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ABSTRACT
Site selection determines optimal locations for new stores, which
is of crucial importance for business success and urban develop-
ment. Especially, the wide application of artificial intelligence with
multi-source urban data makes intelligent site selection promis-
ing. Nevertheless, existing data-driven approaches heavily rely on
feature engineering, which cannot take the complex relationships
as well as the diverse influences of various semantics among data
into consideration. Further, most approaches fail to reveal under-
lying factors for site decisions. To get rid of the dilemma, in this
work, leveraging the knowledge graph (KG) technique, we propose
a knowledge-driven model for site selection, short for KnowSite.
Specifically, by empowering rich semantics in KG, we firstly con-
struct an urban KG (UrbanKG) for site selection knowledge discov-
ery with cities’ key elements and complex relationships captured.
Based on UrbanKG, we apply pre-training for semantic represen-
tations, and then design a generalized encoder-decoder structure
for site decisions. KnowSite designs a graph neural network based
encoder to adaptively model diverse influences, and further builds
a relation path based decoder revealing the reasons behind site
decisions. Extensive experiments on two datasets demonstrate that
KnowSite outperforms representative baselines by more than 9% on
precision. Moreover, KnowSite provides intuitive and convincing
explanations for site decisions and sheds light on the site selection
understanding.
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Figure 1: Illustration of (a) data-driven paradigm and our
proposed (b) knowledge-driven paradigm for site selection.

1 INTRODUCTION
The task of site selection, which selects optimal locations for open-
ing new stores, is of crucial importance for business success. A
good choice of location always brings substantial profits while an
inappropriate one could lead to store closure, such as opening a
Starbucks store in a business area versus a residential one. Gener-
ally, site selection for a specific brand requires a comprehensive
consideration of both its own characteristics and potential urban
regions, e.g., the brand’s category and the region’s human flow
and function. Traditional solution for most corporations is to em-
ploy expert consultants and conduct manual surveys [4, 17, 27, 32],
which are expensive, labor-intensive, and time-consuming.

Owing to the rapid development of location-based services [15]
and wide availability of multi-source urban data [55], recent stud-
ies introduce the data-driven paradigm for site selection [16, 18,
24, 42, 43]. As shown in Figure 1(a), these data-driven approaches
typically extract various features from the multi-source urban data,
which are then fed into a machine learning model like XGBoost
[6] to calculate the score for site decision. However, the manually
defined feature involves just one or two aspects (store density, hu-
man flow, etc.), failing to exploit complex relationships as well as
diverse influences among the multi-source urban data. Moreover,
such approaches merely provide an importance score for each fea-
ture without underlying factors, which is insufficient to persuade
corporations [32, 48].

In comparison to the site selection still in data-driven paradigm,
several other areas of artificial intelligence have further introduced
knowledge-driven paradigm for superior performance, such as
question answering [13], natural language understanding [53] and
recommender systems [10]. The core of such knowledge-driven
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paradigm is knowledge graph (KG) [11]. With domain entities as
nodes and semantic relations as edges, KG could integrate multi-
source data into a graph structure, and then powerful knowledge
representation learning (KRL) methods are developed to avoid com-
plex feature engineering [14]. Hence, knowledge-driven paradigm
stands out as a promising solution for site selection, but it is still
under-explored due to following three critical challenges:

• The difficulty of knowledge discovery from multi-source
urban data. The target knowledge for site selection lies in com-
plex relationships among multi-source urban data, e.g., attribute,
affiliation, spatiality, mobility and etc., which increases the diffi-
culty to discover the structured knowledge from such data.

• The complexity of knowledge refinement for diverse influ-
ences. The influences of various knowledge are diverse for site
selection, e.g., for KFC opening stores, the site decision of Mc-
Donald’s has more reference value than store density indicator
at regions. Thus, refining task-specific knowledge is non-trivial
considering the rich while diverse urban contexts.

• The necessity of knowledge explainability to site decision
understanding. Although feature importance is provided in
data-driven paradigm [16, 42], the reasons for site decisions re-
main unknown, e.g., finding new sites that have significant flow
transition with existing sites. Thus a challenge is how to clearly
explain the underlying factors behind corresponding site deci-
sions for convincing and practical applications.

To overcome the above challenges as well as explore the potential
capability of KG, in this paper, we propose a generalized knowledge-
driven paradigm for site selection. As shown in Figure 1(b), we
first construct the KG from multi-source urban data (referred to as
UrbanKG), based on which a generalized encoder-decoder structure
is proposed for site selection. Specifically, knowledge discovery
is achieved in UrbanKG, i.e., the key elements of the city such
as regions, point of interests (POIs), corporation brands, etc. are
identified as entities, while their complex relationships on attribute,
affiliation, spatiality, mobility, etc. are modeled as relations. To
obtain semantic representations for entity and relation initialization,
we adopt pre-training techniques on UrbanKG. Furthermore, we
design a graph neural network (GNN) based encoder on UrbanKG,
such that knowledge refinement for diverse influences is adaptively
modeled via multi-relational message passing. As for the decoder
part, we design a relation path based scoring function for knowledge
explainability, which measures the plausibility of site decisions
between corporation brands and regionswith the underlying factors
revealed. The scoring function firstly introduces multiple multi-
hop relation paths based on different site selection criteria, then
generates relation path representations via semantic composition
of relations, and finally obtains corresponding scores using the
attention mechanism. The overall model is termed as KnowSite
for Knowledge-driven Site selection. Our key contributions are
summarized as follows:

• We are the first to propose the knowledge-driven paradigm for
site selection, and propose a model KnowSite generalized for
various types of businesses. Especially, KnowSite leverages urban
knowledge via KG, and builds an encoder-decoder structure to
explore the knowledge for effective and explainable site selection.

• We conduct a systematic study of knowledge discovery from
multi-source urban data via KG construction, which identifies
key elements and complex relationships in the city as entities
and relations, respectively.

• Under the proposed encoder-decoder structure, we design amulti-
relational message passing mechanism with GNN based encoder
for knowledge refinement, and develop multi-hop relation path
based decoder, which achieves knowledge explainability with
the reasons behind site decisions.

• We conduct extensive experiments on two real-world datasets
and the proposed KnowSite outperforms state-of-the-art data-
driven approaches by more than 18% on precision, which demon-
strates the effectiveness of knowledge-driven paradigm. Further
visualization results and dynamic case study shed light on un-
derstanding critical mechanism behind different brands’ site de-
cisions as well as demonstrate high practicality in terms of effi-
ciency and scalability.
The rest of this paper is organized as follows. Section 2 introduces

the research problem, while Section 3 presents the details of our
proposed knowledge-driven framework. The empirical results are
discussed in Section 4. We review the related works in Section 5,
followed by a conclusion in Section 6.

2 PROBLEM STATEMENT
Typically, the multi-source urban data for site selection can be
categorized into three aspects [9, 16, 24].
Spatial Data. They include the road network data DRN and busi-
ness area (Ba) data DBa. DRN is a collection of road segments
connecting each other and DBa collects core areas of business and
commercial activities, e.g., Sanlitun1 in Beijing, China.
Store Data. They include the POI data DPOI, brand data DBrand
and site selection data DSite. DPOI and DBrand are the collection
of venues and corporation brands respectively in the city. DSite is
a collection of brand-region pairs for site selection.
User Behavior Data. They include trajectory dataDTraj with user
trajectories, check-in data DCheck with users’ self-reported check-
in records and click dataDClick of aggregated clicking POIs records
using map services.

Then we state the knowledge-driven site selection problem.

Problem 1. Knowledge-driven Site SelectionProblem.Given
the multi-source urban data, the knowledge-driven site selection prob-
lem can be divided into two sub-problems of KG construction and
site selection. The KG construction sub-problem requires to construct
KG G = 𝑓 (DRN,DBa,DPOI,DBrand,DSite,DTraj,DCheck,DClick)
with construction method 𝑓 . Then the site selection sub-problem is
formulated as a link prediction problem on G, predicting if there exists
a site decision link between brand 𝑏 and region 𝑎, i.e., (𝑏, ?, 𝑎).

3 METHODOLOGY
3.1 Framework Overview
To overcome the challenges of applying knowledge-driven par-
adigm for site selection, we present the framework of our pro-
posed method in Figure 2, including UrbanKG construction and

1https://en.wikipedia.org/wiki/Sanlitun
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Figure 2: The framework of our proposed knowledge-driven
site selection methodology.

the KnowSite model for KG construction and site selection sub-
problems, respectively. Specifically, to discover knowledge from
multi-source urban data, we firstly construct UrbanKG for struc-
tured urban knowledge, which is comprised of two major compo-
nents: schema definition and fact extraction. As for the KnowSite
model, we exploit the pre-training on UrbanKG for task-agnostic
but knowledgeable representations. To further refine knowledge
for diverse influences, we propose a GNN based encoder with task-
specific representations learned. Finally, to make knowledge ex-
plainable and identify reasons behind site decisions, we design a
relation path based decoder with effective performance achieved.

3.2 UrbanKG Construction
To discover knowledge from multi-source urban data, we construct
UrbanKG for structured urban knowledge. Formally, a KG is defined
as a graph G = (E,R, F ), where E is the node set of entities and
R is the edge set of relations, while F corresponds to the fact set
{(𝑠, 𝑟, 𝑜) | 𝑠, 𝑜 ∈ E, 𝑟 ∈ R} [14, 40]. The triplet (𝑠, 𝑟, 𝑜) denotes the
directional edge from node 𝑠 to node 𝑜 via the edge of relation 𝑟 .

3.2.1 Schema Definition. At first, by investigating the multi-source
urban data as well as expert knowledge from urban computing and
planning [23, 26, 49, 55], we build the schema of UrbanKG, as shown
in Figure 3. It defines the high-level structure for UrbanKG with
ontologies and relations [11], where the ontologies determine the
types of entities, including key elements in cities, i.e., Region, Ba,
POI, Brand and Category, mainly identified from DRN,DBa,DPOI
andDBrand. Since the category is an important property of POIs and
brands, we further divide the category into coarse-level, mid-level,
and fine-grained categories, referred to as Cate_1/2/3.

Moreover, we identify the underlying relations to capture the
complex relationships among city elements, as presented in Table 1.
For intra-ontology relations, we describe them layer by layer, from
bottom to up in Figure 3(b). At the first layer of Region, BorderBy
and NearBy define the spatial relationships of two regions, while
SimilarFunction link regionswith similar POI distributios. By analyz-
ing DTraj, we devise FlowTransition to link regions with significant

Figure 3: The schema of urban knowledge graph. In (b), the
dash lines represent inter-ontology relations and the solid
lines for intra-ontology ones.

crowd flow transitions. At POI layer, based on DCheck, CoCheckin
reveals the geographical influence among POIs with check-in con-
currence [5] and Competitive models the competitive relationship
among POIs [19]. At Brand layer, RelatedBrand describes related-
ness of brands. At Category layer, SubCateOf_ij defines the taxon-
omy among three-level categories. As for inter-ontology relations,
BaServe, BelongTo and LocateAt define the spatial relationships be-
tween different ontologies, especially BaServe describes regions
are in service range of business area. Moreover, POIToCate_i and
BrandToCate_i represent the attribute relationships, while BrandOf
describes the affiliation relationship between POI and brand. Open-
StoreAt represents site selection records in DSite. Besides, for asym-
metric relations {𝑟 ∈R | (𝑠, 𝑟, 𝑜)⇎ (𝑜, 𝑟, 𝑠),∀(𝑠, 𝑟, 𝑜) ∈ F }, we intro-
duce a new inverse relation 𝑟 ′ into UrbanKG schema.

Table 1: The details of defined relations in UrbanKG.

Relation Abbrev. Subject & Object
Ontologies Symmetry Data Source

BorderBy BB (Region, Region) ! DRN
NearBy NB (Region, Region) ! DRN

FlowTransition FT (Region, Region) % DTraj
SimilarFunction SF (Region, Region) ! DPOI,DRN

CoCheckin CC (POI, POI) ! DCheck,DPOI
Competitive Comp (POI, POI) ! DBrand,DPOI
RelatedBrand RB (Brand, Brand) ! DBrand
SubCateOf_ij SCOij (Cate_i, Cate_j) % DPOI

BaServe BS (Ba, Region) % DBa,DRN
BelongTo BT (POI, Ba) % DBa,DPOI
LocateAt LA (POI, Region) % DPOI,DRN

POIToCate_i P2Ci (POI, Cate_i) % DPOI
BrandToCate_i B2C_i (Brand, Cate_i) % DBrand,DPOI

BrandOf BO (Brand, POI) % DBrand,DPOI
OpenStoreAt OSA (Brand, Region) % DSite
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3.2.2 Fact Extraction. Based on the defined schema above, we in-
stantiate facts from the data, i.e., mapping ontologies to specific
entities and linking entities via semantic relations. First, we intro-
duce the mapping step. For mapping Region ontology, we partition
the city into disjointed regions according to the main road network
with DRN. Compared with grid partition of equal size [43], our par-
tition is much closer to people’s movement and urban functional
units. For Ba and POI ontologies, we obtain the entities from DBa
and DPOI, respectively. For Brand ontology, we adopt a text seg-
mentation tool2 and name matching to obtain entities. For Category
ontology, the three-level categories are divided by domain experts,
e.g., Cate_3 entity Beijing Cuisine belongs to Cate_2 entity Chinese
Food and Cate_1 entity Food. Then, in the second step, the entities
are further linked via relations defined in Table 1 with correspond-
ing data sources. Here we highlight the link details for brand-related
relations. For RelatedBrand, the facts are obtained from a public KG
zhishi.me with the “relatedPage” relation. For BrandOf, POI entities
and their corresponding brand entities are linked together, based on
which the BrandToCate_i facts are obtained by brands’ connected
POIs. Other relational links follow the definitions above, and are
obtained by data mapping, aggregation and calculation methods.
In this way, the constructed UrbanKG successfully presents the
structured knowledge among multi-source urban data.
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Figure 4: t-SNE of pre-trained entity embeddings of beijing’s
UrbanKG (better viewed in color). Ba denotes business area.

Using the data introduced in Section 4.1.1 later, we construct
UrbanKGs for two of the largest cities, which contains over 20k/40k
entities and 300k/500k triplet facts in Beijing/Shanghai. Note that
the original UrbanKGs are significantly large, and we only report
the statistics of subgraphs utilized in this work. It is worth mention-
ing that we utilize pre-training for knowledgeable representations
of entities and relations. Specifically, we leverage the KRL model,
TuckER [2] for pre-training, which measures the plausibility of
triplets in UrbanKG with embeddings learned. Note that the pre-
training process is task-agnostic and captures the global semantic
information. To validate the representation capability of UrbanKG,
we visualize the pre-trained entity embeddings using t-SNE. Es-
pecially, we randomly sample 1000 POI entities and all of other
entities for visualization, showing in Figure 4. It can be observed
that, entities of the same ontology are clustered in space. Moreover,
2https://github.com/fxsjy/jieba

Figure 5: The illustration of KnowSite model with a subgraph
of UrbanKG.

POIs of different categories are also separated in visualization. Such
results indicate the effectiveness of our constructed UrbanKG with
the underlying semantics captured.

3.3 The KnowSite Model
3.3.1 GNN based Encoder. To fully explore the potential of Ur-
banKG and model diverse influences of various knowledge, we
design a GNN based encoder for knowledge refinement. For a
node/entity 𝑣 in KG G = (E,R, F ), 𝑑 denotes the embedding di-
mension, 𝒉𝑘𝑣 ∈ R𝑑 denotes its representation after 𝑘 layers GNN,
while N𝑟

𝑣 denotes its neighbors under relation 𝑟 ∈ R. The relation
𝑟 ’s representation at layer 𝑘 is denoted as 𝒉𝑘𝑟 ∈ R𝑑 . The number of
GNN layers is denoted as 𝐾 . Especially, the representation of node
𝑣 at layer 𝑘 + 1, 𝒉𝑘+1

𝑣 is obtained via three steps [28, 35, 36, 50].

• Message calculation, which defines the function MSG to calcu-
late the message for triplet (𝑢, 𝑟, 𝑣):𝑚𝑘+1

𝑢𝑟𝑣 = MSG(𝒉𝑘𝑢 ,𝒉𝑘𝑟 ,𝒉𝑘𝑣 ).
• Message aggregation, which defines the functionAGG to aggre-
gate messages from node 𝑣 ’s neighbors:𝑀𝑘+1

𝑣 = AGG(𝑚𝑘+1
𝑢𝑟𝑣 |𝑟 ∈

R, 𝑢 ∈N𝑟
𝑣 ).

• Representation update, which defines the function UPD to up-
date 𝑣 ’s representation from the aggregated messages 𝑀𝑘+1

𝑣 and
𝑣 ’s previous layer representation 𝒉𝑘𝑣 : 𝒉𝑘+1

𝑣 = 𝑈𝑃𝐷 (𝒉𝑘𝑣 , 𝑀𝑘+1
𝑣 ).

In terms of message calculation, for a node 𝑣 with the triplet
(𝑢, 𝑟, 𝑣), our proposed GNN based encoder adopts the composition
of neighbor node and linked relation [28, 35]:

MSG
(
𝒉𝑘𝑢 ,𝒉

𝑘
𝑟 ,𝒉

𝑘
𝑣

)
=𝑾𝑘

𝑟 𝜙

(
𝒉𝑘𝑢 ,𝒉

𝑘
𝑟

)
, (1)

where𝑾𝑘
𝑟 is the relation-specific projection matrix, while 𝜙 : R𝑑 ×

R𝑑 → R𝑑 is the entity-relation composition operation, e.g., element-
wise subtraction and element-wise multiplication.

Moreover, the message aggregation and the representation up-
date are defined as relation-specific mean pooling and nonlinear
transformation, respectively. Thus, the representation of node 𝑣 at
layer 𝑘 + 1 can be expressed as follows,

𝒉𝑘+1
𝑣 = 𝑓

©­«
∑︁
𝑟 ∈R

1
|N𝑟
𝑣 |

∑︁
𝑢∈N𝑟

𝑣

𝑾𝑘
𝑟 𝜙

(
𝒉𝑘𝑢 ,𝒉

𝑘
𝑟

)ª®¬ , (2)

where 𝑓 :R𝑑→R𝑑 denotes the nonlinear activation function. Such
relation-specific message passing is illustrated from Figure 5(a) to
(b). Besides, in each layer the relation representation is obtained

zhishi.me
https://github.com/fxsjy/jieba
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via linear projection,

𝒉𝑘+1
𝑟 =𝑾𝑘+1

rel 𝒉𝑘𝑟 , (3)

where𝑾𝑘+1
rel denotes the relational projection matrix at layer 𝑘 + 1.

The pre-trained embeddings are initialized for 𝒉0
𝑟 ,𝒉

0
𝑢 ,𝒉

0
𝑣 .

Compared with task-agnostic pre-training, the GNN based en-
coding is task-specific, where the learnable projection matrices
determine the influences of various messages and refine useful
knowledge for site selection, supervised by the task loss introduced
in the following.

3.3.2 Relation Path based Decoder. With knowledgeable represen-
tations obtained in GNN based encoder, to explore the explainability
of knowledge, we further propose a relation path based decoder for
both effective and explainable site decisions. Here we first introduce
the relation path in KG [20, 57].

Definition 3.1. RelationPath.A relation path in KGG = (E,R, F )
is defined as 𝑝 = (𝑟1, · · · , 𝑟 |𝑝 | ), where |𝑝 | denotes the number of
hops and 𝑟1, · · · , 𝑟 |𝑝 | ∈ R.

Obviously, the relation path provides rich semantic contexts
and can be used to explain the underlying factors of site deci-
sions with UrbanKG. For example, the relation path Brand

𝑟𝑂𝑆𝐴−→
Region

𝑟𝑆𝐹−→ Region focuses on the criteria of region function, i.e.,
opening the new store at the region with similar functions, while
Brand

𝑟𝑅𝐵−→ Brand
𝑟𝑂𝑆𝐴−→ Region indicates the logic that the brand

learns from its related brand and opens the new store at the same
region. Thus, based on existing studies in decision making for busi-
ness site selection, especially analytic hierarchy process [48, 49],
which identifies 5 criteria to guide site selection according to the
brand, geographical distance and region function, etc. Also, we
further follow existing feature engineering studies [16, 24, 42] to
select other 3 criteria related to competitiveness, human flow and
shop category. Therefore, guided by these criteria, we use 8 relation
paths on UrbanKG to model site selection criteria. We summarize
the relation paths for site selection in Table 2.

Table 2: Relation paths for site selection in UrbanKG. Rela-
tions of 𝑟 ′BS_1, 𝑟

′
B2C_1 𝑟

′
P2C_1 represent inverse relations.

Criteria Relation Paths with Ontologies

Region Distance Brand
𝑟𝑂𝑆𝐴−→ Region

𝑟𝑁𝐵−→ Region
Region Function Brand

𝑟𝑂𝑆𝐴−→ Region
𝑟𝑆𝐹−→ Region

Region Flow Brand
𝑟𝑂𝑆𝐴−→ Region

𝑟𝐹𝑇−→ Region

Business Area Brand
𝑟𝑂𝑆𝐴−→ Region

𝑟 ′
𝐵𝑆−→ Ba

𝑟𝐵𝑆−→ Region
Related Brand Brand

𝑟𝑅𝐵−→ Brand
𝑟𝑂𝑆𝐴−→ Region

Brand Category Brand
𝑟𝐵2𝐶_1−→ Cate_1

𝑟 ′
𝐵2𝐶_1−→ Brand

𝑟𝑂𝑆𝐴−→ Region
Competitiveness Brand

𝑟𝐵𝑂−→ POI
𝑟𝐶𝑜𝑚𝑝

−→ POI
𝑟𝐿𝐴−→ Region

Store Category Brand
𝑟𝐵2𝐶−→ Cate_1

𝑟 ′
𝑃2𝐶_1−→ POI

𝑟𝐿𝐴−→ Region

Based on the relation paths, we introduce the design of rela-
tion path based decoder, as shown in Figure 5(c). First, we obtain
the representation of each relation path by semantic composition

[20]. Specifically, given a relation path 𝑝 = (𝑟1, · · · , 𝑟 |𝑝 | ) and the
brand 𝑏, the brand-specific path representation can be calculated
via following three ways,

Add : 𝒑 = 𝒉𝐾
𝑏
+ 𝒉𝐾𝑟1 + · · · + 𝒉𝐾𝑟 |𝑝 | , (4)

Mult : 𝒑 = 𝒉𝐾
𝑏
⊙ 𝒉𝐾𝑟1 ⊙ · · · ⊙ 𝒉𝐾𝑟 |𝑝 | , (5)

GRU : 𝒑 = GRU( [𝒉𝐾𝑟1 , · · · ,𝒉
𝐾
𝑟 |𝑝 | ],𝒉

𝐾
𝑏
), (6)

where ⊙ is the element-wise product, and 𝒉𝐾
𝑏
in (6) is the initial

hidden state for gated recurrent unit (GRU) input.
Since multiple factors/criteria are comprehensively considered

in site selection [34], we further applies the attention mechanism
[35] on relation paths for brand-specific site decision vector,

𝒛𝑏 = Attention(𝑾Query𝒉𝐾
𝑏
,𝑾Key𝑷 ,𝑾Value𝑷 ), (7)

where 𝑷 = [𝒑1; · · · ;𝒑𝑛𝑝 ] is the concatenated relation path repre-
sentation matrix and 𝑛𝑝 is the number of relation paths for site
selection (𝑛𝑝 = 8 in our case).𝑾Query,𝑾Key and𝑾Value are learn-
able parameters in the attention mechanism. The attention weights
provide explainable results behind site decisions, especially the
relationship between brands and various criteria.

For pairwise data (𝑏, 𝑎) ∈Dsite (𝑏 is the brand and 𝑎 is the region),
the decision vector is multiplied with region embedding vector for
the path based score. Additionally, for relatedness maximization,
we utilize the bilinear product3 to obtain the link based score via
direct relation 𝑂𝑝𝑒𝑛𝑆𝑡𝑜𝑟𝑒𝐴𝑡 . The two parts are fused by a hyper-
parameter 𝛼 for final link prediction score on site selection.

𝑦𝑏𝑎 = (1 − 𝛼) · 𝒛⊤
𝑏
𝒉𝐾𝑎 + 𝛼 · ⟨𝒉𝐾

𝑏
,𝒉𝐾𝑟𝑂𝑆𝐴

,𝒉𝐾𝑎 ⟩. (8)

Accordingly, we adopt the cross-entropy loss for model parame-
ter learning, and formulate the objective function as follow,

min
𝚯

∑︁
(𝑏𝑖 ,𝑎 𝑗 ) ∈DSite

− log
𝑒
𝑦𝑏𝑖𝑎𝑗∑

𝑎𝑘 ∈A 𝑒
𝑦𝑏𝑖𝑎𝑘

+ 𝜆 · ∥𝚯∥, (9)

where 𝚯 includes the learnable parameters in GNN based encoder
and relation path based decoder. A represents the set of candidate
regions. 𝜆 is used to regularize the model parameters. The proposed
KnowSite model is trained in a mini-batch way to minimize the
objective formulation above.

Overall, with task-specific loss and end-to-end training, the pro-
posed KnowSite model designs the multi-relational GNN based en-
coder for site selection related message passing, and further learns
the relation path based decoder to explicitly model the logic of site
decisions, achieving both effective and explainable performance.

4 EVALUATION
4.1 Experimental Setup
4.1.1 Datasets. Several sources of urban data are collected and
crawled from map service, life service platform, social media as
well as Internet service provider. Besides, the user data has been
anonymized for privacy protection.

Built upon these multi-source urban data, we collect two datasets
for evaluation as shown in Table 3.

3 ⟨𝒂,𝒃, 𝒄 ⟩ = ∑
𝑖 𝑎𝑖 · 𝑏𝑖 · 𝑐𝑖
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Table 3: Dataset statistics. #triplet denotes the number of
triplets in the corresponding UrbanKGs.

Dataset |E | |R| #triplet Brand Region Train Valid Test

Beijing 23,754 35 330,652 398 528 15,022 5,007 5,008
Shanghai 41,338 36 589,852 441 2,042 29,006 9,669 9,669

• Beijing: This dataset focuses on the area within the Fifth Ring
Road, Beijing, China.

• Shanghai: This dataset focuses on the whole area of Shanghai,
China.

The brands with over 20 stores are selected for dataset construction,
and the site selection data are randomly split into train/valid/test
sets by a proportion of 6:2:2. The details of site selection data and
UrbanKG can be found in Appendix B.

4.1.2 Baselines. We compare our proposed KnowSite model with
two types of models. First, following the feature engineering and
framework in [16, 18, 24, 42, 43], we choose five traditional data-
driven models, Lasso [31], XGBoost [6], Geo-Spotting [16], D2S3
[42] and the state-of-the-art neural network-based model, NeuMF-
RS [18]. All data sources have been utilized for feature extraction.
Due to the model generalization issue to various brands, we train
and test the first four models brand by brand, and report the av-
erage performance. Second, we further compare with four typical
KRL models on UrbanKG, TransE [3], DistMult [46], ComplEx [33],
TuckER [2] and CompGCN [35]. All the baselines are tuned with
their reported settings (in site selection works, if applicable), and
the weights of 𝑂𝑝𝑒𝑛𝑆𝑡𝑜𝑟𝑒𝐴𝑡 links in KRL models are increased to
10 for the site selection task.

4.1.3 Evaluation Metrics. We evaluate the site selection perfor-
mancewith five standardmetrics of NDCG@𝑘 , Hit@𝑘 , Precision@𝑘 ,
Recall@𝑘 and MAP@𝑘 [16, 18, 42, 43], defined in Appendix C.1.
We evaluate the performance with 𝑘 = 5, 10, 20. Due to the space
limitation, some results with 𝑘 = 5, 20 are omitted, which are in
accord with other metrics.

4.1.4 Implementation. For the proposed KnowSite model learning,
the batch size is set to 128 and the embedding dimension 𝑑 is set
to 64. Besides, batch normalization and dropout are used for reg-
ularization. We use the rotate composition operator [8] in GNN
based encoder, and the number of GNN layers ranges from 1 to 3.
We tune other hyper-parameters with early stopping mechanism
on validation NDCG@10. The learning rate and the dropout are
searched from {0.0005, 0.001, 0.003, 0.005} and {0.1, 0.3, 0.5}, respec-
tively. The fusion parameter 𝛼 ranges from 0.0 to 1.0. As for the
pre-training step, we train the TuckER model with early stopping
mechanism on training loss. All models are run 10 times and the
average results are reported to prevent extreme cases. Besides, the
stores (POIs) as well as 𝑂𝑝𝑒𝑛𝑆𝑡𝑜𝑟𝑒𝐴𝑡 links in valid & test sets are
removed from UrbanKG to avoid test leakage. The implementation
code and dataset are available at the given link4

Next, we present the performance comparison on two datasets,
and then analyze the effectiveness of each module in KnowSite with
ablation study. Several explainable results are further investigated

4https://github.com/tsinghua-fib-lab/UrbanKG-KnowSite

for the logic of site selection. Finally, we validate the robustness of
the proposed model in dynamic environment.

4.2 Performance Comparison
Table 4 presents the site selection performance comparison on both
datasets. For KnowSite, all three composition operations of addition
(Add), multiplication (Mult) and GRU are considered for relation
path representation. In general, our proposed KnowSite outper-
forms all baselines across five evaluation metrics. Specifically, the
improvement in Beijing dataset ranges from 5.9%~16.5%, while the
improvement in Shanghai dataset is from 6.5%~10.7%. For exam-
ple, for Precision@10 in Bejing dataset, the improvement is 12.0%.
The considerable improvements demonstrate the effectiveness of
our proposed knowledge-driven paradigm as well as systematic
encoder-decoder framework. Besides, KnowSite models with three
composition operations achieve comparable performance, and we
select the GRU operation for detailed studies later.

Moreover, we have following three observations. First, knowledge-
driven models of DistMult, ComplEx, TuckER and KnowSite per-
form more competitively than left data-driven ones, which owes
to the knowledge discovery on UrbanKG. For example, the best
data-driven baseline NeuMF-RS formulates the problem as matrix
completion, which is easily affected by limited brand-region sam-
ples and cannot exploit rich semantics in multi-source urban data
as UrbanKG does. Second, knowledge-driven models show strong
robustness to various cities with knowledge refinement. For the
two datasets, Shanghai dataset contains much more brands and can-
didate regions, and thus is more challenging. Due to the incomplete-
ness of feature engineering and diverse influences, the performance
gap of data-driven models between the two datasets are significant,
e.g., a gap of over 0.150 on Hit@10 for SVR/XGBoost. In comparison,
the gap for knowledge-driven models is less than 0.080 with site
selection knowledge learned. Third, the performance gap between
KRL models and KnowSite implies that extending KRL models to
site selection is nontrivial and needs further customized designs,
e.g., multi-relational message passing for knowledge refinement,
and site selection related relation paths as well as brand-specific
attention mechanism for knowledge explainability. Besides, on the
larger dataset Shanghai, a training epoch costs 36 seconds and total
training is in 50 epochs, while the inference costs 24 seconds, which
is acceptable in practice.

4.3 Ablation Study
To evaluate the effectiveness of each module in KnowSite, Figure 6
shows the hit ratio performance of different model variants on both
datasets. Specifically, we evaluate the KnowSite model without
pre-training, GNN based encoder and relation path based decoder,
respectively. Note that the variant without decoder (w/o Decoder)
is equivalent to the KnowSite model with 𝛼 = 1 in (8).

According to the results, without the GNN based encoder, the
model performance is reduced by 12% and 17% on Hit@10 for Bei-
jing and Shanghai datasets, respectively. Thus, the GNN based
encoder plays a quite important role in performance guarantee,
which confirms the importance of knowledge refinement and the
gain of task-specific message passing mechanism. Compared with
other KRL models, the GNN based encoder successfully models

https://github.com/tsinghua-fib-lab/UrbanKG-KnowSite
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Table 4: Performance comparison w.r.t. test NDCG@k, Hit@k, Precision@k, Recall@k and MAP@k on two datasets. Best
results are in bold and the best results (in baselines) are underlined. The last two rows show relative improvement in percentage
and 𝑝-value compared with the best baseline with 10 runs of experiments.

Beijing Shanghai

Model N@5 N@10 H@5 H@10 P@10 R@10 M@10 N@5 N@10 H@5 H@10 P@10 R@10 M@10

Lasso 0.057 0.061 0.189 0.305 0.061 0.068 0.031 0.039 0.037 0.118 0.176 0.037 0.038 0.020
XGBoost 0.100 0.100 0.320 0.454 0.089 0.103 0.050 0.075 0.062 0.205 0.297 0.058 0.062 0.030
D2S3 0.094 0.093 0.301 0.435 0.082 0.096 0.046 0.064 0.059 0.211 0.299 0.054 0.058 0.028

Geo-Spotting 0.122 0.121 0.369 0.501 0.104 0.122 0.064 0.085 0.081 0.274 0.383 0.074 0.078 0.038
NeuMF-RS 0.180 0.178 0.501 0.653 0.155 0.182 0.097 0.178 0.168 0.478 0.615 0.148 0.163 0.090

TransE 0.080 0.084 0.297 0.460 0.075 0.089 0.036 0.064 0.063 0.244 0.372 0.058 0.064 0.026
DistMult 0.161 0.161 0.475 0.634 0.137 0.164 0.083 0.150 0.142 0.448 0.591 0.124 0.138 0.071
ComplEx 0.170 0.169 0.502 0.657 0.143 0.171 0.088 0.147 0.142 0.442 0.583 0.126 0.140 0.070
TuckER 0.183 0.183 0.518 0.673 0.156 0.187 0.098 0.188 0.174 0.502 0.620 0.150 0.166 0.094

CompGCN 0.196 0.194 0.503 0.668 0.166 0.198 0.109 0.203 0.188 0.506 0.630 0.161 0.178 0.105

KnowSite (Add) 0.218 0.217 0.556 0.707 0.185 0.222 0.125 0.218 0.200 0.541 0.653 0.171 0.191 0.113
KnowSite (Mult) 0.221 0.219 0.565 0.709 0.186 0.224 0.127 0.219 0.202 0.543 0.664 0.173 0.193 0.115
KnowSite (GRU) 0.220 0.219 0.557 0.713 0.186 0.223 0.127 0.220 0.205 0.543 0.671 0.177 0.197 0.116

Improv. 12.7% 12.8% 9.1% 5.9% 12.0% 13.1% 16.5% 8.4% 9.0% 7.3% 6.5% 9.9% 10.7% 10.5%
𝑝−value 2.0e-10 1.5e-11 1.8e-6 1.6e-5 7.1e-12 1.1e-11 1.5e-11 1.1e-9 4.2e-11 6.9e-8 3.0e-10 1.9e-11 6.6e-11 1.2e-9
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Figure 6: Performance comparison of different model vari-
ants on datasets.

diverse knowledge with site selection, making the KnowSite model
expressive. Besides, the pre-training step provides a task-agnostic
but semantic initialization, contributing a performance gain of 5%
on Hit@10 for datasets. Moreover, relation path based decoder fur-
ther achieves 4%-5% improvement on Hit@10 with brand-specific
choice of site selection criteria. Therefore, all three modules of pre-
training, GNN based encoder and relation path based decoder are
quite essential for effective site decisions.

4.4 Explainability Study
To further investigate the influence of relation paths in KnowSite
as well as understand the reasons behind different brands’ site
decisions, we present several case studies in this part.

4.4.1 Influence of Relation Paths. The relation paths in Table 2
can be categorized into three types of region-based (the first four
paths), brand-based (the 5th and 6th paths), and store-based (the
last two paths) criteria, and we investigate their influence on model
performance by removing any type of relation paths in decoder of
KnowSite, as shown in Figure 7.

Overall, we observe the performance decrease in both datasets.
For example, based on the evaluation metric of Hit@10, removing
brand-based relation paths brings a drop of 4% for Beijing dataset,
while removing region-based ones brings a drop of 3% for Shanghai
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Figure 7: Performance comparison of KnowSite models with-
out different types of relation paths on datasets.

dataset. More importantly, based on results in two datasets, we are
able to identify different preferences to above relation paths for
different cities, which may be caused by different city structures
and other social factors. Specifically, the region-based relation paths
are the most important type for Shanghai but the least important
one for Beijing. This may partly owe to the different region struc-
tures. Due to numerous waterways in Shanghai, the regions are in
irregular structure and thus own various functions and sizes, which
further becomes a quite important factor for site selection. In con-
trast, regions in Beijing are arranged in grid structure with similar
functions and sizes, which is less important than other factors like
the characteristics of brands and stores. Hence, the influence of
relation paths provides explainable site decisions in different cities.

4.4.2 Brands v.s. Site Selection Criteria. As described in Section 3.3.2,
the attention weights in (7) show the relationship between brands
and criteria. Thus, we present the attention weight visualization
on two datasets in Figure 8. Several typical brands across food,
leisure sports, accommodation and other categories are selected
for visualization. A description of selected brands can be found in
Appendix B.2 for better understanding.

By combining visualization results in different cities, i.e., Fig-
ure 8(a) and (b) together, we have similar findings regarding to
brands’ preference to selection criteria that are both insightful and
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Figure 8: Attention weight visualization of different brands
to site selection criteria on datasets.

convincing. First, all fast-food chain brands like KFC, McDonald’s,
Burger King and Pizza Hut determine optimal locations with busi-
ness area condition and related brand strategy considered, which
is in accord with the location game between brands [30] as well
as the commonsense that there always is one KFC store near one
McDonald’s store [12]. Second, similar attention on related brand
strategy can also be observed among bank brands of ICBC, CCB and
BOC, three large banks in China. These bank brands also focus on
region flow for more customers. Moreover, the last four columns in
figures represent the preference of four popular hotel chain brands
to region flow, which determines the occupancy directly. Note that
the slight difference between results in Figure 8(a) and (b) may be
caused by different city conditions and noise in model learning.
Overall, such results demonstrate the explainable capability of our
proposed KnowSite model, which can provide a good reference for
site selection understanding.

To further investigate the influence of site selection criteria
on brand representations, Figure 9 visualizes the cosine distance
between selected brands in Beijing, in which Figure 9(a) utilizes
task-agnostic representations 𝒉0

𝑏
of pre-training, while Figure 9(b)

utilizes task-specific ones 𝒉𝐾
𝑏
of GNN based encoder output with

end-to-end training. Since UrbanKG contains semantic information
like RelatedBrand links, related brands’ representations are closer
compared with others, as shown in diagonal blocks of Figure 9(a).
However, due to the task-agnostic learning’ in pre-training step,
such correlation is not that obvious. In comparison, a remarkable
brand correlation is illustrated in Figure 9(b). Several highlight
diagonal blocks indicate the closeness of brands in hidden space,
such as the first block of four fast-food chain brands and the last
block of four hotel chain brands. Besides, the brand correlations
in off-diagonal parts are also enhanced in Figure 9(b), which also
suggests the effectiveness of knowledge refinement with brand
information encoding. Therefore, KnowSite successfully captures
the semantic relatedness among brands and reveals the relationship
between brands and various site selection criteria.
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Figure 9: Cosine distance visualization of different brands’
representations in Beijing.

4.4.3 Categories v.s. Site Selection Criteria. In Figure 10, we fur-
ther reveal the relationship between categories and site selection
criteria. For each dataset, eight typical categories are selected, and
the attention weights of all brands under corresponding categories
are averaged for visualization.
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Figure 10: Attention weight visualization of different cate-
gories to site selection criteria on datasets. Sports, Service,
Accomm., Edu. represent leisure sports, life service, accom-
modation and education, respectively.

Similar phenomenons in Figure 8 can be observed in Figure 10.
The brands of food category focus on business area and related
brand, while the brands of accommodation category pay more
attention to region function and flow. Among the site selection
criteria, the region factors of distance and function as well as related
brand strategy are commonly considered across various categories.
Such results again validate the importance of relation path based
decoder in KnowSite, and explore its potential in site selection for
both brand and category levels.

Throughout the experimental study, KnowSite achieves the state-
of-the-art performance on site selection task, and the effectiveness
of each designed module is validated. Moreover, with relation paths
and attention mechanism utilized, KnowSite successfully reveals
the influences of site selection criteria on various businesses.

4.5 Dynamic Case Study
In the framework design and aforementioned experiments, we
mainly focus on the static case, where all the entities as well as
their connections in UrbanKG are observed in training. However, in
practical applications, the surrounding environment for site selec-
tion always dynamically changes, especially for the case of newly
opened/deployed infrastructures (POIs), i.e., the UrbanKG can be
dynamic with new POI entities added. In such case, the newly added
POI entities are only available in testing step, which is also known
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as inductive setting [22, 38] or out-of-sample settting [1] in KG
research. To cope with this, we integrate oDistMult [1] with the
proposed KnowSite model, which obtains the embedding of new
unseen entity by aggregating embeddings of all seen entities in its
neighborhood. As a result, the modified KnowSite model can be
applied in the dynamic case without retraining.

(a) Beijing (b) Shanghai

Figure 11: Performance comparison of retrained and dynamic
KnowSite models with different amounts of new unseen en-
tities under dynamic setting.

Especially, we keep the half of POI entities in training UrbanKG,
while add different ratios of POI entities into UrbanKG in testing.
Figure 11 shows the model performance comparison, where “Re-
trained” denotes the KnowSite model retrained on the extended
UrbanKG in testing, while “Dynamic” denotes the above modi-
fied KnowSite model. According to the results, the dynamic model
achieves close performancewith the retrainedmodel in both datasets
(no more than 7% performance drop) but avoids costly retraining in
practice. Such results further validate the compatibility of KnowSite
model with advanced methods in KG as well as its practicality to
real-world site selection applications.

5 RELATEDWORK
Closely related studies of our work include site selection methods,
knowledge representation learning with KG, and KG applications
in urban computing.

Site Selection. With multi-source urban data available, data-
driven methods first extract features from data, and then learn
regression/learning-to-rank models for the problem [16, 42]. Most
of these methods follow the static prediction without considering
the dynamic environment. Specifically, both Geo-Spotting [16] and
DD3S [42] firstly investigate the predictive power of various fea-
tures like density, competitiveness and area popularity, and then
apply traditional SVR and RankNet to determine the optimal lo-
cation. However, these methods learn individual models for each
brand and cannot generalize to various businesses. Furthermore,
several works also integrate deep network with feature engineer-
ing [18, 24, 43, 45]. For example, DeepStore [24] and AR2Net [43]
extracts features from commercial data, satellite images, etc., and
further combine deep neural networks with attention mechanism
for solution. UKG-NN [52] builds a relational graph with manually
defined features, which are passed to the neural network for site
decisions. NeuMF-RS [18] adds restaurants’ and sites’ attributes to
neural collaborative filtering for site selection. 𝑂2-SiteRec [45] de-
velops a multi-graph attention network model for online-to-offline
store site recommendation. However, deep models suffer from ex-
plainability issues with black-box neural networks. Since both tra-
ditional and deep models fail to extract vital knowledge like site

selection criteria from data, their performance is easily affected
by the quality of upstream feature engineering. In contrast, our
work leverages knowledge-driven paradigm for both effective and
explainable performance.

Knowledge Representation Learning. As for KRL to learn
embeddings of entities and relations, though complete structures
like GNN have been introduced [28, 35], tensor decomposition mod-
els still achieve the best performance [14], such as DistMult [46]
and TuckER [2]. Here we argue that the proposed GNN encoder is
more suitable for representing specific knowledge of site selection,
as it can flexibly control the information sharing among diverse
factors. Meanwhile, multi-hop relation paths have been introduced
in KRL for more accurate representations [20, 57]. In our proposed
KnowSite, we adopt relation path based decoder to model site selec-
tion criteria for brands. Thus, it not only boosts the performance,
but also provides explainable site decisions based on the relation
path logic. Note that our relation path based on KG is different from
the meta-path counterpart in heterogeneous graphs [47], which
only learns node embeddings but ignores edge representations [41].
Thus, it is not applicable to this work.

KG for Urban Computing. Recently, there are some attempts
to apply KG for urban computing. For example, the construction
of geographic KGs is investigated in [29, 44], where the spatial
relationships between geographic components are extracted. Some
works [7, 37, 39, 51, 54] introduce KG with two or three relations
and ontologies for specific applications. Besides, KG is utilized to
mine urban flow patterns in [21, 58], and socioeconomic prediction
in [25, 56]. However, such developed KGs miss important knowl-
edge for site selection like human flow, competitiveness, brand
relatedness, etc. In comparison, our proposed UrbanKG contains
rich site selection related knowledge with over 20k entities in city
and over 300k facts between them, which is a promising backbone
for various applications in urban computing.
6 CONCLUSION
In this work, we proposed KnowSite, a knowledge-driven model for
site selection. By leveraging KG for urban knowledge representa-
tion, KnowSite develops a generalized encoder-decoder framework,
where multi-relational message passing and criteria-based relation
paths are adopted to understand different brands’ site decisions. Ex-
tensive experiments demonstrate that KnowSite achieves superior
performance with both effectiveness and explainability achieved.

For future works, we will combine KnowSite with the traditional
data-driven paradigm, and utilize both KRL methods and feature
engineering towards powerful site selection. Moreover, we plan to
explore our proposed UrbanKG as well as the generalized encoder-
decoder framework for other urban computing tasks such as flow
prediction, socioeconomic indicator prediction, etc.
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A URBANKG CONSTRUCTION DETAILS
We present the urbanKG construction details here. Table 5 presents
the source of multi-source data used in this work, which also corre-
spond to entities and relations in UrbanKG construction. For region
entities in UrbanKG for Beijing and Shanghai datasets, we partition
the city into multiple regions by the road network, and each re-
gion entity is provided with a sequence of longitude-latitude pairs
𝐿𝑎 = {(𝑙𝑛𝑔1

𝑎, 𝑙𝑎𝑡
1
𝑎), · · · , (𝑙𝑛𝑔𝑘𝑎 , 𝑙𝑎𝑡𝑘𝑎 )} as region boundary. Brand

entities are commonly brands opening stores. POI entities and
business area entities are provided with location information of
longitude-latitude pairs like 𝑙𝑖 = (𝑙𝑛𝑔𝑖 , 𝑙𝑎𝑡𝑖 ). The category enti-
ties are POI properties identified by experts, e.g., food, shopping,
business, residence, education, etc.

Based on the entities above, the relational links defined in Table 1
can be extracted as follows.
• BorderBy. Given two regions 𝑎, 𝑏, they are connected by BorderBy
if |𝐿𝑎 ∩ 𝐿𝑏 | > 0, i.e., sharing the same boundary points.

• NearBy. Given two regions 𝑎, 𝑏, they are connected by NearBy if
∥𝐿𝑎 − 𝐿𝑏 ∥ ≤ 1𝑘𝑚, where 𝐿𝑎, 𝐿𝑏 are center location of regions.

• FlowTransition. Given two regions 𝑎, 𝑏, they are connected by
FlowTransition if the aggregated flow transition between two
regions exceeds the threshold.

• SimilarFunction. Given two regions 𝑎, 𝑏 and the category dis-
tribution vectors of POIs therein 𝒛𝑎, 𝒛𝑏 , they are connected by
SimilarrFunction if 𝑐𝑜𝑠 (𝒛𝑎, 𝒛𝑏 ) ≥ 0.95 with cosine similarity.

• CoCheckin.Given two POIs 𝑝1, 𝑝2, they are connected byCoCheckin
if the number of records that consecutively visit 𝑝1 and 𝑝2 ex-
ceeds the threshold.

• Competitive. Given two POIs 𝑝1, 𝑝2, they are connected by Com-
petitive if ∥𝑙𝑝1 − 𝑙𝑝2 ∥ ≤ 500𝑚 and they are in the same category.

• RelatedBrand Two brands are connected by RelatedBrand if they
are connected by “relatedPage” relation in zhishi.me KG.

• SubCateOf_ij. The categories are connected by SubcateOf_ij ac-
cording to taxonomy.

• BaServe Given a region 𝑎 and a business area 𝑏𝑎, they are con-
nected by BaServe if ∥𝐿𝑎 − 𝑙𝑏𝑎 ∥ ≤ 3𝑘𝑚.

• BelongTo. Given a POI 𝑝 and a business area 𝑏𝑎, they are con-
nected by BelongTo if ∥𝑙𝑝 − 𝑙𝑏𝑎 ∥ ≤ 3𝑘𝑚.

• LocateAt. Given a POI 𝑝 and a region 𝑎, they are connected by
LocateAt if 𝑙𝑝 is in the closure by region boundary 𝐿𝑎 .

• POIToCate_i. A POI is connected to its associated category by
POIToCate_i.

• BrandToCate_i. A Brand is connected to its associated category
by BrandToCate_i.

• BrandOf. A POI is connected to its associated brand by BrandOf.
• OpenStoreAt Given a brand 𝑏 and a region 𝑎, they are connected
by OpenStoreAt if 𝑏 opens the store at region 𝑎.

B DATASET DETAILS
B.1 Dataset Statistics
Table 6 introduces the ontology statistics of UrbanKG, i.e., the
number of entities for corresponding ontology. As for POIs in the
construction of UrbanKG, we only consider those belonging to
selected brands in datasets.

Table 7 shows the relational fact statistics of UrbanKG in two
cities for our work.

B.2 Details of Selected Brands for Visualization
Here we give a description of selected brands in experiments.

• KFC, McDonald’s, Burger King, Pizza Hut. Fast-food
chain brands around the world.

• Starbucks,Luckin. Coffeehouse chain brands. Luckin, founded
in Beijing, manages more stores than Starbucks in China.

• ZL(Zhangliang) Spicy Hotpot, YGF(Yang Guofu) Spicy
Hotpot. Two of the largest spicy hotpot (a.k.a. Mala Tang,
Chinese snack) chain brands in China.

• Wedome, Baosf Pastry. Bakery chain brands in China,
focus on cakes, bread, and bakery items.

• Gong Cha, alittle-tea. Tea chain brands, offering both orig-
inal tea and milk tea.

• Bianlifeng, 7-Eleven. Convenience store chain brands.
• ICBC (Industrial and Commercial Bank of China),CCB
(China Construction Bank), BOC (Bank of China). State-
owned commercial bank companies in China, opening branch
banks and ATMs throughout the country.

• Nike, Adidas, Li-Ning. Leisure sport chain brands.
• Super 8 (Hotel), Hanting (Hotel), 99 Inn, Home Inn.
Four of the largest hotel chain brands in China.

C EXPERIMENTAL DETAILS
C.1 Metrics
Given the region set A, the brand set B and the 𝑖-th brand, we
denote 𝐴𝑖 and 𝐴𝑖 as its true and model predicted region list based
on popularity/predicted score, respectively. 𝑛𝑖 denotes the number
of regions in test set where the 𝑖-th brand opens the store. Then
the metrics are calculated as follows,

• NDCG@𝑘 (Normalized Discounted Cumulative Gain), which
measures the extent to which the top-k regions in 𝐴𝑖 are
highly ranked in 𝐴𝑖 .

NDCG@𝑘 =
1
|B|

| B |∑︁
𝑖=1

NDCG𝑖@𝑘, DCG𝑖@𝑘 =

𝑘∑︁
𝑗=1

2𝑟𝑒𝑙 (𝑎 𝑗 ) − 1
log2 ( 𝑗 + 1) ,

where the relevance score 𝑟𝑒𝑙 (𝑎 𝑗 ) follows the definition in
[16], i.e., 𝑟𝑒𝑙 (𝑎 𝑗 ) =

|A |−𝑟𝑎𝑛𝑘 (𝑎 𝑗 )+1
|A | for ground truth and

𝑟𝑒𝑙 (𝑎 𝑗 ) = 0 for invalid regions. NDCG𝑖@𝑘 is obtained by
normalizing DCG𝑖@𝑘 via the ideal prediction IDCG𝑖@𝑘 .

• Hit@𝑘 , which describes the hit ratio of top-k regions in 𝐴𝑖 .

Hit@𝑘 =
1
|B|

| B |∑︁
𝑖=1

I(
��𝐴𝑖1:𝑘 ∩𝐴

𝑖
1:𝑘

��),
where I(·) denotes the indicator function, i.e., I(𝑥) = 1 if
𝑥 > 0, otherwise I(𝑥) = 0.

• Precision@𝑘 and Recall@𝑘 , which are defined as follows,

Precision@𝑘 =
1
|B|

| B |∑︁
𝑖=1

|𝐴𝑖 ∩𝐴𝑖1:𝑘 |
𝑘

.

Recall@𝑘 =
1
|B|

| B |∑︁
𝑖=1

|𝐴𝑖 ∩𝐴𝑖1:𝑘 |
min(𝑛𝑖 , 𝑘)

.
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Table 5: The data source for UrbanKG construction.

Data Description Entities Relations

DRN The road network data crawled from Map Platform Region BorderBy, NearBy

DBa The business area data crawled from Life Service Platform Ba BaServe

DPOI The POI data crawled from Map Platform POI, Category SimilarFunction, Competitive, SubCateOf_ij,
BelongTo, LocateAt, POIToCate_i

DBrand The brand data crawled from BaiduBaike Brand RelatedBrand, BrandToCate_i, BrandOf

DSite
The site selection records derived from

DPOI, DRN and DBrand
- OpenStoreAt

DTraj The mobility trajectories collected from Mobile Operator - FlowTransition

DCheck The check-in records collected from Social Platform - CoCheckin

Table 8: The hyper-parameters for KnowSite in experiments.

Hyper-parameter Beijing Shanghai

batch_size 128 128
embedding dimension 𝑑 64 64

learning_rate 0.001 0.003
dropout 0.3 0.1

GCN_layers 2 2
fusion parameter 𝛼 0.5 0.8

Table 6: The ontology statistics of UrbanKG for cities.

Dataset #Brand #Region #Ba #POI #1-Cate #2-Cate #3-Cate

Beijing 398 528 168 22,468 10 39 143
Shanghai 441 2042 264 38,394 11 42 144

Table 7: The details of defined relations in UrbanKG.

Relation Beijing Shanghai

BorderBy 2,626 9,896
NearBy 7,232 29,942

FlowTransition 287 634
SimilarFunction 2,844 5,126
Competitive 1,968 2,576
RelatedBrand 296 352
SubCateOf_ij 325 330

BaServe 6,152 11,876
BelongTo 22,372 38,394
LocateAt 22,468 38,394

POIToCate_i 22,468*3 38,394*3
BrandToCate_i 398*3 441*3

BrandOf 22,468 38,394
OpenStoreAt 15,022 29,006

• MAP@𝑘 (Mean Average Precision), which measures the rel-
ative ranking quality of the top-k regions in 𝐴𝑖 .

MAP@𝑘 =
1
|B|

| B |∑︁
𝑖=1

1
min(𝑛𝑖 , 𝑘)

·
𝑘∑︁
𝑗=1

|𝐴𝑖 ∩𝐴𝑖1:𝑗 |
𝑗

· 𝑟𝑒𝑙 (𝑎 𝑗 ),

where 𝑟𝑒𝑙 (𝑎 𝑗 ) follows the same definition above.

C.2 Hyper-parameter Selection
Table 8 summarizes all the hyper-parameters for the KnowSite
model on two datasets.
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