. We
use U,L,T , E to denote the sets of users, locations, time slots,
and events, with their respective sizes given by 𝑁𝑈 , 𝑁𝐿, 𝑁𝑇 , and
𝑁𝐸 . As outlined in the introduction, each user exhibits a particular
intention𝑦𝑖 associated with an event-related behavior 𝑥𝑖 . We define
I as the set of possible intentions, with its size represented by 𝑁𝐼 .
The event encompasses specific instances involving users, such as
the use of app services, spatial trajectory occurrences, and system-
related events. The intent captures the underlying goal, purpose,
or objective driving these events, effectively grouping them into
categories. Therefore, the quantity of distinct intents, denoted by
𝑁𝐼 , is typically less than the total count of events, represented by
𝑁𝐸 .

User intent prediction aims to forecast future user intent based
on its past 𝐼 event series, which can be formed as,

𝑦𝑡 = 𝑓 (𝑥𝑡−𝐼 , 𝑥𝑡−𝐼+1, ..., 𝑥𝑡−1) (1)

3 METHOD
3.1 Framework Overview
We introduce our PITuning framework for adapting PLM to on-
device intent prediction, as depicted in Figure 2. On the cloud side,

we utilize aggregated behavioral data collected from a population
to fine-tune a global predictor, capturing population-level common
behavioral patterns. Subsequently, we perform model distillation to
obtain a lightweight predictor suitable for on-device deployment.
On the device side, before further fine-tuning on individual data,
we incorporate a novel unlearning strategy to identify and mitigate
biases resulting from uneven learning of intents during population-
level tuning. Finally, after two stages of PITuning, we attain a
lightweight yet personalized model capable of accurate and efficient
intent prediction on the device.

3.2 Population-level Tuning
We leverage population data alongside a PLM to model common
behavioral patterns. The architecture of our model is depicted in
Figure 3(a), where we integrate parameters from GPT2 [29], an NLP
pre-trained transformer model. Additionally, to enhance learning
of event-to-intent transition patterns shared among the popula-
tion, we introduce a masked event-reconstruction loss at the event
level and utilize intent-wise attentive modeling atop the pretrained
transformer. Finally, we distill a lightweight predictor under the
guidance of the global predictor to meet deployment requirements
on the device.

3.2.1 Embedding layer. Since we apply the NLP pre-trained model
to a new modality, We create four embedding layers to get the
location embedding E𝑙 ∈ R𝐼×𝑑 , weekday embedding E𝑤 ∈ R𝐼×𝑑 ,
time-slot embedding E𝑡 ∈ R𝐼×𝑑 and event embedding E𝑒 ∈ R𝐼×𝑑
respectively, where 𝑑 denotes the embedding size.

3.2.2 Transformer block. In the global predictor, we employ the
GPT2 model as the foundation for our transformer blocks. Trained
on various web data, the GPT2 model is imbued with extensive
knowledge, common sense, and fundamental principles, showing a
robust capacity for generalization. We concat the location embed-
ding, weekday embedding, time-slot embedding, and event embed-
ding and put them into transformer blocks to obtain an implicit
representation of the historical event sequence 𝐻𝑡 ∈ R𝐼×4𝑑 , which
can be formed as,

H𝑡 = GPT2(concat(E𝑙 ,E𝑤 ,E𝑡 ,E𝑒 )) . (2)

3.2.3 Intent-aware attentive modeling. Notice that different intents
exhibit preferences for varying lengths of historical data. To address
this, we have developed a novel Intention Attention Network (IAT)
that introduces a novel designed local activation unit to adaptively
weigh sequences of historical events, accommodating the unique
requirements of each intent. We create the learnable intent embed-
ding matrix E𝑖 ∈ R𝑁𝐼 ×4𝑑 and feed it into IAT together with the
history matrix.

Specifically, we apply activation units to the features derived
from users’ historical behaviors. These units function through a
weighted sum pooling mechanism to adaptively compute the rep-
resentation of intents, as detailed in Equation 3,

H𝑤 = IAT(E𝑖 ,H𝑡 ) =
𝐼∑︁
𝑗=0

𝑎(ℎ 𝑗 , 𝐸𝑖 )ℎ 𝑗 =
𝐼∑︁
𝑗=0

𝑤 𝑗ℎ 𝑗 . (3)

Through this approach,H𝑤 changes across different intents, where
𝑎(·) represents a feed-forward network that yields activationweights.
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Figure 3: (a) The intent predictor architecture. (b) The masked event reconstruction in the population-level tuning. (c) The
adaptive unlearning in the individual-level tuning.

These weights are then combined through an outer product opera-
tion and integrated into the subsequent network layers to enhance
relevance modeling.

Next, we use a Multilayer Perception (MLP) to be the prediction
layer, which can be formed as,

m = 𝑓 (H𝑤) = W2 (𝜎 (W1H𝑤 + 𝑏1)) + 𝑏2, (4)

whereW, 𝑏 are the trainable weight matrix and the bias matrix. The
output of the MLP is the predicted intent distribution.

3.2.4 Event-reconstruction auxiliary loss. To improve the model’s
proficiency in accurately capturing event-to-intent transition pat-
terns, we employ a masked event reconstruction loss [33], which
reconstructs the original event sequences based on the given par-
tially observed signals, as shown in Figure 3(b). Specifically, we
randomly mask the event embedding 𝐸𝑚 , and input them into the
GPT2 model according to 2. Next, we employ an MLP to be the
event reconstruction layer to reconstruct the event sequence. The
cross-entropy loss function is then used to assist model training.
The loss function in population-level tuning can be formed as,

L𝑝𝑜𝑝 = L𝑀 + L𝐶𝐸 (m, 𝐿) = L𝐶𝐸 (𝑒𝑖 , 𝑒𝑚) + L𝐶𝐸 (m, 𝐿), (5)

where 𝑒𝑖 denotes the original event sequence, 𝑒𝑚 denotes the pre-
dicted event sequence, and 𝐿 denotes the ground truth of input.

3.2.5 Model distilling. To meet the requirement of deployment, we
utilize the model distilling method, which is to train a smaller model
(called the student model) to imitate the behavior of a larger model
( called the teacher model). The details of the model distillation
process are shown in Appendix A.

To guide the training of the student model, we design the soft
loss for the soft targets, which is the Kullback-Leibler Divergence
between the logit output of the teacher and the student network.

Meanwhile, we also utilize the cross-entropy loss to ensure the
student model learns the correct classifications. The loss function
can be formed as follows,

L𝑠𝑜 𝑓 𝑡 = KL
(
M𝑠

𝜖
,
M𝑡

𝜖

)
, Lℎ𝑎𝑟𝑑 = L𝐶𝐸 (M𝑠 , 𝐿) (6)

L𝐷 = 𝛼L𝑠𝑜 𝑓 𝑡 + (1 − 𝛼) Lℎ𝑎𝑟𝑑 (7)

where M𝑡 ,M𝑠 denotes the logits output of the teacher and student
model respectively, and 𝜖 is a hyper-parameter, which means the
temperature to smooth the probability distribution, while 𝛼 is a
hyper-parameter to balance the importance of two loss functions.
By doing so, the student model learns both the fine-grained informa-
tion from the teacher model’s output and the essential classification
ability, resulting in a smaller, more efficient model that retains much
of the teacher model’s predictive power. Subsequently, the student
model is deployed on the device side.

3.3 Individual-level Tuning
In the individual-level tuning, we harness personalized user data
to fine-tune the model, enabling it to adapt to and learn individual
preferences. However, the key challenge is that there may be a
significant difference between population intent distribution and
individual intent distribution (as shown in our previous data anal-
ysis in Figure 1), leading to a bias, particularly for some long-tail
intents during the population tuning stage. Therefore we first de-
sign an adaptive unlearning strategy to help the model disregard
these biases. After that, we can finetune a personalized model that
is both accurate and efficient.

3.3.1 Adaptive unlearning on biased intents. Unlearning involves
intentionally disregarding or ignoring specific data or patterns in a
trained neural network [4]. Initially, we decide whether each user’s
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Algorithm 1 Population-to-Individual Tuning Framework

Population-level tuning
Require: Population data 𝑥𝑖 = (𝑙𝑖 ,𝑤𝑖 , 𝑡𝑖 , 𝑒𝑖 )
Ensure: The lightweight predictor𝑀𝑙
1: E𝑙 ,E𝑤,E𝑡 ,E𝑒 ← 𝑒𝑚𝑏 (𝑙𝑖 ), 𝑒𝑚𝑏 (𝑤𝑖 ), 𝑒𝑚𝑏 (𝑡𝑖 ), 𝑒𝑚𝑏 (𝑒𝑖 ) ⊲

Input Embedding.
2: H𝑡 = GPT2(concat(E𝑙 ,E𝑤,E𝑡 ,E𝑒 ))
3: M = MLP(IAT(H𝑡 )) ⊲ Population Intent Prediction.
4: E𝑚 = Mask(E𝑒 ) ⊲ Mask the event sequence.
5: H𝑚 = GPT2(concat(E𝑙 ,E𝑤,E𝑡 ,E𝑚))
6: M𝑚 = MLP(H𝑡 ) ⊲ Event Reconstruction.
7: Model Distillation to obtain the lightweight predictor
𝑀𝑙 .

Individual-level tuning
Require: Individual data 𝑥 𝑗 =

(
𝑙 𝑗 ,𝑤 𝑗 , 𝑡 𝑗 , 𝑒 𝑗

)
of User 𝑗

Ensure: The tuned lightweight predictor𝑀𝑓

1: (𝐹𝑖 , 𝑅𝑖 ) ← ManageIntents(𝑃𝑝𝑜𝑝 , 𝑃𝑖𝑛)
2: if 𝐹 𝑗 ≠ ∅ then
3: the adaptive unlearning to forget 𝐹 𝑗
4: end if
5: Finetune the lightweight predictor𝑀𝑓

intent should be forgotten or retained. We propose two methods
to identify the forgotten intents. First, we analyze the intent dis-
tribution of the global predictor output at the population level. If
the proportion of an intent 𝑃𝑜𝑢𝑡 (𝑖) is less than the threshold 𝜀, it is
part of the static forgotten set 𝐹𝑠𝑡𝑎 ,

𝐼𝑖 ∈ 𝐹𝑠𝑡𝑎 if 𝑃𝑜𝑢𝑡 (𝐼𝑖 ) < 𝜀, (8)
. where 𝐼𝑖 denotes the intents 𝑖 . Secondly, if the proportion of intent
at the population level 𝑃 (𝑝𝑜𝑝) is less than the average while the
proportion at the individual level 𝑃 (𝑖𝑛) is greater than the average,
then it belongs to the dynamic forgotten set 𝐹𝑑𝑦𝑛 ,

𝐼𝑖 ∈ 𝐹𝑑𝑦𝑛 if 𝑃𝑝𝑜𝑝 <
1
𝑁𝐼

and 𝑃𝑖𝑛 >
1
𝑁𝐼
, (9)

Finally, the union of static forgotten set and dynamic forgotten set
is taken as the forgotten set, which can be formed as,

𝐹𝑖 = 𝐹𝑑𝑦𝑛 ∪ 𝐹𝑠𝑡𝑎, 𝑅𝑖 = others, (10)

.
where 𝐹𝑖 , 𝑅𝑖 represents the forgotten set and retained set of user

𝑖 . If it is determined that intent needs to be forgotten by the user,
the adaptive unlearning is applied; if not, it is deemed unnecessary.
To effectively achieve the unlearning goal, we design an unlearning
loss:

L𝑢𝑛 = 𝜆L𝐶𝐸 (M𝑟 , 𝑅𝑖 ) − L𝐶𝐸 (M𝑓 , 𝐹𝑖 ), (11)
where M𝑓 signifies the model’s output for the intent category des-
ignated for forgetting, and 𝜆 is a hyper-parameter to balance the
trade-off between forgetting and retaining. Intuitively, during the
unlearning process, the model is learned to minimize the loss be-
tween the output from the updated model and the original model on
the intent to retain while maximizing the loss between the output
from them on the data to forget.

Table 1: Statistics of the datasets used in our experiments.

Datasets Honor Dataset Mobile Dataset

Type of Events 114 12
Type of Intents 18 12

Population
level

Users 4,500 4,000
Duration 6.1-8.22, 2023 10.1-31, 2016

Number of logs 10,376,148 334,651

Individual
level

Users 5,000 2,000
Duration 8.23-9.10, 2023 10.1-31, 2016

Number of logs 976,788 208,161

3.3.2 Finetuning for personalized model. Finally, we utilize person-
alized individual data to fine-tune the model for each user. This
fine-tuning process enables the model to transition from capturing
common behavioral patterns to reflecting a user’s unique prefer-
ences, thereby enhancing the accuracy of the model’s predictions.
We also use cross-entropy loss to guide model tuning.

4 EXPERIMENT
4.1 Experiment Settings
4.1.1 Datasets. We evaluate the performance of our model on two
large-scale real-world activity datasets.

• Honor Dataset. The Honor Dataset is sampled from the usage
log of the mobile phones. When a user uses mobile phones,
various types of logs are generated, desensitized and reported
(with user consent). We selected 114 types of events that are
commonly monitored in most mobile applications and classified
them into 18 intents, which cover the aspects of news, study,
work, entertainment, sports, etc. We sampled two datasets be-
tween June 1st and August 22nd, 2023 (the first) and August
22nd and September 10th, 2023 (the second) which in total
contain 4,500 and 5,000 anonymous users.
• Mobile Dataset. The Mobile Dataset consists of anonymous
user trajectory data collected by a major mobile network oper-
ator in China in October. The dataset comprises 6,000 users, of
which, at the population level, we select 4,000 users for training,
and at the individual level, we select the remaining users. In
this dataset, we use the location category as the activity and
intent type.

Table 1 shows the statistics of the Honor dataset and Mobile dataset.
The large-scale and fine-grained datasets can ensure the validity of
the model test.

4.1.2 Metrics. To assessmodel performance, we employ fivewidely
used metrics: weighted precision (𝑃𝑟𝑒𝑐𝑤 ), weighted recall (𝑅𝑒𝑐𝑤 ),
macro precision (𝑃𝑟𝑒𝑐𝑚), macro recall (𝑅𝑒𝑐𝑚), andNDCG(N).Weighted
metrics and NDCG gauge classification accuracy and ranking qual-
ity, respectively, while macro metrics evaluate the average predic-
tion accuracy for each intent, indicating the model’s predictive
quality across intents. A smaller gap between weighted and macro
metrics implies consistent prediction accuracy across intents, re-
flecting fairness. Conversely, a large gap suggests inadequate mod-
eling of long-tail intents, leading to suboptimal outcomes. Refer to
Appendix D for metric calculations.
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Table 2: Overall prediction performance PITuning compared with baselines on Honor and Mobile datasets.

Honor Dataset Mobile Dataset

Model 𝑃𝑟𝑒𝑐𝑤 𝑅𝑒𝑐𝑤 𝑃𝑟𝑒𝑐𝑚 𝑅𝑒𝑐𝑚 N@3 N@5 𝑃𝑟𝑒𝑐𝑤 𝑅𝑒𝑐𝑤 𝑃𝑟𝑒𝑐𝑚 𝑅𝑒𝑐𝑚 N@3 N@5

CLOVER 0.4479 0.4516 0.2494 0.2527 0.6094 0.6213 0.7052 0.7505 0.6004 0.6350 0.7860 0.8270
MetaBert4Rec 0.4683 0.5028 0.2888 0.3218 0.6842 0.7023 0.7714 0.8174 0.6419 0.6739 0.8268 0.8814

P5 0.4722 0.5161 0.2452 0.2807 0.6045 0.6284 0.7436 0.7930 0.6133 0.6410 0.8104 0.8672
InstructRec 0.4315 0.4680 0.2423 0.2684 0.6407 0.6724 0.7318 0.7743 0.6043 0.6397 0.7968 0.8444

LSAT 0.4714 0.5008 0.2778 0.2983 0.6055 0.6301 0.7572 0.8058 0.6415 0.6845 0.8220 0.8809
OFA 0.4928 0.5243 0.3366 0.3756 0.7032 0.7244 0.7851 0.8258 0.6538 0.7062 0.8488 0.9024

TallRec 0.4486 0.4764 0.2659 0.3083 0.5972 0.6102 0.7200 0.7693 0.6261 0.6532 0.7949 0.8345

EODRec 0.4517 0.4958 0.2799 0.2903 0.5867 0.6039 0.7489 0.8087 0.6072 0.6519 0.8296 0.8939
MPDA 0.4947 0.5197 0.3408 0.3841 0.7117 0.7371 0.7785 0.8361 0.6581 0.7085 0.8542 0.9185

ours 0.5374 0.5599 0.4693 0.4840 0.7329 0.7626 0.8715 0.9002 0.8449 0.8802 0.9506 0.9537
Improv. 8.63% 6.79% 37.71% 26.01% 2.98% 3.46% 11.00% 7.67% 28.38% 24.23% 11.29% 3.83%

4.1.3 Baselines. We elaborately select the following nine repre-
sentatives to be compared with our proposed algorithms, which
cover the meta-learning methods for personalized recommenda-
tions (CLOVER [44], MetaBert4Rec [13]), LLM-based recommenda-
tions (P5 [7], InstructRec [53], LSAT [35], One fits All (OFA) [38],
TallRec [2]) and device-cloud collaboration recommendations (EO-
DRec [46], MPDA [47]). We provide the details of baselines in
Appendix C.

4.1.4 Implementation Details. Our model employs the Adam opti-
mizer with a learning rate of 0.01 across two tuning phases. And
we set the input length as 30. During the population-level tun-
ing stage, we utilize the GPT2 small version for the transformer
blocks, which features a 12-layer transformer architecture and a
768-dimensional feature space, while on the individual-level tuning
stage, we choose a transformer decoder with 4-layer and a 768-
dimensional feature space to meet the deployment requirement. As
for hyper-parameters 𝛼 , 𝜖 , and 𝜆, we set 0.5, 1, and 1 respectively.
Details of hyperparameters are shown in Appendix B. In the honor
dataset, one week is allocated for training, one day for validation,
and four days for testing. In the mobile dataset, 60% of the data is
used for training, with 10% for validation and 30% for testing. The
code is available at https://github.com/tsinghua-fib-lab/LLM-for-
User-Intent.

4.2 Overall Performance
In Table 2, we display the overall results of ourmodel, meta-learning
methods (CLOVER, MetaBert4Rec), LLM-based recommendations
(P5, InstructRec, LSAT, OFA, TallRec) and device-cloud collabora-
tion recommendations (EODRec, MPDA) to predict the next user
intention in two datasets. We list three metrics of all methods. From
the result, we have the following findings:
• Our framework steadily achieves the best performance.
Our model gets superior results on both datasets and performs
better than other compared algorithms. For example, the macro
metrics improvement of our model is around 24% to 37% com-
pared with the second-best performance model (MPDA). The
𝑁𝐷𝐶𝐺 improvement of our model is about 3% to 11%.
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(a) Honor dataset.
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Figure 4: Ablation study.

• Our model has the smallest difference between weighted
metrics andmacrometrics.Weighted metrics and macro met-
rics count the global accuracy and the average accuracy of each
intent respectively. A smaller difference suggests comparable
prediction accuracy across different intents, indicating fairness
among the intents. Our model utilizes adaptive unlearning to
effectively correct the long-tail intent learning bias caused by
the model in population-level tuning, and improve the accuracy.
• The method of LLM-based model with device-cloud col-
laboration is necessary for user behaviormodeling.MPDA
utilizes the LLM-based model with the device-cloud collabo-
ration method resulting in the best performance within the
baseline. However, MPDA fails to fully exploit the benefits of
diverse user data available on the cloud side. In contrast, our pro-
posed PITuning framework captures generalized user behavior
patterns, leading to superior performance.

4.3 Ablation Study
To gain a deeper understanding of each component of our model,
we carried out a sequence of ablation studies. Firstly, we removed
the Intention Attention Network (IAT) within this model, followed
by removing the event reconstruction loss in the population-level
tuning (P-ER). Subsequently, we removed the adaptive unlearning
in the individual-level tuning(I-unlearning).

The results of the ablation study are presented in Figure 4. We
observed that the absence of the Intention Attention Network (IAT)

https://github.com/tsinghua-fib-lab/LLM-for-User-Intent
https://github.com/tsinghua-fib-lab/LLM-for-User-Intent
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Figure 5: Comparing performance without pretrained LM.

hindered the model’s ability to appropriately assign weights to each
intent, consequently impacting both 𝑃𝑟𝑒𝑐𝑤 and 𝑃𝑟𝑒𝑐𝑚 . Addition-
ally, the event reconstruction loss played a pivotal role in guiding
the transformer block towards more accurate modelling of users’
historical event sequences, thereby enhancing the model’s perfor-
mance. Furthermore, we noticed that the omission of the adaptive
unlearning compromised the model’s capacity to effectively handle
long-tail intents, resulting in a significant reduction in 𝑃𝑟𝑒𝑐𝑚 by
approximately 37%.

4.4 Analysis of Population-level Tuning
• Performance improvement brought by pretrained LM.

We assessed how LLM contributes to modeling population-level
common behavior patterns by replacing the LLM with transformer
encoders of two sizes. One matches the size of GPT2 (Transformer-
L), while the other matches the size of the lightweight predictor we
distilled (Transformer-S), allowing them to train from scratch.

Figure 5 compares the prediction accuracy and loss among the
models. Our analysis underscores that without leveraging the PTM,
the model lacked foundational common sense and rule-based guid-
ance, leading to a significant decline in its ability to capture common
behavioral patterns and accuracy. Additionally, the Transformer-S,
with fewer parameters, encountered challenges in modeling com-
plex user behaviors, resulting in inferior performance. Moreover,
with the guidance of LLM, the model demonstrated faster conver-
gence.
• Effectiveness of extracting common behavioral pattern.
To highlight the effectiveness of IAT in capturing intent-aware

transition patterns in user event sequences, we visualize the at-
tention map between intents and historical sequences. Figure 6
presents the resulting attention maps, highlighting the IAT’s ability
to discern each intent’s preference for historical sequence length.
Analysis of the attention map reveals that certain intents, such as
short video, game, and photo intents, predominantly rely on short-
term historical sequences. Conversely, intents like checking the
weather, taking a taxi, and exercising necessitate long-term histori-
cal sequences. Additionally, some intents rely on both short-term
and long-term historical sequences, such as checking the weather,
music, and audiobook intents. These insights uncover users’ daily
behavior patterns, enabling researchers to construct more nuanced
historical sequences and features to enhance accuracy.

To showcase the effectiveness of the event reconstruction loss,
we compare the difference between the intent distribution output
by our model and OFA during the population-level tuning stage.

0 4 8 12 16 20 24 28
historical event sequence

Short Video
Photo

Learning
Videoedit

Game
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Long video
Shopping

News
Check weather

Audiobook
Music

Payment
Taxi

Subway
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Novel
Movement

Figure 6: The attention map of different intents illustrating
diverse event-to-intent transition patterns.
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Figure 7: Comparison of intent distribution generated by
PITuning and OFA after population-level tuning.

Figure 7 presents the results, demonstrating that our model could
well model transitions from events to intents with the help of the
event reconstruction loss. The closer the output intent distribution
is to the real distribution, the more conducive it is to capture the
common behavior patterns in the population-level tuning.

4.5 Analysis of Individual-level Tuning.

• Choice of device model.
To evaluate the efficiency of the lightweight predictor obtained

through model distillation, we compared it with the tree model
LightGBM [12], and two variants of the original population predic-
tor at the cloud side, i.e., full-parameter tuned population predictor
(FP), and partial parameter tuned population predictor (PP). Ad-
ditional details about the tree model can be found in Appendix E.
PP is inspired by the cross-domain adaptation techniques used in
OFA [38], which argues that self-attention layers and feed-forward
neural networks encapsulate most learned knowledge and can be
frozen during the finetuning process.

The device model results, shown in Table 3, indicate that the
full-parameter tuning method achieves higher performance. How-
ever, its large parameter size makes it challenging to implement on
the device side. The partial parameter method struggles to transfer
individual preferences from population-level common preferences,
resulting in lower performance. Although LGBM has a smaller pa-
rameter count, its stability is inferior, leading to decreased accuracy.
• Effectiveness of adaptive unlearning.
To demonstrate the effectiveness of adaptive unlearning in en-

hancing the accuracy of long-tail intents, we compared it with
oversampling methods and focal loss [19]. We focused on the three
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Table 3: Prediction performance using different model struc-
tures on the device side.

Model Honor Mobile Infer
speed

Params
(Trainable)𝑃𝑟𝑒𝑐𝑤 𝑃𝑟𝑒𝑐𝑚 𝑃𝑟𝑒𝑐𝑤 𝑃𝑟𝑒𝑐𝑚

FP 0.5496 0.4768 0.8803 0.8524 8.9ms 138M(138M)
PP 0.5217 0.4528 0.8659 0.8322 8.9ms 138M (39M)

LGBM 0.4742 0.3586 0.7943 0.6485 15us 8.8K(8.8K)

Our 0.5374 0.4693 0.8715 0.8449 2.85ms 10.86M(10.86M)
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Figure 8: effectiveness of adaptive unlearning strategy com-
pared with other class imbalance handling methods.

intents with the smallest proportions in the datasets and evalu-
ated recall, which effectively reflects the model’s performance in
identifying long-tail intents.

The results, shown in Figure 8, indicate although focal loss and
oversampling methods show some improvement, their 𝑅𝑒𝑐𝑤 and
𝑅𝑒𝑐𝑚 still differ, indicating they fail to address the deviation caused
by the disparity in intention distribution between population and
individual levels. Through adaptive unlearning, the model gradually
overcomes biases towards these long-tail intents in population-
level tuning, resulting in significant improvements in precision and
recall.

4.6 Practicability Study
• Sensitivity of individual data scale in individual-level tun-
ing.

In the individual-level tuning stage, particularly on the device
side, there are limitations in storage and computing resources. To
investigate the impact of data size, we conducted experiments by
varying the data size in individual-level tuning and compared it
with the second-best model (MPDA).

The results, shown in Figure 9, indicate that increasing the
dataset size leads to marginal performance enhancements across
all models. This trend highlights our model’s capability to capture
user behavior preferences. However, larger datasets significantly in-
crease demands for computing power and storage resources. There-
fore, to strike a balance between model effectiveness and computa-
tional efficiency, we selected a one-week dataset size.
• sensitivity of event sequence length.
To investigate the influence of the event sequence length, we

conduct experiments by changing the input length of the historical
series, and compared with the second-best model (MPDA). The
results, illustrated in Figure 10, show a slight improvement in per-
formance across all models with increasing input length. This trend
highlights our model’s ability to capture long-term dependencies.
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Figure 9: Influence of individual data size on performance.
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Figure 10: Influence of event seq. length on performance.

However, longer input lengths substantially increase computational
demands. Thus, to balance model performance and computational
efficiency, we selected an input length of 30.

5 RELATEDWORKS
5.1 User Intent Prediction
User intent prediction model, a recommendation system, emphasize
modeling user-event interaction sequences. Recent works [27, 41]
integrate transformers into various models. Yang et al. [48] intro-
duce intent-aware ranking with transformers, incorporating intent-
aware utterance attention. Meanwhile, Wang et al. [42] propose a
masked-field framework for distinct representations per intent.

Recent advancements [15, 43] focus on leveraging Graph Neu-
ral Networks (GNNs) [31] to model intent transitions and spatio-
temporal features. Li et al. [18] introduce AutoIntent, featuring
disentangled intent encoders and intent discovery decoders. They
construct dual hyper-graphs to capture relationships and intent
features. Ping et al. [26] propose an intent detection and prediction
system combining human expert knowledge and consumption in-
formation to capture user preferences and context. With the rise
of large language models (LLM), researchers have begun to use
LLM agents to simulate behavioral intents [6, 50]. Shao et al. [32]
develop an LLM workflow named Chain-of-Planned Behaviour for
mobility behavior generation, which reflects the important spatial-
temporal dynamics of human activities. To solve the problem of
insufficient user data, Yuan et al. [51, 52] motivated Maslow’s need
theory, propose a knowledge-driven simulation framework based
on generative adversarial imitation learning.

However, the above methods only cover some scenes in daily life
resulting in the user behaviors being discontinuous and incomplete.
Therefore, they can not deeply explore the user’s common patterns
and individual differences behind the user behavior sequences.
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5.2 On-device Recommendation Model
Device-side recommender systems diverge from cloud-side recom-
mendations by transferring model processing from the cloud to the
device. This paradigm encompasses three primary approaches: (1)
Device-side deployment, where models are trained in the cloud and
deployed directly onto devices [43]. (2) Device-side learning, where
models are trained directly on devices, often employing collabora-
tive learning [8]. (3) Device-cloud collaboration, integrating devices
with cloud-based models to enhance performance [24, 40, 49, 54].
Yan et al. [47] propose MPDA, which augments the user’s local data
by retrieving similar data from the cloud’s pool. Ding et al. [5] intro-
duce a collaborative learning framework that vertically divides the
base model into two submodels: a larger one for cloud-side samples
and a smaller one for device-side data, incorporating the output of
the larger model.

Recent studies integrate meta-learning into recommendations to
learn shared global meta-parameters to quickly adapt to individual
user-specific parameters[25]. We et al. [44] propose CLOVER, a
comprehensive fair meta-learning framework, which introduces
a multi-task adversarial learning scheme to satisfy fairness. Kim
et al. [13] propose a recommendation framework based on gradient-
based meta-learning that captures the imbalanced rating distri-
bution of each user and computes adaptive loss for user-specific
learning.

However, the abovemethods do not consider the difference in the
distribution of cloud data and device data, which is not conducive
to personalized learning.

5.3 Cross-domain Fine-tuning of Pretrained LM
This year we havewitnessed rapid advancements in NLP foundation
models, with increasing applications of LLMs in recommendation.
Two main paradigms emerge: (1) Prompt tuning, where contextual
tokens guide the model’s response [14]. Geng et al. [7] propose P5
first employ LLMs in a unified text-to-text approach. (2) Instruction
tuning involves detailed text instructions to enhance zero-shot
model performance [3]. Bao et al. [2] propose TALLRec, align LLMs
with recommendations through data tuning, Wei et al. [45] present
LLMRec, enhances systems via LLM-based graph augmentation.

Moreover, the transformer, a fundamental component of LLM,
tokenizes inputs into embeddings, endowing it with universal rep-
resentation for cross-domain transfer. Lu et al. [23] illustrates that
PLM enhances performance and computational efficiency in non-
language downstream tasks. Tian et al. [38] offers a unified frame-
work for diverse time series tasks, showing that PLM yields compa-
rable performance across main time series analysis tasks. Jin et al.
[11] introduce Time-LLM, a reprogramming framework for general
time series forecasting, aligning time series with text prototypes to
reconcile two modalities. Liu et al. [20] propose UniTime for mul-
tivariate time series forecasting, employing domain instructions
and a language-TS transformer to achieve zero-shot transferability
through modality alignment.

LLMs harness a rich dataset of human behaviors during training,
encompassing prevalent patterns, common sense, and underlying
rules, yet the application of LLMs in simulating human behavior
and user intent prediction remains an unexplored territory.

6 CONCLUSION
Our research adapting PLMs into the human behavioral domain
for on-device user intent prediction. We propose a population-to-
individual tuning framework, which contains two main stages. In
the population-level tuning stage, we leverage a PLM to capture
the population-level common behavior patterns with the event
reconstruction loss to enhance the event-to-intent transition pattern
and obtain a lightweight predictor by model distillation. In the
individual-level tuning framework, we utilize adaptive unlearning
to correct the bias in long-tail intents due to the inconsistency
between the intent distribution on population-level and individual-
level. Finally, we use the individual user data to finetune and derive
a personalized intent prediction model.

In future work, we aim to extend the number of intents and
use disentanglement methods [28] to implement debiased learning
to solve the problem of insufficient learning of long-tail intents.
Besides, we aim to consider the semantics to enhance behavior
understanding and prediction by urban knowledge graph [21, 22].
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A DETAILS OF MODLE DISTILLATION
In the distillation process, the teacher model produces soft targets,
essentially probability distributions across intents. The student
model is then trained to mimic these soft targets, rather than the
actual outputs of the teacher model. This allows the student model
to learn from the teacher model’s knowledge without needing to
replicate the same level of computational complexity [10]. Figure
11 shows the specific process of the model distilling.
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Figure 11: The process of model distilling.

B IMPLEMENTATION DETAILS FOR
REPRODUCIBILITY.

Here we provide detailed values of the hyperparameters in Table
4for reproducibility.

Table 4: Values of the hyperparameters

Hyperparameters Value

Population-level
tuning

Pretrain LM GPT2-small
layer of transformer block 12

dimension of transformer block 768
𝛼 0.5
𝜖 1

Individual-level
tuning

layer of transformer block 4
dimension of transformer block 768

𝜆 1

C DETAILS OF BASELINES.
Here we introduce the details of each baseline.
• CLOVER [44]. CLOVER is a meta-learned recommendation
models which consider three kinds of fairness: individual fair-
ness, counterfactual fairness and group fairness through an
adversarial learning method.
• MetaBert4Rec [13]. MetaBert4Rec is a sequential recommen-
dation framework based on gradient-based meta-learning to
capture the imbalanced rating distribution of each user.
• P5 [7]. P5 is the first work to propose a unified paradigm that
integrates various recommendation-related tasks into a shared
conditional language generation framework.
• InstructRec [53]. InstrucRec considers that preferences or
needs can be expressed in natural language descriptions so that
LLM can understand and execute the instruction for fulfilling
the recommendation task.
• LSAT [35]. LSAT utilize two adaptation LoRA modules to learn
long-term and short-term user preferences separately and then
integrates them to merge the different types of preferences.
• One fits All (OFA) [38] OFA is a unified framework that uses
a frozen pre-train language model to investigate cross-modality
knowledge transfer for time series forecasting tasks.
• TallRec [2] TallRec is an efficient Tuning framework for Align-
ing LLMs with Recommendations, which structures the rec-
ommendation data as instructions and tunes the LLM via an
additional instruction tuning process.
• EODRec [46] EODRec is an ultra-compact efficient on-device
session-based recommendation that integrates discrete composi-
tional code learning into recommendation systems to compress
an item embedding table.
• MPDA [47]MPDA is a new device-cloud collaborative learning
framework whose general idea is to retrieve some similar data
from the cloud’s global pool to augment the user’s local data as
the target domain. We choose the OFA model as the backbone.

D DETAILS OF METRICS.
we employ five widely used metrics: weighted precision (𝑃𝑟𝑒𝑐𝑤 ),
weighted recall (𝑅𝑒𝑐𝑤 ), macro precision (𝑃𝑟𝑒𝑐𝑚), macro recall (𝑅𝑒𝑐𝑚),
and NDCG(N). The calculation of each metric is as follows. The
formula for 𝑃𝑟𝑒𝑐𝑤 :

𝑃𝑟𝑒𝑐𝑤 =

∑
𝑐∈𝐶 (TP𝑐 + FP𝑐 ) · Precision𝑐∑

𝑐∈𝐶 (TP𝑐 + FP𝑐 )
(12)

The formula for 𝑅𝑒𝑐𝑤 :

𝑅𝑒𝑐𝑤 =

∑
𝑐∈𝐶 (TP𝑐 + FN𝑐 ) · Recall𝑐∑

𝑐∈𝐶 (TP𝑐 + FN𝑐 )
(13)

The formula for 𝑃𝑟𝑒𝑐𝑚 :

𝑃𝑟𝑒𝑐𝑚 ==
1
|𝐶 |

∑︁
𝑐∈𝐶

TP𝑐
TP𝑐 + FP𝑐

(14)

The formula for 𝑅𝑒𝑐𝑚 :

𝑅𝑒𝑐𝑚 =
1
|𝐶 |

∑︁
𝑐∈𝐶

TP𝑐
TP𝑐 + FN𝑐

(15)

Where |𝐶 | represents the total number of classes, True Positives
(𝑇𝑃𝑐 ) denotes the number of samples correctly classified as class 𝑐 ,
False Positives (𝐹𝑃𝑐 ) represents the number of samples incorrectly
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classified as class 𝑐 , and False Negatives (𝐹𝑁𝑐 ) stands for the num-
ber of samples incorrectly classified as other classes instead of class
𝑐 . And Precision𝑐 and Recall𝑐 respectively refer to the precision
and recall of class 𝑐 .
The formula for 𝑁@𝑘 :

𝑁@𝑘 =

∑𝐾
𝑖=1

2𝑟𝑒𝑙𝑖 −1
log2 (𝑖+1)∑ |𝑅𝐸𝐿𝐾 |

𝑗=1
𝑟𝑒𝑙 𝑗−1

log2 ( 𝑗+1)

(16)

where 𝑟𝑒𝑙𝑖 means the graded relevance of the result at position 𝑖 ,
and |𝑅𝐸𝐿𝐾 | means the list of predictions in the result ranking list
up to position 𝐾 .

E DETAILS OF THE TREE MODEL
We employ LightGBM [12] as our tree model, a method widely used
in competitions. The hyperparameters we use for the model are
shown in the table below.

Table 5: Hyperparameters Setting of LightGBM

Hyperparameters Value

objective multiclass
boosting gbdt
num class 18

num iterations 2000
num leaves 32
max depth -1

min data in leaf 20
feature fraction 1

early stopping round 75
𝜆_𝑙1 0
𝜆_𝑙2 0

random state 42

Please note that if the size of the dataset is less than 200, we will
reduce the complexity of LightGBM by setting max depth=3, num
leaves=3, 𝜆_𝑙1=1, 𝜆_𝑙2=1.

Our feature Set is shown below:
(1) Output probabilities of all categories from GPT-2.
(2) Position features (whether in the top 10 frequent locations).
(3) Current hour, current day of the week, current timestamp,

and indicators for morning/afternoon/evening and week-
day/weekend.

(4) For each category (illustrated by event 𝑒), time difference 𝑇0
between the current time and the time of the last occurrence
of event 𝑒 , time difference 𝑇1 between the time of the last
occurrence of event 𝑒 and the time of the second-to-last
occurrence of event 𝑒 . Given 𝑥𝑖 = (𝑢𝑖 , 𝑙𝑖 , 𝑡𝑖 , 𝑒𝑖 ), suppose event
𝑒 occurred𝑛 times before the current event 𝑡𝑖 . The time of the
𝑛𝑡ℎ occurrence of event 𝑒 is denoted as 𝑡𝑒𝑛 . The explanation
of the mathematical formula for the time difference is as
follows

𝑇0 = 𝑡𝑖 − 𝑡𝑒𝑛 (17)
𝑇1 = 𝑡𝑒𝑛 − 𝑡𝑒 (𝑛−1) (18)
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