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Origin-destination (OD) flow contains population mobility information between every two regions in the

city, which is of great value in urban planning and transportation management. Nevertheless, the collection

of OD flow data is extremely difficult due to the hindrance of privacy issues and collection costs. Significant

efforts have been made to generate OD flow based on urban regional features, e.g., demographics, land use,

and so on, since spatial heterogeneity of urban function is the primary cause that drives people to move from

one place to another. On the other hand, people travel through various routes between OD, which will have

effects on urban traffic, e.g., road travel speed and time. These effects of OD flows reveal the fine-grained

spatiotemporal patterns of population mobility. Few works have explored the effectiveness of incorporating

urban traffic information into OD generation. To bridge this gap, we propose to generate real-world daily

temporal OD flows enhanced by urban traffic information in this paper. Our model consists of two modules:

Urban2OD and OD2Traffic. In the Urban2OD module, we devise a spatiotemporal graph neural network to

model the complex dependencies between daily temporal OD flows and regional features. In the OD2Traffic

module, we introduce an attention-based neural network to predict urban traffic based on OD flow from

the Urban2OD module. Then, by utilizing gradient backpropagation, these two modules are able to enhance

each other to generate high-quality OD flow data. Extensive experiments conducted on real-world datasets

demonstrate the superiority of our proposed model over the state of the art.
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1 INTRODUCTION

Urban simulation and digital twins have been attracting increasing attention for their vital sup-

porting role in policy formulation and development planning [8, 27]. Origin-destination (OD)

flow data is critical to these leading-edge technologies, because it portrays the population move-

ments between regions in the city [33, 45]. However, high cost and privacy issues may obstruct

the large-scale city-wide OD flow data from being collected, which drives researchers to construct

models to generate the OD flow data [2, 28, 40, 41, 56].

In urban science, long-standing efforts have been made on OD generation problem from classic

physics-derived methods [2, 41, 56] to recent data-driven models [31, 32, 35, 36, 40, 54]. In these

works, it is widely adopted that the spatial heterogeneity of the city is the primary cause that

drives people to move from one region to another [55]. Therefore, the models proposed in these

works take the urban regional features, e.g., demographics and POI distribution (the number of

points of interest in different categories), as input and output of the predicted OD flows between

regions. From another perspective, the OD flows also have an effect on urban traffic. For example,

a huge flow of population movements between two regions will lead to traffic congestion on the

roads between the origin and the destination. However, existing works only consider the cause,

i.e., urban regional features, but ignore the effects caused by OD flows. Our key observation is that

OD generation could benefit from introducing the effect, i.e., the urban traffic, caused by OD flows.

Fortunately, with the development of ICT (Information and Communications Technology)

and ITS (Intelligent Transportation Systems), massive fine-grained traffic data, such as road

level traffic speed, has been accumulated by sensors deployed on the road networks [1, 6, 48], which

provides a solid foundation for enhancing OD generation models with traffic information [30].

More than that, existing works [17, 21, 49, 53] have demonstrated the feasibility of generating OD

flows given the observed traffic information.

Still, it is challenging to generate city-wide daily temporal OD flows with regional features and

urban traffic. First, there is an obstacle hindering directly combining the OD generation mod-

els with the methods which predict traffic information based on OD flows. Since the traditional

approaches [55] are based on a simulator to model the relationship between OD flows and urban

traffic, they are not differentiable leading to the incapability of optimization with gradients. But the

state-of-the-art OD generation models are optimized using the gradient-based technique [28, 40]

proved to be effective. Second, the impact of temporal OD flows on traffic speed of roads is very

difficult to capture due to both spatial and temporal factors [25, 47]. From the spatial perspective,

people moving between a pair of specific origin and destination may travel on different routes

considering multiple factors [14], such as individual preferences and path distance, which is com-

pounded by the fact that OD pairs and roads are in a many-to-many relationship. The high time

sensitivity of the relation between OD flows and urban traffic makes it even harder to capture.

To address above two challenges, we propose a special designed model named Generating

Origin-Destination flows with regional features and Urban Traffic (GODUT), which con-

sists of two modules: Urban2OD and OD2Traffic. To overcome the first challenge, we design a

cascaded multitask learning framework to integrate the Urban2OD and OD2Traffic modules end-

to-end. Specifically, the Urban2OD module generates daily temporal OD flows based on regional

features, and then the OD2Traffic module predicts urban traffic given the OD flows generated

from the Urban2OD module. In this framework, the two modules will enforce each other during

the gradient-based training strategy. In the Urban2OD module, we utilize a special designed spa-

tiotemporal graph neural network to model the complex dependencies between urban space and

OD flow. In the OD2Traffic module, as a solution to the second challenge, we leverage attention

mechanism on both OD pair level and time level to predict the urban traffic by automatically cap-

turing the dynamic relations between OD pairs and road networks.
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Our primary contributions are three-fold:

— We propose a multitask learning framework, which utilizes the urban traffic information

to improve the OD generation results. To the best of our knowledge, we are the first to

investigate the feasibility of combining urban regional features and urban traffic in the OD

generation task.

— We design a model named GODUT to integrate the modeling of the cause and the effect

of OD flow: the relationship between regional features and daily temporal OD flow; the

dependencies between OD flow and urban traffic.

— Extensive experiments conducted on real-world datasets demonstrate the superiority of our

model.

The organization of the remaining part of this paper is detailed as follows. In Section 2, the

related works on OD generation and graph neural networks are introduced for convenient under-

standing and comprehension. Next, the preliminaries of some necessary notations and problem

definitions of OD generation will be given in Section 3. Following this, the details of our proposed

model are described completely in Section 4. After, the experiments and results are revealed in Sec-

tion 5. Finally, we give a conclusion to this work and look ahead to future directions in Section 6.

2 RELATED WORKS

2.1 Origin-destination Generation

Recently, researches related to OD generation have been very active, which can be categorized

into two groups: physics-based methods and machine learning methods. Traditionally, numerous

works [2, 41, 56] utilized physics-inspired traditional methods to model human mobility. The

gravity model [56] is motivated by Newton’s law of Gravitation and compares population mo-

bility to the universal gravitational force between objects. The Radiational [41] model analogizes

population mobility between regions to the process of physical radiation and absorption. These

physics-based methods are dedicated to leveraging physical models to explain the underlying

mechanisms of human mobility behaviors in urban areas. Based on formulaic models and the

spatial distribution information of population in cities, they predict population mobility, i.e.,

OD flows. However, since these models take into account relatively simplistic factors and are

unable to effectively model the complex urban factors impacting human mobility behaviors,

their performance is subpar. Recently, machine learning techniques have been introduced into

the human mobility modeling domain and achieved the state of the art. The tree-based machine

learning models have shown great generalization ability in modeling the dependencies between

urban regional features and population mobility [31, 32]. Deep learning methods, including

CNNs (convolutional neural networks) and GNNs (graph neural networks), have also been

reported in the study of human mobility with good performance [34–36, 40]. GMEL adopts GNNs

to learn geo-contextual embedding, which enhanced the performance of the tree-based mobility

model. However, these works that model the relationship between static urban features and OD

flows based on data-driven schema do not incorporate the temporal dynamics, thus they can only

assist in obtaining static, regular OD flows and fail to capture the temporal OD dependencies,

which our work strives to achieve. While they could use a multimodel-based approach to sepa-

rately model OD flows at different times in order to capture time-dependent information, due to

the lack of modeling of temporal correlations, their performance is also poor, as can be seen from

the experimental results in the later sections. However, few works [16] have exploited the effect

of OD flows on urban traffic. The reason might be that the relationship between OD flows and

traffic is primarily modeled using a simulator-based method [15] which is unable to incorporate

with a machine learning model. In this work, we bridge this gap by designing an attention-based

neural network that is easy to stack with a neural network-based OD generation module.
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2.2 Spatiotemporal Graph Neural Network and Attention Mechanism

Spatiotemporal graph neural networks (STGNN) have been exploited to model the spatiotem-

poral dependencies in many fields. Recently, STGNN have been applied to model the behavior of

particles and simulate complex processes in physics [23, 38]. Moreover, STGNN have been widely

used to model the human behavior in urban applications, such as the traffic prediction problem

[9, 13, 22, 26, 43, 46, 52] and ride-hailing demand prediction [12, 39]. However, existing works are

limited to focusing on partial human movements and do not exploit the potential of STGNN in

modeling the spatiotemporal dependencies of city-wide OD flows.

Recent works have successfully applied attention mechanisms to model human movement be-

havior. Feng et al. utilize attention-based RNNs (recurrent neural networks) to predict the next

location of individual trajectories [10]. ASTGCN [13] integrates attentions with graph convolu-

tions and temporal convolutions to do the traffic forecasting of flow volumes and speed of vehi-

cles on the road network. Liu et al. [28] utilize GAT (graph attention networks) to learn spatial

embeddings for regions and predict the commuting flow for a city. Zheng et al. [53] use the atten-

tion mechanism to model the relationship between OD flows of vehicles and road traffic volume,

which is different from ours. However, none of these works solve the problem of generating the

daily temporal OD flows.

3 PRELIMINARIES

3.1 Notations

Regions. The urban space of a city is partitioned into a set of regions, one of which is denoted as

r ∈ R, by certain rules, e.g., road networks and the latitude and longitude. Regions serve as the

basic geographic unit of human movement in this paper.

OD Pairs. Origin-destination pairs, denoted as {(ri , r j )|ri , r j ∈ R}, stand for the two different

regions between which human mobility comes up.

OD Flows. OD flow denotes the population of mobility of an OD pair. We use F t
ri ,r j

to represent

the temporal OD flow from region ri to region r j at t th time slice. Daily temporal OD flow is the

regular human mobility at different times on an ordinary day of the year.

Geographic Features. Geographic features reflect the function and attributes of regions in the

city, such as demographics of regions and POIs (point of interests) located in regions. We use

{Xr |r ∈ R} to denote the geographic features for regions.

Urban Traffic. The urban traffic are the traffic observation on road networks, such as traffic flows

and the traffic speed. In this paper, we adopt the vehicle speed of roads, which represents as St
k

,

where k denotes the identification of road and t means at t time slice.

3.2 Problem Definition

The definition of the problem is to construct a model. The inputs of the model are urban regional

features {Xr |r ∈ R} and traffic observation {St
k
|k = 1, 2, . . . ,K and t = 1, 2, . . . ,T } on road net-

works in the city. The outputs are daily temporal OD flows {F t
i j |ri , r j ∈ R and t = 1, 2, . . . ,T }.

And the model is used to generate the temporal OD flows for region pairs of interest, where the

flows are not available.

4 METHODS

4.1 The Framework of GODUT

We will introduce the multitask learning framework of GODUT in this part. As shown in Figure 1,

this framework includes two modules: Urban2OD and OD2Traffic. As their names suggest, the
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Fig. 1. Framework of our proposed model, i.e., GODUT.

Urban2OD module takes pairwise regional features as input and outputs the predicted OD flows

between regions, while the OD2Traffic module predicts the urban traffic given the OD flows from

Urban2OD module. Traditionally, the process from OD flows to urban traffic is obtained by traffic

simulators, such as MATSim [42] and SUMo [4], of which the simulation process is not differen-

tiable, and thus, it is hard to integrate directly with Urban2OD models. The neural network-based

OD2Traffic module bridges this gap in that the two processes can be modeled under a holistic frame-

work and the models can be optimized through gradient-based techniques, as shown in Figure 1.

In more detail, we leverage a particular designed spatiotemporal graph neural network as the

spatiotemporal embedding learner in the Urban2OD module, which is composed of GNNs (graph

neural networks) and RNNs to capture the spatiotemporal dependencies of human mobility.

Specifically, GNNs jointly extract the spatial features of a region based on its own features and the

surrounding neighborhoods, and RNNs model the daily temporal pattern between human mobility

and urban space. After the processing of the spatiotemporal embedding learner, the spatiotempo-

ral features of regions in the city could be captured into the embeddings. Then, the spatiotemporal

embedding of an OD pair concatenated with the spatial interaction features, i.e., distance, between

origin and destination is used to predict the OD flows through a flow predictor. In the OD2traffic

module, we aggregate the historical OD flow information belonging to a specific road utilizing the

attention mechanism from two levels, OD pairs level and temporal level, and predict the corre-

sponding urban traffic of this road with the aggregated information.

4.2 Urban2OD Module for Generating OD Flow from Urban Regional Features

The spatial distribution of urban functions, which could be reflected by regional features, e.g.,

demographics and POI locations, causes the spatiotemporal heterogeneity of population mobility

in the city. For example, on weekdays, people often travel from residential places to employment

places for work in the morning and opposite at nightfall. More specifically, the OD flow volume is

affected by the features of origin and destination. What’s more, the urban functions of the origin

and destination are influenced by not only the interior content but also the neighbors. Besides that,

the distance between origin and destination greatly influences the volume of OD flow. Considering

the above characteristics of OD flows, we propose the Urban2OD module, which produces the OD

flow for every OD pair based on urban regional features.

As shown in the Figure 2, the Urban2OD module includes two parts, a spatiotemporal embedding

learner and an OD flow predictor. Specifically, the first part, i.e., embedding learner is comprised

of several Graph Enhanced GRU (gated recurrent units), the structure of which is shown in

the upper right of Figure 2. In each unit, the reset gate and the update gate decide whether to

retain more long memory or receive more new coming information. The Graph Enhanced GRU is

recurrently used to model the temporal pattern of OD flow in daily life. The input of each time step

is the temporal embedding of time-of-day with regional features of all regions and the output is the

hidden states of current time, i.e., spatiotemporal embedding, which is used to predict the OD flow

between every two regions. The computation formula of Graph Enhanced GRU is shown below,

r = σ (GCN r (xt ⊕ h
t−1)), (1)
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Fig. 2. The architecture of Urban2OD module.

z = σ (GCN z (xt ⊕ h
t−1)), (2)

h
t−1 ′ = h

t−1 � r, (3)

h
′ = tanh(GCN (xt ⊕ h

t−1 ′)), (4)

h
′ = (1 − z) � h

t−1 + z � h
′ (5)

where r and z stand for the output of reset gate and update gate respectively, σ and tanh indicate

the activation functions of ReLU (Rectified Linear Unit) and the tanh function, ⊕ denotes

concatenation, � denotes Hadamard product, h
t denotes the hidden states of time t and GCN

stands for the graph convolution computation.

In order to comprehensively model the heterogeneity spatial distribution of urban functions, we

utilize graph to represent the topology of urban space and leverage graph convolutional networks

to model the spatial dependencies. The urban graph G = {N ,E} is constructed by adjacency of

regions in a city, where nodes n ∈ N represent regions and edges e ∈ E announce whether two

regions are geographically adjacent or not. The features of every region are working as the node

attributes jointly with temporal embedding. The graph convolution we adopt is proposed by Kipf

and Welling [18]. The computation of one graph convolution layer is shown as follows,

X
(l+1) = f (A,X(l )) (6)

Dii =
∑

j

Ai j (7)

Â = A + I (8)

f (A,X(l )) = σ (D̂− 1
2 ÂD̂

− 1
2 X

(l )
W

(l ) + b
(l )), (9)
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in which A denotes the adjacency matrix of the urban graph G, X
(l ) represents the node embedding

of l th layer, D indicates the degree matrix of A, I denotes the Identity Matrix. The GCN computa-

tion is stacked by several graph convolutional layers and the last layer is not activated. After each

time step in Graph Enhanced GRU, the node embeddings will contain the spatial-temporal infor-

mation for each region, which are used to give a prediction for the OD flow of every OD pair next.

Then, the OD flow predictor will predict the flow volume for OD pairs based on the spatiotem-

poral embeddings learned previously. The structure of the flow predictor is shown in Figure 2 at

the bottom right. As we can see, the distance feature is mapped into a high-dimensional space to

exploit corresponding transition pattern of human mobility. This is because human mobility ex-

hibits the law of distance-decay, which has the property of extremely stiff non-linearity, according

to existing works [2, 19, 28]. In detail, there are many published forms of the distance decay func-

tion, such as power-decay and exponential-decay, and the like [3, 5, 7, 11, 20]. It is not reasonable

and elegant to handcraft the distance function for human mobility due to its variation in differ-

ent settings. Some works [40] directly concatenate the distance feature with the regional features

of origin and destination. We will show that it cannot correctly model the relationship between

distance and human mobility well owing to the extremely stiff non-linearity in experiments. Con-

sequently, we use an MLP (multi-Layer Perceptron) as the distance projector to automatically

learn the map for the distance feature from one dimension to a high dimension feature space to

thoroughly build the relationship between the distance and the OD flow. After that, the projected

high-dimensional distance features are concatenated with spatiotemporal embeddings of OD pairs

to predict the OD flows through the following fully-connected layer.

4.3 OD2Traffic Module for Enhancing the Generation with Urban Traffic

With the OD flows generated from the Urban2OD module, one way to verify its reliability is to

use the traffic simulator to see if it can recover the real-world urban traffic [37, 51]. This is natural

since OD flows are significant causes of urban traffic [16, 29, 50] and the spatiotemporal features of

the OD flow both affect the urban traffic on the road extensively. For example, during the morning

rush hour, the roads between residential places and workplaces tend to be congested due to the

increased number of vehicles. Moreover, empirically, the larger the OD flow and the closer the

distance, the more vehicles on the road [50]. Therefore, we build a model to predict urban traffic

based on the OD flows generated and calibrate the flows by adapting the Urban2OD module, which

is an OD generation model based on regional features proposed above. Thus, the Urban2OD module

will be improved by OD2Traffic to make the generated OD flows more practically. Urban traffic is

the real-time status of the roads, such as the traffic flow and traffic speed.

We first construct the relation between OD pairs and roads. Empirically, people usually choose

the lowest cost path to the destination when they travel. However, in reality, there are paths with

similar distances and travel times, and people usually choose one of them depending on the condi-

tion of the roads at the time, as shown in Figure 3(a). Accordingly, we design a method to establish

the relation between OD pairs and roads. As shown in Figure 3(b), we mark the road located in

the rectangular area between origin and destination having relation with the corresponding OD

pair. Through this approach, we can include as complete as possible the dependencies between

OD pairs and roads and thus consider them in our model design sufficiently. OD pairs and roads

are a many-to-many relationship, where each OD pair affects multiple roads, and each road is also

affected by multiple OD pairs. Then, we use the dependencies between OD pairs and roads to con-

struct a bipartite graph to describe their relationship, as shown up in Figure 4, where the nodes

colored blue stand for OD pairs and the green nodes denote the roads.

Based on the constructed bipartite graph, we design a model with an attention-based mechanism

to predict the urban traffic given the historical information of related OD pairs. For one specific
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Fig. 3. Relation between Origin-destination pairs and roads.

Fig. 4. The architecture of OD2Traffic module.

road, the more recent historical information of the closer origin will have a more significant impact.

In contrast, the older history will have a greater impact if the distance is farther. Attention mech-

anism, which automatically gives weights to aggregate the information from different OD pairs

and at different historical time slices, is suitable to model this sophisticated and dynamic relation

between historical OD flows and urban traffic. The OD pair and temporal levels have their own

attention mechanisms for information extraction, respectively, designed as two attention layers

in the model. As shown in Figure 4, the first attention layer in the dashed box decides which OD

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 6, Article 150. Publication date: April 2024.
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pairs have high weights. The second attention layer works for the aggregated OD flow information

on the road level at different historical time slices. The computation of the first attention layer is

shown below,

et
i j = σ (W (F̂ t

i j ⊕ vk ) + b), (10)

α t
i j = so f tmax(et

i j ) =
exp(et

i j )∑
i j exp(e

t
i j )
, (11)

l tk =
∑
i j

α t
i j F̂

t
i j , (12)

where F̂i j means the generated OD flow from region ri to region r j , vk means the one-hot embed-

ding of kth road, αi j means the attention weight for OD flow Fi j , lk means the aggregated features

for kth road andW and b are the learnable parameters. The computation of the second attention

layer is presented as follows,

et = σ (Wl t + b), (13)

α t = so f tmax(et ) =
exp(et )∑
t exp(e

t )
, (14)

ST =
∑

t

α t l t , (15)

where l t means the aggregated information at time t for one specific road and ST means the pre-

dicted urban traffic of time T .

4.4 End-to-End Training of Urban2OD and OD2Traffic

The training of Urban2OD and OD2Traffic all adopt MSELoss (Mean squared Error loss). The

formula is given as follows,

Lдener ation =
1

|T |

1

|R |2

∑
t

∑
i j

(F t
i j − F̂ t

i j )
2, (16)

Linf er ence =
1

|T |

1

|l |

∑
t

∑
k

(Vel tk − ˆVel
t

k )
2, (17)

L = Lдener ation + Linf er ence . (18)

We train our proposed model using the SGD (stochastic gradient descent) optimization tech-

nique to minimize the loss L mentioned above.

5 EXPERIMENTS

We will answer the following research questions in this section based on the results of experiments

conducted on real-world datasets.

— RQ1: Can our model generate daily temporal practical OD flow data?

— RQ2: Does the OD2Traffic module improve the generation results of OD flows?

— RQ3: How do the hyper-parameters influence the model’s performance?

5.1 Data Description and Analysis

The datasets, collected from Beijing, contain three parts: urban regional features, OD flows and

urban traffic. The space within Beijing’s Fifth Ring Road is divided into 343 regions by second-

grade highways. The urban traffic are the real-time traffic speed records of all roads within the 5th

Ring Road. The datasets are given a detailed introduction below.
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Table 1. Statistics of the OD Flow Dataset and Traffic Dataset used in Our Experiments

Dataset City Time Span T-granularity #Units

OD flows Beijing 2021.07.01-2021.07.31 One hour 342 regions

Traffic A Beijing 2022.07.01-2022.07.31 5 minutes 29,418 road segments

Traffic B Beijing 2017.04.01-2017.05.31 15 minutes 15,073 road segments

Fig. 5. Case analysis of effects of OD flows on traffic.

5.1.1 Urban Regional Features. Regional attributes, provided by one of the biggest Chinese In-

ternet service provider (ISP) corporations, include demographics, e.g., the number of people

with different ages and genders, and POIs distribution, e.g., POIs quantities of different categories.

The features we adopt in experiments are collected in 2021.

5.1.2 OD Flows. OD flow is also provided by the ISP corporations, which contains the daily

average number of people moving between every two regions per hour in July 2021.

5.1.3 Urban Traffic. We use two traffic datasets to validate the superiority of our method. One

of the urban traffic datasets, which comes from the biggest Digital Map Service Provider, gathered

every 5 minutes traffic speed for each road in the same period with OD flow data. The other

is a public traffic dataset named Q-Traffic [24] which is a popular benchmark dataset in traffic

prediction task.

5.1.4 Statistics and Analysis of OD flow Dataset and Traffic Dataset. In order to provide a de-

tailed overview of the data, we have conducted statistical analyses on the utilized OD flow dataset

and the traffic dataset, and introduced their important indices, as shown in Table 1.

Additionally, we conducted an in-depth analysis of the data to explore the connection between

changes in OD flows and traffic status. As shown in Figure 5, we selected three representative

region pairs for analysis. The results demonstrate a strong influence of OD flow volume on traffic

conditions. Specifically, an increase in OD flows tends to intensify road congestion, consequently

reducing road traffic speed.

5.2 Baselines

We conduct experiments on two classes of baseline methods to validate the superiority of our

model.

— GM. Gravity model [56] is a widely-used physics-derived model motivated by Newton’s law

of gravitation.

— RF. Random forest is a kind of robust tree-based traditional machine learning technique. In

recent works [31, 32], tree-based methods represented by the random forest were claimed

to be the state of the art of population mobility modeling.
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— DG. DG (DeepGravity) [40] introduced the deep learning technique to enhance the gravity

model and handle more features.

— GNN. Graph neural networks have been reported to achieve excellent performance in many

applications. GMEL [28] points out that utilizing GNN to extract topology features could

improve mobility modeling.

The baselines mentioned above use a single model and the one-hot time embedding (the hour of

a day) to predict OD flows. The second class includes methods that consist of multi-models, which

handle the relation between urban attributes and population mobility at different times in a day.

— Multi-GM. Multi-GM utilizes several gravity models to predict OD flow at different times.

In this work, we use 24 gravity models to model the mobility apart at 24 hours in one day.

— Multi-RF. This baseline builds 24 random forest models without the time embedding to

predict 24 hours OD flow between two regions.

— Multi-DG. Like the other baselines introduced above, this baseline consists of 24 DeepGrav-

ity models.

— Multi-GNN. Similarly, this method includes 24 GNNs.

5.3 Metrics

we choose Root Mean Squared Error (RMSE), Normalized Root Mean Squared Error

(NRMSE) and Common Part of Commuting (CPC) as evaluation metrics to validate the per-

formance of our proposed model. CPC is positive and located in the closed interval between 0 and

1, where 1 means the generated OD flow and the ground truth coincide exactly and 0 means there

is no overlap between the generation and ground truth at all.

RMSE =

√
1

|T |

1

|R |2

∑
t

∑
i j

| |Ft
i j − F̂

t

i j | |
2
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where F t
i j means real OD flow from region ri to region r j at time t and F̂ t

i j means the generated

OD flow.

5.4 Experiment Settings

We split the OD pairs into 8 : 1 : 1 as the training, validation and test set randomly. We follow

the same hyper-parameter settings for all methods of the same type for a fair comparison. For the

gravity model, the residential and work population are the input and the model takes 4 learnable

parameters. For the tree-based models, the number of estimators is set to 30, where the increment

will not provide more improvement. For all GNNs, the number of layers is set to 3 and filters is set

to 64. In our model, the layer of distance projector is set to 5 and the number of neurons of each

layer is set to 64. The size of learned regional spatial-temporal embedding is set to 64. The length

of historical OD flow information used in the OD2Traffic module is set to 2.

We implemented the experiments of our proposed model and baselines through Pytorch v1.10

and Deep Graph Library v0.8 [44]. The hardware used are Intel(R) Xeon(R) 8358 2.60GHz, 500 GB

of RAM, and NVIDIA GeForce RTX 3090 Ti with 24GB of RAM.
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Table 2. Overall Performance Comparison with Baselines

Model RMSE↓ NRMSE↓ Imp. CPC↑ Imp.

GM 54.275 0.912 −32.57% 0.349 +81.66%

DG 53.532 0.900 −31.67% 0.402 +57.71%

GNN 47.795 0.797 −22.84% 0.560 +13.21%

RF 48.499 0.815 −24.54% 0.624 +1.60%

multi-GM 52.142 0.876 −29.79% 0.387 +63.82%

multi-DG 52.197 0.877 −29.87% 0.432 +46.76%

multi-GNN 47.411 0.797 −22.84% 0.556 +14.03%

multi-RF 49.502 0.830 −25.90% 0.537 +18.06%

ours-B 38.615 0.649 −5.23% 0.617 +2.75%

ours-A 36.571 0.615 – 0.634 –

5.5 Results and Analysis

5.5.1 Overall Performance (RQ1). In this section, we will give a detailed introduction and sys-

tematic analysis of the experiment results of the performance of GODUT compared with all base-

lines. To more comprehensively evaluate and compare with different baselines, we run five exper-

iments for each model, each time using different initial weights set by different random seeds. We

collected the results from each experiment and run an ANOVA test to determine if the performance

differences were significant. The test results showed that the p-value is less than 0.05, indicating

that the performance differences we observed are significant. Combined with Table. 2, it suggests

that our method significantly outperforms other baselines, and this result is not merely due to the

randomness of weight initialization.

The overall performance of our model and baselines are shown in Table. 2. As we can see, the

proposed model outperforms all baselines referring to all metrics with a significant margin of more

than 20% according to RMSE based on the complementary traffic information from the Traffic A

dataset. The performance improvement brought about by the Traffic B dataset is limited due to the

considerable time gap between its collection and that of the OD flow dataset. This could potentially

be attributed to the gradual changes in OD flows as time progresses. This method exhibits robust-

ness to gaps in the time period of traffic data. The classic method gravity model [56] performs

unwell due to its simplicity, e.g., comparing the population mobility with Gravitation between ob-

jects. Random forest [31] has a strong capability of fitting non-linearity and generalization power.

However, it cannot take urban topology information and the association between human mobility

at different times of the day into consideration, which leads to unimpressive performance. Deep-

Gravity [40] takes lots of urban attributes into account but neglects the stiff non-linearity and

urban topology. So DeepGravity performs better than the naive gravity model but worse than ran-

dom forest and GNNs. GNNs bear the urban topology and regional neighbors’ information in mind

without fully exploiting distance features and temporal patterns. From the experiment results of

all multiple models method, we can see that using multiple models to handle different patterns of

human mobility at different times of a day could slightly improve the performance but is still not

good enough. Our proposed model thoroughly models spatial-temporal dependencies between hu-

man mobility and urban space. What’s more, the urban traffics caused by OD flow is also applied

in the OD2Traffic module of our model to make the generation results more practical.

Furthermore, we performed an analysis of time and computational complexity for our method,

and compared it with the baselines, as shown in Table 3. It can be observed that both our method

and the baselines primarily consume more time during the training process. However, during in-

ference, as the structure of the models are fixed, the computational complexity is proportional to
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Table 3. Analysis of the Computational Complexity of Our

Method and All Baselines

Methods #Para Training Time Inference Time

GM 4 ∼5min <1s

DG ∼41k ∼5h <1s

GNN ∼29k ∼12h <1s

RF ∼3k ∼12min <1s

Multi-GM 96 ∼20min <1s

Multi-DG ∼1m ∼10h <1s

Multi-GNN ∼700k ∼20h <1s

Multi-RF ∼72k ∼18min <1s

ours ∼1m ∼20min <1s

the number of region pairs, i.e., the computational complexity is O(N). It’s worth noting that ex-

isting computing devices fully utilize the parallel computation of CPU and GPU to accelerate the

computation process, thus further improving computational efficiency. As concluded from the ex-

periments, the inference time for both our method and the baselines is less than 1 second on about

150k temporal OD flow records. In terms of the number of parameters, the parameter count of all

multimodal-based methods will be a multiple of the time steps of their corresponding single model-

based methods. Our method uses a complex spatio-temporal graph convolution network and an

additional OD2traffic module to further utilize traffic information for performance enhancement,

resulting in a higher number of parameters.

5.5.2 Ablation Study (RQ2). We give the analysis of results of ablation experiments to check

the validity of our designs in this section. The multi-GNNs method is set as the basic model and

we add the design of spatiotemporal embedding learner, distance projector and the OD2Traffic

module with traffic information one by one. According to the metric of RMSE, the result is shown

in Figure 6. The results demonstrate that each part of our method brings a performance gain with a

considerable margin. With the comparison between Multi-GNNs and Spatio-tempo, we can see

that spatial-temporal embedding learning could lead to around 8% improvement in performance.

From the difference between Multi-GNNs and Multi-GNNs + disProj, we get that the distance

projector provides a robust performance improvement. And disProj (distance projector) could

decrease the generation error up to 10%. It can be seen from the rightmost bar that the OD2Traffic

module will substantially improve the quality of OD generation, e.g., a 7% decrease of RMSE. From

these results, we can see that each part of our model design has improved the performance of OD

generation.

5.5.3 Hyper-parameters Learning (RQ3). In this section, we present a systematic analysis of four

important hyper-parameters. Figure 7(a) shows the impact of the number of graph convolutional

channels in the spatial-temporal embedding learning process, where the x-axis is the number of

channels and the y-axis is the generation error. We can see that the performance will increase

with the number of channels but will stop growing when it reaches 64. It means that too few

channels will lead to the poor fitting ability of the model. Figure 7(b) shows the effect of the size of

spatial-temporal embedding, where the y-axis is the generation error and the x-axis is the spatial-

temporal embedding size. Results show that a small embedding size will lead to less information.

From Figure 7(c), we can see that the distance feature requires sufficient dimensionality to be

adequately modeled. The effect of a given length of historical OD flows in the OD2Traffic module

is shown in Figure 7(d). Results show that 2 hours of historical OD information will support the
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Fig. 6. Ablation study.

Fig. 7. Effects of hyper-parameters.
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best prediction of urban traffic. This may be because long historical information will bring noise,

which reduces the modeling ability.

6 CONCLUSION

The rapid development of ICT and ITS allows us to collect huge amounts of traffic data in the city,

which provides the conditions to utilize urban traffic information to enhance the performance of

OD flow generation. This work proposes a novel model named GODUT to solve the OD generation

problem. Different from traditional methods, GODUT not only considers the cause of OD flows,

e.g., the spatial heterogeneity of the city but also models the effect of OD flows on urban traffic. As

such, GODUT consists of two modules: Urban2OD and OD2Traffic. Urban2OD takes urban regional

features as input to generate OD flows between regions. OD2Traffic predicts urban traffic based on

the OD flows given by the Urban2OD module. Two modules are integrated into one holistic frame-

work to improve the results of OD generation. Extensive experiments conducted on real-world data

demonstrate that our model GODUT outperforms all baselines, which proves the validity of the

idea of solving the OD generation problem by considering both the causes of OD flows and the ef-

fects of OD flows. The code is public at https://github.com/tsinghua-fib-lab/Traffic_Enhance_OD.
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