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Origin-destination (OD) lowmodeling is an extensively researched subject across multiple disciplines, such as the investigation

of travel demand in transportation and spatial interaction modeling in geography. However, researchers from diferent

ields tend to employ their own unique research paradigms and lack interdisciplinary communication, preventing the

cross-fertilization of knowledge and the development of novel solutions to challenges. This article presents a systematic

interdisciplinary survey that comprehensively and holistically scrutinizes OD lows from utilizing fundamental theory

to studying the mechanism of population mobility and solving practical problems with engineering techniques, such as

computational models. Speciically, regional economics, urban geography, and sociophysics are adept at employing theoretical

research methods to explore the underlying mechanisms of OD lows. They have developed three inluential theoretical

models: the gravity model, the intervening opportunities model, and the radiation model. These models speciically focus on

examining the fundamental inluences of distance, opportunities, and population on OD lows, respectively. In the meantime,

ields such as transportation, urban planning, and computer science primarily focus on addressing four practical problems:

OD prediction, OD construction, OD estimation, and OD forecasting. Advanced computational models, such as deep learning

models, have gradually been introduced to address these problems more efectively. We have constructed the benchmarks for

these four problems at https://github.com/tsinghua-ib-lab/OD_benckmark. Finally, based on the existing research, this survey

summarizes current challenges and outlines future directions for this topic. Through this survey, we aim to break down the

barriers between disciplines in OD low-related research, fostering interdisciplinary perspectives and modes of thinking.
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1 Introduction

For land utilization optimization and eicient collaboration, cities have evolved with the delineation of diferent
functional zones, which cater to the diverse living and working demands of citizens. This drives signiicant
interplay between individuals and urban spaces, as they traverse to diferent functional zones within the city
in order to fulill a myriad of activities that satisfy their unique needs [81, 141]. Consequently, the spatial
distribution of multiple variables (such as population, vehicular traic, infectious diseases, etc.) undergoes
signiicant transformations due to population mobility, giving rise to critical challenges such as traic congestion
and epidemic propagation [10, 12, 192]. Accordingly, achieving a thorough comprehension of the intricate
mechanisms of population mobility within urban environments, and establishing robust models to accurately
articulate such complexities, holds great signiicance for an array of crucial urban applications within the realm
of research and applied practice [15, 66, 189, 260].
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OD (origin-destination) lows serve as a fundamental manifestation of population mobility. Employing regions
or locations as the basic units, they depict the movement of individuals between regions within urban environ-
ments [91, 124, 206, 214]. This survey centers on the studies on the OD lows, which involves the theoretical
research [76, 186, 193] and practical problem-solving techniques [91, 124, 214, 220].
OD lows have been widely studied and demonstrated signiicant importance in many ields, such as trans-

portation engineering [37, 109, 246], urban planning [46, 79, 135, 229], public health [10, 84, 95, 106], urban
geography [76, 172, 218], regional economics [112] and social physics [186]. The interplay between OD low
and urban simulation has gained recognition [252]. By incorporating OD low data into computational models,
researchers can gain insights into the complex interactions between transportation, infrastructure supply and
demand, as well as urban development. Urban simulation represents a new paradigm for studying urban science
in the computational era, and the population mobility captured by OD lows plays a crucial role within it.

1.1 The Conception of Origin-destination Flows

OD lows, which refer to movements of individuals between every two regions in the city at population-level [13,
130, 185]. Speciically, the whole space of the city is usually split into non-overlapping regions R = {�� |� = 1, ..., � }.
OD lows contain the directed mobility information comprising origins and destinations, and the corresponding
numbers of traveling individuals, which could be formulated as follow,

{�� � |�� ��� � � ∈ R},

where �� � means the volume of low from region �� to region � � , � and � are the indicators of origin and destination
respectively. Typically, the OD lows are organized in the form of an OD matrix F shown below,

F =



�11 �12 ... �1�
�21 �22 ... �2�
...

...
. . .

...

�� 1 �� 2 ... ���



,

in which each element represents the low �� � between a speciic pair of regions. An ODmatrix generally represents
the mobility low between all regions within an entire city.

OD lows can be categorized based on various perspectives, such as temporal nature [35, 124, 214], the mode of
transportation [9, 65, 96, 251] and types of activities involved [3, 64, 226]. Based on their temporal characteristics,
OD lows can be classiied into static and dynamic. The former refers to lows that exhibit a stable structure over a
certain period, such as commuting ODlows [122, 124, 175, 236], while the latter captures the time-varying patterns
of population mobility, which relects the dynamic changes in the travel behavior of individuals [9, 33, 214]. OD
lows can be classiied based on modes of travel, including bus OD lows [65], railway OD lows [96], OD lows of
vehicles on the road networks [20], etc. Various studies [3, 64, 226] have categorized OD lows based on diferent
types of activities, resulting in two primary categories: commuting OD lows [122, 124, 175, 236], which relate to
travel for work purposes, and non-commuting OD lows [226], which encompass all other types of travel, such as
leisure, social, and shopping activities. This distinction ofers insights into the patterns and behavior of travel
demand and highlights the importance of accounting for variability in travel purposes when analyzing OD lows.

1.2 The Research on OD Flows Across Disciplines

In light of the signiicant importance of OD lows it is worth noting that their traditional methods of acquisition,
such as roadside and household surveys, tend to be highly time-consuming and resource-intensive [8, 91, 180],
which have driven the relevant academic disciplines and ields to employ their research paradigms to investigate
the mechanism and modeling of human mobility behind OD lows [91, 124, 185, 186, 206, 214]. The current
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Fig. 1. Research on origin-destination flows across diferent domains. The figure illustrates four classical practical issues

related to OD flows, each of which possesses strong interdisciplinary atributes. To explicitly showcase the contribution of

each discipline to these problems, we employ a radar chart to interpret the contribution degree of each discipline to the

respective issue.

research on OD lows can be categorized into two main aspects. The irst aspect involves studying the underlying
mechanisms of population mobility from a theoretical perspective. In contrast, the second aspect focuses on
addressing practical challenges related to OD lows. Detailed theoretical research schema of these ields are
introduced as lows.

• Urban Geography and Regional Economics. Urban geography and regional economics employ theoretical
research methodologies to investigate the OD lows from a spatial perspective [4, 5, 16, 108]. One crucial
research involves spatial interaction modeling which studies the interaction among diverse regions in urban
contexts such as the lows of people, trade, communication, etc [76, 112, 172, 217, 218]. Flows of individuals
in the shape of OD lows are regarded as a critical object of research within this domain.

• Social Physics. Scholars specializing in urban science within the discipline of sociophysics [14, 66, 128, 186]
frequently employ physical models or adopt the research paradigm of physics to investigate population
mobility in cities, aiming to provide a profound elucidation of the underlying physical mechanisms that give
rise to the observed mobility patterns.

The study of OD lows also encompasses a range of practical issues, particularly those arising from the ields
of transportation and urban planning, such as the problems shown in Fig. 1. Advancements in computer science,
electronic communication, statistics, and systems engineering have greatly contributed to the development
and application of advanced technologies to address these challenges, yielding promising outcomes in solving
techniques and application scenarios [91, 124, 214, 236]. The following presents a comprehensive explication of
the relationships existing between these domains and OD lows.

• Computer Science. The utilization of data mining methodologies to tackle challenges in urban contexts
represents a burgeoning area within computer science known as urban computing [259]. An integral facet of
this research involves the employment of data-driven models that are capable of accurately characterizing
and modeling the OD lows, such as the OD prediction and OD forecasting problems shown in Fig. 1.
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Fig. 2. A timeline of important research on origin-destination flows in diverse academic disciplines.

• Transportation. The term OD lows was originally proposed by the transportation ield as input to numerous
transportation problems, and thus, holds a signiicant position in transportation research, making it the
area where OD lows have been extensively studied. The vast majority of human travel is reliant upon
transportation systems, thus leading to the explicit depiction of travel patterns within such systems. In this
context, the transportation system serves as an observatory that captures extensive traces of human travel.
Transportation researchers have explored these traces to estimate the OD lows [35, 142, 206, 220], as shown
in the OD estimation problem in Fig.1.

• Urban Planning. The relationship between urban planning layout and population mobility is highly de-
pendent on one another [40, 44, 54, 75]. In order to make informed adjustments, planners must conduct a
thorough analysis of OD lows to gain insight into the strengths and shortcomings of current urban plans [39].
The main problem faced by urban planning is OD construction.

As presented previously, the OD lows have been extensively researched across multiple ields, highlighting
the strong interdisciplinary nature of this research. Despite the existence of disparate terms adopted in diferent
disciplines, such as spatial interaction and population low, this paper solely employs the universally recognized
term, namely OD lows, to mitigate any potential ambiguity. Subsequently, we present a comprehensive timeline
that chronicles the research history of the OD lows in diverse academic disciplines, as shown in Fig. 2. The genesis
of the study of OD lows is primarily associated with geography. Henry C. Carey pioneered the investigation of
the physics analogy of OD lows [34] in 1858. Subsequently, the celebrated linguist Zipf formalized the gravity
model [262] in 1946, which has since gained widespread recognition as a seminal model in research of OD
lows. With the rapid growth of public transportation and the pressing need to address traic congestion and
environmental pollution [11, 118, 143], researchers in the transportation ield began to explore the feasibility
of utilizing traic observations, to estimate OD lows [35, 206, 220, 231]. The proliferation of ICT (Information
And Communication Technology) and mobile network communication devices has led to a vast accumulation
of data pertaining to human mobility behavior. As a result, this inlux of data has facilitated the study of OD
lows [3, 30, 91]. The famous planner Carlo Ratti proposed to leverage Call Detail Records (CDR) data to devise
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CDRs Cellular GPS Location-based Check-ins

Spatial Granularity low low high low
Temporal Granularity low high high low
Population Coverage high high low high

Table 1. The systematic comparison of individual trajectory-level location recording data.

OD matrices [30], which has sparked a considerable amount of efort [3, 28, 91, 151, 203, 226] from researchers
and practitioners in this direction. Sociophysics scientists have been able to uncover the mechanism governing
human mobility [66, 189], such as the radiation model [186]. With the development of machine learning, computer
scientists have increasingly investigated the use of sophisticated models to capture complex spatiotemporal
correlations between OD lows and urban space [29, 105, 124, 235, 236].

1.3 Related Works

This part aims to introduce the common parts and dissimilarities between this review and other academic
investigations that involve OD lows. These surveys can be categorized into three distinct groups: (1) human
mobility, (2) spatial interaction modeling, and (3) OD low estimation based on observable transportation status.
Table 8 has already provided a comprehensive overview of the speciic aspects addressed in each review works.
The interrelation and distinctions between these aspects and our work are shown in appendix A.

1.4 Organization

The initial section of this survey expounds on the fundamental information of OD lows. The outline of this
survey encompasses data, theory, techniques, and applications, and any pertinent data or information related to
these aspects are irst summarized in Section 2. In particular, the theoretical mechanisms related to OD lows
will be systematically presented in Section 3. Next, the relevant techniques will be classiied based on speciic
practical problems and elaborated upon in Section 4. In Section 5, speciic applications pertaining to OD lows in
diverse ields will be explicated. We undertake an evaluation of the existing challenges and future direction in the
study of OD lows in Section 6. Finally, we will conclude this survey in Section 7.

2 Data Source Requirements

The data utilized in OD low research can be broadly classiied into two categories. The irst category comprises
mobility data related to OD lows. The second category encompasses auxiliary data, which is leveraged to explore
the association between OD lows and other urban spatiotemporal characteristics.

2.1 Mobility Data Related to OD Flows

The sources of mobility data are diverse and have undergone continuous evolution with the advancement of
technology over time [30, 91, 124, 185, 214], involving survey data, individual trajectories, and transportation
records. The individual trajectory data involve Call Detail Records, Cellular Network Access, GPS Records, and
Location-based Social Network Check-ins. The transportation records include traic surveillance video, smart
cards, and taxi orders. Detailed introductions to these data sources can be found in the appendix B.

In order to facilitate the comparative analysis of individual trajectories, the pertinent features has been collated
and presented in Table 1. It is apparent that the existence of lawless data is elusive. Therefore, when conducting
research, it is crucial to meticulously consider and evaluate the speciic scenario and its requirements in order to
determine the most appropriate and efective data to employ. Among them, CDRs data, cellular network access
data, and social network check-ins have coarse spatiotemporal granularity and thus are commonly utilized to
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(a) Individual trajectories. (b) Traic conditions. (c) Urban characteristics.

Fig. 3. A schematic diagram of commonly used mobility data related to OD flows.

estimate long-term OD lows, such as commuting OD lows. While GPS data with iner spatiotemporal granularity
can enable the investigation of individuals’ more detailed mobility patterns, including speciic activities, it is
high cost and low population coverage renders it unsuitable for conducting citywide research [104]. This kind of
trajectory data is shown in Fig.3(a). The vehicle-related OD lows information obtained from sensors and video
data of traic surveillance, as shown in Fig.3(b), is typically utilized in real-time and dynamic scenarios, such as
traic congestion management and traic accident prevention [200]. The OD lows obtained from smart card
data and taxi order data typically relect the demand of individuals for a speciic mode of transportation, and are
often utilized for transportation demand forecasting [183, 214].

2.2 Auxiliary Data

Apart from the mobility data mentioned above, the investigation of speciic research questions necessitates the
inclusion of additional information such as regional socioeconomics and real-time traic status, as shown in
Fig.3. By utilizing this information, researchers can gain deeper insights into the underlying mechanisms of
population mobility [259], or use it as auxiliary signals to address practical problems related to OD lows [194].
Data sources for obtaining such complementary information can be broadly classiied into three categories:
region-level socioeconomic data, transportation observation data, and urban geographic data.
Region-level Socioeconomic Data. The mobility of individuals within urban environments is primarily

motivated by the desire to participate in a diverse range of activities located across the cityscape, in order to
satisfy distinct demands [81, 141]. These activities may encompass occupational pursuits, retail consumption,
medical treatment, and other associated functions. As such, the regional attributes of urban spaces, as well as the
corresponding roles they play, are intimately interconnected with patterns of population mobility. Numerous
types of information can be utilized to extract the socioeconomic characteristics of regions within urban areas.
Such data often includes demographics, land use patterns, points of interest (POIs), and infrastructure. These
factors are frequently incorporated into extant scholarly literature when proiling spatial functions. A detailed
introduction of this information is given in appendix B.
Observable Transportation Status or Records. OD lows are considered to be critical information in the

ield of transportation, as they serve as a proxy for travel demands.
Drawing on their specialized knowledge and skills, transportation professionals frequently rely on observations

of the transportation system to infer OD lows and related travel patterns. This kind of information generally
encompasses traic low and real-time speed data captured from road networks.
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• Traic Flow. This metric is often referred to as traic counts or link counts, depending on the speciic
application or context. Given that traic low, each individual vehicle can be associated with a corresponding
trip in the OD lows.

• Vehicle Speed. Vehicle speed refers to the rate at which vehicles travel along a particular roadway segment.
Compared to traic low, vehicle speed is a more instantaneous measure that provides a more ine-grained
understanding of traic conditions. As such, it can be more suitable for modeling dynamic transportation
scenarios and capturing short-term luctuations in traic demand and congestion.

The emergence of intelligent transportation systems (ITS) has provided a variety of means to collect traic
information. Traditionally, traic low and vehicle speed are obtained by deploying sensors on the road network.
While these methods have been proven to be efective, recent advancements in wireless communication, sensor
technology, and data analytics have opened up new possibilities for collecting traic data using innovative
approaches such as crowdsourcing, loating cars with technologies of Bluetooth, unmanned aerial vehicles (UAVs),
and radio frequency identiication (RFID). The comparative introduction of various data collection methods is
presented in Table 9 in Appendix B.2.

3 Theoretical Models and Analysis for OD Flows

In an endeavor to acquire a more profound comprehension of the underlying mechanisms of OD lows, a multitude
of theoretical perspectives have been advanced [66, 87, 172, 186, 190].

3.1 Gravity Model

The gravity model in population mobility modeling is derived from Isaac Newton’s law of universal gravitation.
Pertaining to the investigation of interregional interaction, the genesis of notions akin to the gravity model can
be traced back to the mid-19th century [34]. Then, it was Zipf’s seminal work in 1941 [262] that marked the
inaugural formalization of the gravity model, accompanied by a theoretical framework. To be more speciic,
Zipf postulated that the magnitude of interaction, manifested through population or trade lows between two
distinct locations, is directly commensurate with characteristics such as the population size, while concurrently
exhibiting an inverse correlation with the distance and provided a speciic formula to quantify this relationship,

�� � ∝
��� �

�� �
, (1)

where �� and � � are the number of population of region � and � . And the �� � means the distance. Zipf compared his
indings with the principles of Newton’s gravitational formula [262], thereby paving the way for the subsequent
emergence and progression of a series of studies of gravity models that have come to underpin the spatial
interactions and human mobility in later research [76, 172, 218]. It was not until the 1960s that Huf incorporated
calibratable parameters of distance into the framework, marking a signiicant development in the model’s
evolution. Subsequently, calibratable parameters were also assigned to �� and � � , resulting in the formation of
the commonly encountered gravity model formulation seen in later research,

�� � = �
�
��
� �

� �

�

��� �
, (2)

where �, � , �� and � � represents the four calibratable parameters. The introduction of adjustable parameters in
the gravity model is of signiicant importance, as it allows for the efects of various factors, such as diferences in
population structures, on population mobility to be taken into account. For example, regions with a younger
population tend to have a higher production intensity, resulting in a larger �� when used as the origin zone in
the gravity model. Despite later debates concerning the power and exponential forms of distance arising [59],
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Gravity Model of
Diferent Constraints

Inlow Outlow Total Fields and Applications

no constraints non-constrained × × ×

urban geographics,
regional economics,
urban planning

only a total low
constraints

global-constrained × × ✓
urban planning,

scenic spot planning

singly
constraints

attraction-constrained ✓ × ✓
regional economics,

transportation

production-constrained × ✓ ✓
computer science,
transportation

doubly
constraints

doubly-constrained ✓ ✓ ✓ transportation

Table 2. A systematic comparison between diferent kinds of constraints of gravity models. For easy to read, we abbreviate

the non-constrained gravity model to non-constrained, and so on with the others.

these deliberations primarily address nuanced aspects. A more comprehensive and generalized expression can be
exempliied by the following formula,

�� � = ��� (P� ) �� (P� ) �� (�� � ), (3)

where the �� and �� means any kind of functions map the feature vectors P� and P� of origin � and destination
� , and �� can be any format of efect from distance. To provide a more speciic explanation, �� (P� ) can describe
the production intensity at the origin, while �� (P� ) can represent the attraction intensity at the destination in
complex scenarios. When the P� and P� vectors contain only one element respectively, and the function � adopts
the power format, it degenerates into Formula 2.
The ensuing investigation and advancement of gravity models can be categorized based on two distinct

perspectives. Firstly, numerous adaptations of the gravity model have been proposed to cater to the diverse
requirements of varying contexts. Secondly, attempts have been made to extrapolate the gravity model from
underlying individual principles, thereby providing a robust theoretical foundation for its application.

3.1.1 Adaptations of Gravity Model Tailored to Various Scenarios and Contexts. Adjustments to the gravity model
in diferent scenarios are usually made by incorporating additional constraints based on available information.
Given the available information, the problem scenario, and the corresponding gravity model, there are ive
categories of methods that can be used to incorporate constraints. To facilitate the discussion, they are classiied
into ive types, as shown in Tab 2.
Globally-constrained Gravity Model. The globally-constrained gravity model is an advanced form of the

gravity model that incorporates constraints on the total number of trips or movements throughout the entire
study area. Below is the symbolic representation,

�︁

�=1

�︁

�=1

�̂� � =

�︁

�=1

�︁

�=1

�� � = �, (4)

where� and � denote the number of origins and destinations respectively, and� means the number of total trips.
In transportation planning, the total amount of travel in a study area can often be obtained. This quantity

does not need to be completely accurate. Furthermore, there are instances where more granular settings, such as
tourism planning within designated scenic areas and urban commuting patterns, allow for the acquisition of total
trip information.

ACM Comput. Surv.



An Interdisciplinary Survey on Origin-destination Flows Modeling: Theory and Techniques • 9

Production-constrainedGravityModel. In contrast to the globally-constrained gravitymodel, the production-
constrained gravity model necessitates a higher level of granularity in the available information, particularly in
terms of the number of trips originating from each region. As shown in the following equation,

�︁

�=1

�̂� � =

�︁

�=1

�� � = �� � �� ��� �, (5)

where �� means the outlow of region � .
The production-constrained gravity model is often preferred due to practical considerations. Researchers may

rely on self-reported travel patterns provided by local residents, making this model a more feasible and commonly
used approach.
Attraction-constrained Gravity Model. The attraction-constrained gravity model shares a similar mathe-

matical structure to the production-constrained gravity model, while characterized by the known inlow values.
The mathematical expression is shown below,

�︁

�=1

�̂� � =

�︁

�=1

�� � = �� � �� ��� �, (6)

where �� denotes the inlow of region �� .
The attraction-constrained mobility model is frequently utilized in estimating non-commuting OD lows [76,

172, 218], such as leisure activities, by leveraging data on visitor volumes at various destinations such as shopping
malls, parking lots, and parks. Non-commuting OD lows are an important component of mobility analysis,
particularly in urban planning and tourism studies.

Doubly-constrained Gravity Model. The doubly-constrained gravity model represents a further reinement
over the two singly-constrained models, as it incorporates constraints on both inlows and outlows. The
constraints are combined with Eq. 5 and Eq. 6,

�︁

�=1

�̂� � =

�︁

�=1

�� � = �� ,

�︁

�=1

�̂� � =

�︁

�=1

�� � = � � .

(7)

This model plays a pivotal role within the realm of the four-step transportation modeling framework. In
real-world scenarios, a variety of facilities can acquire records of inlow and outlow data via monitoring points,
including residential neighborhoods, and industrial parks, among others. Consequently, the model demonstrates
substantial applicability and relevance in these contexts.

3.1.2 Theoretical Derivation of Gravity Models Originating From Individual-level. Since the inception of the gravity
model, its robustness has been substantiated in a wide array of disciplines. Nevertheless, the majority of these
validations predominantly stem from data-driven and empirical perspectives. Numerous academics [60, 144, 262]
have undertaken rigorous investigations into the fundamental mechanisms of the gravity model from a theoretical
perspective, aiming to establish a solid theoretical basis that would enable a more profound comprehension of
the gravity model. Given the abundance of literature on the topic, we focus our survey on the most inluential
and seminal works that have had a signiicant impact on the ield of study.

Zipf’s Principle of Least Efort. The gravity model was irst systematically introduced in the seminal work of
Zipf in 1946 [262]. In this study, Zipf posited that the inter-regional population movement is directly proportional
to the product of the population sizes at the origin and destination locations while being inversely proportional
to the distance separating them, as illustrated in Eq. 1. Zipf initiated his investigation from the assumption that
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each individual endeavors to minimize personal efort. By integrating the trade-of between economic paradigms
of the localizing economy and big city economy, he was able to derive the gravity model that governs OD lows.
The detailed derivation refers to the appendix C.2.1.

Entropy Approach from Statistical Mechanics. In 1967, Wilson proposed a method based on statisti-
cal mechanics, deriving the macroscopic gravity model theory from microscopic mechanisms. The research
methodology involves establishing the statistical relationships between microscopic states and macroscopic phe-
nomena. Initially, all microscopic states are considered to have equal probability, and the macroscopic phenomena
correspond to the most abundant microscopic states. In this paradigm, microscopic mechanisms help people
understand why corresponding macroscopic phenomena occur, and the research on the gravity model follows
the same purpose. Correspondingly, in human mobility, the microscopic states represent the choice of origin
and destination for each trip, and the macroscopic phenomena manifest as the relationship between population,
distance, and OD lows described by the gravity model, as illustrated by Eq. 2. The detailed derivation can be
obtained in appendix C.2.2.

Minimization of Information Gain from Information Theory. Roy et al. [172] provided a comprehensive
introduction to the derivation of the gravity model using the minimization of information gain. They updated
the model parameters with new data to minimize the information gain from prior probabilities to posterior
probabilities. In conjunction with the two types of constraints mentioned above, as shown in Eq. 7, they solved
the optimization problem to obtain the expression of the gravity model. The derivation process is shown in
Appendix C.2.3.

Economic Principles of Utility Maximization. In 1969, Niedercorn employed the utility theory from
economics to derive the gravity law, which led to the traditional gravity principle stating that spatial interaction
is directly proportional to regional population and inversely proportional to the distance between the origin and
destination [144]. In the realm of economics, the concept of utility refers to a theoretical measure of satisfaction,
happiness, or preference that individuals derive from consuming goods or services [7, 179, 208]. This abstract
notion is employed as a means of quantifying and comparing the relative value or desirability of various
options, thus enabling the assessment of decision-making processes. Niedercorn developed a connection between
individual utility and personal mobility choices, aiming to optimize the utility gains each person acquires from
engaging with other regions through movement. Subsequently, by aggregating these indings to the collective
level, he deduced the gravity law as represented by Eq. 1. The complete derivation is given in appendix C.2.4.
In summary, scholars from various ields have assumed diferent underlying mechanisms and completed the

derivation of the gravity model equation based on their own knowledge frameworks and research paradigms. The
commonality among these approaches is that they all utilize optimization to derive the gravity model, whether it
is through maximizing the macro state with maximum entropy, minimizing costs, or maximizing utility, which
may imply the trade-ofs between multiple factors.

3.2 Intervening Opportunities Model

In 1940, Stoufer provided a theory, named Intervening Opportunities Model (IOM) in human geography [193],
which provides an explanation for spatial interactions, such as migration and transportation patterns. In parallel
with the gravity model [262], IOM is primarily concerned with elucidating the impact of distance on spatial
interactions.

3.2.1 Theoretical Framework of Intervening Opportunities Model. Within the framework of Stoufer’s IOM, the
relationship between distance and mobility is not characterized by a direct causal link. Rather, this association
is mediated by the presence of intervening opportunities. Speciically, in Stoufer’s IOM, individuals making
mobility decisions are confronted with two distinct categories of opportunities: direct opportunities and inter-
vening opportunities. Direct opportunities encapsulate the appeal of a speciic destination, whereas intervening
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opportunities delineate the potential disruptions arising from alternative locations that one may encounter on
the way to the primary destination.

Moreover, Stoufer elucidated the IOM with a rigorous mathematical formulation, capturing the proportional
and inverse inluences of opportunities and intervening opportunities on the number of individuals migrating to
a ixed distance destination [193]. The speciic mathematical expression is shown in the following equation,

Δ�

Δ�
=
�

�

Δ�

Δ�
, (8)

where Δ� means the number of individuals moving from a certain origin to a circular band of width Δ� centered
at the origin, and at a constant distance � from the origin. To be speciic, the distance from the origin to the inner
boundary of the circular band is � − Δ�/2 and that of the outer boundary is � + Δ�/2. � denotes the number of
intervening opportunities, which is the number of opportunities located within the circular area enclosed by the
inner boundary of the circular band. And Δ� represents the number of opportunities that attract Δ� travelers to
move forward to the circular destination.

3.2.2 Relationship with Gravity Model. Derived from Eq. 8, a remarkably distinct inference can be drawn in
comparison to the gravity model, suggesting that the role of distance in human mobility might not be as
paramount as previously assumed. Furthermore, within the IOM, the aspect of travel cost, which held substantial
importance in the gravity model, is now overlooked. In order to integrate the efect of distance into the model, a
straightforward method involves formulating intervening opportunities � as a function of distance. This notion
can be explicitly illustrated by the subsequent equation,

� = � (�). (9)

The number of intervening opportunities � is impacted by the area encompassed by the inner boundary of the
circular band. More precisely, with the escalation of � , � displays a monotonically increasing pattern. As a result,
as � enlarges and � increases monotonically, Δ� demonstrates a monotonically declining tendency, which, to a
certain degree, aligns with the inverse association between the volume of population movement and the distance
in the gravity model.
In summary, the principal contribution of the IOM lies in its theoretical framework grounded in sociological

methods and paradigms to elucidate the underlying mechanisms of spatial interaction, achieving notable success
in this endeavor. Under this theory, OD lows are not simply expected to decrease with increasing distance but are
inluenced by the distribution of intervening opportunities around the origin. This understanding goes beyond a
simple inverse relationship with distance and captures a more essential aspect of the phenomenon. Moreover,
investigations into the IOM have persistently thrived, primarily encompassing two dimensions: a) examining and
reining the IOM within diverse geographical and social milieus [76], and b) augmenting and enhancing the IOM
by amalgamating it with other spatial interaction models [58, 127].

3.3 Radiation Model

In 2012, Simini proposed an alternative physical process analogy to explain the patterns of the population
commuting movement in urban areas observed in OD lows [186]. Speciically, Simini likened the job selection
decisions of individual actors to radiation emission and absorption processes in physics. In this analogy, the
release of particles represented the outlow from each region, and these particles would be absorbed by other
regions based on certain criteria, representing the choices of individuals in selecting a job in a particular region.
Similar to the research on the gravity model using entropy maximization from statistical mechanics, Simini also
adopted the same research paradigm, constructed the individual behavior mechanism, and derived the population
mobility patterns at the regional level.
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3.3.1 Theoretical Framework of Radiation Model. In the modeling of the radiation model, two important concepts
are involved, the individuals {� }, which correspond to the particles in the analogy with the physical radiation
process, and the regions. Speciically, we use the index � to represent the origin, i.e., the home location of
individuals, and the index � to represent the destination, i.e., the job location. Furthermore, we use�� and � �

to denote the population size of the origin and destination, respectively. In each region, the number of job
opportunities available is determined by � /� ��� , where � represents the population of a region, and � ���

represents the number of people needed to produce a single job opportunity. It is evident that the number of
job opportunities is proportional to the population size. Each job is associated with a corresponding income,
and we assume that the distribution of job income follows a certain probability distribution � (�). The income
associated with a job opportunity is sampled independently from � (�), based on the number of job opportunities
in that region. The absorbance of a region �

(� ) , which is deined as the maximum job income in that region,
represents the attractiveness of that region in terms of attracting individuals from other regions to work there.
Each individual also has their own expected income for working in other regions, which is not lower than
the highest income they can earn by working in their home region. Therefore, the expected income for each

individual is deined as the maximum income among all job opportunities in their home region �
(� )
�

.
Given the above preliminaries, the decision-making process for job selection of each individual analogy with

the radiation process can be divided into two steps. First, all particles are released from the home region, and then
the released particles are absorbed by other regions, that is, they select to work in a speciic region according
to a certain rule. The job selection rule is deined as selecting the nearest region with income higher than the

expected income �
(� )
�

. Based on the previous description and rules, we can write the probability formula of the
speciic working decisions of individuals, that is, the probability of living in the region � and deciding to work in
the region � . The calculation formula is shown below.

� (1|�� , � � , �� � ) =

∫ ∞

0
�� ���

(�)��� � (< �)�� �
(> �), (10)

where ���
(�) denotes the probability of highest income of region � through�� times sampling from � (�), and

�� � represents the total population within a circle of radius �� � centered at � (�� � is the distance between � and � ).
The computation of ���

(�) is as follow.

���
(�) =

����
(< �)

��
=��� (< �)��−1

�� (< �)

��
. (11)

As the job incomes are sampled independently, we have that ��� � (< �) = � (< �)�� � and �� �
(> �) = 1−� (< �)� �

obviously. By evaluating the integral of equation x, we derive the following result,

� (1|�� , � � , �� �) =
��� �

(�� + �� � ) (�� + � � + �� � )
, (12)

which is the probability of individual decision for job selection. By consolidating the aforementioned individual
probability distribution to the population level through a binomial distribution, the following expression can be
obtained,

� (�� � |�� , � � , �� � ) =
�� !

�� � !(�� −�� � )!
� (1|�� , � � , �� �)

�� � (1 − � (1|�� , � � , �� �))
�� � , (13)

where �� denotes the outlow of region � . The expectation of distribution with the low information is shown as
follows.

< �� � >= ��� (1|�� , � � , �� � ) = ��
��� �

(�� + �� � ) (�� + � � + �� � )
, (14)

which is the fundamental equation of the radiation model.
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Fig. 4. Relationship among the gravity model, intervening opportunities model, and radiation model.

3.3.2 Relationship With Other Theoretical Models. The development of the radiation model was proposed as
a means to overcome certain constraints inherent in the gravity model [186]. Moreover, the radiation model
integrates the economic principle of utility maximization, as espoused by the gravity model, by employing
a method that extrapolates collective patterns from individual actions within an academic context. What is
more, the relationship between the radiation model and the IOM is more closely and intertwined. Within the
context of the radiation model, the allure of the region delineated by �� � can, to some degree, be equated to
intervening opportunities [193]. In this model, such opportunities are further speciied within distinct circular
regions. Moreover, as evidenced by the derived formula, an augmentation in these intervening opportunities
results in a reduction in the low volume of individuals traversing from the origin to the destination.

3.4 Interconnection Among Three Theoretical Models

In our summary, the three theoretical models have inherent connections, as illustrated in Fig. 4. When intervening
opportunities are evenly distributed or insigniicant, the OD low exhibits a simple inverse relationship with
distance, as expressed in the gravity model. However, when intervening opportunities are proportional to
population density, the relationship between OD low and distance is represented in the radiation model, where
population serves as a proxy.

4 Techniques for Handling Practical Issues Related to OD Flows

In contrast to the theoretical domains, disciplines such as transportation engineering, urban planning, and
computer science concentrate on tackling practical challenges pertaining to OD lows. In our investigation
of research across various domains, we have identiied four primary practical problems: OD prediction, OD
construction, OD estimation, and OD forecasting. The classiication criterion is based on the objectives of the
problems in diferent scenarios and the types of information employed in addressing these issues. Various
evaluation approaches are provided in appendix D.

4.1 Origin-destination Prediction

4.1.1 Preliminaries.

Deinition 4.1. Regions. The urban space is divided into � regions R = {�� |� = 1, 2, ..., � }. Each region will
have a characteristic vector X� to represent its urban attributes, which includes socioeconomic and geographic
features introduced in Sec 2.
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Models Techniques Required Features Features Type

[97, 99, 159, 262] Gravity Model Physical Model Population, distance Numerical

[47, 193, 201] IOM Social Model Opportunities Numerical

[111, 162, 186] Radiation Model Physical Model Population Numerical

[164] SVR Kernel-based Model
Socioeconomics,

distance
Nemerical

[163] GBRT Tree-based Model Socioeconomics
Numerical,
categorical

[158] Random Forest Tree-based Model Socioeconomics Numerical

[92] ANN Neural Network Socioeconomics Numerical

[235] SI-GCN Deep Learning Socioeconomics
Numerical,
categorical

[124] GMEL Deep Learning Socioeconomics Numerical

[105] GCN-MLP Deep Learning POIs Numerical

[29] spatialGAT Deep Learning

Population,
road densities,

POIs,
railway users

Numerical

[236] ConvGCN-RF Deep Learning
Population,
landuse type

Numerical,
categorical

[245] SIRI
Deep Learning +
Causal Inference

Socioeconomics,
POIs

Numerical

Table 3. A systematic summary on approaches for solving OD prediction problem. The approaches are classified into three

types. From top to botom of the table, there are traditional methods, classic machine learning-based methods and deep

learning methods.

Deinition 4.2. OD Pairs. An origin-destination pair denotes a ordered tuple < �� , �� >, where �� and ��
represent the origin and destination respectively. We denote the set of all OD pairs of the study areaU as the
universal set.

Problem 1. OD Prediction. Given the regional urban characteristics of the city {X� |� ∈ R} and observed OD

lows {�� � | < �� , � � >∈ X} between part of OD pairs X , construct a model to predict the remaining unknown OD

lows {�� � | < �� , � � >∉ X}.

4.1.2 Methodologies. There are three categories of techniques and methods for addressing the problem of OD
prediction: traditional models, classic machine learning-based models, and neural network-based deep learning
models. The summarized description is shown in Table. 3.
Traditional Methods. The traditional methods including the gravity model, IOM and the radiation model,

have been extensively introduced in Sec. 3. Recently, the gravity model has been combined with new data
to improve the prediction performance. Pourebrahim et al. [159] proposed a novel approach to enhance the
prediction performance of gravity models by incorporating data from Twitter online check-ins. Jin et al. [97]
developed an optimized gravity model based on Foursquare check-ins data for their study area. These researches
highlighted the potential of LBSN (Location-based Serviece Network) data. Karimi et al. [99] proposed a method to
improve the accuracy of the gravity model by incorporating traic counts. Liu et al. [122] proposed a methodology
to enhance the gravity model by incorporating land use information. The IOM has undergone development
since its inception. One attempt to combine the gravity model and IOM was made by Cripps et al. [47], who
employed intervening opportunities as a measure of cost in a gravity model for residential location modeling.
Competing opportunities were introduced by Tomazinis et al. [201] as an alternative. As for the radiation model,
Ren et al. [162] developed an OD prediction method based on a cost-based generalization of the radiation model
and a cost-minimizing algorithm for eicient distribution of the OD lows. Lenormand et al. [111] found that
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the predictive accuracy of the radiation model improved when factors such as population density, income, and
education were considered.
Classic Machine Learning-based Methods. This kind of method has been shown in many studies [158,

159, 163] that outperformed traditional models, demonstrating signiicantly higher accuracy. Classic machine
learning models learn patterns and relationships from a given set of training data to make predictions on unseen
data. The classic machine learning models include linear regression, logistic regression, decision trees, Gradient
Boosted Regression Trees (GBRT) [62], random forests [26], support vector machines (SVM), and artiicial neural
networks (ANN). Rodriguez et al. [164] utilized feature engineering to extract signiicant regional factors that
inluence OD lows, and conducted a comparison to ind that SVR outperformed ANN in terms of accuracy. Sana
et al [177]. introduced passively collected big data from Google servers to estimate travel demand, comparing
ANN, random forest, SVM, and hidden Markov models. Robinson et al. [163] conducted a comparison among
ANN, GBRT, and traditional models, and found that machine learning models showed signiicant advantages
over traditional models. Pourebrahim et al. [158] introduced Twitter data and found that the random forest
achieved optimal performance. Several works [110, 158, 159, 163, 164] have reported the performance of ANN in
OD prediction tasks, and in most cases, their performance is inferior to that of SVR and other tree-based machine
learning models.

Deep Learning Methods. Deep learning models have made signiicant progress recently, particularly in the
ields of computer vision (CV) [77], natural language processing (NLP) [51], and other areas [103, 115]. Through
a large number of parameters and sophisticated structured design, deep neural networks have shown remarkable
itting and generalization abilities, resulting in high performance in various applications. As deep learning
advances, models such as convolutional neural networks (CNN) [77] and graph neural networks (GNN) [103],
which are inherently well-suited for extracting urban spatial features, have emerged and have been employed by
numerous studies as spatial feature extraction modules [124, 236]. The related works are summarized in Table 3.
Speciically, Katranji et al. [101], Liu et al. [124] and Cai et al. [29] employ multi-task learning to further improve
the prediction accuracy of total OD lows by predicting speciic travel pattern OD lows. Afandizadeh et al. [1]
collected extensive ITS data, including automatic number plate recognition (ANPR) camera data, intersection
loop detector data, and smart transit card data, leveraging deep learning techniques to predict travel conditions
in metropolitan areas. A lot of works [29, 105, 124, 235, 236] introduced GNNs to leverage spatial neighborhood
similarity to extract features for each region as origin and destination. And two works [29, 236] proposed the
hybrid models, which use CNN to process grid-based urban characteristics and combine them with GNNs. Zeng et
al. [245] proposed a novel approach that combines causal learning, using historical information and urban regional
attribute changes to predict future OD low variations, achieving more robust accuracy on out-of-distribution
datasets.
In brief, each of the three kinds of methods has its own advantages and disadvantages. Although traditional

methods may not perform well, they ofer valuable knowledge and model-building intuition. Traditional machine
learning methods achieve decent performance and good explainability in the feature importance. The deep
learning approaches beneit from their lexible design and complex structure to achieve optimal performance.
However, due to the large number of parameters, good explainability cannot be realized. In this task, the future
direction is to combine the advantages of the three methods and complement each other’s strengths. That is,
traditional methods can be used to inspire better model designs, such as gravity-inspired GAE [176]. And specially
designed network structures can be used to learn excellent representations and combine them with classic
machine learning-based methods to obtain both performance and robustness improvements [124, 236].

4.2 Origin-destination Construction

4.2.1 Preliminaries.
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Based on Mobility
-related Data

Data Requirements Typical Techniques Papers

Data-based
Aggregation
Methods

✓
Individual

Mobile Records

Spatial Clustering [3, 9, 24, 30, 203]
Rule-based Filtering [3, 9, 24, 91, 203]
Statistical Counting [3, 9, 24, 28, 30, 91, 203]

Model-based
Generation
Methods

×
Easily-obtained
Auxiliary Data

Predictive Models [124, 158, 159, 168, 169, 185, 245]
Generative Models [166, 170]
Transfer Learning [167]

Table 4. A systematic comparison between two categories of works on addressing OD construction problem.

Deinition 4.3. OD Matrix. The OD lows between all regions can be represented in the form of an OD matrix
F, where the element �� � at the �

�ℎ row and ��ℎ column indicate the number of people moving from region �� to
region � � . The symbolic representation of the OD matrix can be referred to in Eq. 1.1.

Problem 2. OD Construction. The OD construction problem aims to construct the complete OD matrix F for the

city based on easily accessible information without any OD low information available.

4.2.2 Methodologies. Relative to OD prediction, OD construction constitutes a considerably more intricate issue.
Apart from the costly survey-based traditional methods, current solutions to OD construction can be categorized
into two types: aggregation of individual trajectories, and building computational models. Following, we designate
the former as data-based aggregation methods and the latter as model-based generation methods. A summary of
the systematic comparison between these two categories of methods is shown in Table. 4.
Data-based Aggregation Methods. This method emphasizes the aggregation of individual trajectories to

ascertain collective OD low patterns. The primary intention of this category of methods is to utilize accessible
mobility records, such as CDRs and check-ins, thereby replacing the traditional high-cost yearly travel survey
approaches. A primary challenge faced in this direction is the need to design diferent data mining methods
according to the distinct characteristics of various data, as shown in Table. 1.

There have already been numerous eforts using CDRs as the trajectory information [3, 9, 24, 28, 30, 91, 203].
Duan et al. [53] explored CDR data for predicting land use types and estimating commuting OD matrices. They
identiied the home and work locations of each individual based on rules and then aggregated the information to
obtain the commuting OD matrix. Calabrese et al. [30] utilized CDR data from one million users, irst obtaining
trips based on individual trajectories, and then aggregating these trips to derive the OD lows for the Boston
Metropolitan Area. Iqbal et al. [91] irst identiied stay points for all users in the CDR data using spatial clustering,
and then aggregated the transitions between stay points for all users to obtain OD lows. Alexander et al. [3]
further associated trips and activities, and subsequently calculated home-based, work-based, and other types of
OD lows based on this relationship. In addition to the aforementioned studies, there are many similar works or
diferent applications [9, 23, 50, 69, 80, 90, 131, 160, 202, 219] focusing on diferent regions or cities of interest.

There are also some studies that use other types of mobile data to extract OD lows. Some works [55, 151, 209,
213, 233] use cellular signaling data to construct OD lows. The diference is that cellular signaling data has a
iner spatiotemporal granularity, making it suitable for capturing dynamic OD lows or ine-grained OD lows.
Check-ins are also a popular source for extracting OD low information. Several existing works [93, 116, 148, 226]
have made attempts in this direction. GPS data, as an important source of mobility information, has also
been used in numerous studies [38, 132, 142, 175, 209] on OD lows. With the development of ITS, many
studies [33, 38, 65, 71, 89, 142, 178, 199] utilize data, such as smart card data and station records, etc., to construct
OD low information.
Model-based Generation Methods. Despite the achievements of data-based aggregation methods in ad-

dressing the OD construction problem, these approaches entail limitations, including stringent data requirements
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(a) Predictive modeling. (b) Generative modeling. (c) Transfer learning.

Fig. 5. The illustrations of comparing diferent model-based generation methods for solving OD construction problem.

and potential risks associated with privacy breaches. An alternative approach, akin to OD prediction techniques,
entails the development of models that draw upon a city’s spatially structured features, thereby generating OD
matrices for the target urban area. However, this is a highly futuristic and challenging direction, primarily due to
the problem’s premise that the target city lacks any OD low information. Consequently, the model cannot be
calibrated through target domain information, resulting in potential errors. These model-based generation works
to solve the OD construction problem can be divided into three main categories: predictive models, generative
models and transfer learning methods, as shown in Table 4.

Predictive Models. This kind of method uses predictive models, which target OD lows based on other easily
available data. The irst is the typical OD prediction techniques [124, 158, 159, 168, 169, 185, 245], which can be
trained directly in a city where OD low information is obtainable and then predict OD lows between every two
regions in the target city, as shown in Fig. 5(a). However, there is a limitation that this paradigm will introduce
cross-city transfer errors. The OD prediction techniques take the urban characteristics, such as socioeconomics, as
the basis of modeling. There are other works that take the dynamic population distribution [169] and population
variations [168] as the input to predict the corresponding OD lows.

Generative Models. Recently, the development of Artiicial Intelligence Generated Content (AIGC) has led to
the mainstreaming of the generative models, which has been adopted in OD construction in some works [166, 170].
Rong et al [166, 170] propose to generate OD low from a network perspective through generative adversarial
networks (GAN) [67] and difusion models [82], which generates the OD lows not only considering the local
regional urban attributes but also the complexity [173, 174] of the whole OD matrix of a city, as shown in Fig. 5(b).

Transfer Learning Methods. To reduce the error introduced in OD prediction techniques when transferring
across cities, another idea is to utilize unsupervised transfer learning methods to improve the transferability of
the models. A cutting-edge research direction, known as unsupervised domain adaptation, focuses on training
models within a source domain and transferring them to an unlabeled target domain. The underlying idea
involves mapping features from both the source and target domains into a common space, aiming to minimize
the disparities between them [167], as shown in Fig. 5(c). Consequently, this approach allows for the successful
application of OD prediction models, initially trained in the source domain, to the target domain. This represents
a promising and emerging research direction in the ield, with no signiicant or inluential studies available at
present.
Until now, data-based aggregation methods have been fully utilized in many scenarios to achieve the task of

OD construction. However, the limitation of this kind of method is that it is very demanding in terms of data.
Speciically, it should input the location records of a large number of individuals in the city. This information is
not easy to be obtained and can disclose the privacy of users. Besides, it has been studied thoroughly because
of the simplicity of the technology used. Conversely, model-based generation methods are the future direction,
since they require only publicly available auxiliary data. There are already works leveraging transfer learning
strategies [167] and generative models to solve the OD construction problem. With the advent of AIGC, there is
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Objectives Scenarios Papers

Entropy
Maximization

Maximizing the entropy of the OD Matrix. Static OD Estimation [2, 140, 206, 222, 227]

Maximum
Likelihoold

Maximizing the likelihood of dataset Static OD Estimation [52, 94, 125, 152, 157]

Least Squares Minimizing the errors between models and data. Dynamic OD Estimation [19, 35, 138, 182, 205, 212]

Primal-Dual
Minimizing a function that represents the mismatch
between observed and estimated lows

Dynamic OD Estimation [139]

Bayesian
Estimation

Incorporate prior knowledge and observed data to
estimate the most likely OD lows

Dynamic OD Estimation [48, 134, 155, 156, 237]

Gradient-based
Optimization

Minimizing the mismatch between observations
and prediction while the OD lows are the weights

Dynamic OD Estimation [17, 18, 31, 32, 42, 61, 171, 232]

Genetic
Algorithm

Minimizing the mismatch between observations and
prediction while the OD matrix is the solution space

Dynamic OD Estimation [85, 145, 149]

Table 5. A summary of traditional methods for addressing origin-destination estimation.

a growing trend to use vast amounts of data to learn a universal large model for data generation, which is also
the future exploration direction of addressing OD construction tasks.

4.3 Origin-destination Estimation

4.3.1 Preliminaries.

Deinition 4.4. Temporal OD Flow. Temporal OD low refers to the population mobility {� �� � } between diferent

regions within speciied time periods {� |� = 1, 2, ...,� }. It takes into account both the spatial aspect (i.e., people
are moving from the origin �� and to the destination � � ) and the temporal aspect (i.e., when the movement occurs)
of the low.

Problem 3. OD Estimation. Given a set of observed temporal traic counts or other relevant observations

T = {��� |� = 1, ..,� and � = 1, ..., � } collected at various locations {�� |� = 1, ..., � } within a transportation network

(such as road segments, intersections, or sensor-equipped locations), the objective is to infer the underlying OD lows

{� �� � }, i.e., the number of trips between diferent origin and destination pairs, that generated the observed traic

pattern.

4.3.2 Methodologies. In addressing the OD estimation problem, the adopted strategy entails employing al-
gorithms or models to identify the most like OD lows that correspond to the observed traic patterns. The
fundamental challenge of the origin-destination (OD) matrix estimation problem is that it is severely under-
determined. Existing approaches to solving the OD estimation problem typically fall into two categories. One
consists of traditional methods, which combine traic models and simulators to ind the most likely OD matrix
based on optimization. The other involves using data-driven methods, which employ data to construct empirical
models and utilize these models to directly or indirectly predict OD lows.
Traditional Methods. This category of methods predominantly frames the OD estimation problem as an

optimization task, wherein the objective function to be minimized encompasses ive convex components, each
representing a constraint or attribute of the transportation problem: adherence to traic counts, compliance
with traic conservation (Kirchhof’s law), the resemblance of lows originating and culminating in proximate
locations, and non-negativity of traic lows. Consequently, methodologies such as entropy maximization,
maximum likelihood estimation, etc. have been adopted to ascertain the most likely OD lows. The techniques
employed and their respective features are concisely delineated in Table 5. Additionally, there are some works
that adopt other methods to solve the optimization problem, such as the Golden Section Search algorithm [27],
expectation-maximization [196], Gauss-Seidel method [221] and Kalman ilter approaches [36, 129].
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Data-driven Method. In the ield of transportation, researchers have attempted to employ data-driven
approaches to construct machine learning models that directly learn the mapping relationship between traic
observation information and OD lows [191, 223], enabling the estimation of corresponding OD lows based on
traic status. Some works [107, 204, 231] take an indirect approach, irst utilizing neural networks to approximate
a computationally complex traic model and then using that model to accelerate the solution of previous
optimization problems. There are even studies [133, 220, 257] that directly employ neural networks to construct
computation graphs, modeling the entire traic process and subsequently estimating the most likely OD matrix
that produces the corresponding traic observations.
In summary, traditional methods to estimate the most likely OD lows have eiciency issues and cannot be

applied to large-scale city-wide scenarios. Recently, researchers have made progress in improving eiciency by
using the data-driven paradigm based on machine learning models instead of traditional traic models, such as
DTA.

4.4 Origin-destination Forecasting

4.4.1 Preliminaries. Problem 4. OD Forecasting. Given a historical dataset of OD lows {� �� � |� = 1, 2, ..., � − 1}

over a certain period of time, the objective is to forecast the OD lows for future time periods {� �� � |� = �, � + 1, ...}.

4.4.2 Methodologies. OD forecasting is an autoregressive multivariate time series forecasting problem, similar
to classical time series prediction problems, where many classical algorithms can be used as solvers, such
as vector auto-regression (VAR) [72], support vector regression (SVR) [187], and auto-regressive integrated
moving average (ARIMA) [25]. With the development of deep learning, many computer science researchers have
introduced advanced spatiotemporal sequence prediction models [63, 70, 225] into the ield of OD forecasting,
signiicantly improving prediction performance. And there are advanced deep learning methods as shown in
Table 6.

A comprehensive summary of existing OD forecasting-related works is presented in Table 6. From this, we can
see that GNN is a commonly used approach for extracting spatial features. Speciically, some works use GCN [103],
while others employ GAT [207] or 2DGCN [183] to address spatial modeling. There are roughly three ways to
construct graphs, including using spatial adjacency relationships [41, 86, 102, 181, 215, 256, 263], urban functional
similarity [86, 102, 117, 124, 183], historical time series pattern similarity [41, 86, 96, 102, 113, 117, 183, 214, 228],
and OD lows correlation [86, 137, 181, 215, 247, 254]. For handling temporal information, common sequence
modeling models such as LSTM [96, 102, 137, 147, 181, 183, 214, 255], GRU [41, 86, 117, 119, 228, 234, 254, 256],
TCN [49], and self-attention [21, 83, 119] are employed. Most works train models using the error between the
ground truth and the predictions in the training set, while a few works utilize GAN-based loss [86, 114] or
VAE-based loss [255] for model training. It is worth noting that sparsity is a unique attribute of OD low that
most works consider separately, and they use gated mechanisms [113, 228] to model sparsity, which improves
forecasting accuracy.

In the future, there are two main avenues to improve the accuracy of OD forecasting. Firstly, in terms of data,
the focus extends beyond historical OD low information to include POIs, traic condition data, and other relevant
factors. Incorporating such information can enhance the predictive accuracy of OD forecasting. Secondly, in
terms of modeling, advanced graph-based modeling techniques and spatiotemporal neural networks, such as
graph transformers [244], can be further employed. These advanced modeling approaches enable the exploration
of complex spatial and temporal relationships within OD lows.

4.5 Comparative Overview of the Four Problems and Their Benchmarks

We will now provide a comparative overview to summarize the characteristics of the four problems. As shown in
Table 7, diferent scenarios have varying degrees of access to OD low-related information, and algorithms can be
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Models Spatial Topology Construction Spatial Feature Extraction Temporal Modeling Learning Strategies

gMHC-STA [21]
region-pairs as nodes
full-connected graph

GCN + spatial attention self-attention MSELoss

ST-VGCN [228]
region-pairs as nodes
Pearson correlation graph

GCN + gated mechanism GRU MSELoss

MVPF [256]
stations as nodes
distance-based graph

GAT GRU MSELoss

Hex D-GCN [234]
hexagonal grids as nodes
taxi path-based dynamic graph

GCN GRU MSELoss

CWGAN-GP [114] OD matrix as an image CNN CNN
GAN-based Training
condition on histories

SEHNN [255]
stations as nodes
geo-adjacency graph

GCN LSTM VAE-based Training

HC-LSTM [137]

grids as nodes
OD low-based graph
in/out low as an image
OD matrix as an image

CNN + GCN LSTM MSELoss

Gallat [215]
regions as nodes
OD low-based graph
distance-based graph

spaital attention temporal attention MSELoss

ST-GDL [263]
regions as nodes
distance-based graph

CNN + GCN CNN MSELoss

PGCM [113]
region pairs as nodes
OD low-based graph

GCN + gated mechanism none probabilistic inference with Monte Carlo

MF-ResNet [78] OD matrix as an image CNN none MSELoss

TS-STN [96]
stations as nodes
OD low-based graph

temporally shifted
graph convolution

LSTM + attention Partially MSELoss

ODP-URS [147] OD matrix as an image CNN LSTM MSELoss

DMGC-GAN [86]

regions as nodes
geo-adjacency graph
OD low-based graph
in/out low-based graph

GCN GCN + GRU GAN-based training

DNEAT [247]
regions as nodes
geo-adjacency graph
OD low-based graph

attention attention MSELoss

CAS-CNN [251] OD matrix as an image CNN channel-wise attention masked loss function

ST-ED-RMGC [102]

region pairs as nodes
fully-connected graph
geo-adjacency graph
POI-based graph
distance-based graph
OD low-based graph

GCN LSTM MSELoss

HSTN [41]
regions as nodes
geo-adjacency graph
node pattern similarity graph

GCN GRU+Seq2Seq MSELoss

BGARN [181]
grid clusters as nodes
distance-based graph
OD low-based graph

GCN+attention LSTM MSELoss

HMOD [254]
regions as nodes
OD low-based graph

random walk
for embedding

GRU MSELoss

STHAN [117]

regions as nodes
geo-adjacency graph
POI-based graph
OD low-based graph

convolution by
meta-paths + attention

GRU MSELoss

ODformer [83] regions as nodes
2D-GCN within
Transformer

none MSELoss

CMOD [73]
stations as nodes
passengers as edges

multi-level inform
-ation aggregation

multi-level inform
-ation aggregation

continous time forecasting

HIAM [119]
stations as nodes
railway-based graph

GCGRU GCGRU + Transformer online forecasting

DAGNN [49]
regions as nodes
fully-connected graph

subgraph + graph convolution TCN MSELoss

GEML [214]
regions as nodes
geo-adjacency graph
POI-based graph

GCN LSTM multi-task learning

MPGCN [183]

regions as nodes
distance-based graph
POI-based graph
OD low-based graph

2DGCN LSTM MSELoss

GDCF [74]

regions or stations as nodes
clusters as nodes
distance-based graph
OD low-based graph

weighted aggregation
continuous
updating

mechanism
Normalized MSELoss

Table 6. A summary comparison of the works on the origin-destination forecasting problem.
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Scenarios
Available
Mobility

Information
Input Why

OD Prediction Intra-city Partial OD Flows Urban Characteristics
The spatial heterogeneity in the distribution
of urban functions drives human mobility.

OD Construction
Cross-cities

OD Flows Outside
The Target City

Urban Characteristics
The spatial heterogeneity in the distribution
of urban functions drives human mobility.

Intra-city
Mobility Trajectories
of Individuals

Trajectories
OD lows are statistical representations of
individual trajectories at the regional level.

OD Estimation Intra-city None Traic conditions Human mobility impacts traic conditions.

OD Forecasting Intra-city
Historical OD Flows
Between All Regions

Historical OD Flows
Perform autoregressive forecasting based
on its own patterns.

Table 7. A comparison among basic characteristics of the four problems.

Fig. 6. A comparison of paper numbers of diferent fields working on solving the four problems.

designed accordingly based on the available level of OD low information. Furthermore, with diferent OD low
information known, we can generate complete OD low information by considering diferent facets.
We present the contributions of diferent disciplines to the four problems in Fig. 6, using a bar chart for

visualization. Three types of disciplines are included. From the chart, we can observe that OD prediction and OD
construction receive more attention from fundamental theoretical disciplines and macro-scale level disciplines.
OD estimation is primarily studied in the transportation ield, while OD forecasting is mainly researched in
computer science and system engineering.

Especially, to facilitate future research and promote the advancement of related studies, we have collected [6]
and developed benchmarks for the aforementioned four problems, and they have been made publicly available at
https://github.com/tsinghua-ib-lab/OD_benckmark.

5 Applications

5.1 Urban Planning

In urban planning, understanding human mobility patterns has become a critical aspect for the efective design,
management, and evaluation of urban spaces [189, 259]. OD lows and population mobility models play a pivotal
role in capturing the complex interactions between people, transportation systems, and the built environment.
These models provide valuable insights into the daily movements of residents within and between urban areas,
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revealing underlying spatial and temporal patterns that help planners make informed decisions on various aspects
of urban development. Some works are introduced below.

• Zhong et al. [261] use existing OD lows to detect the dynamics of urban structure through spatial network
analysis.

• Yuan et al. [238] investigate regions of diferent functions in a city using human mobility and points of interest
(POIs) data. They leverage existing OD matrix data and population mobility models to identify distinct urban
functional regions, which can guide urban planning and policy-making.

• Sun et al. [198] use existing population mobility models to examine daily encounters in metropolitan areas.
They analyze various urban factors that inluence the frequency and distribution of encounters, providing
insights for urban planning and policy making.

5.2 Trafic Management and Analysis

OD lows play a crucial role in transportation management and analysis as a fundamental input for numerous
transportation studies. By capturing the movement of people between various regions within a given city,
OD lows provide essential insights into the demand for transportation services and travel patterns [195]. By
examining OD lows, transportation authorities can identify high-demand corridors, anticipate congestion, and
develop targeted interventions to improve overall system performance and user experience. Furthermore, OD
lows serve as a valuable tool for transportation analysis by facilitating the evaluation of existing infrastructure
and transportation policies, as well as the forecasting of future demand. This empowers planners and policymakers
to assess the efectiveness of various measures, such as the introduction of new transit lines, congestion pricing,
or changes in transport policies, and to identify potential bottlenecks or areas in need of investment.

There are examples of applying OD low information for transportation applications.

• Cats et al. [37] apply OD lows and population mobility models to analyze the dynamic vulnerability of public
transport networks. They evaluate the impact of service disruptions and examine the substitution efects and
mitigation measures that can be implemented to minimize the adverse efects on passengers.

• Lattman et al. [109] introduces the Perceived Accessibility Scale (PAC) to evaluate passengers’ perceptions of
public transport accessibility. The researchers utilize OD matrix data to assess the spatial distribution of travel
demand and analyze how these factors inluence the perceived accessibility of public transportation services.

• Pereira et al. [154] explore the use of web data to predict public transport arrivals during special events. They
utilize existing OD matrix data to create accurate predictions, which can help urban planners optimize public
transportation services.

5.3 Epidemic Control

In the context of epidemic control, OD low data is utilized to inform public health interventions, such as the
implementation of travel restrictions, quarantine measures, and targeted vaccination campaigns [10, 106]. By
analyzing OD lows, public health oicials can identify high-risk areas, anticipate potential outbreaks, and
develop targeted strategies to mitigate the spread of infectious diseases and protect vulnerable populations [106].
Furthermore, OD lows can be integrated with epidemiological models to better predict the spatial and temporal
dynamics of disease transmission. This enables health authorities to assess the efectiveness of various control
measures, such as social distancing policies, contact tracing eforts, and changes in healthcare infrastructure, and
to allocate resources eiciently to the areas most in need [106]. Some works are as follows.

• Balcan et al. [10] investigates the role of multiscale mobility networks in the spatial spreading of infectious
diseases. The authors use an OD matrix derived from census data and airline transportation data to model the
spreading patterns of diseases, providing valuable insights for epidemic control and public health interventions.
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• Zhang et al. [253] model the spread of the Zika virus in the Americas using an OD matrix based on airline
transportation data and population mobility models. The study provides valuable information for public
health interventions and epidemic control strategies.

• Jia et al. [95] investigates the role of population low in driving the spatio-temporal distribution of COVID-19
in China. The authors use existing OD lows and population mobility data to model the spread of the virus,
providing valuable insights for epidemic control and public health policy.

• Huang et al. [84] presents a contact-tracing investigation of a cluster of COVID-19 cases among young people
aged 16-23 years. The authors use existing OD lows to analyze the transmission dynamics of the virus,
providing important information for epidemic control and public health policy.

6 Open Challenges and Future Directions

6.1 Challenges

OD lows play a pivotal role in capturing humanmobility patterns and bears substantial applications and functions
for various disciplines, such as urban planning, transportation management, and epidemic control. Nonetheless,
several outstanding challenges in this domain warrant attention to fully harness its potential.

• Explainable Modeling based on Various Urban Features. Traditional theory-based OD low modeling
has strong interpretability [76, 186, 193] but, due to its limited consideration of factors and model simplicity,
it lacks accuracy. Advanced data-driven approaches can employ complex models to consider numerous
intricate factors, ofering higher accuracy but lower explainability [124, 236]. For OD low modeling to
provide deeper insights into population mobility and better assist decision-makers, both model efectiveness
and explainability must be considered. However, this is a highly challenging task.

• Data Quality and Availability. a) Obtaining accurate, high-resolution, and up-to-date OD low data can
be diicult, particularly in regions with limited data infrastructure or privacy concerns. Additionally, data
from diferent sources may have varying levels of quality and granularity, making it challenging to integrate
and analyze them. b) Gaining access to data from specialized scenarios, such as disaster contexts, poses
considerable diiculties.

• Scalability of Models and Algorithms for High-dimensional OD Matrix Data. OD matrices can exhibit
a regional square magnitude, encompassing millions of dimensions, as they represent the origin-destination
relationships between all possible pairs of regions within a given area. This high-dimensional nature of OD
matrices presents signiicant computational and analytical challenges.

In order to address this challenge, researchers need to explore and develop innovative modeling approaches,
such as machine learning, deep learning, and complex network analysis, which can efectively capture and
leverage the high-ordered spatiotemporal dependencies inherent in dynamic OD matrices.

6.2 Future Directions

In light of the prevailing challenges outlined above, we propose two promising avenues for addressing the
obtaining problem of OD low information from perspectives of model design and introducing new algorithms.

6.2.1 Theory-driven Advanced Model Design. Based on the aforementioned theoretical research on OD lows, we
can summarize three promising future directions that can be guided by theory.

• Data and Knowledge Jointly-driven Modeling. Pure data-driven methods emphasize accuracy while
neglecting the explainability of the model, whereas purely knowledge-based modeling methods have strong
explainability. The incorporation of physical knowledge into neural network design [100, 248], aims to
enhance the modeling, thereby boosting both generalizability and explainability. The use of machine learning
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methods to rediscover and discover new knowledge, efectively employing these techniques not just for
predictions, but also as tools for knowledge extraction [43, 45, 184, 197].

• Building the Universal Mobility Model based on Global Data to Construct a Knowledge Base. a)
Developing a universal mobility framework, grounded in diverse data sources from around the globe, that is
capable of generating OD low information tailored to speciic urban characteristics would enable widespread
applicability across various cities [165]. b) Harnessing information from diverse sources, including traic,
ICT, demographics, census data, GIS, navigation systems, and mobile phone records, and amalgamating
these disparate datasets into a uniied framework would enhance overall data quality and complementarity.
This approach would empower researchers to leverage the strengths of each data source, thereby generat-
ing synergistic efects that surpass the sum of their individual contributions. UrbanKG (urban knowledge
graph) [120, 121, 123, 211] may be a good choice for this kind of uniied modeling. Once a model has been
exposed to the global data, it can be regarded as a knowledge base that stores abundant information, which
can be utilized for acquiring OD low information in various scenarios.

6.2.2 Application-driven Edging Algorithm Introducing. Certain practical application scenarios also drive re-
searchers to choose more cutting-edge algorithms to address the corresponding challenges.

• Utilizing Advanced Techniques to Address the Problem of Out-Of-Distribution When Transfer

between Diferent Space. In practical scenarios, data is often available in more developed regions, while
data scarcity is a challenge in developing regions. There are signiicant pattern diferences between the two,
and utilizing causal learning [245] and transfer learning [167] to capture more fundamental correlations can
address the issue of training models that are inconsistent with the distribution of the target scenarios.

• Constructing Eicient Models to Deal With the Challenge of large scale. Developing eicient models
through simpliication entails the formulation of elegant and streamlined models [22, 166] that strike a balance
between complexity and performance while preserving computational eiciency and adhering to academic
rigor. This will improve the scalability of methods, Incorporating hardware optimization and the design
of high-performance computing systems, which will be essential approaches to address the challenges of
high-dimensional OD matrix modeling.

6.2.3 Coupling With Urban Simulation. Integrating OD low data with computational models and urban sim-
ulation research is an important future direction. This direction primarily explores the relationship between
data-driven computational models and urban simulation frameworks [239, 242], empowering urban simulation
with OD lows to obtain more realistic and reliable counterfactual decision-making references [56, 249, 250]. This
emerging direction is currently underexplored, with a focus mainly on the application of reinforcement learning
in traic signal control issues [258]. Furthermore, with the OD low data, a more ine-grained simulation of human
behaviors in the urban context can be achieved, such as spatiotemporal event modeling [57, 240, 241], individual
mobility modeling [126, 210, 224, 243], pedestrian walking simulation [184] and communication behaviors [88],
which will power up the urban simulation for a more generalized and reasonable deduction. Integrating the OD
low information in these modeling will guarantee the consistency of the urban behaviors from diferent scales.

7 Conclusion and Summary

This survey provides a comprehensive overview of the relationships between OD lows and various disciplines,
summarizing the topic from the perspectives of population mobility theory, techniques for speciic problems,
and practical applications based on OD low information. In terms of theoretical research on mobility related
to OD lows, we delved into the ields of urban geography, regional economics, and sociophysics, meticulously
summarizing and organizing the research framework and development trajectory. We also identiied four classic
OD low obtaining problems in real-world scenarios, along with a summary of their corresponding solutions and
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evaluation methods for diferent scenarios. Lastly, we discuss the support and beneit that OD low information
can ofer to various disciplines in speciic contexts and, based on existing challenges, outline future directions for
development. We believe this survey will provide researchers from multiple disciplines with a comprehensive
understanding of OD lows and their implications.

Acknowledgments

This work is supported by a grant from the National Natural Science Foundation of China under 62272260 and
U20B2060, the National Key Research and Development Program of China under 2020YFA0711403.

References

[1] Shahriar Afandizadeh Zargari, AmirmasoudMemarnejad, and HamidMirzahossein. 2021. Hourly OriginśDestination Matrix Estimation

Using Intelligent Transportation Systems Data and Deep Learning. Sensors 21, 21 (2021), 7080.

[2] Abderrahman Ait-Ali and Jonas Eliasson. 2022. The value of additional data for public transport originśdestination matrix estimation.

Public Transport 14, 2 (2022), 419ś439.

[3] Lauren Alexander, Shan Jiang, Mikel Murga, and Marta C González. 2015. Originśdestination trips by purpose and time of day inferred

from mobile phone data. Transportation research part c: emerging technologies 58 (2015), 240ś250.

[4] RIETI Alumni, RIETI Books, BBL Seminars, Archived Seminar Series, Industry-Speciic Nominal, Real Efective Exchange Rates, and

IZA From. 2013. Economics of agglomeration: cities, industrial location, and globalization. Links (2013).

[5] Alex Anas, Richard Arnott, and Kenneth A Small. 1998. Urban spatial structure. Journal of economic literature 36, 3 (1998), 1426ś1464.

[6] Constantinos Antoniou, Jaume Barceló, Martijn Breen, Manuel Bullejos, Jordi Casas, Ernesto Cipriani, Biagio Ciufo, Tamara Djukic,

Serge Hoogendoorn, Vittorio Marzano, et al. 2016. Towards a generic benchmarking platform for originśdestination lows estima-

tion/updating algorithms: Design, demonstration and validation. Transportation Research Part C: Emerging Technologies 66 (2016),

79ś98.

[7] Kenneth J Arrow. 2012. Social choice and individual values. Vol. 12. Yale university press.

[8] Kay W Axhausen, Andrea Zimmermann, Stefan Schönfelder, Guido Rindsfüser, and Thomas Haupt. 2002. Observing the rhythms of

daily life: A six-week travel diary. Transportation 29, 2 (2002), 95ś124.

[9] Danya Bachir, Ghazaleh Khodabandelou, Vincent Gauthier, Mounim El Yacoubi, and Jakob Puchinger. 2019. Inferring dynamic

origin-destination lows by transport mode using mobile phone data. Transportation Research Part C: Emerging Technologies 101 (2019),

254ś275.

[10] Duygu Balcan, Vittoria Colizza, Bruno Gonçalves, Hao Hu, José J Ramasco, and Alessandro Vespignani. 2009. Multiscale mobility

networks and the spatial spreading of infectious diseases. Proceedings of the national academy of sciences 106, 51 (2009), 21484ś21489.

[11] David Banister. 2008. The sustainable mobility paradigm. Transport policy 15, 2 (2008), 73ś80.

[12] David Banister and Mark Thurstain-Goodwin. 2011. Quantiication of the non-transport beneits resulting from rail investment. Journal

of Transport Geography 19, 2 (2011), 212ś223.

[13] Hugo Barbosa, Marc Barthelemy, Gourab Ghoshal, Charlotte R James, Maxime Lenormand, Thomas Louail, Ronaldo Menezes, José J

Ramasco, Filippo Simini, and Marcello Tomasini. 2018. Human mobility: Models and applications. Physics Reports 734 (2018), 1ś74.

[14] Marc Barthélemy. 2011. Spatial networks. Physics reports 499, 1-3 (2011), 1ś101.

[15] Michael Batty. 2007. Cities and complexity: understanding cities with cellular automata, agent-based models, and fractals. The MIT press.

[16] Michael Batty. 2008. The size, scale, and shape of cities. science 319, 5864 (2008), 769ś771.

[17] Krishna NS Behara, Ashish Bhaskar, and Edward Chung. 2020. A novel methodology to assimilate sub-path lows in bi-level OD matrix

estimation process. IEEE Transactions on Intelligent Transportation Systems 22, 11 (2020), 6931ś6941.

[18] Krishna NS Behara, Ashish Bhaskar, and Edward Chung. 2022. Single-level approach to estimate origin-destination matrix: exploiting

turning proportions and partial OD lows. Transportation Letters 14, 7 (2022), 721ś732.

[19] Michael GH Bell. 1991. The estimation of origin-destination matrices by constrained generalised least squares. Transportation Research

Part B: Methodological 25, 1 (1991), 13ś22.

[20] Sharminda Bera and KV Rao. 2011. Estimation of origin-destination matrix from traic counts: the state of the art. (2011).

[21] Manish Bhanu, Rahul Kumar, Saswata Roy, João Mendes-Moreira, and Joydeep Chandra. 2022. Graph Multi-Head Convolution

for Spatio-Temporal Attention in Origin Destination Tensor Prediction. In Advances in Knowledge Discovery and Data Mining: 26th

Paciic-Asia Conference, PAKDD 2022, Chengdu, China, May 16ś19, 2022, Proceedings, Part I. Springer, 459ś471.

[22] Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Günnemann. 2018. Netgan: Generating graphs via random

walks. In International conference on machine learning. PMLR, 610ś619.

[23] Patrick Bonnel, Mariem Fekih, and Zbigniew Smoreda. 2018. Origin-Destination estimation using mobile network probe data.

Transportation Research Procedia 32 (2018), 69ś81.

ACM Comput. Surv.



26 • C. Rong et al.

[24] Patrick Bonnel, Etienne Hombourger, Ana-Maria Olteanu-Raimond, and Zbigniew Smoreda. 2015. Passive mobile phone dataset to

construct origin-destination matrix: potentials and limitations. Transportation Research Procedia 11 (2015), 381ś398.

[25] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. 2015. Time series analysis: forecasting and control. John

Wiley & Sons.

[26] Leo Breiman. 2001. Random forests. Machine learning 45 (2001), 5ś32.

[27] Noelia Caceres, Luis M Romero, and Francisco G Benitez. 2013. Inferring originśdestination trip matrices from aggregate volumes on

groups of links: a case study using volumes inferred from mobile phone data. Journal of Advanced Transportation 47, 7 (2013), 650ś666.

[28] N Caceres, JP Wideberg, and FG Benitez. 2007. Deriving originśdestination data from a mobile phone network. IET Intelligent Transport

Systems 1, 1 (2007), 15ś26.

[29] Mingfei Cai, Yanbo Pang, and Yoshihide Sekimoto. 2022. Spatial Attention Based Grid Representation Learning For Predicting

OriginśDestination Flow. In 2022 IEEE International Conference on Big Data (Big Data). IEEE, 485ś494.

[30] Francesco Calabrese, Giusy Di Lorenzo, Liang Liu, and Carlo Ratti. 2011. Estimating Origin-Destination lows using opportunistically

collected mobile phone location data from one million users in Boston Metropolitan Area. (2011).

[31] Guido Cantelmo, Francesco Viti, Ernesto Cipriani, and Nigro Marialisa. 2015. A two-steps dynamic demand estimation approach

sequentially adjusting generations and distributions. In 2015 IEEE 18th International Conference on Intelligent Transportation Systems.

IEEE, 1477ś1482.

[32] Guido Cantelmo, Francesco Viti, and Thierry Derrmann. 2017. Efectiveness of the two-step dynamic demand estimation model on

large networks. In 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS).

IEEE, 356ś361.

[33] Yumin Cao, Keshuang Tang, Jian Sun, and Yangbeibei Ji. 2021. Day-to-day dynamic originśdestination low estimation using connected

vehicle trajectories and automatic vehicle identiication data. Transportation Research Part C: Emerging Technologies 129 (2021), 103241.

[34] Henry Charles Carey. 1859. Principles of social science. Vol. 3. Lippincott.

[35] Ennio Cascetta, Domenico Inaudi, and Gerald Marquis. 1993. Dynamic estimators of origin-destination matrices using traic counts.

Transportation science 27, 4 (1993), 363ś373.

[36] Marisdea Castiglione, Guido Cantelmo, Moeid Qurashi, Marialisa Nigro, and Constantinos Antoniou. 2021. Assignment matrix free

algorithms for on-line estimation of Dynamic Origin-Destination matrices. Frontiers in Future Transportation 2 (2021), 640570.

[37] Oded Cats and Erik Jenelius. 2014. Dynamic vulnerability analysis of public transport networks: mitigation efects of real-time

information. Networks and Spatial Economics 14 (2014), 435ś463.

[38] Soia Cerqueira, Elisabete Arsenio, and Rui Henriques. 2022. Inference of dynamic originśdestination matrices with trip and transfer

status from individual smart card data. European Transport Research Review 14, 1 (2022), 1ś18.

[39] Robert Cervero. 1997. Paradigm shift: from automobility to accessibility planning. Urban Futures (Canberra) 22 (1997), 9ś20.

[40] Robert Cervero and Kara Kockelman. 1997. Travel demand and the 3Ds: Density, diversity, and design. Transportation research part D:

Transport and environment 2, 3 (1997), 199ś219.

[41] Tingyang Chen, Lugang Nie, Jiwei Pan, Lai Tu, Bolong Zheng, and Xiang Bai. 2022. Origin-Destination Traic Prediction based on

Hybrid Spatio-Temporal Network. In 2022 IEEE International Conference on Data Mining (ICDM). IEEE, 879ś884.

[42] Ernesto Cipriani, Michael Florian, Michael Mahut, and Marialisa Nigro. 2011. A gradient approximation approach for adjusting

temporal originśdestination matrices. Transportation Research Part C: Emerging Technologies 19, 2 (2011), 270ś282.

[43] Cristina Cornelio, Sanjeeb Dash, Vernon Austel, Tyler R Josephson, Joao Goncalves, Kenneth L Clarkson, Nimrod Megiddo, Bachir

El Khadir, and Lior Horesh. 2023. Combining data and theory for derivable scientiic discovery with AI-Descartes. Nature Communica-

tions 14, 1 (2023), 1777.

[44] Randall Crane. 2000. The inluence of urban form on travel: an interpretive review. Journal of Planning literature 15, 1 (2000), 3ś23.

[45] Miles Cranmer, Alvaro Sanchez Gonzalez, Peter Battaglia, Rui Xu, Kyle Cranmer, David Spergel, and Shirley Ho. 2020. Discovering

symbolic models from deep learning with inductive biases. Advances in Neural Information Processing Systems 33 (2020), 17429ś17442.

[46] Kevin Credit and Zander Arnao. 2022. A method to derive small area estimates of linked commuting trips by mode from open source

LODES and ACS data. Environment and Planning B: Urban Analytics and City Science (2022), 23998083221129614.

[47] EL Cripps and DHS Foot. 1969. The empirical development of an elementary residential location model for use in sub-regional planning.

Environment and Planning A 1, 1 (1969), 81ś90.

[48] Antonello Ignazio Croce, Giuseppe Musolino, Corrado Rindone, and Antonino Vitetta. 2021. Estimation of travel demand models with

limited information: Floating car data for parameters’ calibration. Sustainability 13, 16 (2021), 8838.

[49] Zhang Dapeng and Feng Xiao. 2021. Dynamic auto-structuring graph neural network: a joint learning framework for origin-destination

demand prediction. IEEE Transactions on Knowledge and Data Engineering (2021).

[50] Merkebe Getachew Demissie, Francisco Antunes, Carlos Bento, Santi Phithakkitnukoon, and Titipat Sukhvibul. 2016. Inferring

origin-destination lows using mobile phone data: A case study of Senegal. In 2016 13th International conference on electrical engineer-

ing/electronics, computer, telecommunications and information technology (ECTI-CON). IEEE, 1ś6.

ACM Comput. Surv.



An Interdisciplinary Survey on Origin-destination Flows Modeling: Theory and Techniques • 27

[51] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for

language understanding. arXiv preprint arXiv:1810.04805 (2018).

[52] Subhrasankha Dey, Stephan Winter, and Martin Tomko. 2020. OriginśDestination Flow Estimation from Link Count Data Only. Sensors

20, 18 (2020), 5226.

[53] Zhengyu Duan, Liang Liu, and Shang Wang. 2011. MobilePulse: Dynamic proiling of land use pattern and OD matrix estimation from

10 million individual cell phone records in Shanghai. In 2011 19th International Conference on Geoinformatics. IEEE, 1ś6.

[54] Reid Ewing and Robert Cervero. 2010. Travel and the built environment: A meta-analysis. Journal of the American planning association

76, 3 (2010), 265ś294.

[55] Mariem Fekih, Tom Bellemans, Zbigniew Smoreda, Patrick Bonnel, Angelo Furno, and Stéphane Galland. 2021. A data-driven approach

for originśdestination matrix construction from cellular network signalling data: a case study of Lyon region (France). Transportation

48 (2021), 1671ś1702.

[56] Jie Feng, Yuwei Du, Tianhui Liu, Siqi Guo, Yuming Lin, and Yong Li. 2024. CityGPT: Empowering Urban Spatial Cognition of Large

Language Models. arXiv preprint arXiv:2406.13948 (2024).

[57] Jie Feng, Jun Zhang, Junbo Yan, Xin Zhang, Tianjian Ouyang, Tianhui Liu, Yuwei Du, Siqi Guo, and Yong Li. 2024. CityBench: Evaluating

the Capabilities of Large Language Model as World Model. arXiv preprint arXiv:2406.13945 (2024).

[58] A Stewart Fotheringham. 1983. Some theoretical aspects of destination choice and their relevance to production-constrained gravity

models. Environment and Planning A 15, 8 (1983), 1121ś1132.

[59] A Stewart Fotheringham and Morton E O’Kelly. 1989. Spatial interaction models: formulations and applications. Vol. 1. Kluwer Academic

Publishers Dordrecht.

[60] Thomas J Fratar. 1954. Vehicular trip distribution by successive approximations. Traic Quarterly 8, 1 (1954).

[61] Rodric Frederix, Francesco Viti, Ruben Corthout, and Chris MJ Tampère. 2011. New gradient approximation method for dynamic

originśdestination matrix estimation on congested networks. Transportation Research Record 2263, 1 (2011), 19ś25.

[62] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting machine. Annals of statistics (2001), 1189ś1232.

[63] Xu Geng, Yaguang Li, Leye Wang, Lingyu Zhang, Qiang Yang, Jieping Ye, and Yan Liu. 2019. Spatiotemporal multi-graph convolution

network for ride-hailing demand forecasting. In Proceedings of the AAAI conference on artiicial intelligence, Vol. 33. 3656ś3663.

[64] Bruno Gonçalves, Nicola Perra, and Alessandro Vespignani. 2011. Modeling users’ activity on twitter networks: Validation of dunbar’s

number. PloS one 6, 8 (2011), e22656.

[65] Ana Belén Rodríguez González, Juan José Vinagre Díaz, and Mark Richard Wilby. 2020. Detailed Origin-Destination Matrices of Bus

Passengers Using Radio Frequency Identiication. IEEE Intelligent Transportation Systems Magazine 14, 1 (2020), 141ś152.

[66] Marta C Gonzalez, Cesar A Hidalgo, and Albert-Laszlo Barabasi. 2008. Understanding individual human mobility patterns. nature 453,

7196 (2008), 779ś782.

[67] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.

2020. Generative adversarial networks. Commun. ACM 63, 11 (2020), 139ś144.

[68] JH de M Goulart, AY Kibangou, and Gérard Favier. 2017. Traic data imputation via tensor completion based on soft thresholding of

Tucker core. Transportation Research Part C: Emerging Technologies 85 (2017), 348ś362.

[69] David Gundlegård, Clas Rydergren, Nils Breyer, and Botond Rajna. 2016. Travel demand estimation and network assignment based on

cellular network data. Computer Communications 95 (2016), 29ś42.

[70] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. 2019. Attention based spatial-temporal graph convolutional

networks for traic low forecasting. In Proceedings of the AAAI conference on artiicial intelligence, Vol. 33. 922ś929.

[71] Homayoun Hamedmoghadam, Hai L Vu, Mahdi Jalili, Meead Saberi, Lewi Stone, and Serge Hoogendoorn. 2021. Automated extraction

of origin-destination demand for public transportation from smartcard data with pattern recognition. Transportation Research Part C:

Emerging Technologies 129 (2021), 103210.

[72] James Douglas Hamilton. 2020. Time series analysis. Princeton university press.

[73] Liangzhe Han, Xiaojian Ma, Leilei Sun, Bowen Du, Yanjie Fu, Weifeng Lv, and Hui Xiong. 2022. Continuous-Time and Multi-Level

Graph Representation Learning for Origin-Destination Demand Prediction. In Proceedings of the 28th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining. 516ś524.

[74] Liangzhe Han, Ruixing Zhang, Leilei Sun, Bowen Du, Yanjie Fu, and Tongyu Zhu. 2023. Generic and Dynamic Graph Representation

Learning for Crowd Flow Modeling. In Proceedings of the AAAI Conference on Artiicial Intelligence, Vol. 37. 4293ś4301.

[75] Susan L Handy, Marlon G Boarnet, Reid Ewing, and Richard E Killingsworth. 2002. How the built environment afects physical activity:

views from urban planning. American journal of preventive medicine 23, 2 (2002), 64ś73.

[76] Kingsley E Haynes and A Stewart Fotheringham. 2020. Gravity and spatial interaction models. (2020).

[77] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the

IEEE conference on computer vision and pattern recognition. 770ś778.

[78] Yuxin He, Yang Zhao, and Kwok-Leung Tsui. 2022. Short-term forecasting of origin-destination matrix in transit system via a deep

learning approach. Transportmetrica A: Transport Science (2022), 1ś28.

ACM Comput. Surv.



28 • C. Rong et al.

[79] Ville Helminen, Hannu Rita, Mika Ristimäki, and Panu Kontio. 2012. Commuting to the centre in diferent urban structures. Environment

and Planning B: Planning and Design 39, 2 (2012), 247ś261.

[80] Sara Heydari, Zhiren Huang, Takayuki Hiraoka, Alejandro Ponce de León Chávez, Tapio Ala-Nissila, Lasse Leskelä, Mikko Kivelä, and

Jari Saramäki. 2023. Estimating inter-regional mobility during disruption: Comparing and combining diferent data sources. Travel

Behaviour and Society 31 (2023), 93ś105.

[81] Bill Hillier and Julienne Hanson. 1989. The social logic of space. Cambridge university press.

[82] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising difusion probabilistic models. Advances in Neural Information Processing

Systems 33 (2020), 6840ś6851.

[83] Bosong Huang, Ke Ruan, Weihao Yu, Jing Xiao, Ruzhong Xie, and Jin Huang. 2023. ODformer: Spatialśtemporal transformers for

long sequence OriginśDestination matrix forecasting against cross application scenario. Expert Systems with Applications 222 (2023),

119835.

[84] Lei Huang, Xiuwen Zhang, Xinyue Zhang, Zhijian Wei, Lingli Zhang, Jingjing Xu, Peipei Liang, Yuanhong Xu, Chengyuan Zhang,

and Aman Xu. 2020. Rapid asymptomatic transmission of COVID-19 during the incubation period demonstrating strong infectivity

in a cluster of youngsters aged 16-23 years outside Wuhan and characteristics of young patients with COVID-19: A prospective

contact-tracing study. Journal of Infection 80, 6 (2020), e1śe13.

[85] Shan Huang, Adel W Sadek, and Liya Guo. 2013. Computational-based approach to estimating travel demand in large-scale microscopic

traic simulation models. Journal of computing in civil engineering 27, 1 (2013), 78ś86.

[86] Ziheng Huang, Weihan Zhang, Dujuan Wang, and Yunqiang Yin. 2022. A GAN framework-based dynamic multi-graph convolutional

network for originśdestination-based ride-hailing demand prediction. Information Sciences 601 (2022), 129ś146.

[87] David L Huf. 1963. A probabilistic analysis of shopping center trade areas. Land economics 39, 1 (1963), 81ś90.

[88] Shuodi Hui, Huandong Wang, Tong Li, Xinghao Yang, Xing Wang, Junlan Feng, Lin Zhu, Chao Deng, Hui Pan, Depeng Jin, and Yong

Li. 2023. Large-scale Urban Cellular Traic Generation via Knowledge-Enhanced GANs with Multi-Periodic Patterns. In Proceedings of

the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.

[89] Etikaf Hussain, Ashish Bhaskar, and Edward Chung. 2021. Transit OD matrix estimation using smartcard data: Recent developments

and future research challenges. Transportation Research Part C: Emerging Technologies 125 (2021), 103044.

[90] Ryuichi Imai, Daizo Ikeda, Hiroyasu Shingai, Tomohiro Nagata, and Koichi Shigetaka. 2021. Origin-destination trips generated from

operational data of a mobile network for urban transportation planning. Journal of Urban Planning and Development 147, 1 (2021),

04020049.

[91] Md Shahadat Iqbal, Charisma F Choudhury, Pu Wang, and Marta C González. 2014. Development of originśdestination matrices using

mobile phone call data. Transportation Research Part C: Emerging Technologies 40 (2014), 63ś74.

[92] Anil K Jain, Jianchang Mao, and K Moidin Mohiuddin. 1996. Artiicial neural networks: A tutorial. Computer 29, 3 (1996), 31ś44.

[93] Maxim Janzen, Maarten Vanhoof, Kay W Axhausen, and Zbigniew Smoreda. 2016. Estimating long-distance travel demand with mobile

phone billing data. In 16th Swiss Transport Research Conference (STRC 2016). Swiss Transport Research Conference (STRC).

[94] In-Jae Jeong and Dongjoo Park. 2021. Stochastic programming approach for static originśdestination matrix reconstruction problem.

Computers & Industrial Engineering 157 (2021), 107373.

[95] Jayson S Jia, Xin Lu, Yun Yuan, Ge Xu, Jianmin Jia, and Nicholas A Christakis. 2020. Population low drives spatio-temporal distribution

of COVID-19 in China. Nature 582, 7812 (2020), 389ś394.

[96] Wenhua Jiang, Zhenliang Ma, and Haris N Koutsopoulos. 2022. Deep learning for short-term originśdestination passenger low

prediction under partial observability in urban railway systems. Neural Computing and Applications (2022), 1ś18.

[97] Peter J Jin, Meredith Cebelak, Fan Yang, Jian Zhang, C Michael Walton, and Bin Ran. 2014. Location-based social networking data:

exploration into use of doubly constrained gravity model for originśdestination estimation. Transportation Research Record 2430, 1

(2014), 72ś82.

[98] Elliott D Kaplan and Christopher Hegarty. 2017. Understanding GPS/GNSS: principles and applications. Artech house.

[99] Hadi Karimi, Sayed Nader Shetab Boushehri, and Ramin Nasiri. 2020. Origin-Destination Matrix Estimation Using Socio-Economic

Information and Traic Counts on Uncongested Networks. International Journal of Transportation Engineering 8, 2 (2020), 165ś183.

[100] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. 2021. Physics-informed machine

learning. Nature Reviews Physics 3, 6 (2021), 422ś440.

[101] Mehdi Katranji, Sami Kraiem, Laurent Moalic, Guilhem Sanmarty, Ghazaleh Khodabandelou, Alexandre Caminada, and Fouad Hadj Se-

lem. 2020. Deep multi-task learning for individuals originśdestination matrices estimation from census data. Data Mining and

Knowledge Discovery 34 (2020), 201ś230.

[102] Jintao Ke, Xiaoran Qin, Hai Yang, Zhengfei Zheng, Zheng Zhu, and Jieping Ye. 2021. Predicting origin-destination ride-sourcing

demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network. Transportation Research Part C: Emerging

Technologies 122 (2021), 102858.

[103] Thomas N Kipf and Max Welling. 2016. Semi-supervised classiication with graph convolutional networks. arXiv preprint

arXiv:1609.02907 (2016).

ACM Comput. Surv.



An Interdisciplinary Survey on Origin-destination Flows Modeling: Theory and Techniques • 29

[104] Rob Kitchin. 2014. The real-time city? Big data and smart urbanism. GeoJournal 79 (2014), 1ś14.

[105] Danyel Koca, Jan Dirk Schmöcker, and Kouji Fukuda. 2021. Origin-destination matrix estimation by deep learning using maps with

New York case study. In 2021 7th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS).

IEEE, 1ś6.

[106] Moritz UGKraemer, Chia-Hung Yang, BernardoGutierrez, Chieh-HsiWu, Brennan Klein, DavidMPigott, Open COVID-19DataWorking

Group2, Louis Du Plessis, Nuno R Faria, Ruoran Li, et al. 2020. The efect of human mobility and control measures on the COVID-19

epidemic in China. Science 368, 6490 (2020), 493ś497.

[107] Panchamy Krishnakumari, Hans Van Lint, Tamara Djukic, and Oded Cats. 2020. A data driven method for OD matrix estimation.

Transportation Research Part C: Emerging Technologies 113 (2020), 38ś56.

[108] Paul Krugman. 1991. Increasing returns and economic geography. Journal of political economy 99, 3 (1991), 483ś499.

[109] Katrin Lättman, Lars E Olsson, and Margareta Friman. 2016. Development and test of the perceived accessibility scale (PAC) in public

transport. Journal of Transport Geography 54 (2016), 257ś263.

[110] Maxime Lenormand, Aleix Bassolas, and José J Ramasco. 2016. Systematic comparison of trip distribution laws and models. Journal of

Transport Geography 51 (2016), 158ś169.

[111] Maxime Lenormand, Thomas Louail, Oliva G Cantú-Ros, Miguel Picornell, Ricardo Herranz, Juan Murillo Arias, Marc Barthelemy,

Maxi San Miguel, and José J Ramasco. 2015. Inluence of sociodemographic characteristics on human mobility. Scientiic reports 5, 1

(2015), 10075.

[112] James P LeSage and Manfred M Fischer. 2009. Spatial econometric methods for modeling origin-destination lows. In Handbook of

applied spatial analysis: Software tools, methods and applications. Springer, 409ś433.

[113] Can Li, Lei Bai, Wei Liu, Lina Yao, and S Travis Waller. 2020. Graph neural network for robust public transit demand prediction. IEEE

Transactions on Intelligent Transportation Systems 23, 5 (2020), 4086ś4098.

[114] Changlin Li, Liang Zheng, and Ning Jia. 2022. Network-wide ride-sourcing passenger demand origin-destination matrix prediction

with a generative adversarial network. Transportmetrica A: Transport Science (2022), 1ś28.

[115] Yuxi Li. 2017. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274 (2017).

[116] Yuan Liao, Kristofer Ek, Eric Wennerberg, Sonia Yeh, and Jorge Gil. 2022. A Mobility Model for Synthetic Travel Demand From Sparse

Traces. IEEE Open Journal of Intelligent Transportation Systems 3 (2022), 665ś678.

[117] Shuai Ling, Zhe Yu, Shaosheng Cao, Haipeng Zhang, and Simon Hu. 2023. STHAN: Transportation demand forecasting with compound

spatio-temporal relationships. ACM Transactions on Knowledge Discovery from Data 17, 4 (2023), 1ś23.

[118] Todd Litman. 2012. Evaluating public transportation health beneits. Victoria Transport Policy Institute Victoria, BC, Canada.

[119] Lingbo Liu, Yuying Zhu, Guanbin Li, Ziyi Wu, Lei Bai, and Liang Lin. 2022. Online metro origin-destination prediction via heterogeneous

information aggregation. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022).

[120] Yu Liu, Jingtao Ding, Yanjie Fu, and Yong Li. 2023. UrbanKG: An Urban Knowledge Graph System. ACM Transactions on Intelligent

Systems and Technology 14, 4 (2023), 1ś25.

[121] Yu Liu, Jingtao Ding, and Yong Li. 2021. Knowledge-driven site selection via urban knowledge graph. arXiv preprint arXiv:2111.00787

(2021).

[122] Yaolin Liu, Feiguo Fang, and Ying Jing. 2020. How urban land use inluences commuting lows in Wuhan, Central China: A mobile

phone signaling data perspective. Sustainable Cities and Society 53 (2020), 101914.

[123] Yu Liu, Xin Zhang, Jingtao Ding, Yanxin Xi, and Yong Li. 2023. Knowledge-infused contrastive learning for urban imagery-based

socioeconomic prediction. In Proceedings of the ACM Web Conference 2023. 4150ś4160.

[124] Zhicheng Liu, Fabio Miranda, Weiting Xiong, Junyan Yang, Qiao Wang, and Claudio Silva. 2020. Learning geo-contextual embeddings

for commuting low prediction. In Proceedings of the AAAI conference on artiicial intelligence, Vol. 34. 808ś816.

[125] HP Lo, N Zhang, and William HK Lam. 1996. Estimation of an origin-destination matrix with random link choice proportions: a

statistical approach. Transportation Research Part B: Methodological 30, 4 (1996), 309ś324.

[126] Qingyue Long, Huandong Wang, Tong Li, Lisi Huang, Kun Wang, Qiong Wu, Guangyu Li, Yanping Liang, Li Yu, and Yong Li. 2023.

Practical Synthetic Human Trajectories Generation Based on Variational Point Processes. In Proceedings of the 29th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining.

[127] Wesley H Long and Richard B Uris. 1971. Distance, intervening opportunities, city hierarchy and air travel. The Annals of Regional

Science 5 (1971), 152ś161.

[128] Rémi Louf and Marc Barthelemy. 2014. How congestion shapes cities: from mobility patterns to scaling. Scientiic reports 4, 1 (2014),

5561.

[129] Zhenbo Lu, Wenming Rao, Yao-Jan Wu, Li Guo, and Jingxin Xia. 2015. A Kalman ilter approach to dynamic OD low estimation for

urban road networks using multi-sensor data. Journal of Advanced Transportation 49, 2 (2015), 210ś227.

[130] Massimiliano Luca, Gianni Barlacchi, Bruno Lepri, and Luca Pappalardo. 2021. A survey on deep learning for human mobility. ACM

Computing Surveys (CSUR) 55, 1 (2021), 1ś44.

ACM Comput. Surv.



30 • C. Rong et al.

[131] Xusen Luo, Yunyao Zhou, Yifu Yang, and Shuyun Wu. 2020. Research on Home and Work Locations Based on Mobile Phone Data. In

Journal of Physics: Conference Series, Vol. 1486. IOP Publishing, 052013.

[132] Jingtao Ma, Huan Li, Fang Yuan, and Thomas Bauer. 2013. Deriving operational origin-destination matrices from large scale mobile

phone data. International Journal of Transportation Science and Technology 2, 3 (2013), 183ś204.

[133] Wei Ma and Sean Qian. 2022. Estimating probabilistic dynamic origin-destination demands using multi-day traic data on computational

graphs. arXiv preprint arXiv:2204.09229 (2022).

[134] Michael J Maher. 1983. Inferences on trip matrices from observations on link volumes: a Bayesian statistical approach. Transportation

Research Part B: Methodological 17, 6 (1983), 435ś447.

[135] Lai Choo Malone-Lee, Loo Lee Sim, and Lawrence Chin. 2001. Planning for a more balanced homeśwork relationship: the case study

of Singapore. Cities 18, 1 (2001), 51ś55.

[136] Marco Mamei, Nicola Bicocchi, Marco Lippi, Stefano Mariani, and Franco Zambonelli. 2019. Evaluating originśdestination matrices

obtained from CDR data. Sensors 19, 20 (2019), 4470.

[137] Hao Miao, Yan Fei, Senzhang Wang, Fang Wang, and Danyan Wen. 2022. Deep learning based origin-destination prediction via

contextual information fusion. Multimedia Tools and Applications (2022), 1ś17.

[138] Gabriel Michau, Nelly Pustelnik, Pierre Borgnat, Patrice Abry, Ashish Bhaskar, and Edward Chung. 2019. Combining traic counts

and Bluetooth data for link-origin-destination matrix estimation in large urban networks: The Brisbane case study. arXiv preprint

arXiv:1907.07495 (2019).

[139] Gabriel Michau, Nelly Pustelnik, Pierre Borgnat, Patrice Abry, Alfredo Nantes, Ashish Bhaskar, and Edward Chung. 2016. A primal-dual

algorithm for link dependent origin destination matrix estimation. IEEE Transactions on Signal and Information Processing over Networks

3, 1 (2016), 104ś113.

[140] Sudatta Mohanty and Alexey Pozdnukhov. 2020. Dynamic origin-destination demand estimation from link counts, cellular data and

travel time data. Transportation Research Procedia 48 (2020), 1722ś1739.

[141] John Montgomery. 1998. Making a city: Urbanity, vitality and urban design. Journal of urban design 3, 1 (1998), 93ś116.

[142] Marcela A Munizaga and Carolina Palma. 2012. Estimation of a disaggregate multimodal public transport OriginśDestination matrix

from passive smartcard data from Santiago, Chile. Transportation Research Part C: Emerging Technologies 24 (2012), 9ś18.

[143] Peter Newman and Jefrey Kenworthy. 1999. Sustainability and cities: overcoming automobile dependence. Island press.

[144] John H Niedercorn and Burley V Bechdolt Jr. 1969. An economic derivation of the łgravity lawž of spatial interaction. Journal of

Regional Science 9, 2 (1969), 273ś282.

[145] Marialisa Nigro, Ernesto Cipriani, and Andrea del Giudice. 2018. Exploiting loating car data for time-dependent OriginśDestination

matrices estimation. Journal of Intelligent Transportation Systems 22, 2 (2018), 159ś174.

[146] Anastasios Noulas, Salvatore Scellato, Renaud Lambiotte, Massimiliano Pontil, and Cecilia Mascolo. 2012. A tale of many cities:

universal patterns in human urban mobility. PloS one 7, 5 (2012), e37027.

[147] Peyman Noursalehi, Haris N Koutsopoulos, and Jinhua Zhao. 2021. Dynamic origin-destination prediction in urban rail systems:

A multi-resolution spatio-temporal deep learning approach. IEEE Transactions on Intelligent Transportation Systems 23, 6 (2021),

5106ś5115.

[148] Joaquín Osorio-Arjona and Juan Carlos García-Palomares. 2019. Social media and urban mobility: Using twitter to calculate home-work

travel matrices. Cities 89 (2019), 268ś280.

[149] Jishun Ou, Jiawei Lu, Jingxin Xia, Chengchuan An, and Zhenbo Lu. 2019. Learn, assign, and search: real-time estimation of dynamic

origin-destination lows using machine learning algorithms. IEEE Access 7 (2019), 26967ś26983.

[150] Antonio Páez, Darren M Scott, and Catherine Morency. 2012. Measuring accessibility: positive and normative implementations of

various accessibility indicators. Journal of transport geography 25 (2012), 141ś153.

[151] Changxuan Pan, Jiangang Lu, Shan Di, and Bin Ran. 2006. Cellular-based data-extracting method for trip distribution. Transportation

research record 1945, 1 (2006), 33ś39.

[152] Katharina Parry and Martin L Hazelton. 2012. Estimation of originśdestination matrices from link counts and sporadic routing data.

Transportation Research Part B: Methodological 46, 1 (2012), 175ś188.

[153] Marie-Pier Pelletier, Martin Trépanier, and Catherine Morency. 2011. Smart card data use in public transit: A literature review.

Transportation Research Part C: Emerging Technologies 19, 4 (2011), 557ś568.

[154] Francisco C Pereira, Filipe Rodrigues, and Moshe Ben-Akiva. 2015. Using data from the web to predict public transport arrivals under

special events scenarios. Journal of Intelligent Transportation Systems 19, 3 (2015), 273ś288.

[155] Anselmo Ramalho Pitombeira-Neto and Carlos Felipe Grangeiro Loureiro. 2016. A dynamic linear model for the estimation of

time-varying originśdestination matrices from link counts. Journal of Advanced Transportation 50, 8 (2016), 2116ś2129.

[156] Anselmo Ramalho Pitombeira-Neto, Carlos Felipe Grangeiro Loureiro, and Luis Eduardo Carvalho. 2020. A dynamic hierarchical

Bayesian model for the estimation of day-to-day origin-destination lows in transportation networks. Networks and Spatial Economics

20 (2020), 499ś527.

ACM Comput. Surv.



An Interdisciplinary Survey on Origin-destination Flows Modeling: Theory and Techniques • 31

[157] Anselmo Ramalho Pitombeira Neto, Francisco Moraes de Oliveira Neto, and Carlos Felipe Grangeiro Loureiro. 2017. Statistical models

for the estimatio of the origin-destination matrix from traic counts. (2017).

[158] Nastaran Pourebrahim, Selima Sultana, Amirreza Niakanlahiji, and Jean-Claude Thill. 2019. Trip distribution modeling with Twitter

data. Computers, Environment and Urban Systems 77 (2019), 101354.

[159] Nastaran Pourebrahim, Selima Sultana, Jean-Claude Thill, and Somya Mohanty. 2018. Enhancing trip distribution prediction with

twitter data: comparison of neural network and gravity models. In Proceedings of the 2nd acm sigspatial international workshop on ai for

geographic knowledge discovery. 5ś8.

[160] Mozhgan Pourmoradnasseri, Kaveh Khoshkhah, Artjom Lind, and Amnir Hadachi. 2019. OD-matrix extraction based on trajectory

reconstruction from mobile data. In 2019 International Conference on Wireless and Mobile Computing, Networking and Communications

(WiMob). IEEE, 1ś8.

[161] Sara A Puignau Arrigain, Jordi Pons-Prats, and Sergi Saurí Marchán. 2020. New Data and Methods for Modelling Future Urban Travel

Demand: A State of the Art Review. Computation and Big Data for Transport: Digital Innovations in Surface and Air Transport Systems

(2020), 51ś67.

[162] Yihui Ren, Mária Ercsey-Ravasz, Pu Wang, Marta C González, and Zoltán Toroczkai. 2014. Predicting commuter lows in spatial

networks using a radiation model based on temporal ranges. Nature communications 5, 1 (2014), 5347.

[163] Caleb Robinson and Bistra Dilkina. 2018. A machine learning approach to modeling human migration. In Proceedings of the 1st ACM

SIGCAS Conference on Computing and Sustainable Societies. 1ś8.

[164] PJ Rodríguez-Rueda, JJ Ruiz-Aguilar, J González-Enrique, and I Turias. 2021. OriginśDestination Matrix Estimation and Prediction from

Socioeconomic Variables Using Automatic Feature Selection Procedure-Based Machine Learning Model. Journal of Urban Planning and

Development 147, 4 (2021), 04021056.

[165] Can Rong, Jingtao Ding, Yan Liu, and Yong Li. 2024. A Large-scale Benchmark Dataset for Commuting Origin-destination Matrix

Generation. arXiv:2407.15823 [cs.SI] https://arxiv.org/abs/2407.15823

[166] Can Rong, Jingtao Ding, Zhicheng Liu, and Yong Li. 2023. Complexity-aware Large Scale Origin-Destination Network Generation via

Difusion Model. arXiv:2306.04873 [cs.LG]

[167] Can Rong, Jie Feng, and Jingtao Ding. 2023. GODDAG: Generating Origin-destination Flow for New Cities via Domain Adversarial

Training. IEEE Transactions on Knowledge and Data Engineering (2023).

[168] Can Rong, Jie Feng, and Yong Li. 2019. Deep learning models for population low generation from aggregated mobility data. In Adjunct

Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM

International Symposium on Wearable Computers. 1008ś1013.

[169] Can Rong, Tong Li, Jie Feng, and Yong Li. 2021. Inferring Origin-Destination Flows From Population Distribution. IEEE Transactions on

Knowledge and Data Engineering 35, 1 (2021), 603ś613.

[170] Can Rong, Huandong Wang, and Yong Li. 2023. Origin-Destination Network Generation via Gravity-Guided GAN.

arXiv:2306.03390 [cs.LG]

[171] Xavier Ros-Roca, Lídia Montero, Jaume Barceló, Klaus Nökel, and Guido Gentile. 2022. A practical approach to assignment-free

dynamic originśdestination matrix estimation problem. Transportation Research Part C: Emerging Technologies 134 (2022), 103477.

[172] John R Roy and Jean-Claude Thill. 2003. Spatial interaction modelling. Papers in Regional Science 83 (2003), 339ś361.

[173] Meead Saberi, Hani S Mahmassani, Dirk Brockmann, and Amir Hosseini. 2017. A complex network perspective for characterizing

urban travel demand patterns: graph theoretical analysis of large-scale originśdestination demand networks. Transportation 44 (2017),

1383ś1402.

[174] Meead Saberi, Taha H Rashidi, Milad Ghasri, and Kenneth Ewe. 2018. A complex network methodology for travel demand model

evaluation and validation. Networks and Spatial Economics 18 (2018), 1051ś1073.

[175] Bita Sadeghinasr, Armin Akhavan, and Qi Wang. 2019. Estimating commuting patterns from high resolution phone GPS data. In

Computing in Civil Engineering 2019: Data, Sensing, and Analytics. American Society of Civil Engineers Reston, VA, 9ś16.

[176] Guillaume Salha, Stratis Limnios, Romain Hennequin, Viet-Anh Tran, and Michalis Vazirgiannis. 2019. Gravity-inspired graph

autoencoders for directed link prediction. In Proceedings of the 28th ACM international conference on information and knowledge

management. 589ś598.

[177] Bhargava Sana, Joe Castiglione, Drew Cooper, and Dan Tischler. 2018. Using google’s passive data and machine learning for origin-

destination demand estimation. Transportation Research Record 2672, 46 (2018), 73ś82.

[178] Nilufer Sari Aslam, Tao Cheng, and James Cheshire. 2019. A high-precision heuristic model to detect home and work locations from

smart card data. Geo-spatial Information Science 22, 1 (2019), 1ś11.

[179] Leonard J Savage. 1972. The foundations of statistics. Courier Corporation.

[180] Nadine Schuessler and Kay W Axhausen. 2009. Processing raw data from global positioning systems without additional information.

Transportation Research Record 2105, 1 (2009), 28ś36.

[181] Jingran Shen, Nikos Tziritas, and Georgios Theodoropoulos. 2022. A Baselined Gated Attention Recurrent Network for Request

Prediction in Ridesharing. IEEE Access 10 (2022), 86423ś86434.

ACM Comput. Surv.

https://arxiv.org/abs/2407.15823
https://arxiv.org/abs/2407.15823
https://arxiv.org/abs/2306.04873
https://arxiv.org/abs/2306.03390


32 • C. Rong et al.

[182] Liang Shen, Hu Shao, Ting Wu, and William HK Lam. 2019. Spatial and temporal analyses for estimation of origin-destination demands

by time of day over year. IEEE Access 7 (2019), 47904ś47917.

[183] Hongzhi Shi, Quanming Yao, Qi Guo, Yaguang Li, Lingyu Zhang, Jieping Ye, Yong Li, and Yan Liu. 2020. Predicting origin-destination

low via multi-perspective graph convolutional network. In 2020 IEEE 36th International conference on data engineering (ICDE). IEEE,

1818ś1821.

[184] Hongzhi Shi, Quanming Yao, and Yong Li. 2023. Learning to Simulate Crowd Trajectories with Graph Networks. In Proceedings of the

ACM Web Conference 2023. 4200ś4209.

[185] Filippo Simini, Gianni Barlacchi, Massimilano Luca, and Luca Pappalardo. 2021. A deep gravity model for mobility lows generation.

Nature communications 12, 1 (2021), 6576.

[186] Filippo Simini, Marta C González, Amos Maritan, and Albert-László Barabási. 2012. A universal model for mobility and migration

patterns. Nature 484, 7392 (2012), 96ś100.

[187] Alex J Smola and Bernhard Schölkopf. 2004. A tutorial on support vector regression. Statistics and computing 14 (2004), 199ś222.

[188] Folke Snickars and Jörgen W Weibull. 1977. A minimum information principle: Theory and practice. Regional science and urban

economics 7, 1-2 (1977), 137ś168.

[189] Chaoming Song, Tal Koren, Pu Wang, and Albert-László Barabási. 2010. Modelling the scaling properties of human mobility. Nature

physics 6, 10 (2010), 818ś823.

[190] Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-László Barabási. 2010. Limits of predictability in human mobility. Science 327,

5968 (2010), 1018ś1021.

[191] Shunyao Song, Rongrong Hong, Weihua Zhang, and Dong Zhou. 2020. Dynamic vehicle OD low estimation for urban road network

using multi-source heterogeneous data. In International Conference on Transportation and Development 2020. American Society of Civil

Engineers Reston, VA, 161ś172.

[192] Michael Storper and Michael Manville. 2006. Behaviour, preferences and cities: Urban theory and urban resurgence. Urban studies 43, 8

(2006), 1247ś1274.

[193] Samuel A Stoufer. 1940. Intervening opportunities: a theory relating mobility and distance. American sociological review 5, 6 (1940),

845ś867.

[194] Ivana Stupar, Petra Martinjak, Vjera Turk, and Renato Filjar. 2018. Socio-economic origin-destination matrix derivation through

contextualization of material world. In 2018 41st International Convention on Information and Communication Technology, Electronics

and Microelectronics (MIPRO). IEEE, 0417ś0421.

[195] Hongyuan Su, Yu Zheng, Jingtao Ding, Depeng Jin, and Yong Li. 2024. MetroGNN: Metro Network Expansion with Reinforcement

Learning. In Companion Proceedings of the ACM on Web Conference 2024. 650ś653.

[196] Chao Sun, Yulin Chang, Xin Luan, Qiang Tu, and Wenyun Tang. 2020. Origin-Destination Demand Reconstruction Using Observed

Travel Time under Congested Network. Networks and Spatial Economics 20 (2020), 733ś755.

[197] Fangzheng Sun, Yang Liu, Jian-Xun Wang, and Hao Sun. 2022. Symbolic physics learner: Discovering governing equations via Monte

Carlo tree search. arXiv preprint arXiv:2205.13134 (2022).

[198] Lijun Sun, Kay W Axhausen, Der-Horng Lee, and Xianfeng Huang. 2013. Understanding metropolitan patterns of daily encounters.

Proceedings of the National Academy of Sciences 110, 34 (2013), 13774ś13779.

[199] Wei Sun, Akshay Vij, and Nicolas Kaliszewski. 2022. A lexible and scalable single-level framework for OD matrix inference using

multiple sources of transport information. arXiv preprint arXiv:2211.10366 (2022).

[200] Bin Tian, Brendan Tran Morris, Ming Tang, Yuqiang Liu, Yanjie Yao, Chao Gou, Dayong Shen, and Shaohu Tang. 2014. Hierarchical

and networked vehicle surveillance in ITS: a survey. IEEE transactions on intelligent transportation systems 16, 2 (2014), 557ś580.

[201] Anthony R Tomazinis. 1962. A new method of trip distribution in an urban area. Highway Research Board, Bulletin 347 (1962).

[202] Lumpsum Tongsinoot and Veera Muangsin. 2017. Exploring home and work locations in a city from mobile phone data. In 2017 IEEE

19th International Conference on High Performance Computing and Communications; IEEE 15th International Conference on Smart City;

IEEE 3rd International Conference on Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 123ś129.

[203] Jameson L Toole, Serdar Colak, Bradley Sturt, Lauren P Alexander, Alexandre Evsukof, and Marta C González. 2015. The path most

traveled: Travel demand estimation using big data resources. Transportation Research Part C: Emerging Technologies 58 (2015), 162ś177.

[204] Nikolaos Tsanakas, David Gundlegård, and Clas Rydergren. 2023. OśD matrix estimation based on data-driven network assignment.

Transportmetrica B: Transport Dynamics 11, 1 (2023), 376ś407.

[205] Milad Vahidi and Yousef Shafahi. 2022. Time-dependent estimation of origin-destination matrices using partial path data and link

counts. (2022).

[206] Henk J Van Zuylen and Luis G Willumsen. 1980. The most likely trip matrix estimated from traic counts. Transportation Research Part

B: Methodological 14, 3 (1980), 281ś293.

[207] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph attention networks.

arXiv preprint arXiv:1710.10903 (2017).

[208] John Von Neumann and Oskar Morgenstern. 1947. Theory of games and economic behavior, 2nd rev. (1947).

ACM Comput. Surv.



An Interdisciplinary Survey on Origin-destination Flows Modeling: Theory and Techniques • 33

[209] Feilong Wang, Jingxing Wang, Jinzhou Cao, Cynthia Chen, and Xuegang Jef Ban. 2019. Extracting trips from multi-sourced data for

mobility pattern analysis: An app-based data example. Transportation Research Part C: Emerging Technologies 105 (2019), 183ś202.

[210] Huandong Wang, Changzheng Gao, Yuchen Wu, Depeng Jin, Lina Yao, and Yong Li. 2023. PateGail: A Privacy-Preserving Mobility

Trajectory Generator with Imitation Learning. In Proceedings of the AAAI conference on artiicial intelligence.

[211] Huandong Wang, Qiaohong Yu, Yu Liu, Depeng Jin, and Yong Li. 2021. Spatio-temporal urban knowledge graph enabled mobility

prediction. Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies 5, 4 (2021), 1ś24.

[212] Jingxing Wang, Shu Lu, Hongsheng Liu, and Xuegang Ban. 2022. Transportation Origin-Destination Demand Estimation with

Quasi-Sparsity. Transportation Science (2022).

[213] Ming-Heng Wang, Steven D Schrock, Nate Vander Broek, and Thomas Mulinazzi. 2013. Estimating dynamic origin-destination data

and travel demand using cell phone network data. International Journal of Intelligent Transportation Systems Research 11 (2013), 76ś86.

[214] Yuandong Wang, Hongzhi Yin, Hongxu Chen, Tianyu Wo, Jie Xu, and Kai Zheng. 2019. Origin-destination matrix prediction via graph

convolution: a new perspective of passenger demand modeling. In Proceedings of the 25th ACM SIGKDD international conference on

knowledge discovery & data mining. 1227ś1235.

[215] Yuandong Wang, Hongzhi Yin, Tong Chen, Chunyang Liu, Ben Wang, Tianyu Wo, and Jie Xu. 2021. Gallat: A spatiotemporal graph

attention network for passenger demand prediction. In 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE,

2129ś2134.

[216] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image quality assessment: from error visibility to structural

similarity. IEEE transactions on image processing 13, 4 (2004), 600ś612.

[217] Michael Wegener and Franz Fürst. 2004. Land-use transport interaction: State of the art. Available at SSRN 1434678 (2004).

[218] Alan Geofrey Wilson. 1971. A family of spatial interaction models, and associated developments. Environment and Planning A 3, 1

(1971), 1ś32.

[219] Luc Johannes Josephus Wismans, K Friso, J Rijsdijk, SW de Graaf, and J Keij. 2018. Improving a priori demand estimates transport

models using mobile phone data: a Rotterdam-region case. Journal of Urban Technology 25, 2 (2018), 63ś83.

[220] Xin Wu, Jifu Guo, Kai Xian, and Xuesong Zhou. 2018. Hierarchical travel demand estimation using multiple data sources: A forward and

backward propagation algorithmic framework on a layered computational graph. Transportation Research Part C: Emerging Technologies

96 (2018), 321ś346.

[221] Jingyuan Xia, Wei Dai, John Polak, and Michel Bierlaire. 2018. Dimension Reduction for Origin-Destination Flow Estimation: Blind

Estimation Made Possible. arXiv preprint arXiv:1810.06077 (2018).

[222] Chi Xie, Kara M Kockelman, and S Travis Waller. 2011. A maximum entropy-least squares estimator for elastic origin-destination trip

matrix estimation. Procedia-Social and Behavioral Sciences 17 (2011), 189ś212.

[223] Zheli Xiong, Defu Lian, Enhong Chen, Gang Chen, and Xiaomin Cheng. 2023. A DeepLearning Framework for Dynamic Estimation of

Origin-Destination Sequence. arXiv preprint arXiv:2307.05623 (2023).

[224] Fengli Xu, Jun Zhang, Chen Gao, Jie Feng, and Yong Li. 2023. Urban generative intelligence (ugi): A foundational platform for agents in

embodied city environment. arXiv preprint arXiv:2312.11813 (2023).

[225] Sijie Yan, Yuanjun Xiong, and Dahua Lin. 2018. Spatial temporal graph convolutional networks for skeleton-based action recognition.

In Proceedings of the AAAI conference on artiicial intelligence, Vol. 32.

[226] Fan Yang, Peter J Jin, Yang Cheng, Jian Zhang, and Bin Ran. 2015. Origin-destination estimation for non-commuting trips using

location-based social networking data. International Journal of Sustainable Transportation 9, 8 (2015), 551ś564.

[227] Hai Yang, Tsuna Sasaki, Yasunori Iida, and Yasuo Asakura. 1992. Estimation of origin-destination matrices from link traic counts on

congested networks. Transportation Research Part B: Methodological 26, 6 (1992), 417ś434.

[228] Jun Yang, Xiao Han, Ye Tan, Yinghao Tang, Weidong Feng, Aili Wang, Huijun Zuo, and Qiang Zhang. 2022. Spatiotemporal Virtual

Graph Convolution Network for Key Origin-Destination Flow Prediction in Metro System. Mathematical Problems in Engineering 2022

(2022).

[229] Tianren Yang. 2020. Understanding commuting patterns and changes: Counterfactual analysis in a planning support framework.

Environment and Planning B: Urban Analytics and City Science 47, 8 (2020), 1440ś1455.

[230] Xiping Yang, Zhixiang Fang, Ling Yin, Junyi Li, Yang Zhou, and Shiwei Lu. 2018. Understanding the spatial structure of urban

commuting using mobile phone location data: a case study of Shenzhen, China. Sustainability 10, 5 (2018), 1435.

[231] Xianfeng Yang, Yang Lu, and Wei Hao. 2017. Origin-destination estimation using probe vehicle trajectory and link counts. Journal of

Advanced Transportation 2017 (2017).

[232] Yudi Yang, Yueyue Fan, and Johannes O Royset. 2019. Estimating probability distributions of travel demand on a congested network.

Transportation Research Part B: Methodological 122 (2019), 265ś286.

[233] Yingkun Yang, Chen Xiong, Junfan Zhuo, and Ming Cai. 2021. Detecting home and work locations from mobile phone cellular signaling

data. Mobile Information Systems 2021 (2021), 1ś13.

[234] Yixuan Yang, Shiyao Zhang, Chenhan Zhang, and JQ James. 2021. Origin-destination matrix prediction via hexagon-based generated

graph. In 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). IEEE, 1399ś1404.

ACM Comput. Surv.



34 • C. Rong et al.

[235] Xin Yao, Yong Gao, Di Zhu, Ed Manley, Jiaoe Wang, and Yu Liu. 2020. Spatial origin-destination low imputation using graph

convolutional networks. IEEE Transactions on Intelligent Transportation Systems 22, 12 (2020), 7474ś7484.

[236] Ganmin Yin, Zhou Huang, Yi Bao, Han Wang, Linna Li, Xiaolei Ma, and Yi Zhang. 2023. ConvGCN-RF: A hybrid learning model for

commuting low prediction considering geographical semantics and neighborhood efects. GeoInformatica 27, 2 (2023), 137ś157.

[237] Hang Yu, Senlai Zhu, Jie Yang, Yuntao Guo, and Tianpei Tang. 2021. A bayesian method for dynamic originśdestination demand

estimation synthesizing multiple sources of data. Sensors 21, 15 (2021), 4971.

[238] Jing Yuan, Yu Zheng, and Xing Xie. 2012. Discovering regions of diferent functions in a city using human mobility and POIs. In

Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. 186ś194.

[239] Yuan Yuan, Jingtao Ding, Jie Feng, Depeng Jin, and Yong Li. 2024. UniST: A Prompt-Empowered Universal Model for Urban Spatio-

Temporal Prediction. arXiv preprint arXiv:2402.11838 (2024).

[240] Yuan Yuan, Jingtao Ding, Chenyang Shao, Depeng Jin, and Yong Li. 2023. Spatio-temporal Difusion Point Processes.

arXiv:2305.12403 [cs.LG]

[241] Yuan Yuan, Jingtao Ding, Huandong Wang, Depeng Jin, and Yong Li. 2022. Activity Trajectory Generation via Modeling Spatiotemporal

Dynamics. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 4752ś4762.

[242] Yuan Yuan, Chenyang Shao, Jingtao Ding, Depeng Jin, and Yong Li. 2024. Spatio-Temporal Few-Shot Learning via Difusive Neural

Network Generation. In The Twelfth International Conference on Learning Representations.

[243] Yuan Yuan, Huandong Wang, Jingtao Ding, Depeng Jin, and Yong Li. 2023. Learning to Simulate Daily Activities via Modeling Dynamic

Human Needs. arXiv preprint arXiv:2302.10897 (2023).

[244] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. 2019. Graph transformer networks. Advances in

neural information processing systems 32 (2019).

[245] Jinwei Zeng, Guozhen Zhang, Can Rong, Jingtao Ding, Jian Yuan, and Yong Li. 2022. Causal Learning Empowered OD Prediction for

Urban Planning. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management. 2455ś2464.

[246] Xianyuan Zhan, Samiul Hasan, Satish V Ukkusuri, and Camille Kamga. 2013. Urban link travel time estimation using large-scale taxi

data with partial information. Transportation Research Part C: Emerging Technologies 33 (2013), 37ś49.

[247] Dapeng Zhang, Feng Xiao, Minyu Shen, and Shaopeng Zhong. 2021. DNEAT: A novel dynamic node-edge attention network for

origin-destination demand prediction. Transportation Research Part C: Emerging Technologies 122 (2021), 102851.

[248] Guozhen Zhang, Zihan Yu, Depeng Jin, and Yong Li. 2022. Physics-infused machine learning for crowd simulation. In Proceedings of

the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2439ś2449.

[249] Jun Zhang, Wenxuan Ao, Junbo Yan, Depeng Jin, and Yong Li. 2024. A GPU-accelerated Large-scale Simulator for Transportation

System Optimization Benchmarking. arXiv preprint arXiv:2406.10661 (2024).

[250] Jun Zhang, Wenxuan Ao, Junbo Yan, Can Rong, Depeng Jin, Wei Wu, and Yong Li. 2024. MOSS: A Large-scale Open Microscopic Traic

Simulation System. arXiv preprint arXiv:2405.12520 (2024).

[251] Jinlei Zhang, Hongshu Che, Feng Chen, Wei Ma, and Zhengbing He. 2021. Short-term origin-destination demand prediction in urban

rail transit systems: A channel-wise attentive split-convolutional neural network method. Transportation Research Part C: Emerging

Technologies 124 (2021), 102928.

[252] Jun Zhang, Depeng Jin, and Yong Li. 2022. Mirage: an eicient and extensible city simulation framework (systems paper). In Proceedings

of the 30th International Conference on Advances in Geographic Information Systems. 1ś4.

[253] Qian Zhang, Kaiyuan Sun, Matteo Chinazzi, Ana Pastore y Piontti, Natalie E Dean, Diana Patricia Rojas, Stefano Merler, Dina Mistry,

Piero Poletti, Luca Rossi, et al. 2017. Spread of Zika virus in the Americas. Proceedings of the national academy of sciences 114, 22 (2017),

E4334śE4343.

[254] Ruixing Zhang, Liangzhe Han, Boyi Liu, Jiayuan Zeng, and Leilei Sun. 2022. Dynamic Graph Learning Based on Hierarchical Memory

for Origin-Destination Demand Prediction. arXiv preprint arXiv:2205.14593 (2022).

[255] Feifei Zhao, Weiping Wang, Huijun Sun, Hongming Yang, and Jianjun Wu. 2022. Station-level short-term demand forecast of carsharing

system via station-embedding-based hybrid neural network. Transportmetrica B: Transport Dynamics 10, 1 (2022), 1ś19.

[256] Furong Zheng, Juanjuan Zhao, Jiexia Ye, Xitong Gao, Kejiang Ye, and Chengzhong Xu. 2022. Metro OD Matrix Prediction based on

Multi-view Passenger Flow Evolution Trend Modeling. IEEE Transactions on Big Data (2022).

[257] Guanjie Zheng, Chang Liu, Hua Wei, Chacha Chen, and Zhenhui Li. 2021. Rebuilding city-wide traic origin destination from road

speed data. In 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE, 301ś312.

[258] Guanjie Zheng, Yuanhao Xiong, Xinshi Zang, Jie Feng, Hua Wei, Huichu Zhang, Yong Li, Kai Xu, and Zhenhui Li. 2019. Learning

phase competition for traic signal control. In Proceedings of the 28th ACM international conference on information and knowledge

management. 1963ś1972.

[259] Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang. 2014. Urban computing: concepts, methodologies, and applications. ACM

Transactions on Intelligent Systems and Technology (TIST) 5, 3 (2014), 1ś55.

[260] Yu Zheng, Furui Liu, and Hsun-Ping Hsieh. 2013. U-air: When urban air quality inference meets big data. In Proceedings of the 19th

ACM SIGKDD international conference on Knowledge discovery and data mining. 1436ś1444.

ACM Comput. Surv.

https://arxiv.org/abs/2305.12403


An Interdisciplinary Survey on Origin-destination Flows Modeling: Theory and Techniques • 35

[261] Chen Zhong, Stefan Müller Arisona, Xianfeng Huang, Michael Batty, and Gerhard Schmitt. 2014. Detecting the dynamics of urban

structure through spatial network analysis. International Journal of Geographical Information Science 28, 11 (2014), 2178ś2199.

[262] George Kingsley Zipf. 1946. The P 1 P 2/D hypothesis: on the intercity movement of persons. American sociological review 11, 6 (1946),

677ś686.

[263] Xiexin Zou, Shiyao Zhang, Chenhan Zhang, JQ James, and Edward Chung. 2021. Long-term origin-destination demand prediction with

graph deep learning. IEEE Transactions on Big Data 8, 6 (2021), 1481ś1495.

ACM Comput. Surv.



36 • C. Rong et al.

A Related Reviews

Paper Description

[130]

This scholarly work presents a comprehensive overview of the utilization of deep
learning methodologies for resolving human mobility dilemmas in urban contexts.
The issues are signiicantly explicated and analyzed within a framework consisting
of four correlated dimensions: individual and collective perspective, as well as the
problems of prediction and generation thereof.

[13]
This article provides a overview of research on human mobility, examining the topic
from both individual and group perspectives. The discussion centers around physical
theoretical laws and modeling, with relevant applications in speciic scenarios.

[218]
This review provides a comprehensive and in-depth review of the development of
the gravity model, which plays an important role in spatial interaction modeling.

[172]

This review provides an account of the evolution of spatial interaction modeling,
encompassing advancements in analogical models beyond the traditional gravity
-based principles, particularly the utilization of the more comprehensive concepts of
entropy and information theory.

[161]
This literature review provides an overview on contemporary data collection techni
-ques and advanced OD low modeling, which can enhance our understanding of
population mobility patterns within cities.

[89]
This article introduces the application of smart card data in estimating public transit
origin-destination matrices (tOD).

[20]
This survey provides an overview of the state-of-the-art technologies employed in
the diferent stages of estimating OD lows based on traic counts on the roads.

Table 8. Related reviews of research on origin-destination flows.

The two surveys [13, 130] pertaining to human mobility delve into the study of the movement patterns of
individuals and populations in cities. Luca et al. [130] gave a review, whose primary focus revolves around the
utilization of deep learning techniques to address various challenges and concerns pertaining to human mobility
in urban settings. Barbosa et al. [13] ofers a detailed examination of the physics-based theories and models that
underpin various aspects of human mobility. Given the broad scope of human mobility, it is worth noting that the
two works [13, 130] under discussion do not provide an extensive investigation of population mobility patterns
between regions, i.e., OD lows. These works also devote substantial sections to the discussion of individual
mobility as well as inlow and outlow. This represents a signiicant departure from the focus of this literature.

The existing literature on spatial interaction modeling [172, 218] is primarily focused on modeling the interac-
tion between diferent regions of a city at a macro level, which is closely related to OD lows. However, these
models are not limited to population movement, but also encompass a broader range of content such as goods,
information, and other factors. These studies focus more on interpreting the intrinsic mechanisms of spatial inter-
action from a socio-economic perspective, in which gravity models [172, 262] play a signiicant role. This paper,
on the other hand, focuses primarily on human mobility, with a more comprehensive exploration of theories,
models, methods, and techniques than the aforementioned spatial interaction modeling reviews [172, 218].
The inal type of surveys [20, 89, 161] primarily explore and summarize the methods and techniques used

in the transportation ield to obtain OD lows information. This has already been standardized as a common
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problem in transportation, known as OD estimation [35, 147, 206]. These issues are very speciic, and in this
paper, the development of technical solutions to address these problems and a systematic comparison will also be
reviewed in this work.

B Data Details

B.1 Mobility Data Related to OD Flows

• Travel Survey. The travel survey [8, 180] is a research methodology used to collect data on individuals’
travel patterns and behavior. This type of survey typically involves the administration of questionnaires or
interviews to a sample of individuals or households, and aims to gather information on various aspects of
travel, such as trip purposes, modes of transportation used, trip distances, and travel times. Through the
aggregation of all individual data collected, it is possible to calculate and derive important information such
as daily OD lows or commuting OD lows, i.e., the number of home-work pairs.

• Call Detail Records. Call Detail Records (CDRs) typically contain detailed information about speciic
phone calls, including the time and date of the call, its duration, the caller’s phone number, the recipient’s
phone number, and information about the base stations (or cell towers). By collecting and analyzing location
information during phone calls from a large number of individuals over a prolonged period, it is possible to
identify complete individual spatial patterns and movement characteristics [30, 91].

• Cellular Network Access. Cellular Network Access data, like CDR data, records information about de-
vices accessing cellular networks, including the spatial location of corresponding base stations. The biggest
diference from CDR data is that the recording of location data is denser and the trajectory is much more
continuous than that of CDR data [69, 151, 233].

• GPS Records. GPS data refers to location information collected by Global Positioning System (GPS) re-
ceivers [175]. GPS is a satellite-based navigation system that provides precise geolocation and time information
to GPS receivers anywhere on or near the Earth’s surface. GPS data typically includes the latitude, longitude,
and elevation of the receiver, as well as the time at which the data was collected [98]. GPS data possesses
high accuracy and dense temporal and spatial resolution, which makes it valuable for various applications.
However, due to privacy concerns and the considerable costs associated with data collection, storage, GPS
data is often only available for a limited number of individuals, usually up to several thousand, which limits
the scope and generalizability of research indings [104].

• Location-based Social Network Check-ins. Location-based Social Network (LBSN) check-ins data refers
to the records of users’ location-speciic activities published on social networking platforms such as Facebook,
Foursquare, and Twitter. When users "check-in" at a particular location, they voluntarily provide information
about their whereabouts and activities, and any accompanying text or media content. Check-ins data has the
advantages of high location accuracy and large-scale coverage of user populations. However, because the
data is uploaded voluntarily by users, there is often a sampling bias and the temporal and spatial granularity
of the data can be sparse [146].

• Traic Surveillance Video Data. Traic Surveillance Video Data refers to a collection of video recordings
that capture the movement and behavior of vehicles and pedestrians on public roads, highways, and other
transportation infrastructures. These video data are typically obtained from surveillance cameras installed
at strategic locations, such as intersections, toll booths, and highways. Through such kind of vehicular
movements in transportation infrastructure, it is possible to derive OD low information for vehicles [68].

• Smart Card. Smart card data mainly refers to transaction data generated by using smart cards to pay fares
in public transportation systems. Smart cards are integrated circuit cards that can store and process data,
and are widely used in public transportation systems such as subways, buses, and light rails [153]. It relects
passengers’ demand for public transportation.
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Collection Information Objective Level

Road Sensors Traic speed/counts Vehicles Group
RFID Vehicle trajectories Vehicles Individual

Station Sensors Visitor counts Passengers Group
Smart Card In/out check-ins Passengers Individual

Table 9. The comparison of trafic information collection methods.

• Taxi Orders. Taxi order data refers to the data generated by the process of ordering and dispatching taxis
through online or mobile platforms. The data usually contains information such as pick-up/drop-of location,
pick-up/drop-of time, taxi type, payment method, and driver information. This data provides valuable insights
into the spatial and temporal travel patterns of taxi users, as well as their travel preferences and behaviors.
The analysis of taxi order data can help researchers and transportation planners better understand the demand
for taxi services [214].

B.2 Auxiliary Data

• Demographics. Demographics refer to statistical data that describe the characteristics of a population,
such as age, gender, income, education, ethnicity, and occupation. The study of demographics is crucial in
understanding the social and economic composition of a particular area or community. Individuals’ mobility is
contingent upon a range of factors, including age and income. For example, research suggests that younger and
higher-income populations tend to exhibit greater levels of mobility compared to their older and lower-income
counterparts [150].

• Land use. The distribution of land use types within a given region serves as an important indicator of its
functional role within the urban landscape [5]. Speciically, regions characterized by a higher percentage of
residential land use are more likely to support nocturnal activities associated with sleep and rest, whereas
those with a greater proportion of commercial land use are more likely to facilitate employment, shopping,
and leisure activities. This relationship between land use and activity patterns also has implications for
mobility, with a larger number of individuals typically returning to regions with a higher proportion of
residential land use during nighttime hours. Consequently, the examination of land use patterns in urban
environments is a crucial consideration in the analysis of mobility and its associated socio-economic and
spatial dynamics.

• POIs. Points of interest (POIs) refer to locations that are of particular importance or interest within a given
study geographical area. Examples of POIs include landmarks, public facilities, commercial establishments,
and cultural institutions. POIs are typically identiied based on their signiicance to the local community and
their potential to attract visitors or customers. In urban contexts, POIs play an important role in shaping the
activity patterns and mobility of the population.

• Infrastructure. Infrastructure refers to the basic physical and organizational structures and facilities that
are necessary for the functioning of a society. In urban areas, infrastructure plays a critical role in shaping
patterns of mobility and facilitating the provision of public services. What is more, transportation-related
infrastructure is widely recognized as a key determinant of mobility.
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C Analytical Theories

C.1 Gravity Model with Diferent Constraints

C.1.1 Globally-constrained Gravity Model. According to Equation 3, it can be obtained that:
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where �, �� , � � and � are all calibratable parameters the same as Eq. 2, and �̂� � . Nevertheless, in this context, the
parameter � assumes an additional function as a coeicient of proportionality that adjusts the overall magnitude
of travel originated by the gravity model. It can be expressed as the following formula:
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In this equation, the parameters �� , � � and � convey information about the spatial distribution of the studied
phenomenon, which enables the determination of the relative magnitudes of OD lows between diferent regions.
On the other hand, the parameter � provides information about the global total information, thereby determining
the absolute magnitudes of all OD lows.

C.1.2 Production-constrained Gravity Model. To use the outlow of each region as the constraints in the gravity
model, we can combine it with Eq. 2 to obtain:

�̂� � = �����
� �

� �−�
� � (17)

where

�� =
1

∑
� �

� �

� �−�
� �

(18)

So the inal model can be expressed as the following equation.

�̂� � =
���

� �

� �−�
� �

∑
� �

� �

� �−�
� �

. (19)

C.1.3 Atraction-constrained Gravity Model. Combining with Eq. 2, we can obtain the following expression.

�̂� � = �
��
� � �� ��

−�
� � (20)

where

� � =
1

∑
� �

��
� �−�

� �

(21)

So the inal format of the model is shown as follow.

�̂� � =
�
��
� � ��

−�
� �

∑
� �

��
� �−�

� �

. (22)

C.1.4 Doubly-constrained Gravity Model. The doubly-constrained gravity model can be termed as the following
form:

�̂� � = ����� �� ��
−�
� � , (23)
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where

�� =
1

∑
� � �� ��

−�
� �

,

� � =
1

∑
� �����

−�
� �

,

(24)

where�� and � � are the balancing factors that control the model to satisfy the constraints. In practical applications,
these two factors are commonly estimated via an iterative procedure, after which the model is employed to
produce all OD lows.

C.2 Theoretical Derivation Details

C.2.1 Zipf’s Principle of Least Efort. Zipf systematically investigates the intrinsic dynamics of inter-regional
interactions between urban areas by examining the economic trade perspective. First, Zipf posits that when
individuals make behavioral decisions, they tend to gravitate towards the option that requires the least efort. To
substantiate this point, Zipf utilized the power-law distribution of community sizes as evidence. Speciically, due
to the Zipf’s Principle of Least Efort, two forms of economic structures emerged in cities: 1) localizing economy
(Force of Diversiication), and 2) big city economy (Force of Uniication). The irst economy, the localizing
economy, arises as people tend to live close to the source of raw materials, thereby minimizing transportation
costs and the amount of work involved in the production process. The second economy, the big city economy,
is formed as people seek to minimize transportation costs during the consumption process, gradually giving
rise to large cities where goods produced can be delivered to consumers with the least transportation efort.
These two economic paradigms lead to people congregating in either production sites or large cities, resulting in
the formation of diverse communities. Due to the coexistence of the two economic paradigms and the mutual
constraints between them, an equilateral hyperbola balance is established within the entire economic system,
resulting in a population scale law characterized by the equation � · � = � , where � means the ordinal rank of the
population of the community, � denotes the population number of the community and � is a constant. By taking
the logarithm of both sides of the equation, we obtain log � + log � = log� . Zipf demonstrated the reliability of
this formula through various data sources [262]. Thus, this demonstrated the validity of the Principle of Least
Efort.

Based on Zipf’s Principle of Least Efort, Zipf pointed out that people would naturally choose closer locations
for interactions, thus deriving that spatial interactions are inversely proportional to the distance between two
locations. In the relationship between spatial interaction and population distribution, Zipf utilized the ideal
experiment of assuming that the population income and labor conditions in all regions are homogenized. Under
this assumption, everyone would contribute equally to the intensity of spatial interaction, leading to the natural
conclusion that the strength of spatial interaction is directly proportional to the population of both origin and
destination. Although this assumption does not conform to reality, such an ideal experiment still helps deepen
the understanding of the gravity model’s patterns observed in OD lows.

Zipf only proposed the direct and inverse proportional relationship between population, distance, and spatial
interaction strength, without delving into a precise mathematical model. By drawing an analogy to Newton’s law
of gravitation, Zipf opened the door to a series of research on gravity models.

C.2.2 Entropy Approach from Statistical Mechanics. In statistical mechanics, entropy is a fundamental concept
that quantiies the degree of disorder or randomness in a system at the microscopic level. It serves as a measure
of the number of possible microscopic states or conigurations, known as microstates, which are consistent with
the macroscopic properties of the system, such as energy, temperature, and pressure. The entropy of statistical
mechanical introduced by Ludwig Boltzmann in the late 19th century, is given by the famous Boltzmann entropy
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formula:

� = �� ln(Ω), (25)

where � means the entropy of the system, �� denotes the Boltzmann constant, and Ω is the number of microstates
corresponding to a given macroscopic state.

In the ield of human mobility, from a macroscopic perspective, the same ODmatrix may correspond to multiple
diferent combinations of individual travel decision states. The number of such states is measured by entropy. It
is evident that this notion of entropy is directly borrowed from the concept of entropy in statistical mechanics,
to describe the degree of uncertainty associated with a macroscopic OD matrix state. In detail, within Wilson’s
framework, given the known observed information as constraints, we can enumerate all possible combinations
of individual mobility decisions that form the OD matrix using the classical probabilistic method. By maximizing
entropy, we can then select the most likely macroscopic state corresponding to the OD matrix.

Below, we provide a formalized description proposed by Wilson, using the doubly-constrained gravity model
as an example. Within a given time window, we know the inlow and outlow quantities for each region, as
shown in Eq. 7. The objective is to ind the most probable OD matrix, which denotes as T. In other words, from
the perspective of combinatorics, this means inding the OD matrix T with the greatest number of microstate
combinations. This can be expressed using the following formula:

Ω(T) =
� !

�11!(� −�11)!

(� −�11)!

�12!(� −�11 −�12)!
... =

�
∏

� � �� � !
, (26)

where Ω(T) means the number of microscopic states of OD matrix T. In elucidating the formula,� !/�11!(� −�11)!
denotes the quantity of potential combinations arising from selecting�11 individuals out of the total� individuals,
whereas (� −�11)!/�12!(� −�11 −�12)! signiies the quantity of potential combinations resulting from choosing
�12 individuals from the remaining (� −�11) individuals, and so on. In each instance, the selections are independent
events; thus, the aggregate number of possible combinations of the whole OD matrix T is the cumulative product
of the number of combinations of these individual selections, as illustrated by Eq. 26. Therefore, to maximize the
entropy of a macroscopic state corresponding to an OD matrix T, we simply need to maximize the following
expression.

�T = � ln(Ω(T)), (27)

where � means a parameters, which does not afect the maximization of entropy. Incorporating the constraints
expressed in Eq. 7, we can get the following optimization problem.

maximize �T

subject to

�︁

�=1

�� � = �� � �� � = 1, 2, ...,�

�︁

�=1

�� � = � � � �� � = 1, 2, ..., �

(28)

As a result, we can obtain

�� � = ����� �� ��
−�
� � , (29)

where

�� =
1

∑
� � �� ��

−�
� �

,

� � =
1

∑
� �����

−�
� �

.

(30)
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We can infer from this observation that it is consistent with the formula of the doubly-constrained gravity model
obtained through analogizing Newton’s law of universal gravitation, which is shown as Eq. 23.

In summary, the maximum entropy theory based on statistical mechanics can provide theoretical support for
the gravity model. However, it should be noted that this theory also involves some unrealistic assumptions, such
as assuming all microstates to be equiprobable. Furthermore, when additional prior information is available about
the space being modeled, this method may not have proper ways to further enhance the precision of the model.

C.2.3 Minimization of Information Gain from Information Theory. In information theory, information gain is
used to describe the diference in information between posterior probabilities and prior probabilities, where the
posterior probabilities are obtained by updating the prior probabilities with new collected data. The formula for
information gain is as follows:

� (�1, �0) = log
�1

�0
, (31)

where �1 denotes the posteriori probability of an event and �0 means the priori probability.
The information contained in OD lows encapsulates two dimensions: 1) the spatial probability distribution

pertaining to population mobility, and 2) the magnitude of the lows. By normalizing the OD matrix, it is feasible
to derive the probability matrix representing population movement among distinct regions within the spatial
domain. The speciic calculation is as follows:

�� � =
�� �

�
, (32)

where �� � denotes the probability of one individual’s transition starting from origin � and ending at destination � .
If we use {�� � } to describe the probabilities between regions observed in the most recent period, then Eq. 32 can
be adapted to describe the information gain for the OD matrix, which is shown as below.

� (�,�) =
︁

� �

�� � log(�� �/�� � ), (33)

where � denotes the probability distribution information contained in the ODmatrix, and� denotes corresponding
part of observations. By minimizing the information gain � (�,�), our model can be brought closer to the
distribution of the observed data.

Therefore, solving the spatial distribution of population movements embedded in the OD matrix becomes an
optimization problem, which can be formulated with the combination of constraints represented by Eq. 7, as
follows:

minimize � (�,�)

subject to

�︁

�=1

�� � = �� � �� � = 1, 2, ...,�

�︁

�=1

�� � = � � � �� � = 1, 2, ..., �

(34)

Through transformation, the optimization problem can be reformulated as follows:

�� � = �� ������ �� � , (35)

where
�� = ��/�,

� � = � �/�
(36)
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and the estimation for parameters �� and � � is iteratively calculated using the following formula:

�� =
1

∑
� �� �� �� �

,

� � =
1

∑
� �� �����

.

(37)

Interestingly, the approach commonly referred to as the Fratar method was not introduced by a researcher
named Fratar, but rather by L. Törnqvist in 1965. Additionally, this method is known by other names, such as
the Furness method or Biproportional method. In the extant literature [188], it has been consistently evidenced
that this particular methodology boasts commendable performance attributes. Nevertheless, it is imperative to
highlight that the method omits the contemplation of travel expenses inherent in conventional gravity models,
thereby excluding the factor of spatial distance from its purview.

C.2.4 Economic Principles of Utility Maximization. We will elaborate on the detailed derivation process and the
ultimate conclusion of this theory. Assume that a study area is divided into n+1n+1 regions, where region i=0i=0
denotes the origin and regions j=1,2,...,nj=1,2,...,n denote the destinations. Within the economic system constituted
by this area, each individual acquires utility by relocating to other regions and engaging in interactions with unit
people or commodities located at those regions. This utility �� � is represented by the subsequent equation.

�� � = � (�� � ), (38)

where �� � denotes the net utility of one individual at origin ii and interacting with destination � , � (·) denotes the
utility function, and �� � means the number of trips, i.e., interaction intensity. The aggregate utility derived from
an individual’s mobility is the cumulative sum of the utilities acquired through interactions with all potential
destinations, as represented by the subsequent equation.

�� =

�︁

�=1

� (�� �), (39)

where �� means the aggregated utility of trips originating from � and interacting with each unit in all destinations.
Nonetheless, it is apparent that a destination encompasses multiple interactable units. Consequently, Eq. 39
is reined to accommodate the realistic scenario in which numerous units at a destination are available for
interaction. Assuming that the utility provided by each unit within the destinations is equal, we can conclude
that the total utility of each destination is proportional to its population. Therefore, Eq. 39 is adjusted to the
following form.

�� = �

�︁

�=1

� � � (�� �), (40)

where � is a proportional constant and � � denotes the population of the pepole or commodities located at
destination � .

Moreover, human mobility across regions is not unconstrained; it is inluenced by limitations associated with
temporal and monetary costs. Thus, within the context of limited resources and costs, individuals are required to
optimize their cumulative utility by engaging in spatial interactions with other regions in a restrained manner.
Niedercorn has taken into account both time and monetary costs in his theory, providing separate expressions to
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capture each of these dimensions, which are as follows.

�� ≥ �

�︁

�=1

�� ��� � ,

ℎ� ≥
1

�

�︁

�=1

�� ��� � ,

(41)

where�� denotes the total cost in money, � represents the cost in money for moving one unit distance, ℎ� stands
for the limitation in time cost, � means the speed, and �� � denotes the distance from origin � to destination � .
Finally, we can obtain the total net utility of an individual from all interactions, which is shown as below.

�� = �

�︁

�=1

� � � (�� � ) − �(�

�︁

�=1

�� ��� � −�� ), (42)

where �� means the total net utility and � denotes the Lagrangian multiplier. Here we take the example of
monetary cost. Therefore, by maximizing the utility �� , we can obtain the optimal decision for the travels
{�� � | � = 1, 2, ..., �} to each destination � from the origin � .
To explore the suitability of diferent utility function forms, Niedercorn tested two speciic forms: the logarithmic

form and the power form. The equations for these two forms are presented below.

� (�� � ) = ln�� � ,

� (�� � ) = ��
� � (0 < � < 1).

(43)

By substituting the above two utility functions into Eq. 42 and maximizing the individual’s total net utility�� , we
obtain the following two optimization problems.

maximize �

�︁

�=1

� � ln�� � − �(�

�︁

�=1

�� ��� � −�� ) .

maximize �

�︁

�=1

� ��
�
� � − �(�

�︁

�=1

�� ��� � −�� ).

(44)

By solving the two optimization problems mentioned above, two kind of expressions for �� � can be obtained.

argmax�� ��� (�� � ) = �

�︁

�=1

� � ln�� � − �(�

�︁

�=1

�� ��� � −�� ).

argmax�� ��� (�� � ) = �

�︁

�=1

� ��
�
� � − �(�

�︁

�=1

�� ��� � −�� ) .

(45)

By solving the two optimization problems mentioned above, the corresponding expressions for�� � can be obtained.

�� � = (
��

�
) (

� �∑�
�=1 � �

) (
1

�� �
) for logarithmic form utility function.

�� � = (
��

�
) (

�
1/(1−� )
�

∑�
�=1

�
1/(1−�)
�

�
�/(1−�)
� �

) (
1

�
1/(1−� )
� �

) for power form utility function.
(46)
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Assuming all individuals in each origin � follow the same strategy show in Eq. 46, the resulting �� � for all people
will be magniied by the order of the number of population in origin � , which can be expressed as follow.

�� � = (
��

�
) (

� �∑�
�=1 � �

) (
1

�� �
) for logarithmic form utility function.

�� � = (
��

�
) (

�
1/(1−� )
�

∑�
�=1

�
1/(1−�)
�

�
�/(1−�)
� �

) (
1

�
1/(1−� )
� �

) for power form utility function.
(47)

where
��

��
= �� , (48)

in which �� denotes the population of origin � and�� means the total monetary cost of all people in origin � .
Based on the expressions of �� � describing the spatial distribution of population mobility under the two utility

function forms presented by Eq. 47, it can be observed that the spatial interaction intensity between regions, as
represented in Eq. 1, is directly proportional to the population size of the regions and inversely proportional to the
distance between them. Niedercorn’s investigation [144] departs from earlier studies that examined the gravity
models through physical or information-theoretic lenses. His approach is rooted in economics, postulating that
individuals seek to optimize their utility from spatial interactions, which subsequently leads to the derivation of
the gravity law.

D Evaluation of Obtained origin-destination Information

The evaluation methods for the OD low-related models can be divided into two main categories. The irst one is
when the ground truth can be used for evaluation. In this case, the available data is typically divided into training
and testing sets, with the models being trained on the training set and their performance being tested on the
testing set. The second category is when ground truth cannot be obtained, such as in scenarios where the OD
low information is derived from some OD construction methods. In these cases, the reliability of the information
can only be assessed indirectly through other information, such as traic observations and census data.

D.1 Evaluation with Ground Truth Based on Nummerical Metrics

In the process of quantitatively comparing the derived OD lows with the ground truth, there are predominantly
two categories of metrics employed: Firstly, error metrics, which signify the magnitude of deviation between
the predicted or estimated OD lows and the actual values - a larger discrepancy corresponds to a higher value.
Secondly, similarity metrics are utilized to gauge the degree of resemblance between the obtained OD lows
and the ground truth; a higher value implies increased similarity to the ground truth, subsequently leading to
enhanced performance. The commonly used metrics are summarized in Table 10.

Root mean squared error (RMSE) is a widely used metric for measuring the accuracy of a predictive model or
estimator by calculating the square root of the average squared diferences between the predicted and actual
values. It is particularly useful in regression analysis, as it provides an aggregate measure of the overall error
magnitude, with a larger RMSE indicating larger errors and a smaller RMSE indicating better model performance.
One of the key advantages of RMSE is that it is expressed in the same units as the predicted and actual values,
making it easier to interpret and compare with other metrics. However, it should be noted that RMSE is sensitive
to outliers and may not always be the most appropriate metric for every situation. Mean absolute error (MAE) is
a popular metric for measuring the accuracy of a predictive model or estimator by calculating the average of
the absolute diferences between the predicted and actual values, which is the same as RMSE. One advantage
of MAE is that it is less sensitive to outliers than RMSE, making it a more robust metric in certain situations.

ACM Comput. Surv.



46 • C. Rong et al.

Indicator Discription Calculation

RMSE
This metric measures the average squared difer
-ences between predicted and actual values.

︃
1
|F |

∑
�� ,� � ∈R | |F�� ,� � − F̂�� ,� � | |

2
2,

MAE
This metric represents the average absolute dif
-erences between predicted and actual values.

1
|F |

∑
�� ,� � ∈R |F�� ,� � − F̂�� ,� � |

sMAPE

This metric measures the percentage of the aver
-age absolute diferences between predicted and
actual values relative to the average of the actual
and predicted values.

100%
|F |

∑
�� ,� �

F�� ,� � −
ˆF�� ,� �

( |F�� ,� � |+|
ˆF�� ,� � | )/2

CD
This metric quantiies the angular similarity bet
-ween predicted and actual values by considering
the cosine of the angle between their vectors.

1 − F·F̂

∥F∥ ∥ F̂∥

CPC

This metric measures the degree of overlap bet
-ween predicted and actual commuting patterns
by evaluating the shared commuting links among
them.

2
∑

�� ,� � ∈R
min(F�� ,� � ,F̂�� ,� � )

(
∑

�� ,� � ∈R
F�� ,� � +

∑
�� ,� � ∈R

F̂� � )

PC
This metric measures the linear relationship bet
-ween predicted and actual values, with a higher
value indicating a stronger positive correlation.

∑
�� ,� � ∈R

(F�� ,� � −F̄) (F̂�� ,� � −
¯̂� )

︃∑
�� ,� � ∈R

(F�� ,� � −F̄)
2
︃∑

�� ,� � ∈R
(F̂�� ,� � −

¯̂
� )2

MSSIM

This metric takes the OD matrix as an image and
quantiies the similarity between two images (the
generated OD matrix and ground truth) by consi
-dering structural information, luminance, etc.

1
�

∑�
�=1

(2�F� �F̂�
+�1 ) (2�F� F̂�

+�2 )

(�2
F�
+�2

F̂�
+�1 ) (�

2
F�
+�2

F̂�
+�2 )

CosSim
This is a measure of similarity between two non
-zero vectors, calculated by taking the cosine of
the angle between them.

F·F̂

∥F∥ ∥ F̂∥

JSD
This is a symmetric measure of the dissimilarity
between two probability distributions.

KL(�F | |�F̂ )+KL(�F̂ | |�F )

2

MMD
This is a statistical test for determining the simi
-larity between two probability distributions.

∥EF∼�F [� (F, ·)] − E
F̂∼�

F̂

[� (F̂, ·)] ∥2
H�

Table 10. A summary on the numerical evaluation metrics of OD flows.

However, MAE does not emphasize large errors as much as RMSE, so it may not be the best choice if large
errors are particularly important to identify or penalize. Symmetric mean absolute percentage error (sMAPE)
is a metric used to measure the accuracy of a predictive model or estimator by calculating the average of the
absolute percentage diferences between predicted and actual values, while treating under- and over-predictions
symmetrically. Unlike MAE and RMSE, sMAPE expresses error as a percentage, making it easier to compare model
performance across diferent scales or units. However, it should be noted that sMAPE can lead to misleading
results when dealing with small or zero actual values, as the percentage error can become extremely large or
undeined in these cases. In such situations, alternative metrics like MAE or RMSE might be more appropriate.
Cosine distance (CD) is a metric used to measure the dissimilarity between two non-zero vectors by calculating
one minus the cosine of the angle between them. Unlike Euclidean distance, cosine distance focuses on the
orientation of the vectors rather than their magnitude. By normalizing the vectors before computing their cosine
similarity, cosine distance efectively measures the angular distance between the vectors, which can be more
informative and less sensitive to diferences in magnitude. Common part of commuting (CPC) refers to a measure
that quantiies the overlap in commuting patterns between diferent locations or areas, such as the number of
individuals who share the same origin and destination for their daily commute. By analyzing the commonality in
commuting patterns, transportation planners and researchers can gain insights into potential bottlenecks, areas
requiring improved transportation infrastructure, and travel behavior trends. CPC can help identify similarities
and diferences in commuting lows, informing urban planning and transportation policies to better cater to the
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needs of the population. Pearson correlation (PC), also known as Pearson’s � , is a statistical measure used to
assess the strength and direction of a linear relationship between two continuous variables. Pearson correlation
is sensitive to outliers and assumes a linear relationship between variables, which may not always be appropriate
for every situation. In such cases, alternative similarity measures like cosine similarity may be more suitable.
Mean Structural SIMilarity (MSSIM) [216] is a perceptual image quality assessment metric that quantiies the
similarity between two images by considering structural information, luminance, and contrast, with the aim
of mimicking the human visual system’s perception of image quality. It provides a more comprehensive and
perceptually relevant measure of image quality than traditional metrics like Mean Squared Error (MSE). Cosine
similarity (CosSim) is a measure used to calculate the similarity between two non-zero vectors by taking the
cosine of the angle between them. By normalizing the vectors before computing their cosine, the metric efectively
measures the angular distance between the vectors, providing a more informative and less sensitive measure
of similarity than Euclidean distance, especially in high-dimensional spaces. So it’s suitable for evaluating the
generated OD lows. JensenśShannon divergence (JSD) is a symmetric measure of dissimilarity between two
probability distributions, often used in information theory, machine learning, and data analysis for comparing
data. By being symmetric and always inite, JSD overcomes some of the limitations of KLD (Kullback-Leibler
divergence), making it particularly suitable for comparing probability distributions in various applications.
Maximum mean discrepency (MMD) is deined as the distance between the means of the samples mapped into a
Reproducing Kernel Hilbert Space (RKHS), which allows for the comparison of complex and non-linear structures
in the data. MMD has several advantages, such as being a non-parametric test that does not rely on speciic
distribution assumptions and being sensitive to diferences in both the shape and location of the distributions.

Apart from the above mentioned metrics, contemporary studies [14, 173, 174] have advocated for the evaluation
of OD lows derived from models by adopting a network-centric metrics. This is due to the recognition that
scrutinizing OD matrices in the context of complex network can unveil crucial properties, such as the scale-free
distribution of node degrees etc., which might not be discernible through traditional analytical methods. Saberi et
al. [173] discusses the research on understanding human mobility patterns from a complex network perspective.
By conducting comparative analyses between cities, the study uncovers statistical properties of travel networks.
That work posits that urban transportation can be viewed as a complex, densely connected network, with
each node representing a travel origin or destination. Edges between nodes carry weights, which are used to
quantify the volume of travel on that particular route. Futhermore, Saberi et al. [174] employ various statistical
measures, such as node degree, node lux, link weight, and betweenness centrality, as well as network features
like Kullback-Leibler divergence and edge-based network dissimilarity between several OD prediction models
and the ground truth, to conduct a comparative analysis.

D.2 Validation with Observational Profile Information of Mobility Based on Extending Modules

In numerous instances, researchers are confronted with the challenge of evaluating the disparity between the OD
lows obtained using speciic methodologies and actual real-world conditions when access to ground truth data is
unattainable. Nevertheless, several indirect or auxiliary strategies can be employed to assess the veracity of the
extracted OD lows. Existing literature predominantly focuses on the following four key approaches:

• Contrasting with small-sample travel surveys: Although travel surveys may encompass only a minor
portion of the population, their spatial distribution can, to a certain degree, relect the overall population’s OD
low distribution. If the spatial distribution of the OD lows derived through algorithms or models corresponds
with that of the small-sample travel survey, it can serve as an indicator of the reliability of the extracted OD
low data. Studies employing this approach include but not limited: [3, 9, 23, 24, 30, 33, 55, 90, 132, 136, 148,
160, 175, 202, 203, 209, 226, 233].
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• Utilizing traic simulators or traic low assignment models: By incorporating the OD lows into the
road network, investigators can examine whether the traic conditions generated by the estimated OD lows
exhibit consistency with those observed in real-life scenarios. A high degree of concordance implies that
the extracted OD lows demonstrate a considerable level of credibility. Examples of studies employing this
approach include but not limited: [9, 28, 33, 69, 71, 91, 136, 145, 213, 231].

• Comparison with benchmark methods: Evaluate the method’s performance by comparing the results
against those obtained using benchmark methods or models with established performance in similar contexts.
If both sets of results exhibit a high degree of consistency, it suggests that the OD low data obtained is reliable
to a certain extent. Works that employ this scheme include but not limited: [9, 33, 50, 69, 80, 209].

• Downstream tasks: There are also some studies that introduce downstream tasks to evaluate the authenticity
of the extracted OD low information, such as using OD lows for travel time estimation. If incorporating the
extracted OD low information leads to an improvement in the performance of the downstream task, it can
indirectly attest to the reliability of the OD low data. Works that use this approach include but not limited:
[33, 38, 91, 93, 142, 145, 209, 226, 230].
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