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Abstract—Bayesian Personalized Ranking (BPR) is a representative pairwise learning method for optimizing recommendation

models. It is widely known that the performance of BPR depends largely on the quality of negative sampler. In this paper, we make two

contributions with respect to BPR. First, we find that sampling negative items from the whole space is unnecessary and may even

degrade the performance. Second, focusing on the purchase feedback of E-commerce, we propose a negative sampler for BPR by

leveraging the additional view data. In our proposed sampler, users’ viewed interactions are considered as an intermediate feedback

between the purchased and unobserved interactions. We jointly learn the pairwise rankings of user preference among these three

types of interactions and design a user-oriented weighting strategy during learning process, which is more effective and flexible.

Compared to the vanilla BPR that applies a uniform sampler on all candidates, our view-enhanced sampler enhances BPR with a

relative improvement over 36.64 and 16.40 percent on Beibei and Tmall datasets, respectively. Empirical studies demonstrate the

importance of considering users’ additional feedback when modeling their preference on different items, which can effectively improve

the quality of sampled negative items towards learning a better personalized ranking function. Our implementation is available at

https://github.com/dingjingtao/NegativeSamplerBPR.

Index Terms—Bayesian personalized ranking, recommendation, sampler, view data
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1 INTRODUCTION

DUE to the prevalence of user implicit feedback in online
information systems, recent research on recommenda-

tion has shifted from explicit ratings to implicit feedback,
such as purchases, clicks, watches and so on [2], [13]. Differ-
ent from the recommendation with explicit ratings [15],
[16], negative feedback is naturally scarce when dealing
with implicit feedback, also known as one-class prob-
lem [26]. To learn recommender models from binary
implicit feedback, Rendle et al. [30] proposed the Bayesian
Personalized Ranking (BPR) method, which assumes that
an observed interaction should be predicted with a higher
score than its unobserved counterparts (i.e., the missing
interactions). The optimization of BPR is usually achieved
by the stochastic gradient descent (SGD). In each step, it first
randomly draws an observed interaction ðu; iÞ, and then
selects an item j that u has not interacted with before to con-
stitute ðu; i; jÞ. Such a process of selecting j is also known as
negative sampling.

In the original paper of BPR [30], Rendle et al. applied
a uniform negative sampler, i.e., sampling j from all items

that u has not consumed before with an equal probability.
Later on, it was reported that such a uniform negative
sampler is highly ineffective and slows down the conver-
gence of BPR [29], [41], especially for datasets that have a
large number of items. To this end, Zhang et al. [41] pro-
posed dynamic negative sampling (DNS) strategies, aim-
ing to maximize the utility of a gradient step by choosing
“difficult” negative examples—i.e., the negative examples
that lead to a large prediction loss by the current model.
Following this idea of DNS strategy, Rendle et al. [29]
further proposed a context-dependent sampler that over-
samples informative pairs in each step, and developed an
efficient implementation with constant amortized runtime
costs. Despite the significant improvements have been
observed, existing DNS strategies sample negative items
from the whole item space, which arguably may still suf-
fer from low efficiency when the number of items is
large.

To further mitigate the one-class problem, one intuition
is to leverage more side information for learning a more pre-
cise preference between two items. In today’s implicit rec-
ommender systems, besides the primary feedback that can
be directly utilized to optimize the conversion rate (CVR),
other additional feedback is readily available [34]. Like in E-
commerce systems, users’ multiple micro-behaviors includ-
ing view, purchase, wish and put-in-cart are collected [45].
Similarly, there are heterogeneous signals related to users’
search and watch history in online video streaming sys-
tems [7]. Compared to the primary one, the additional feed-
back always reflects a relative lower level of preference,
which could help in learning user preference. For example,
in E-commerce systems, user usually views an item before
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purchasing it. Even though a viewed item is not purchased
afterwards, it should still be treated differently when com-
pared with other missing items. Also, searching a specific
video in online video streaming systems can also be consid-
ered as a relatively weak signal of user preference. As the
BPR learns a pairwise ranking relation of user preference
between two items, the above additional information can be
seamlessly integrated into it by designing an improved BPR
sampler.

In this work, we aim to answer the following two research
questions: 1) is it necessary to sample negative items from
the whole space? and 2) can we design a better sampler for
BPR? For the first question about inefficient sampling from
whole negative item space, we propose to sample negative
items from a reduced space, given that one user normally
interacts with a few items. More specifically, we first design
a sampler that pre-selects the candidate itemset for each user
by uniformly drawing a fixed number of instances from the
unobserved items. Though with simplicity, this sampler
may suffer from the distortion of probability that each item
get selected as the negative instance. Therefore, we further
design an improved sampler that manages to reduce the
sampling space with negative sampling probability of each
item approximately unchanged. As for the second question,
focusing on a specific domain of online-shopping recom-
mender systems, we propose a view-enhanced BPR sampler
that considers users’ viewed interactions as an intermediate
feedback between purchased and unobserved (i.e., neither
purchased nor viewed) interactions. We first design a biased
sampling process that assumes two-fold semantics in a
viewed item, i.e., a negative signal when it was sampled
together with another purchased item and a positive signal
when with another unobserved item. Then, we improve the
above scheme by learning the three pairwise ranking rela-
tions among a purchased item, a viewed item and an unob-
served item together in each training example. We further
assign the weight of these relations based on users’ habits in
online-shopping activities, which is arguably more effective
than the previous methods [18], [22], [30] that are limited by
the uniformity assumption.

We summarize our key contributions of this work as
follows.

1. We propose to sample negative items from a
reduced item space in BPR and empirically demon-
strate that it is unnecessary to sample from all items.
When the space is reduced to 1=210 of original size, it
achieves a relative improvement of at most 1.78 per-
cent on a popularity-skewed Beibei dataset. And on
another less skewed Tmall dataset, it still achieves
performance improvement when the reduced space
is larger than 1=24 of original size.

2. We design a view-enhanced user-oriented BPR sam-
pler that can effectively integrate users’ view data in
online-shopping recommender systems, where the
viewed interactions are considered as an intermedi-
ate feedback between those purchased and unob-
served interactions.

3. We conduct extensive experiments on two real-
world datasets, showing that our view-enhanced
sampler enhances BPR with a relative improvement

of 36.64 and 16.40 percent. Furthermore, it outper-
forms state-of-the-art methods by a large margin,
about 2:1% � 9:95%.

Compared with the preliminary version of this work [9],
following fields are substantially enhanced. Based on the
observations that it is unnecessary to sample negative
instances from all items and view data can serve as an inter-
mediate feedback [9], in this paper we consider the sampler
design for BPR, including the reduced item space for effi-
cient sampling and the view-enhanced sampler for better
capturing user preference.

2 RELATED WORK

As implicit feedback data is more common and valuable in
modern recommender systems, we first review some
related works on modeling user preference from implicit
data. Then, we discuss two types of methods that are pro-
posed to integrate multiple types of feedback.

Implicit Feedback Systems. To solve the problem of miss-
ing data, two strategies are proposed: whole-data based
strategy and sample-based strategy. Whole-data based
strategy treats all missing data as negative feedback [11],
[14], while sample-based learning strategy overcomes this
problem by sampling negative instances from missing
data [26], [30]. Both methods have pros and cons: whole-
based methods model the full data with a potentially
higher coverage, but inefficiency can be an issue; sample-
based methods are more efficient by reducing negative
examples in training, but risk decreasing the model’s per-
formance. Among the sample-based learning-to-rank
methods, many forms of loss functions have been investi-
gated, like squared loss [8], [11] and BPR loss, and the
most well-known one is BPR. With the ease of integrating
any form of loss function, many neural network based
models, like Ref. [13] and [23], adopt the pairwise ranking
loss of BPR. Recently, Song et al. [32] further proposed a
general ranking neural network that includes BPR as a
special case. Moreover, this idea of pairwise ranking has
also been introduced into community question answering
systems [25] and clothing matching areas [33]. Therefore,
in this paper, we focus on developing an improved sam-
pler for BPR. Different from previous works, we demon-
strate that 1) it is unnecessary to sample negative items
from the whole space, and 2) recommendation perfor-
mance can be significantly improved after integrating
users’ additional view data.

Collective Matrix Factorization (CMF). CMF is a multiple
relational learning method that improves predictive accu-
racy by sharing information between different feedback [5],
[31], [40]. Originating from the explicit rating problems, it
has been extended into implicit case as well [3], [17], [19],
[39], [43]. For example, by applying CMF technique to
Bayesian Personalized Ranking, Multi-Relational Factoriza-
tion with BPR (MR-BPR) performs better on social network
data [17]. A recently proposed method [19], namely Multi-
ple Feedback Personalized Ranking (MFPR), borrows the
idea of SVD++ [15] to integrate additional feedback and
later optimizes a pairwise ranking loss, which is similar to
BPR. However, as the CMF-based model generates different
user-item relations, i.e., latent factors, for each type of
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feedback, it is hard to differentiate their preference levels. In
contrast, our view-enhanced BPR sampler learns the same
user-item relation to indicate relative preference order
among purchase and view data, which is more effective.

BPR-Based Models. The second category of methods inte-
grate multiple types of feedback in the sampler of BPR [18],
[22], [27]. The time-based and interaction-count based var-
iants of samplers are designed to provide more signals [18].
From the perspective of transferring knowledge from addi-
tional feedback, Pan et al. [27] propose an adaptive BPR that
integrates these feedback to learn better confidence of users’
preference on items. Qiu et al. [28] analyze the co-occur-
rence of different types of actions, based on which the user
preference can be learned. Recently, Multi-channel
BPR (MC-BPR) applies the strategy of assigning different
preference levels to multiple types of feedback when sam-
pling training item pairs in BPR [22], which is similar to our
proposed view-enhanced scheme based on a biased sam-
pling process. However, by simultaneously modeling pair-
wise ranking relations among user’s purchased, viewed
and unobserved items in each training example, our pro-
posed scheme achieves better performance. Moreover, with
a user-oriented weighting scheme, the performance can be
further improved.

3 DATASETS AND OBSERVATIONS

3.1 Datasets

We perform experiments on two real-world datasets.
Beibei.1 Beibei is the largest E-commerce platform for

maternal and infant products in China. We sample a subset of
user interactions that contain views and purchases from
Beibeiwithin the timeperiod from2017/05/25 to 2017/06/28.

Tmall.2 Tmall is the largest business-to-consumer E-com-
merce platform in China. To allow our results to be repro-
ducible, we use a public benchmark released by the IJCAI-
2015.3 The time period is from 2014/06/01 to 2014/11/11.
Note that 11th Nov. of each year is the Tmall Global Shop-
ping Festival,4 and thus users tend to select many items
before and wait for the deals on this day. Therefore, in order
to filter out the possible effect brought by this shopping fes-
tival, we drop the interactions after October and obtain a
subset, denoted as Tmall-select. As the timestamps in this
dataset are at least 40 days before the shopping festival, it is
unaffected and much less noisy in terms of user behaviors.
We further discuss the validity and limitation of this filtered
Tmall-select dataset in Section 3.5.

We take three steps for data preprocessing. We first
merge the repetitive purchases of the same user and item
into one purchase with the earliest timestamp, as we aim to
recommend novel items. Next we filter out users’ views on
their purchased items to avoid information leaking. Finally,
we filter out users and items with less than 12 and 16 pur-
chases, respectively, to overcome the high sparsity of the
raw datasets. Table 1 summarizes the statistics of our exper-
iment datasets. With both primary (purchase) and
additional (view) feedback collected, these datasets are suf-
ficient for our research on leverage additional view data in
BPR sampler.

3.2 Observations

The popularity skewness exists in many recommender sys-
tems and impacts the performance. Therefore, we investi-
gate the popularity skewness in our data, in terms of item
purchases and views, and show the result in Figs. 1a and
1b, respectively. The y-axis represents the ratio of interac-
tions for a given ratio of items on the x-axis, sorted by
decreasing popularity. For item purchases, Beibei is the
most popularity skewed dataset, where the top-1 percent of
the items accounts for 50 percent of the purchased interac-
tions, much larger than 10 percent in Tmall dataset. Such
difference in skewness no longer exists in item views, where
the top-1 percent of the items accounts for 16 and 9 percent
of the viewed interactions in Beibei and Tmall-select,
respectively. As for the difference between Tmall-all and
Tmall-select, the popularity skewness of purchase interac-
tions is almost the same, as shown in Fig. 1a, while for
viewed interactions Tmall-select is much more skewed than
Tmall-all, about 40 versus 10 percent in terms of top-10 per-
cent of the items. In summary, users in Beibei are more
likely to purchase those popular items, which may affect
the performance of personalized recommendation algo-
rithms. On the contrary, users in Tmall-all do not tend to
view those popular items, meaning that there may exist a
strong personal preference in users’ views.

3.3 BPR

The objective function for BPR can be formulated as

argmin
Q

X
ðu;i;jÞ2D

� ln sðŷuiðQÞ � ŷujðQÞÞ; (1)

where ŷðQÞ is the predictive model, and we use the stan-
dard matrix factorization [30] as the predictive model. Q
denotes the model parameters, sðxÞ ¼ 1

1þexpð�xÞ is the

TABLE 1
Statistics of the Evaluation Datasets

Dataset Purchase# View# User# Item# Sparsity

Beibei 2,654,467 23,668,454 158,907 119,012 99.99%/99.87%
Tmall-all 352,768 1,585,225 28,059 32,339 99.96%/99.83%
Tmall-select 160,840 531,640 12,921 22,570 99.94%/99.82%

Fig. 1. Popularity skewness of the Beibei and Tmall datasets.

1. http://www.beibei.com/
2. https://www.tmall.com/
3. The dataset is downloaded from https://tianchi.aliyun.com/

datalab/dataSet.htm?id=5
4. http://www.alizila.com/look-back-2014-global-shopping-

festival/
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sigmoid function to convert the margin to a probability, and
D denotes the set of pairwise training examples: fðu; i; jÞji 2
Rþu ^ j =2 Rþu g, where Rþu denotes the set of items that u has
interacted with before. Note that we have omitted the L2

regularization terms for clarity. The optimization of BPR is
usually achieved by the stochastic gradient descent. Instead
of uniformly selecting negatives from the unobserved data,
recently, some advanced negative samplers have been pro-
posed to select high-quality negatives by integrating the
infomation of potential item exposure [4], [10].

3.4 Evaluation Methodology

We adopt the leave-one-out protocol [13], [30], where the lat-
est purchase interaction of each user is held out for testing.
For hyperparameter tuning, we randomly sample one pur-
chase interaction for each user as the validation set. The
training process is stopped once we observe increasing in
the validation loss.

For evaluation measures, we employ Hit Ratio (HR) and
Normalized Discounted Cumulative Gain (NDCG). Mathemati-
cally,HR@k for each user u is defined as

HRu@k ¼ 1; hit in top-k recommendation
0; else:

�
(2)

NDCG@k for each user u is defined as

NDCGu@k ¼
Xk
p¼1

2Rðu;pÞ � 1

log ðpþ 1Þ ; (3)

whereRðu; pÞ is the rating assigned by u to the item at the pth
position on the ranked list produced for u. HereRðu; pÞ equals
1 if hit and 0 otherwise. Compared to HR, NDCG is very sen-
sitive to the ratings of the highest ranked items. We truncate
the ranked list of non-purchased items at the position of 100,
i.e., k = 100, and report the average score of all users. We test
the learning rate of [0.0005, 0.001, 0.005, 0.01, 0.05]. For regu-
larization, we set � as 0.01 (Beibei) and 0.1 (Tmall) for all
methods for a fair comparison. Since the findings are consis-
tent across the number of latent factors K, we report the
results ofK ¼ 32 only.

3.5 Discussion

In order to obtain a Tmall-select dataset where users’ online
behaviors are not affected by shopping festival on Nov.
11th, we only select interactions that happened at least 40
days before. The threshold of 40 days is set based on the fol-
lowing three observations. First, the users’ purchase inten-
tions cannot be affected until the release time of discount
information during shopping festival, which is generally
two-three weeks before Nov. 11th according to some related
materials.5;6 Second, it has been found out that purchase sig-
nals in online behaviors are amplied in the last three days
before purchase, based on an analysis of over two million
Pinterest users purchasing behavior [21]. Last but not least,
economical purchasers that are sensitive to discount promo-
tion only occupy a part of total purchaser base, i.e., about

27.5 percent, according to a cluster analysis among 111,995
Chinese online purchasers [20]. However, for Tmall global
shopping festival, above observations about user behaviors
may not hold true. For example, some users may plan their
purchases before the promotion campaign because this is
an annual festival and they know that those discounts
would be provided at a certain period of time. Also, Lo
et al. [21] did not consider the effect of promotion on users’
purchase signals and the behaviors of economical purchas-
ers cannot be ignored considering their large proportion.
Therefore, we set the length as 40 days (i.e., 6 weeks), which
is much longer than the possible length of time when pro-
motion has impact on users’ purchases according to previ-
ous observations.

Moreover, above solution for the setting of threshold
does not consider the factor of different item categories on
users’ planning buying behaviors [6]. For example, the fil-
tering threshold for home appliances should be larger than
that of small items like books. Currently, we cannot extract
the explicit item information in raw data because these have
been encoded. Therefore, instead of setting the item-related
thresholds, we choose a rather large value, i.e., 40 days,
which serves as a conservative estimation of the time period
when users’ behaviors are possibly impacted by the shop-
ping festival.

In terms of related works on this field, Zheng et al. [44]
observed that a suitable promotion scheme can increase both
planned buying and impulse buying in online shopping fes-
tivals. Other works like [1] and [38] pointed out that informa-
tional incentives (e.g., promotional information and review
information) and social influence (e.g., peer imitation and
endorsement influence) are twomain positive factors in facil-
itating consumer behavior during online shopping festivals.
In our study, we set a rather large threshold for data filtering
so as to reduce this possible effect.

4 UNNECESSARY TO SAMPLE FROM ALL ITEMS

Generally the vanilla BPR samples negative items indis-
criminately from the whole set of those unobserved instan-
ces. As the negative sampling space of BPR is fairly large for
each user in implicit recommender systems, it may not only
cause inefficiency issue but also degrade the performance.
To overcome this, we design the following scheme of reduc-
ing negative sampling space to evaluate whether it is neces-
sary to sample from all items.

4.1 Methodology

In our designed scheme, as detailed in Algorithm 1, each
user’s negative training instances are randomly sampled from
a pre-selected subset of whole item space, which is much
smaller but different among the users.More specifically, given
the size ratio g of this reduced space to the original space, first
we randomly assign each user g �N samples as the negative
sampling space R�u (Lines: 1-4). Then, with R�u fixed, BPR
sampler randomly draws training samples ðu; i; jÞ and
updatesmodel parameters in each iteration (Lines: 7-11). Since
the negative instances, i.e., j, can only be sampled from R�u ,
this scheme reduces the number of possible training itempairs
fði; jÞg for u, and thus can largely improve efficiency in terms
of learningmodel parameters.

5. https://www.chinainternetwatch.com/tag/double-11/
6. https://sea.mashable.com/culture/924/alibaba-tells-us-all-their-

pre-1111-promos-and-were-starting
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Algorithm 1. Proposed Scheme of Reducing Negative
Sampling Space in BPR

Input: number of usersM and items N , user-item
interaction data S, reduce ratio g

Output: Q
1 for u 1 toM do
2 //Generate the negative sampling space for each user
3 Ru  random selectðu;N; gÞ
4 end
5 while not reaching convergence do
6 // Random sampling
7 u draw a random user from U
8 i draw a random purchased item from Su
9 j draw a random negative item fromRu

10 Compute gradients of Q according to BPR
11 Update the above parameters
12 end

As for the approach to the R�u generation, an intuitive
implementation is to uniformly draw g �N unobserved
instances. Given u’s interaction history Su, g �N instances
are sampled according to a uniform distribution. Compared
to the original sampling space, this reduced space introdu-
ces an extra bias on unpopular items, increasing the proba-
bility in negative sampling, which we will demonstrate in
the experiment results. Therefore, we further consider an
improved approach that can diminish the above bias. Fol-
lowing negative sampling process in vanilla BPR, we can
compute the probability of being negative instance for each
item as follows:

P ðJ ¼ jÞ ¼ 1

M

X
u =2 Sj

1

N � jSuj : (4)

Given the set of u that have interacted with j before, the
overall negative sampling probability for j can be directly

computed as a sum of 1
N�jSuj, as the sampling process is

independent among different users. With the normalization
term 1

M, i.e., an inverse of user count M, the sum of
P ðJ ¼ jÞÞ over N items equals to 1. Based on this pre-com-
puted item probability distribution, i.e., P ðJÞ, the reduced
sampling space for users are further generated, which we
detail in Algorithm 2. First the item candidates C with a size
of all R�u , i.e., M �N � g, are drawn according to
P ðJÞ (Lines: 2-6). Then for each user u, given u’s interacted
items Su, we draw N � g unobserved instances (without
replacement) from C as the reduced negative sampling
space R�u (Lines: 9-17). Since the items in above M gener-
ated subsets are exactly the same as those in C, which are
sampled according to P ðJÞ, this approach preserves the dis-
tribution characteristics after reducing sampling space and
thus diminish the sampling bias existed in the previous
approach adopting uniform sampling.

We vary the size ratio g and summarize the performance
on all three datasets, Beibei, Tmall-all and Tmall-select, in
Table 2. In order to factor out random effects, for each size,
we repeat the experiment ten times and save the scores with
100, 80, 60, 40, 20 and 0 iterations left. We finally report the
average score, as well as standard variance. For ease of repre-
sentation, we use term “Uniform” to denote the approach

that uniformly generates reduced sampling space, and “Non-
uniform” for another approach based on pre-computed dis-
tribution. The first row indicates the performance of the origi-
nal BPR that samples negative items from thewhole space.

4.2 Results

We first analyze the performance of reduced sampling space
that is generated uniformly (“Uniform” ). Surprisingly on
the Beibei dataset, except for g ¼ 1=27, the performance is
not decreased but increased after reducing the sampling
space. When varying g from 1=25 to 1=210, the performance
improvement can be at most 1.03 and 0.89 percent in terms of
HR and NDCG, respectively. Even with a rather small g as
1=210, where the sampling space of each user only contains
116 candidates, we still obtain a relative improvement of 0.19
percent (HR) and 0.44 percent (NDCG) over the original
BPR. This finding is novel and encouraging, meaning that
sampling from the whole item space is not only unnecessary
for BPR, butmay even hurt the performance.

On other two datasets, except for g ¼ 1=2 on Tmall-
select, we do not observe similar improvements by reducing
the sampling space. However, in many cases, both HR and
NDCG decrease no less than 1 percent. It needs a fairly
small g, about 1=26, to cause a significant performance deg-
radation. Also, as we observe some DHR or DNDCG to be
0.00 percent, this shows that the performance remains equal
to that of the original BPR, providing further evidence on
the inefficiency of the uniform sampler for BPR.

Then for our second approach that selects the sub-
space based on the pre-computed distribution P ðJÞ (“Non-
uniform”), the result demonstrates its superiority over the
uniform sampling one. First of all, on Beibei dataset, all set-
tings of g bring an equal or improved performance. Themax-
imum increases to 1.78 percent, which is 1.03 percent in

Algorithm 2. Generating Reduced Item Space with the
Pre-Computed Item Probability

Input: number of users M and items N , user-item interaction
data S, reduce ratio g, negative sampling probability
distribution P ðJÞ

Output: reduced item space fR�u g
1 //Sample the item candidates C for all users’R�u
2 C  fg
3 for k 1 toM �N � g do
4 Draw j � P ðJÞ
5 C:addðjÞ
6 end
7 for u 1 toM do
8 //Generate the negative sampling space for u
9 R�u  fg
10 j C:firstðÞ
11 while jR�u j < N � g do
12 if j =2 Su then
13 R�u :addðjÞ
14 C:removeðjÞ
15 end
16 j C:nextðÞ
17 end
18 end
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previous approach. Second, for other two Tmall dataset, we
observe large improvement on result compared to the previ-
ous one. In terms of number of metrics (HR/NDCG) that
have decreased after subsampling, both Tmall-all and Tmall-
select have 5 metrics, which have decreased from 8 of previ-
ous approach. As for the cases where performance is
improved after subsampling, the numbers are 2 and 5 on
Tmall-all and Tmall-select, respectively, while in previous
approach they are 0 and 2, respectively. Moreover, this
approach also largely improves the worst performance on
several g settings. On Tmall-select, when the size of sampling
space is 176, i.e., g ¼ 1=26, the performance is degraded with
about 1 percent in terms of both HR and NDCG, while those
in previous approach are 2.82 and 2.69 percent. Therefore,
we can conclude that our approach can diminish the perfor-
mance degradation under small g and achieve performance
improvement on all datasets with a suitable setting of g

value. On Beibei dataset, this improved sampler is able to
improve the NDCG metric by 1.78 percent when g is only
1=210. As for other two Tmall datasets, the performance
improvement is observedwhen g is above 1=24.

4.3 Discussion

As we have illustrated in Table 2, the reduced negative sam-
pling space constantly performs better on Beibei dataset but
degrades on Tmall dataset under several settings of reduce

ratio g, especially when the reduced space is generated by
our first approach, i.e., uniform sampling. To investigate the
above different observations, we start with analyzing the
negative sampling count of items, denoted as fnig, under
different settings of g, i.e., the number of times that a spe-
cific item is sampled as a negative instance during training.
Fig. 2 plots the negative sampling count of items during the
whole training process on Beibei and Tmall-all, under dif-
ferent g. For better illustration we sort the item by their pop-
ularity rank and normalize fnig by their mean value ni. On
both Figs. 2a and 2b, we observe that popular items, i.e.,
with low rank value, are less likely to be sampled as

TABLE 2
Performance of BPR with Different Settings on the Fraction of the Reduced Sampling Space

(a) Beibei

Uniform Non-uniform

Ratio Num. HR DHR NDCG DNDCG HR DHR NDCG DNDCG

20 119012 0:1070� 0:0022 – 0:0225� 0:0005 – 0:1070� 0:0022 – 0:0225� 0:0005 –
2�5 3719 0:1075� 0:0019 þ0:47% 0:0226� 0:0004 þ0:44% 0:1071� 0:0020 þ0:09% 0:0225� 0:0004 0:00%
2�6 1859 0:1076� 0:0019 þ0:56% 0:0226� 0:0003 þ0:44% 0:1077� 0:0018 þ0:65% 0:0226� 0:0004 þ0:44%
2�7 930 0:1058� 0:0020 �1:12% 0:0222� 0:0004 �1:33% 0:1080� 0:0019 þ0:93% 0:0227� 0:0005 þ0:89%
2�8 465 0:1081� 0:0019 þ1:03% 0:0227� 0:0005 þ0:89% 0:1078� 0:0012 þ0:75% 0:0227� 0:0003 þ0:89%
2�9 232 0:1073� 0:0020 þ0:28% 0:0225� 0:0004 0:00% 0:1070� 0:0025 þ0:00% 0:0225� 0:0005 0:00%
2�10 116 0:1072� 0:0036 þ0:19% 0:0226� 0:0009 þ0:44% 0:1080� 0:0022 þ0:93% 0:0229� 0:0004 þ1:78%

(b) Tmall-all

Uniform Non-uniform
Ratio Num. HR DHR NDCG DNDCG HR DHR NDCG DNDCG

20 32339 0:0304� 0:0005 – 0:0076� 0:0002 – 0:0304� 0:0005 – 0:0076� 0:0002 –
2�2 8085 0:0302� 0:0005 �0:66% 0:0076� 0:0002 0:00% 0:0304� 0:0006 0:00% 0:0077� 0:0001 þ1:32%
2�3 4042 0:0304� 0:0005 0:00% 0:0076� 0:0002 0:00% 0:0302� 0:0004 �0:66% 0:0076� 0:0002 0:00%
2�4 2021 0:0302� 0:0005 �0:66% 0:0076� 0:0001 0:00% 0:0302� 0:0005 �0:66% 0:0077� 0:0002 þ1:32%
2�5 1010 0:0302� 0:0004 �0:66% 0:0075� 0:0001 �1:32% 0:0303� 0:0006 �0:33% 0:0076� 0:0002 0:00%
2�6 505 0:0300� 0:0005 �1:32% 0:0075� 0:0002 �1:32% 0:0304� 0:0007 0:00% 0:0076� 0:0002 0:00%
2�7 253 0:0300� 0:0004 �1:32% 0:0075� 0:0001 �1:32% 0:0299� 0:0006 �1:64% 0:0075� 0:0002 �1:32%

(c) Tmall-select

Uniform Non-uniform
Ratio Num. HR DHR NDCG DNDCG HR DHR NDCG DNDCG

20 22570 0:0744� 0:0015 – 0:0186� 0:0005 – 0:0744� 0:0015 – 0:0186� 0:0005 –
2�1 11285 0:0746� 0:0015 þ0:27% 0:0188� 0:0004 þ1:08% 0:0744� 0:0017 0:00% 0:0186� 0:0004 0:00%
2�2 5643 0:0743� 0:0017 �0:13% 0:0186� 0:0004 0:00% 0:0750� 0:0017 þ0:81% 0:0188� 0:0004 þ1:08%
2�3 2821 0:0737� 0:0012 �0:94% 0:0186� 0:0003 0:00% 0:0745� 0:0015 þ0:13% 0:0187� 0:0004 þ0:54%
2�4 1411 0:0740� 0:0015 �0:54% 0:0184� 0:0004 �1:08% 0:0741� 0:0013 �0:40% 0:0187� 0:0004 þ0:54%
2�5 353 0:0738� 0:0014 �0:81% 0:0185� 0:0004 �0:54% 0:0738� 0:0014 �0:81% 0:0185� 0:0005 �0:54%
2�6 176 0:0723� 0:0016 �2:82% 0:0181� 0:0004 �2:69% 0:0737� 0:0017 �0:94% 0:0184� 0:0005 �1:08%
“Num.” means the size of sampling space for each user, i.e., Ratio � Item#.

Fig. 2. The negative sampling count of items with different popularity
rank, normalized by the mean value.
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negative instances when g becomes lower. This corresponds
to our analysis that uniformly generating subspace would
change the negative sampling probability in terms of each
item. Since negative sampling is an important step for train-
ing BPR, this change on sampling probability can largely
impact the performance.

Rendle et al. [29] have shown that oversampling popular
items as negative feedback underperforms the basic uni-
form sampler, due to the under-training of those less popu-
lar items. Motivated by this, we look back on the popularity
skewness of the Beibei and Tmall datasets, which have
already been illustrated in Fig. 1. The biggest difference
between Beibei and Tmall is that the former is much more
skewed, where top-1 percent of the items accounts for 50
percent of the purchased interactions, much higher than 10
percent on Tmall dataset. Therefore, for the original sampler
on Beibei, negative instances are sampled from the whole
item space (� 105) and large number of unpopular items
cannot receive sufficient gradient steps during SGD train-
ing. By fixing a reduced sampling space for each user, this
ineffectiveness can be diminished with a higher sampling
probability for those unpopular items. However, different
from Beibei, the popularity skewness of Tmall are much
less significant. Though based on whole item space, the
vanilla BPR using uniform sampler still trains well on those
unpopular items. Therefore, uniformly generating subspace
may oversample unpopular items too much and hurt the
performance to some extent. Indeed, we also observe that
the distribution characteristics of Tmall dataset are more
sensitive to this change. More specifically, in Fig. 2, ni of
popular items on Tmall-all ((b), blue curve) are much lower
than those on Beibei ((a), red curve), under the same setting
of g ¼ 1=27, indicating these items may be undersampled
too much and opposite for those unpopular ones. To sum-
marize, we demonstrate that uniformly generating subspace
for negative sampling oversamples the unpopular items
and thus works well on a heavily popularity-skewed data-
set. This also explains the performance improvement on
both Tmall-all and Tmall-select datasets after we adopt
another improved approach that manages to maintain the
overall distribution characteristics after subsampling.

There still remain several limitations in our proposed
reduced sampler. In terms of generating better subspaces
for negative sampling, one can consider a more complexed
scheme that oversamples unpopular items more adaptively.
For example, the previous dynamic negative sampling strat-
egy [29], [41] considers the change of proximity between a
user and an item during training, and then selects the most
“difficult” negative instance. Motivated by this, a possible
solution is to design the dynamic negative subspace that
selects both unpopular and under-trained items based on
the trained model during the training process. More specifi-
cally, for each observed user-item pair, it first randomly
samples S instances as the candidates. Then for each candi-
date, i.e., a user-item pair, it checks whether this candidate
is under-trained or not by computing the score or gradient.
Finally, the negative subspace with size R is selected based
on a joint consideration of popularity and scores (or gra-
dients) among the candidates. Therefore, this subspace can-
not be pre-selected and requires the constant update during
the training process, which costs OðS � TpredÞ with Tpred

representing the time for predicting a score. Comparatively,
our proposed random approach is more efficient, with a
time complexity of Oð1Þ, and achieves performance
improvement on all datasets with a suitable setting of
reduce ratio value, which can be regarded as a more practi-
cable option. Although the dynamic negative subspace can
be efficiently implemented by leveraging the similar techni-
ques such as approximate ranking in [29] and caching in
[42], this is non-trivial and thus beyond the scope of this
paper. Besides, though we conduct experiments on two
real-world datasets, it still requires more extensive experi-
ments on the generality of our observations. However, since
there are only a few accessible implicit dataset, we are
subject to this limitation and only find Beibei and Tmall
dataset with the suitable scale, which are collected from E-
commerce websites, a typical implicit recommender system.

To summarize, we have demonstrated that the uniform
sampler is unnecessary for BPR and may even degrade the
performance, especially in the popularity-skewed datasets.
Considering its inefficiency and poor robustness against
popularity skewness, we focus on designing a better sam-
pler for BPR in the following sections.

5 VIEW-ENHANCED SAMPLER

One inherent issue of recommender systems is the natural
scarcity of observed data. To overcome this, BPR samples
unobserved items as negative feedback. However, since a
user can only interact with a limited number of items, sam-
pling process can be inefficient and may even degrade the
performance, as we have demonstrated above. In E-com-
merce recommender systems, besides the purchase feed-
back that is directly related to optimizing the conversion
rate, the view logs of users are usually much easier to collect
and thus can be leveraged to learn user preference. In this
section, we design a view-enhanced sampler for BPR. For
readability, we summarize the major notations throughout
the paper in Table 3.

5.1 Integrating View Signal

Intuitively, viewed interactions can be treated as an inter-
mediate feedback between the purchased and missing

TABLE 3
List of Commonly Used Notations

Notation Description

M;N;K The numbers of users, items, and factors.
P; fpug The latent factor matrix and vector for users.
Q; fqig The latent factor matrix and vector for items.
S;Su The sets of all purchased ðu; iÞ pairs, items

purchased by u.
V;Vu Similar notations for viewed interactions.
R;Ru Similar notations for unobserved interactions.
r̂ui; r̂uv; r̂uj Predictions of user u over purchased items i,

viewed items v and non-viewed items j.
fv1;v2;v3g Probability of sampling training item pairs.
a Weight of training pairs made up of a

purchased item and a viewed item.
au User-oriented weight of training pairs made

up of a purchased item and a viewed item.
b Significance level of view-purchase ratio in au.
� Regularization parameter.
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interactions. Therefore, for user u’s viewed (but not pur-
chased) item v, it should have an intermediate value of pre-
diction r̂uv between those of non-viewed item j (i.e., missing
entry) and purchased item i, i.e., r̂uj and r̂ui. Based on this,
we propose two variant of BPR sampler that can leverage
view data. One is to leverage these viewed items in a biased
sampling process, the other is to consider this relationship
in a newly proposed objective function.

5.1.1 Biased Sampling

First of all, we can integrate the view signal by augmenting
the training data. In BPR, a training example ðu; i; jÞ 2 D
assumes that u prefers i over j. Then, the model parameters,
i.e., user vector pu and item vector qi, are updated towards
the objective of r̂ui > r̂uj. Through a biased sampling pro-
cess, we are able to encode the intermediate preference
information of users’ viewed interactions in the model. In
our proposed view-enhanced sampler, as illustrated in
Fig. 3, we split the item space into three sets for each user u,
namely Su, Vu, and Ru, which indicate the purchased items,
viewed (but not purchased) items, and remaining non-
viewed items, respectively. Then, we sample an item pair
from three candidate sets, fði; vÞji 2 Su; v 2 Vug, fði; jÞji 2
Su; j 2 Rug, and fðv; jÞjv 2 Vu; j 2 Rug, with predefined
probabilities ½v1;v2;v3� respectively, where v1 þ v2 þ v3 ¼
1. The generated training example is finally used to update
the model parameters in (1) (see Ref. [30] for further details).
We term the BPR method with this view-enhanced sampler
as BPR+viewprob.

Our proposed BPR+viewprob uses biased sampling to
exploit the side information provided by the viewed items.
As each training example in BPR+viewprob only contains two
items, the viewed items are sampled as negative feedback
and positive feedback with a probability of v1 and v3,
respectively. In other words, it is hard to jointly learn the
two-fold semantics of user preference on these viewed
items, which assigns them a positive signal compared to
those non-viewed items and a negative signal compared
to purchased ones. Therefore, next we move forward to
improve BPR sampler by considering a view-enhanced
weighted loss in objective function.

5.1.2 Weighted Loss

To overcome the inefficacy issue in BPR+viewprob, we pro-
pose to sample an item triple ði; v; jÞ in each training
example, where i, v and j represent a user’s purchased
item, viewed item and non-viewed item, respectively.

Considering the user preference on these three items, the
model parameters, fpu;qi;qv;qjg, should be updated
towards the objective of r̂ui > r̂uv > r̂uj. Therefore, similar
to BPR, we design following objective function:

JðQÞ ¼ argmin
Q

X
ðu;i;v;jÞ2D

� ln sðr̂uiðQÞ � r̂ujðQÞÞ

� a ln sðr̂uiðQÞ � r̂uvðQÞÞ � ð1� aÞ ln sðr̂uvðQÞ � r̂ujðQÞÞ;
(5)

where sðxÞ ¼ 1� sðxÞ, and Q denotes the set of all parame-
ters to be optimized. All three pairwise ranking relations
among i, v and j are considered. Since the viewed item v
can be considered as both negative (r̂ui > r̂uv) and
positive (r̂uv > r̂uj) feedback, the weighting parameter a in
(5) controls the relative strength between these two seman-
tics. Therefore, by tuning a empirically, we can train a
model that properly exploits the user preference of view sig-
nal. Compared with BPR+viewprob, this sampler simulta-
neously draws a purchased item i, a viewed item v and an
unobserved item j for each user u. It is noteworthy that
when a ¼ 0 or a ¼ 1, users’ viewed interactions are consid-
ered as positive or negative signal only, following the simi-
lar assumption to the case of ½v1;v2;v3� ¼ ½0; 0:5; 0:5� or
½v1;v2;v3� ¼ ½0:5; 0:5; 0� in BPR+viewprob. However, these
two samplers differ in that BPR+viewprob handles ðu; i; j; vÞ
in two independent samples, while the other jointly trains
ðu; i; j; vÞ in one sample. We further show their difference in
terms of the performance results in the experiment.

Algorithm 3. Learning Algorithm for BPR+viewloss

Input : purchase data S, view data V
Output: Q ¼ fP 2 RM�K;Q 2 RN�Kg

1 Randomly initialize P andQ;
2 while not reaching convergence do
3 // Random sampling
4 u draw a random user from U
5 i draw a random purchased item from Su
6 v draw a random viewed item from Vu
7 j draw a random non-viewed item fromRu

8 // Eqs. (8), (9), (10), and (11)
9 Compute gradients of fpu;qi;qv;qjg
10 // Eq. (7)
11 Update the above parameters
12 end

Note that we have omitted L2 regularization terms for
clarity. We use matrix factorization to predict r̂ui, user u’s
preference on item i, obtained by calculating the dot prod-
uct of the latent factors of the user pu and the item qi, as fol-
lows:

r̂ui ¼ pT
uqi ¼

XK
f¼1

pu;f � qi;f : (6)

Recall that K is the number of latent factors. Finally, we use
Stochastic Gradient Descent to find a local minimum of the
objective function in (5). In particular, for each iteration
(Algorithm 3, Lines: 3-11), given a random feedback triple
of user u who has purchased item i, viewed (but not pur-
chased) item v but not viewed item j, ðu; i; v; jÞ 2 D ¼

Fig. 3. Biased sampling process considering users’ viewed items.
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fðu; i; v; jÞji 2 Su ^ v 2 Vu ^ j 2 Rug, we update the model
parameter u 2 Q based on the gradient of its corresponding
parameter @J

@u
while fixing the others, until convergence, as

follows:

uðtþ1Þ ¼ uðtÞ þ hðtÞ � @J
@u
ðuðtÞÞ: (7)

Note that learning rate parameter h can both be a fixed con-
stant or an adaptive value like Adagrad or Adam. The gra-
dients of latent vectors fpu;qi;qv;qjg are calculated as
follows:

@J

@pu

¼ dðr̂ui � r̂ujÞðqi � qjÞ þ adðr̂ui � r̂uvÞðqi � qvÞ

þ ð1� aÞdðr̂uv � r̂ujÞðqv � qjÞ � �pu;

(8)

@J

@qi

¼ dðr̂ui � r̂ujÞpu þ adðr̂ui � r̂uvÞpu

þ ð1� aÞdðr̂uv � r̂ujÞpu � �qi;

(9)

@J

@qv

¼ �adðr̂ui � r̂uvÞpu þ ð1� aÞdðr̂uv � r̂ujÞpu � �qv;

(10)
@J

@qj

¼ �dðr̂ui � r̂ujÞpu � ð1� aÞdðr̂uv � r̂ujÞpu � �qj;

(11)

where the regularization parameter � is added to avoid
overfitting. Regarding the complexity of the above pairwise
learning algorithm, the computation of each gradient is
OðKÞ, where K is the number of latent factors. The total
complexity in each iteration is OðT �KÞ, where T is the
number of training examples. We term the above variant of
BPR sampler as BPR+viewloss.

5.2 User-Aware Weighting Strategy

In BPR+viewloss, a viewed interaction is simultaneously con-
sidered as negative feedback compared with the purchased
interaction and positive one compared with the unobserved
interaction, tuning by a hyperparameter a. Intuitively, if a
user tend to view many items and instead purchase another
one, the viewed interactions should indicate a stronger nega-
tive signal than that of other users. In this sense, the relative
strength between two semantics of view signal, i.e., a, should
differs among users. Let Au denote a user u’s view-purchase
ratio that measures the degree of whether u prefers to view
many items before deciding which to buy. It is reasonable to
think that a user with high Au only has a low interest on
those viewed items, which corresponds to a higher weight a
in our proposed BPR+viewloss. To account for this effect, we
parametrize a user-oriented weight au based onAu

au ¼ Ab
u

ðAb
u þ 1Þ ; (12)

where the high value of view-purchase ratio Au would get a
high a close to 1, and the exponent b controls the signifi-
cance level of this effect. This design of b is inspired by pre-
vious works that consider to smoothen the popularity-
based weight in negative sampling [24]. We term this new
BPR sampler with user-aware weighting scheme as BPR+
viewb

loss.

Next, we focus on the definition of view-purchase ratio
Au above. A straightforward way of computing it would be
the ratio between number of user u’s viewed interactions
and purchased ones. However, as users’ shopping history is
divided into several sessions, computing Au in the session-
level can be more accurate. More specifically, we define Au

as the average value among these sessions

Au ¼
PS

s¼1 au;s
jSj ; au;s ¼ Vu;sPu;s

; (13)

where au;s, Vu;s and Ru;s represent u’s view-purchase ratio,
viewed item set and purchased item set in session s, respec-
tively. To generate u’s sessions in the shopping history, we
first sort u’s viewed and purchased interactions according
to timestamps and then we merge those consecutive interac-
tions into one session based on whether they happen within
a threshold d. Since the suitable setting of d may vary
between different datasets, we empirically tune this param-
eter and search the best recommendation performance. The
result shows that d ¼ 3600 (s) works well in Beibei dataset.
As for Tmall dataset, since the timestamp information only
contains the date, it is infeasible to extract session informa-
tion in each user’s shopping history. Therefore, we leave
the exploration of user-aware weighting scheme on BPR+
viewb

loss for future work.

5.3 Results

We first study the influence of hyper-parameters. Then we
analyze the performance gain of our view-enhanced BPR
sampler. Finally we compare with the state-of-the-art
baselines.

5.3.1 Hyper-Parameter Investigation

BPR+viewprob. In the biased sampling, our proposed BPR+
viewprob has three non-negative parameters: ½v1;v2;v3�,
which respectively represents the probability of item pairs
among users’ purchased, viewed and unobserved interac-
tions. Considering v1 þ v2 þ v3 ¼ 1, we have to search two
independent parameters. Fig. 4 shows its performance (HR)
with different settings of fv1;v3g. In Fig. 4a, we visualize the
results on Beibei with a grid search in [0, 0.2, 0.4, 0.6, 0.8, 1.0],
and the relatively higher HR is observed between 0.2 and 0.6.
Our further fine-grained tuning locates the best setting at
½v1;v2;v3� ¼ ½0:3; 0:3; 0:4�. In terms of the two-fold semantics
encoded in view data, we use v3

v1
to measure whether it is

more closed to positive feedback or negative feedback. Here
in Beibei, v3

v1
is close to 1, indicating both two folds are

Fig. 4. Impact of sampling probability parameters fv1;v2;v3g on BPR+
viewprob’s performance, in terms of HR.
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important. We further investigate ½v1;v2;v3� in Tmall-select
and observe that peak performance lies in [0.01, 0.74, 0.25],
as shown in Fig. 4b. In a word, the similar effect of view data
is observed between Beibei and Tmall-select, while the only
difference lies in that Tmall users’ viewing behavior is much
closer to a positive feedback, with a larger value of v3

v1
.

BPR+viewloss. Now, we study the impact of weighting
parameter a on BPR+viewloss. As shown in Fig. 5a, we
observe the best a varies between 0.7 and 0.8 on Beibei.
Since a large a increases the importance of learning user
preference from purchased and viewed item pairs, this
observation highlights the significance of considering users’
viewing behavoirs more as a negative feedback. However,
the performance still shows a drop at a ¼ 1, where we take
viewed items as equally important as those unobserved
ones. This observation also confirms the necessity of taking
viewed interactions as a weak positive feedback. In Fig. 5b,
the performance drop steeply as a increases in Tmall-select
dataset and the peak lies at a ¼ 0:1, where viewed items are
almost utilized equally as purchased ones but pairwise
ranking relation between them still exists. The performance
of BPR+viewloss is sensitive to a in Tmall-select, while not in
Beibei. This difference may be caused by the same reason as
distinctive influence of ½v1;v2;v3� on BPR+viewprob men-
tioned above, that view data represents a more effective sig-
nal of user preference in Tmall-select dataset.

BPR+viewb
loss. Fig. 5c plots the prediction accuracy of

BPR+viewb
loss on Beibei, with different b. Though HR

increases to its maximum at 3 different b, this model
achieves best performance at b ¼ 0:9 evaluated by both HR
and NDCG.7 To further explain the advantage of user-
oriented weight au over a uniform weight a as used in
BPR+viewloss, we first plot the au curves under different set-
tings of b in Fig. 6a, which illustrates the strengthening
effect of b on assigning view-rather-than-buy users (i.e.,
with a high Au) a large weight au. Then, in Fig. 6b, we plot
the CDF of au under different b. Under the best setting as
b ¼ 0:9, the mean value and median value of au is 0.81 and
0.83, respectively, which is close to our observation in
Fig. 5a that best a is between 0.7 and 0.8. With ability to
vary among different users, BPR+viewb

loss sampler with au

outperforms that with the uniform a. As for Tmall-select,
since we cannot extract users’ shopping sessions from the
coarse-grained timestamp in each record, we do not con-
duct similar experiments on this dataset.

According to the investigation above, we fix these hyper-
parameters according to the best performance evaluated by
HR, i.e., ½v1;v2;v3� ¼ ½0:3; 0:3; 0:4�;a ¼ 0:7;b ¼ 0:9 for Beibei
and ½v1;v2;v3� ¼ ½0:01; 0:74; 0:25�;a ¼ 0:1 for Tmall-select.

5.3.2 Performance Gain of View-Enhanced Sampler

We compare the performance of vanilla BPR and our pro-
posed view-enhanced sampler. The main result is listed in
Table 4.

BPR+viewprob versus BPR. To demonstrate the effective-
ness of our proposed BPR+viewprob, we compare it with
1) the vanilla BPR [30], and 2) BPR-DNS [41], which selects
the item with the highest prediction score among X ran-
domly sampled negatives. For BPR-DNS, we tune the X in
the same way as the original paper. To our knowledge,
DNS is the most effective sampler to date for BPR based on

Fig. 5. Impact of weighting parameters a and b on HR performances of BPR+viewloss and BPR+viewb
loss, respectively.

Fig. 6. (a) User-oriented weight values versus view-purchase ratio under
different settings of significance exponent. (b) Distribution of user-
oriented weight under different settings of significance exponent.

TABLE 4
Performance Gain of Our Proposed Sampler, i.e.,
BPR+viewprob, BPR+viewloss and BPR+viewb

loss

(a) Beibei

HR D NDCG D

BPR (baseline) 0.1086 – 0.0242 –
BPR+viewprob 0.1422 +30.93% 0.0321 +32.64%
BPR+viewloss 0.1436 +32.23% 0.0327 +35.12%
BPR+viewb

loss 0.1460 +34.44% 0.0336 +38.84%

(b) Tmall-select

HR D NDCG D

BPR (baseline) 0.0755 – 0.0191 –
BPR+viewprob 0.0807 +6.89% 0.0199 +4.19%
BPR+viewloss 0.0884 +17.09% 0.0221 +15.71%7. Note that we have saved scores with 100, 80, 60, 40, 20 and 0 itera-

tions left, then reported the mean values.
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the interaction data only, and empirically outperforms [29].
In addition, we also evaluate a common baseline Popularity,
which simply recommends items based on their popularity
evidenced by the number of purchases.

Fig. 7 shows the testing HR and NDCG of the compared
methods in each training iteration. As can be seen, upon
convergence, BPR+viewprob significantly outperforms all
other methods on three datasets, except for the NDCG on
Beibei. Its NDCG is 0.0321, while BPR-DNS gets 0.0313,
about 2.50 percent better. This justifies the efficacy of
accounting for the preference signal in the view data using
our proposed sampler. Besides, the relative improvements
of BPR+viewprob over BPR are about 30%+ and 5%+ on

Beibei and Tmall-select dataset, respectively (See Table 4).
Last but not least, we observed that Popularity performs as
well as BPR on the Beibei dataset, which is unexpected since
BPR is a personalized recommendation method. Our further
investigation finds that it is because the Beibei dataset is
highly popularity-skewed—the top-1 percent items contrib-
ute almost 50 percent of purchases, as illustrated in Fig. 1a.

Clearly, after integrating view signal as intermediate
feedback, BPR+viewprob outperforms the original BPR that
only contains purchase feedback.

BPR+viewloss versus BPR+viewprob. To evaluate our two
proposed variants of BPR sampler, i.e., biased sampling
scheme and weighted loss scheme, we look further into the
comparison of BPR+viewprob and BPR+viewloss for every iter-
ation, in Fig. 8. For Beibei, the relative improvement in
terms of HR and NDCG are 1.29 and 2.48 percent respec-
tively (0.1436 versus 0.1422 and 0.0327 versus 0.0321,
Table 5). Moreover, for Tmall-select, we observe a relative
improvement of 10.20 percent (0.0884 versus 0.0807) and
11.52 percent (0.0221 versus 0.0199) on two evaluation
indexes, which indicates the stronger influence of viewing
behavoirs on Tmall again. The obvious improvements dem-
onstrates that considering three pairwise relations among
the sampled item triple (a purchased item, a viewed item
and an unobserved item) can better describe both positive
and negative signals of viewing behaviors. Even though
BPR+viewprob outperforms vanilla BPR and BPR-DNS, it still
has difficulty in treating viewed interactions as both posi-
tive and negative feedback in a single sampling.

BPR+viewloss versus BPR+viewb
prob. Finally, we compare

the performance of BPR+viewloss and BPR+viewb
loss in Fig. 9

to evaluate the efficacy of user-oriented weighting scheme.
On Beibei dataset, by imposing personalized weighting
strategy, BPR+viewb

loss achieves a further relative improve-
ment of 1.67 percent (0.1460 versus 0.1436) and 2.75 per-
cent (0.0336 versus 0.0327) w.r.t. HR and NDCG, which
proves our intuition that viewed interactions indicate stron-
ger negative signal for users with larger view-purchase
ratio.

To summarize, modelled as an intermediate feedback,
users’ viewed interactions can play an important role in
learning a more precise user preference to improve recom-
mendation performance. Compared with integrating view
signal through a biased sampler, simultaneously learning
two-fold semantics of view signal in each update step per-
forms much better. By taking into account the effect of
users’ online-shopping habits, we design a user-oriented
weighting scheme which achieves further improvements.

Fig. 7. Performance comparison in each iteration (BPR+viewprob).

Fig. 8. Performance comparison in each iteration (BPR+viewloss).

Fig. 9. Performance comparison in each iteration (BPR+viewb
loss).
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5.3.3 Performance Comparison

Baselines. Besides vanilla BPR, we also consider following
baseline methods:

- NeuMF [13]. Neural Matrix Factorization is a state-
of-the-art neural-network based method for implicit
recommender systems. It combines MF and multi-
layer perceptrons (MLP) to learn the user-item inter-
action function. As suggested in the paper, we
adopted BPR loss, pre-trained the model with MF,
and tuned the depth and L2 regularizer for the hid-
den layers.

- BPR Variant. We also implemented three BPR var-
iants that use users’ view logs in negative sampler.
The first variant (BPR-V1) considers users’ viewed
items and unobserved items as equal, i.e., each with
half the chance in negative sampling. The second
one (BPR-V2) ignores all the views and only samples
negative instances from unobserved items. The last
one (BPR-V3) uses the viewed items in a same way
as purchased items, both as the positive instances
during training.

- MR-BPR [17]. Applying CMF technique to BPR, this
method is able to exert the impact of viewing behav-
ior on predicting purchases.

- MC-BPR [22]. This method leverages level informa-
tion of view logs when sampling negative items.

This set of baselines is all based on BPR approach and
stands for the state-of-the-art performance. In particular,
NeuMF is the recently proposed neural recommender
model which has shown significant improvements over
conventional shallow methods. As for the methods that
integrate both purchase and view data, we choose MR-BPR
and MC-BPR, as well as three variants of vanilla BPR. For
the above baselines, we have carefully explored the corre-
sponding parameters. As for the learning rate and

regularization �, all baselines are tuned similarly as men-
tioned in Section 3.4. Except for NeuMF that starts training
from a pre-trained model, we run all other methods for
1,000 iterations and 1,500 iterations on Beibei and Tmall
dataset, respectively, which are enough for them to con-
verge. To better illustrate the training process, we also plot
the prediction accuracy of each method in each training iter-
ation in Fig. 10.

The main results are listed in Table 5. On both Beibei and
Tmall-select datasets, our proposed sampler outperforms
the state-of-the-art baseline methods by a large margin.
More specifically, in terms of HR, the relative improvements
are 2.10 percent8 and 8.20 percent, i.e., 0.1460 versus 0.1430
and 0.0884 versus 0.0817, respectively. And for NDCG, we
observe an improvement of 5.00 and 9.95 percent, respec-
tively. With a relative improvement of 2.10�9.95% w.r.t. HR
and NDCG on two datasets, our proposed sampler can
learn more accurate user preference from viewing behav-
iors. On the one hand, NeuMF significantly improves rec-
ommendation accuracy compared with vanilla BPR, yet still
worse than ours. This indicates the importance of including
additional information inside the view logs, which cannot
be complemented by the sophisticated design of a deep
model. On the other hand, compared with MC-BPR and
MR-BPR that also consider difference between viewed items
and unobserved items, our proposed view-enhanced sam-
pler is much more effective because it simultaneously mod-
els pairwise ranking relations among user’s purchased,
viewed and unobserved items in each training example.

Furthermore, it is noteworthy that three BPR variants
perform differently between two datasets. Corresponding
to our previous analysis of v parameters in BPR+viewprob,
this is due to the fact that users’ viewed interactions indicate
stronger negative preference signal on Beibei and by con-
trast indicate stronger positive preference signal on Tmall-
select. For example, BPR-V1 works significantly better than
BPR on Beibei but works the opposite on Tmall-select. As it
considers users’ viewed items and unobserved items as
equal in negative sampling, performance on Tmall-select
degrades significantly. As for BPR-V2, removing the view
data from negative signal slightly increases performance on
Tmall-select. However, directly considering view data as
positive signal, i.e., BPR-V3, cannot improve performance
even on Tmall-select, implying the necessity to consider

Fig. 10. Performance comparison in each iteration (baseline).

TABLE 5
Performance Comparison with Baseline Methods

(a) Beibei

Behavior Method HR D NDCG D

Purchase
BPR 0.1086 +34.44% 0.0242 +38.84%

NeuMF 0.1158 +26.08% 0.0277 +21.30%

Purchase View

BPR-V1 0.1384 +5.49% 0.0320 +5.00s%
BPR-V2 0.1029 +41.89% 0.0214 +57.01%
BPR-V3 0.0988 +47.77% 0.0207 +62.32%
MR-BPR 0.1119 +30.47% 0.0244 +37.70%
MC-BPR 0.1430 +2.10% 0.0320 +5.00%

BPR+viewb
loss 0.1460 – 0.0336 –

(b) Tmall-select

Behavior Method HR D NDCG D

Purchase
BPR 0.0755 +17.09% 0.0191 +15.71%

NeuMF 0.0785 +12.61% 0.0192 +15.10%

Purchase View

BPR-V1 0.0322 +174.53% 0.0087 +154.02%
BPR-V2 0.0763 +15.86% 0.0190 +16.32%
BPR-V3 0.0721 +22.61% 0.0178 +24.16%
MR-BPR 0.0796 +11.06% 0.0193 +14.51%
MC-BPR 0.0817 +8.20% 0.0201 +9.95%

BPR+viewloss 0.0884 – 0.0221 –

8. This improvement has been statistically significant evidenced by
the one-sample paired t-test (p< 0.01) performed between BPR+viewb

loss
and MC-BPR over 10-round results.
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two-fold semantics in view data. Besides, we observe that
the performance of BPR-V3 and BPR-V1 are different with
that of BPR+viewloss when a ¼ 0 and a ¼ 1 (Fig. 5), respec-
tively, which corresponds to our previous analysis of the
difference between BPR+viewloss and BPR+viewprob.

5.4 Discussion

Motivated by the assumption that users’ viewing behaviors
in E-commerce websites have two-fold semantics, we
design the view-enhanced BPR sampler that can better
model user preference among the purchased, viewed and
unobserved items. Through extensive experiments on two
real-world datasets, we observe the performance improve-
ment on not only our proposed sampler, but also other base-
line methods that use view data. This demonstrates the
advantage of incorporating users’ viewing behavior into
BPR framework, which is guaranteed by the fact that these
view logs do have additional information about user prefer-
ence. In this sense, our proposed sampler is a better design
of learning the inherent nature of user preference. As for the
generality of view-enhanced sampler, on the one hand,
users’ view actions are general and highly frequent in
today’s online information systems where users interact
with commodities, ads, scientific articles and so on. There-
fore, it is important to learn more accurate user preference
by integrating view data. On the other hand, the idea of
modeling ranking relations among different feedbacks in
our proposed sampler is general, making it adaptable for
other user feedbacks.

However, our experiments are subject to some limitations
such as the scale of the data, the off-line evaluation and so on,
which may impact the generality of our conclusions to some
extent. Thus, the real-world scenario testing is still required.
Moreover, although our proposed sampler is adaptable for
other intermediate user feedbacks similar to view, the perfor-
mance gain still requires further investigation.

6 CONCLUSION AND FUTURE WORK

This paper studied the problem of improving BPR sampler
in implicit feedback recommender systems. First, we have
demonstrated that sampling negative items from the whole
space is unnecessary for BPR. Then, to further improve BPR
sampler’s ability of learning user preference, we propose an
enhanced sampler that encodes two-fold semantics in user’s
viewing behaviors. With these design, our improved BPR
sampler is able to achieve higher accuracy.

This work has focused on collaborative filtering setting,
which only leverages the feedback data and is mostly used
in the candidate selection stage of industrial recommender
systems [35], [37]. In future, on the one hand, we will focus
more on the ranking stage, integrating view data into
generic feature-based models [36]. On the other hand, we
plan to design a better negative sampler for recommenda-
tion with multi-relational data [12], [46].
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