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Abstract—For mobile networks diverse usage scenarios have

different capability requirements on connection density and user
experienced data rate, and modeling such capability diversity is

crucial to the strategy evaluation in addressing the problem of

high traffic load and scalability of network resources. Therefore,

it is necessary to build a capability model in two dimensions of

connection density and user experienced data rate. This paper aims

at addressing this challenge based on an investigation of network

capability in large-scale urban environment. First, our statistical

study shows that the spatial distribution of these two parameters

can be accurately fitted by log-normal mixture model. Second,

we find that only six basic capability patterns exist among the

9,000 cellular base stations. Their connections with the urban

functions of geographical locations are also explored in our work.

Based on these two discoveries, we build a network capability

model which can generate synthetic base stations with diverse

connection density and user experienced data rate. We believe

that this flexible and powerful model can help telecommunication

operators to design and standardize mobile network in the future.

I. INTRODUCTION

With the tremendous growth in connectivity, density and

volume of mobile traffic, both industry and academia are fo-

cusing on improving the capability of mobile cellular network.

To meet the demands of a fully mobile and connected society,

a broad range of usage scenarios for future mobile network are

expected and each of them has different network capability re-

quirements. Under these contexts, it is vital to achieve diverse

network capabilities in terms of connection density and user

experienced data rate. For example, according to the published

white paper [1], in the scenario of broadband access in dense

areas (e.g., pervasive video), person-to-person or person-to-

group video communication with extremely high resolution

should be available to every subscriber, where providing such

large number of concurrently active connections and high data

rate will be a challenge. When it comes to the scenario of mas-

sive Internet of Things, a single macrocell may need to support

10,000 or more low-rate devices with expected demands in

machine-to-machine communication [2]. Connection density

is a key performance parameter in the scenario of massive

Internet of Things, while high user experienced data rate is

more vital in the scenario of broadband access in dense areas.

For telecommunication operators, modeling data network

capability is extremely valuable in cellular network planning,

operation and maintenance, such as performance evaluations of

network resources allocation and load balancing. More impor-

tantly, the diverse mobile network usage scenarios discussed

above require a flexible and powerful model of mobile network

capability. Thus it is necessary to build a network capability

model on the two-dimensional space of connection density and

user experienced data rate.

However, there exist two challenging problems in modeling

mobile network capability:

• How to obtain and analyze connection density and user

experienced data rate of a real cellular network? A large-

scale trace data containing these two parameters is vital in

the analysis. Also, to build a capability model, we need to

consider the spatial distribution of connection density and

user experienced data rate. These tasks are challenging.

• How to extract the key patterns of connection density

and user experienced data rate from the trace data?

A suitable clustering method is required, which helps

us to understand the network capability in these two

dimensions. This is also a difficult task.

To address the first challenge, we carry out a base-station-

level analysis of subscriber density and data traffic demand

per subscriber in our fine-grained and large-scale trace data,

which are collected from a mobile network deployed in

Shanghai. Subscriber density and data traffic demand per

subscriber correspond to the two key parameters of network

capability, connection density and user experienced data rate.

In our following study, we use a log-normal mixture model to

characterize the spatial distribution of these two metrics. As

for the second challenge, we adapt a 2-dimensional clustering

method, which is based on Eduardo’s work [3]. Moreover, the

traffic patterns of cellular base stations do correspond to the

urban functions of geographical locations [4]. Inspired by this,

we introduce this urban function context information into our

capability model. Our key contributions are threefold:

• First, we discover that the spatial distribution of sub-

scriber density and average data traffic demand can be

accurately fitted by a log-normal mixture model. Our

theoretical proof shows that the product of subscriber

density and average data rate, i.e., traffic density, also

follows a log-normal mixture distribution spatially, which

is further validated by empirical data.

• Next, our extensive analysis provides a precise character-

ization of individual base station capability and clusters

base stations into 6 types according to subscriber density

and average data demand. We also explore the relation-

ship between the network capability and urban functional

regions where base stations are deployed.



• Finally, we build a network capability model as the

function of subscriber density and average data demand.

The highlight of our model is that we only need to

input the urban function context information, and it can

then generate synthetic base stations with realistic diverse

capabilities in terms of the two key parameters. Our

evaluations demonstrate that this model can reliably and

accurately quantify network capability. More importantly,

our model provides an insight on how to improve the

capabilities of mobile network in diverse usage scenarios.

This paper is structured as follows. In Section II, we detail

the utilized mobile network dataset and explain how we

extract the useful information, i.e., subscriber density and data

traffic demand per subscriber in each cell. In Section III, we

analyze the spatial distribution of these two key parameters.

In Section IV, using an unsupervised clustering algorithm, we

identify the key patterns of network capability. Based on these

discoveries, we build a capability model in Section V. After

discussing the related work in Section VI, we summarize our

work and discuss future investigations in Section VII.

II. DATASET AND KEY PARAMETERS

A. Dataset

In order to carry out a measurement driven empirical study,

we use an anonymous cellular trace from 9,181 cellular base

stations deployed in Shanghai by one of the major operators

in China, within an interval of 31 days in August 2014. Each

record of the trace contains detailed mobile data usage of

700,000 subscribers, including the devices ID (anonymized),

start-end time of data consumption, base station (BS) ID, BS

location and traffic volume (byte). This fine-grained dataset,

including both information on subscriber number and data

consuming volume, enables us to carry out a comprehensive

study on network capability. On the other hand, the large-scale

trace, which contains 2.8 petabytes (1015) logs, 92 terabytes

(1012) per day and 7 gigabytes (109) per base station on

average, guarantees the credibility of our investigation.

B. Key Parameters

As mentioned previously, subscriber density and average

data demand are the two key parameters to describe the

network capability. Subscriber density can be computed by

counting the number of access devices during a certain period

of time. As for data traffic demand per subscriber, it is natural

to define it as the total data volume consumed per BS divided

by the number of subscribers of the cell.

Each BS delivers different coverage for cellular service.

As the actual area of cell coverage is difficult to measure,

we obtain the area of Voronoi cells [5] drawn by using the

locations of BSs. Let X represent the whole network area.

Further let K be the set of BS indices and B = {bk, k ∈ K}
be the set of BSs. The Voronoi cell Vk, associated with the

BS bk, is the set of all the points in X whose distances to bk
are not greater than their distances to any other BS bj with

j 6= k. Specifically, if d(x, b) denotes the distance between

the point x and the BS b, then Vk = {x ∈ X | d(x, bk) ≤
d(x, bj) for all j 6= k, j, k ∈ K}. In this way, we divide the

area into Voronoi cells. The coverage area of each BS bk is

the area of the corresponding Voronoi cell Vk.

In this way, we obtain the subscriber density by dividing

the number of subscribers with the area of the corresponding

Voronoi cell, denoted as Sbi(t) (subscribers/km2) for bi ∈
B and 1 ≤ t ≤ 744, where t is the time sequence index.

The length of the duration is 1 hour, which explains why the

maximum is 744 = 24× 31. Similarly, we denote the average

data demand per subscriber as Dbi(t) (bytes/subscriber) for

bi ∈ B and 1 ≤ t ≤ 744. It is worth noting that the product of

subscriber density Sbi(t) and data demand Dbi(t) is the traffic

density, denoted as T bi(t) (bytes/km2), which represents the

degree of traffic load.

III. NETWORK CAPABILITY ANALYSIS

In this section, we focus on three metrics of data traffic:

traffic density, subscriber density and average demand. By

showing the heat maps, we provide a visual view on how they

are distributed in the urban area. Then we propose a model to

describe the spatial distributions of the empirical data.

(a) traffic density

(b) subscriber density

(c) average data demand

Fig. 1. Geographical distributions of traffic density (a), subscriber density
(b), and average data demand (c).

Fig. 1 shows the heat maps of the mean traffic density,

subscriber density and average demand in a month. Since the

empirical data are highly right-skewed, the log-transformed

data are used to draw heat maps. Traffic density and subscriber

density are high and concentrated in the city center, while they

are relatively low in the rural area. However, the heat map

of average demand shows different characteristics: the peak

values spread widely, from the city center to rural area.

Our next step is to model the spatial distributions of

these three parameters. Researchers [6] found that the spatial

distribution of traffic density can be well fitted by a log-

normal mixture distribution. We want to know what is the

reason behind this distribution. Our study also shows that

subscriber density and average demand per subscriber can

be fitted accurately by log-normal mixture distributions. By

theoretical analysis (Proposition 1), we further prove that the



product of subscriber density and average demand, i.e., traffic

density, also follows a log-normal mixture distribution.

The probability density function (PDF) of the log-normal

mixture distribution with l components is:

fX(x) =

l
∑

i=1

pi logN (x;µi, σ), (1)

where logN (x;µi, σi) is the ith log-normal distribution with

location parameter µi and scale parameter σi, while pi is

the mixture proportion of the ith component and the sum of

all the mixture proportions is
∑l

i=1
pi = 1. The parameters

{µi, σi, pi}
l
i=1

can be obtained for example using the expec-

tation maximization (EM) algorithm [7].
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(c) CDF, average demand
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(d) CCDF, average demand

Fig. 2. Log-normal mixture fittings of the spatial distributions of subscriber
density and average demand, in the timescale of one hour. The circles represent
the empirical data, and the solid lines represent the fitted log-normal mixture
distribution.

Log-normal mixture with three components l = 3 is used to

fit both the subscriber density and average demand in one hour.

Fig. 2 shows the cumulative distribution function (CDF) and

complementary CDF (CCDF) of the empirical data and fitted

model, which indicate that the proposed log-normal mixture

distribution fits the empirical data very well. The parameters of

the models are listed in Table I. In order to show that this log-

normal mixture model is universal in different spatial scales,

we also use the log-normal mixture model to fit the empirical

distributions in different urban regions, specifically, resident

region, office region and entertainment region, as shown in

Fig. 3. The Kolmogorov-Smirnov (K-S) test is used to test the

goodness of fit [8]. We test the distribution fitting of the cell

traffic in every hour in a day at 5% significance level, and

TABLE I
PARAMETERS OF THE LOG-NORMAL MIXTURE MODELS FOR SUBSCRIBER

DENSITY AND AVERAGE DEMAND.

Parameters Subscriber density Average demand

Location
parameters

µ1 5.4094 14.5001
µ2 5.1033 14.3824
µ3 8.2199 12.7958

Scale
parameters

σ1 1.5761 0.2798
σ2 2.6085 0.8331
σ3 1.2034 1.5647

Mixture
proportions

p1 0.4075 0.4543
p2 0.3950 0.4457
p3 0.1975 0.1000
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Fig. 3. Log-normal mixture fittings of the spatial distributions of subscriber
density and average demand, in the timescale of one hour, in resident region,
office region and entertainment region, respectively. The circles represent
the empirical data, and the solid lines represent the log-normal mixture
distribution.

find that the log-normal mixtures distribution is accepted all

the time.

To further reveal the relationships among these three pa-

rameters (traffic density, subscriber density and average de-

mand per subscriber), correlation coefficients are used to test

the correlations between them. The results show that traffic

density and subscriber density are highly correlated, with

the correlation coefficients greater than 0.9. By contrast, the

correlation coefficients between average demand and the other

two parameters are less than 0.1, indicating weak correlation

between average demand and subscriber density or traffic

density. This observation explains why Fig. 1 shows the

similarity between traffic density and subscriber density, but

very different patterns for average demand.

Moreover, it can be verified that the product of two inde-

pendent log-normal mixture distributed random variables also

follows a log-normal mixture distribution.

Proposition 1. Assume that X and Y are independent log-

normal mixture distributed variables with m and n compo-

nents, respectively. Let Z = XY , then Z follows a log-normal

mixture distribution with m× n components.

Proof. Since X ′ = logX and Y ′ = log Y follow the

independent Gaussian mixture distributions with m and n

components, respectively, their PDFs are

fX′(x′) =

m
∑

i=1

pXi
φ
(

x′;µXi
, σ2

Xi

)

, (2)

fY ′(y′) =

n
∑

j=1

pYj
φ
(

y′;µYj
, σ2

Yj

)

, (3)

where φ
(

x′;µXi
, σ2

Xi
) denotes the Gaussian distribution with

mean µXi
and variance σ2

Xi
. Since Z ′ = logZ = logX +

log Y = X ′ + Y ′, we have

fZ′(z′) =

∫ ∞

−∞

(fX′(u) · fY ′(z′ − u)) du

=

∫ ∞

−∞

m
∑

i=1

pXi
φ
(

u;µXi
, σ2

Xi

)

n
∑

j=1

pYj
φ
(

z′ − u;µYj
, σ2

Yj

)

du

=

∫ ∞

−∞

m
∑

i=1

n
∑

j=1

pXi
pYj

φ
(

u;µXi
, σ2

Xi

)

φ
(

z′ − u;µYj
, σ2

Yj

)

du

=

m
∑

i=1

n
∑

j=1

pXi
pYj

∫ ∞

−∞

φ
(

u;µXi
, σ2

Xi

)

φ
(

z′ − u;µYj
, σ2

Yj

)

du

=

m
∑

i=1

n
∑

j=1

pXi
pYj

φ
(

z′;µXi
+ µYj

, σ2

Xi
+ σ2

Yj
). (4)



This proves that Z ′ follows the Gaussian mixture distribution

with m×n components. Thus Z follows a log-normal mixture

distribution with m×n components, and the parameters of the

distribution for Z are given by






pZi,j
= pXi

pYj
,

µZi,j
= µXi

+ µYj
,

σ2

Zi,j
= σ2

Xi
+ σ2

Yj
,

(5)

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

TABLE II
PARAMETERS OF THE LOG-NORMAL MIXTURE MODEL FOR TRAFFIC

DENSITY.

Parameters
Location

parameters
Scale

parameters
Mixture

proportions

Component 1 19.9095 1.6001 0.1851
Component 2 19.7918 1.7828 0.1816
Component 3 19.6034 2.6235 0.1795
Component 4 19.4857 2.7383 0.1761
Component 5 22.7200 1.2355 0.0897
Component 6 22.6023 1.4636 0.0880
Component 7 18.2052 2.6301 0.0408
Component 8 17.8990 3.3522 0.0395
Component 9 21.0156 2.4251 0.0198

As the correlation between subscriber density and average

demand is weak, it can be assumed that they are independent.

Thus the product of them, i.e., traffic density, follows a log-

normal mixture distribution with 9 components. We can use

the parameters given in Table I to compute the parameters

of the distribution for traffic density, which are listed in

Table II. Fig. 4 shows the fitting of the empirical traffic density

to the computed log-normal mixture model. Furthermore,

the K-S test at 5% significance level also accepts this log-

normal mixture distribution. In other words, traffic density also

follows a log-normal mixture distribution spatially, which is

verified by both empirical data and theoretical proof.
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Fig. 4. Log-normal mixture fitting of the spatial distribution for traffic density,
in the timescale of one hour. The log-normal mixture model is calculated by
(5). The circles represent the empirical data, and the solid lines represent the
theoretical log-normal mixture distribution.

IV. NETWORK CAPABILITY CLUSTERING

In this section, we provide insights into network service

capabilities in different urban areas. Firstly, BSs are clustered

into six clusters based on the two key parameters: subscriber

density and average demand per subscriber which represent

network connection density and user experienced data rate.

Moreover, we reveal the relationship between these clusters

and functional regions of BSs.

A. Clustering Methodology

The key in characterizing network service capability is to

find peak hours of BSs. The authors of [4] exploited the spatial

information embedded within mobile traffic by identifying key

urban functional regions, such as resident region, transport

region, office region, entertainment region and comprehensive

region. It was found that hourly dynamics of BSs in the same

functional region follow the same pattern, with similar peak

and non-peak hours. As for BSs in different functional regions,

they follow different dynamic patterns and have different peak

and non-peak hours. Based on this finding, we define peak

hours of BSs in a certain functional region as hours when the

average traffic density in this region is over 50% of its peak

value. In this way, the averages of Sbi(t) and Dbi(t) for each

BS during peak hours are obtained, which are denoted by Spbia
and Dpbia , respectively, and they are computed as

Spbia =
1

|Pi|

∑

t∈Pi

Sbi(t), (6)

Dpbia =
1

|Pi|

∑

t∈Pi

Dbi(t), (7)

where Pi denotes the set of peak hours for BS bi.

Algorithm 1 Agglomerative hierarchical clustering.

Input: Base stations number N , Threshold value T , Traffic

data Di, for i = 1, 2, 3...N
Output: Labels Li, for i = 1, 2, 3...N

1: Initialize :
2: a← 0, b← 0, m← 0, M ← 0, n← N

3: ck ← [Dk] for k = 1, 2, 3...N //Add Dk in the kth cluster.

4: dist ← 0, Min dist ← Inf //dist is between-cluster

distance for each two cluster, and Min dist is its mini-

mum.

5: stop← false

6: while stop == false do //Find all possible clusters C

7: Min dist← Inf , m← m+ 1
8: C[m]← [c1, c2...cN ] //C[m] is possible cluster set in

this loop

9: for i = 1 to n do

10: for j = i+ 1 to n do

11: dist← compute distance(ci, cj)
12: if Min dist > dist then

13: Min dist← dist

14: a← i, b← j

15: end if

16: end for

17: end for

18: n← n− 1, ca ← merge(ca, cb)
19: C[m].delete(cb), sort(C[m])
20: if n == 1 or Min dist > T then

21: M ← m

22: stop← true

23: end if

24: end while

25: Copt ← find max(SH(C[i])) //Compute the Silhouette

criterion for each C[i] and find the optimal Copt with

highest value.

26: for ci ∈ Copt do //Return label Lk of Copt

27: for ∀Dk ∈ ci do

28: Lk ← i

29: end for

30: end for

31: Return L



Clustering of BSs are based on Spbia and Dpbia of each BS.

Since the best number of clusters is unknown, we choose the

agglomerative hierarchical clustering algorithm [9]. Each BS

is regarded as a vertex Vi with vertex value vi (the values

assigned to vertices will be explained later). Each cluster

is a set of vertices (BSs), denoted by Cn. The distance

between two vertices Vi and Vj is d (Vi,Vj) =
∣

∣vi − vj
∣

∣.

Using the average linkage criterion, the distance between two

clusters Cm and Cn is measured as the average distance

between vertices in Cm and vertices in Cn, i.e., d (Cm, Cn) =
1

|Cm||Cn|

∑

Vi∈Cm,Vj∈Cn
d (Vi, Vj). Agglomerative hierarchi-

cal clustering starts by considering each vertex as a cluster.

During each iteration, it calculates the distances between

all pairs of clusters and merges the two clusters with the

minimum distance into one cluster. The clusters continue

merging until all vertices are included in one cluster. In this

way a hierarchical dendrogram is generated. In the next step,

Silhouette criterion [10] is used to decide where to cut the

hierarchical dendrogram in order to get the best separation

among vertices. The details are shown in Algorithm 1.

The cluster process is performed in two rounds both by

Algorithm 1. In the first round, each vertex is assigned the

value Spbia of the BS. The first round divides the BSs into two

subscriber-density-based clusters, C1 and C2, corresponding

to low subscriber density (sparse) and high subscriber density

(dense). The second round goes inside C1 and C2, respectively.

Each vertex is assigned the value Dpbia of the BS. In both C1

and C2, three average-demand-based sub-clusters are found,

with low (light) demand, medium demand, and high (heavy)

demand, respectively. Finally, combining the two rounds of

clustering process, we obtain six clusters. They are identified

as DH (dense heavy) cluster, DM (dense medium) cluster,

DL (dense light) cluster, SH (sparse heavy) cluster, SM

(sparse medium) cluster, and SL (sparse light) cluster.

B. Analysis of Clustering Results

In this part, we further analyze the clustering results, and

reveal the relationship between BS clusters and their geograph-

ical functional regions.

Fig. 5. Clustering result in the space of subscriber density and average
demand, in the view of density.

The clustering results of BSs are shown in Fig. 5, where

each BS is mapped onto the
(

Sbi , Dbi
)

space. Rather than

plotting in scatter form, we depict the number of BS samples

in the unit area of the (Sbi , Dbi) space, i.e., density, by the

brightness of color bar. As can be observed in this map, we

can clearly identify 6 brightest areas each of which represents

the centroid of each cluster.
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Fig. 6. Temporal dynamics of average traffic density in each cluster. Each
curve represents the average 24-hour dynamics of one BS cluster.

The six clusters exhibit different characteristics, in terms of

network capability. Fig. 6 presents the temporal dynamics of

average traffic density in each cluster. It can be seen that all the

six clusters have peak hours when the traffic density is high,

but there are significant differences on the time and duration of

peak hours as well as th peak values among different clusters.

Further analysis on the hourly dynamics of subscriber density

and average demand in each cluster reveals that subscriber

density and average demand also show identical dynamic

patterns in each cluster. Another interesting observation is

that subscriber density rises and reaches its peak hours during

daytime, and then drops to low values at night, while average

demand rises during daytime and does not drop to low values

until midnight. This reveals that although subscriber density

tends to be low at night, subscribers still consume much data

traffic during night. These insights indicate that different peak

and non-peak time periods are needed to characterize the

hourly dynamics of subscriber density and average demand

in each cluster, which is discussed in the next section.

TABLE III
DISTRIBUTION OF BSS IN DIFFERENT CLUSTERS AND FUNCTIONAL

REGIONS.

Types of BS SL SM SH DL DM DH Total

Resident 381 40 3 3 106 1 534

Transport 9 46 1 9 1 1 67

Office 481 340 103 85 145 23 1177

Entertainment 82 48 11 18 45 4 208

Comprehensive 359 109 13 30 170 4 685

Total 1312 583 131 145 467 33 2671

Table III shows the numbers of BSs in each cluster and

each functional region. A highly asymmetric characteristic is

observed: almost 50% of BSs base are in the SL cluster (low

subscriber density and low average demand), which is consis-

tent with the right-skewed log-normal mixture distribution we

mentioned previously.



To further investigate the relationship between the

(Sbi , Dbi) profile and the geographical location of BSs, several

parameters are defined to measure the relationship between

the six clusters and the functional regions. Let Nm,n denote

the number of BSs in the mth functional region and the nth

cluster. Then
∑

6

j=1
Nm,j is the total number of BSs in the

mth functional region. The mapping relation, Pm,n, is defined

to represent the proportion of the nth cluster of BSs in the

mth region, which is given by

Pm,n =
Nm,n

∑

6

j=1
Nm,j

. (8)

We will use this parameter in the next section when we use

our model to generate synthetic BSs in different urban areas.

Table IV shows the mapping relation Pm,n. It is clear that

the SL cluster is the main cluster in every functional regions,

except for transport region, where the SM is the main cluster.

TABLE IV
MAPPING RELATION (%).

Types of BS SL SM SH DL DM DH

Resident 71.35 7.49 0.56 0.56 19.85 0.19

Transport 13.43 68.66 1.49 13.43 1.49 1.49

Office 40.87 28.89 8.75 7.22 12.32 1.95

Entertainment 39.42 23.08 5.29 8.65 21.63 1.92

Comprehensive 52.41 15.91 1.90 4.38 24.82 0.58

In order to reveal the differences among various functional

regions, the relative proportion P ′
m,n is defined as follows.

First compute

Rm,n =
Nm,n

∑

5

i=1
Ni,n

, ∀m,n. (9)

Then

P ′
m,n =

Rm,n
∑

6

j=1
Rm,j

. (10)

The definition of relative proportion P ′
m,n eliminates the dif-

ferences in the absolute numbers of BSs in different clusters,

and thus it characterizes different patterns of subscriber density

and demand in different functional regions. The values of

P ′
m,n are listed in Table V. Compared with Table IV, several

different observations are made:

• In office regions, the relative proportion of SH cluster

is the highest, followed by DH cluster. This indicates

that office regions tend to handle heavier average traffic

demand by each subscriber.

• In entertainment regions, the relative proportion of DM

cluster is the highest, followed by DH cluster, indicating

that entertainment regions handle larger numbers of sub-

scribers and relatively heavier demand. This is consistent

with our common sense that entertainment regions tend

TABLE V
RELATIVE PROPORTION (%).

Types of BS SL SM SH DL DM DH

Resident 44.01 10.40 3.47 34.40 3.14 4.59

Transport 3.65 41.99 4.06 1.14 33.03 16.13

Office 11.01 17.51 23.61 9.32 17.61 20.93

Entertainment 10.96 14.43 14.72 16.89 21.76 21.25

Comprehensive 21.86 14.93 7.93 29.08 16.53 9.68

to have denser population and that people consume more

data traffic in entertainment regions.

• In comprehensive regions, the relative proportion of DL

cluster is the highest, followed by SL cluster, which

indicates that the subscriber density in comprehensive

regions is relatively higher than that in other regions.

The above analysis shows how different clusters are related

with geological regions. Since different regions have differ-

ent proportions for each cluster (measured by the mapping

function Pi,j), it is obvious that these regions have different

characteristics in subscriber density and average data demand,

and thus they have different network capabilities. However,

when comparing different urban areas, the network capability

is similar in the same functional region, which means that

the proportion of each BS cluster in a certain urban functional

region, i.e., the mapping relation, can be treated as constant for

different urban areas. This observation will be utilized in the

next section to model the network capability in urban areas.

V. NETWORK CAPABILITY MODELING

To build an accurate model for urban network capability,

both traffic density dynamics T bi(t) and numbers of synthetic

BSs need to be consistent with those of real BSs. Recall

that BSs belonging to different types (DH , DM , DL, SH ,

SM and SL) have their own characteristics in terms of

the number of access subscribers during a certain period

(subscriber density Sbi(t)) and traffic volume they consumed

(data demand Dbi(t)). Meanwhile, our analysis in Section IV

reveals the relationship between network capability and geo-

graphical context of BSs, i.e., mapping relation Pm,n. More

specifically, this relationship is consistent in different urban

areas. Furthermore, in a certain type of BS, both Sbi(t) and

Dbi(t) have distinct dynamics during different time periods.

Thus, to obtain a fine-grained model, it is necessary to take

into account all the above considerations/observations.

Fig. 7. Modeling Methodology.

The schematic of our model is illustrated in Fig. 7. The idea

is to build a capability model which can generate different

types of synthetic BSs in terms of user density Sbi(t) and

average data demand Dbi(t), i.e., DH , DM , DL, SH , SM

and SL. Thus the first step is to compute the proportion of each

BS type in a given urban area with the input of urban function

context information, as given in Section V-A. Next for each

type of BSs, a certain number of synthetic BSs are generated,

as discussed in Section V-B. Then we can obtain the dynamics

of traffic density in the whole urban area. Moreover, We

conduct an evaluation on the accuracy of our model compared

to the original empirical data, in Section V-C.

A. Base Station Proportion Computation

Building a model of network capability in the given urban

area first requires us to generate different BS types. We



compute the proportion of each BS type, i.e., the probability

used in synthetic BS generation, which is denoted as Pcn
for 1 ≤ n ≤ 6, corresponding to DH , DM , DL, SH ,

SM and SL, respectively. The input is the proportion of the

BSs deployed in different urban functional regions, denoted

as Prm for 1 ≤ m ≤ 5, corresponding to resident, transport,

office, entertainment and comprehensive regions, respectively.

Recall that we already obtain the mapping relation Pm,n, i.e.,

the proportion of the nth type of BSs in the mth region, which

are listed in Table IV. Pcn can be computed as follows

Pcn =

5
∑

m=1

Prm × Pm,n. (11)

Then we generate a set S of synthetic BSs with |S| = |B|.
Each type of synthetic BSs in S have the same proportion as

those in the original BS set B. The details of synthetic BS

generation are given next.

B. Synthetic Base Station Generation

In Section III, we use the log-normal mixture model to fit

the spatial distributions of subscriber density Sbi(t) and data

demand per subscriber Dbi(t) in the original data. We also

show that this model is universal in different spatial scales

(Fig. 3). Thus when generating the synthetic spatial distri-

butions of Sbi(t) and Dbi(t) in each BS type, we naturally

choose this log-normal mixture model.

In our model, we focus on the one-day dynamics of Sbi(t)
and Dbi(t). Thus we compute the average one-day sequences

in whole month, denoted as Sbi
a (th) and Dbi

a (th), as

Sbi
a (th) =

1

31

31
∑

j=1

Sbi(th + (j − 1)× 24), (12)

Dbi
a (th) =

1

31

31
∑

j=1

Dbi(th + (j − 1)× 24), (13)

for 1 ≤ th ≤ 24, where (th + (j − 1) × 24) represents the

thth hour in the jth day. Considering the temporal correlations

of both Sbi
a (th) and Dbi

a (th), we divide one day into 3

periods, denoted as Idle, Busy and Tail. More specifically,

we set 80% of max{Sbi
a (th)} and 70% of max{Dbi

a (th)} as

thresholds. Idle periods represent periods when both Sbi
a (th)

and Dbi
a (th) are under the related thresholds, while in Busy

periods they are both above the thresholds. In Tail periods,

Sbi
a (th) are under its threshold and Dbi

a (th) are above its

threshold. Note that the fourth case will not happen because

the above-threshold periods of Dbi
a (th) cover those of Sbi

a (th).
When fitting the empirical distributions of Sbi

a (th) and

Dbi
a (th), we use the 2-dimensional log-normal mixture model

to preserve the correlation between subscriber density and

average data demand. In other words, we fit Sbi
a (th) and

Dbi
a (th) together. The inputs of our fitting are the 18 CDFs of

(Sbi
a (th), D

bi
a (th)) for 3 types of periods and 6 types of BSs.

Since the log-normal mixture fitting is already detailed in Sec-

tion III, we skip the distribution fitting for (Sbi
a (th), D

bi
a (th))

for space economy reason. Finally we obtain the fitting pa-

rameters needed in the network capability model.

We now briefly describe how to generate a synthetic BS

using the capability model. After obtaining the BS type, for a

given hour th, we randomly sample a pair of values S′bi
a (th)

and D′bi
a (th) according to the fitted distribution functions. The

subscriber density S′bi
a (th) and average data demand D′bi

a (th)
describe the network capability of this BS. By multiplying

S′bi
a (th) and D′bi

a (th), we obtain the traffic density T ′bi
a (th).

C. Model Validation

We first evaluate the accuracy of our method of building

model. Then we use the urban environment of Shanghai as a

case study for modeling network capability.
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Fig. 8. Performance on modeling dynamics. Synthetic traffic density dynamics
for each type of BSs are plotted, along with the original empirical ones.

1) Model Building Method Evaluation: For each type of

DH , DM , DL, SH , SM and SL, we generate a set of

10,000 synthetic BSs based on the fitted log-normal mixture

distribution. Each synthetic data set contains the subscriber

density and average demand of BSs in a certain cluster in

24 hours. In Fig. 8, we evaluate the performance of our BS

model by comparing the synthetic traffic density dynamics for

each type generated by the model with the original empirical

dynamics. By dividing one day into 3 periods, i.e., Idle, Busy

and Tail, we maintain the temporal correlation of dynamics.

It can be seen from Fig. 8 that the traffic density of synthetic

BSs have similar patterns to those of the original real BSs.

Next we evaluate how consistent the 6-type synthetic traffic

densities are by comparing their distributions with those of

the original real BSs in the set B. To this aim, we use the

Bhattacharyya (BH) measure or distance [3], which quantifies

the similarity between two probability distributions p(x) and

p′(x). For discrete probability distributions, the BH measure

is defined by

ρ(p, p′) =
∑

x∈X

√

p(x)p′(x), (14)

while for continuous probability distributions, it is given by

ρ(p, p′) =

∫

√

p(x)p′(x) dx. (15)

In order to satisfy all the metric axioms, we use an alternative

distance metric based on the BH measure defined as

d(p, p′) =
√

1− ρ(p, p′). (16)

Note that d(p, p′) = 0 iff p = p′, indicating two identical

distributions.
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Fig. 9. Performance on modeling statistical distributions. Horizontal solid lines are Bhattacharyya distances between the traffic density distributions of the
original average and the synthetic day, while dashed curves are Bhattacharyya distances between the traffic density distributions of the original average and
the 31 days in the original trace.

Let M denote the set of 31 days in the dataset (from 1st

August to 31st August), and H denote the set 24 hours in

a day. H is further divided into 3 subsets, denoted as Hm

for m = 1, 2, 3, which correspond to Idle, Busy and Tail

periods, respectively. In the sequel, the PDF of traffic density

is denoted by pXm
n (x), where m represents the time period

Hm, n denotes the BS type (DH , DM , DL, SH , SM or

SL), and X represents the dataset.

For each BS in type n, a synthetic dataset of subscriber

density and average demand for one day is generated, based

on the log-normal mixture distribution model. We then obtain

the synthetic traffic density of each BS by multiplying the

subscriber density and average demand. The PDFs of traffic

density in the synthetic dataset are denoted as
{

pSm
n

}

, while

the PDFs of average traffic density over 31 days in the original

dataset are denoted as
{

pAm
n (x)

}

and the PDFs of the original

traffic density in a given day D ∈M are denoted as
{

pDm
n

}

.

To evaluate our traffic density model, we first compute

d
(

pAm
n , pSm

n

)

, the distance between the traffic density distri-

butions of the averaged original data and the synthetic day

S, in terms of BS types n and time periods m. Then, we

compute d
(

pAm
n , pDm

n

)

for D ∈ M, the distance between the

distributions of the averaged original data and the 31 days

D ∈ M in the original trace. Fig. 9 plots d
(

pAm
n , pSm

n

)

and

d
(

pAm
n , pDm

n

)

, where there are 18 figures for 6 BS types

and 3 time periods. Finally, we also compute the mean

and the 95% confidence interval of d
(

pAm
n , pDm

n

)

. It can be

verified that d
(

pAm
n , pSm

n

)

is within the confidence interval

of d
(

pAm
n , pDm

n

)

, indicating that the error of our model, i.e.,

d
(

pAm
n , pSm

n

)

, is sufficiently small.

Based on the above evaluations, we have demonstrated that

our model performs well on characterizing the traffic density

of BSs, in terms of both dynamics and statistical distribution.

2) Case Study: The soundness of our method has been

verified in the above evaluations. We now provide a case

study on modeling the network capability in Shanghai. The

input is the distribution of urban functional regions and the

number of BSs deployed in each region, i.e., Prm listed in

Table VI. Using the mapping relation Pm,n listed in Table IV,

TABLE VI
PERCENTAGE OF BSS DEPLOYED IN EACH REGION.

Functional Regions Index Percentage

Resident 1 17.55%
Transport 2 2.58%

Office 3 45.72%
Entertainment 4 9.35%

Comprehensive 5 24.81%

the probabilities of 6 BS types Pcn can be computed by (11).

Then synthetic BSs’ subscriber density and data demand per

subscriber (S′bi
a (th), D

′bi
a (th)) are generated. The output is the

traffic density dynamics in the scales of BS and whole urban

area, i.e., {T ′bi
a (th)} and T ′

a(th).

The results are shown in Fig. 10, which plots the subscriber

density, average demand and traffic density of the whole urban

area, i.e., averaging over all the BSs. More specifically, we

compare the synthetic subscriber density, average demand

and traffic density {S′bi
a (th), D

′bi
a (th), T

′bi
a (th)}, generated by

our model, with the empirical {S′bi
a (th), D

′bi
a (th), T

′bi
a (th)},

produced from the original trace data. It can be seen from

Fig. 10 (a) and (b) that our model accurately describes the

one-day dynamics of subscriber density and average demand.

By multiplying subscriber density and average demand, we

obtain the similar results in traffic density, as can be seen from

Fig. 10 (c). Since traffic density represents the degree of traffic

load in a cell, the traffic density plotted in Fig. 10 (c) describes

the average load among all the BSs deployed in Shanghai.

This case study has verified the accuracy of our network

capacity model. Based on this model, telecommunication oper-

ators can conduct network resources allocation, load balancing

and infrastructure testing without the need of large real traffic

data records, which is costly to collect. Moreover, our concepts

of subscriber density and average data demand are generic

which guarantees our model is universally applicable to diverse

urban environments and, therefore, ensures the applicability of

our model to new usage scenarios in future mobile commu-

nication. For example, urban function information of a city
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Fig. 10. Network capacity modeling performance: (a) subscriber density, (b) average demand, and (c) traffic density. Dashed curve represents the result based
on the synthetic BS set S, while solid curve represents the result based on the original BS set B.

can be obtained from the government. Using this information

together with statistics Pm,n, we can generate synthetic BSs

in each urban functional region.

VI. RELATED WORK

Cellular BS traffic patterns have been extensively investi-

gated for understanding various perspectives of cellular net-

works. Wang et al. [4] extracted the traffic patterns of large-

scale BS towers by combining three dimensional information

(time, locations of towers and traffic frequency spectrum)

together. Similarly, Shafiq et. al. [11] also focused on modeling

traffic patterns of BSs. Unlike the work of [4], however, the

study [11] was based on the knowledge of the application

distributions in each cell. As for modeling traffic load in each

cell, Lee et al. [6] demonstrated that the spatial distribution of

the traffic density can be accurately modeled by a log-normal

mixture distribution, while Wang et al. [12] found that mobile

traffic volume (not density) followed a trimodal distribution

on both spatial and temporal dimensions. However, these

modeling methods are only for statistical fittings, and they

are not suitable for considering temporal correlations in traffic

dynamics.

In addition to BS traffic modeling, there exist a few related

works on modeling traffic usage patterns of mobile devices

or subscribers. Shafiq et al. [13] proposed a Zipf-like model

to capture the volume distribution of application traffic in

celluar devices and then used a Markov model to characterize

the dynamics. Oliveira et al. [3] classified subscribers into

4 profiles according to session number and traffic volume

in a certain period. Then a traffic usage model was build

for each profile of subscribers in peak and non-peak time

periods, respectively. By contrast, our work considers higher-

level capability modeling of mobile networks. For our problem

of modeling network capability, we adapt Oliveira’s methods

of clustering.

In particular, we model the mobile network capability in

the two-dimensional space of subscriber density and average

data demand. Our analysis focuses on the spatial and temporal

distributions of subscriber density and average data demand,

which is lacked in the previous works of [4], [6], [12]. Further-

more, by decomposing traffic density into subscriber density

and average data demand, we can explain Lee’s observation

that traffic density follows a log-normal mixture distribution

[6]. To the best of our knowledge, our work is the first trial

to build a network capability model.

VII. CONCLUSION

In this paper, we investigate the capability of mobile cellular

data network in large-scale urban environment. Our investiga-

tion reveals two important discoveries. First, the spatial distri-

bution of both subscriber density and average traffic demand in

each cell can be accurately fitted by log-normal mixture model.

Second, using an unsupervised clustering method, we find that

large scale base stations can be clustered into 6 distinct types

according to subscriber density and average traffic demand.

Inspired by those two observations, we build a data network

capability model and use this to generate real base stations

with diverse network capabilities. Our evaluations show that

the synthetic trace presents a consistent behavior with the

original dataset, which demonstrates that our model is precise

and flexible.
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