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ABSTRACT 
Monitoring sustainable development goals requires accurate and 
timely socioeconomic statistics, while ubiquitous and frequently-

updated urban imagery in web like satellite/street view images has 
emerged as an important source for socioeconomic prediction. Es-

pecially, recent studies turn to self-supervised contrastive learning 
with manually designed similarity metrics for urban imagery rep-
resentation learning and further socioeconomic prediction, which 
however sufers from efectiveness and robustness issues. To ad-
dress such issues, in this paper, we propose a Knowledge-infused 
Contrastive Learning (KnowCL) model for urban imagery-based 
socioeconomic prediction. Specifcally, we frstly introduce knowl-

edge graph (KG) to efectively model the urban knowledge in spa-
tiality, mobility, etc., and then build neural network based encoders 
to learn representations of an urban image in associated semantic 
and visual spaces, respectively. Finally, we design a cross-modality 
based contrastive learning framework with a novel image-KG con-

trastive loss, which maximizes the mutual information between 
semantic and visual representations for knowledge infusion. Ex-

tensive experiments of applying the learnt visual representations 
for socioeconomic prediction on three datasets demonstrate the 
superior performance of KnowCL with over 30% improvements 
on �2 

compared with baselines. Especially, our proposed KnowCL 
model can apply to both satellite and street imagery with both 
efectiveness and transferability achieved, which provides insights 
into urban imagery-based socioeconomic prediction. 

CCS CONCEPTS 
• Computing methodologies → Knowledge representation 
and reasoning; Computer vision representations; • Applied 
computing → Law, social and behavioral sciences. 
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1 INTRODUCTION 
Driven by the rapid urbanization, more than half of the world 
population-4.4 billion inhabitants-live in cities and contribute over 
80% of global GDP today [4], which makes cities an increasingly 
important role in achieving United Nations Sustainable Develop-

ment Goals (SDGs) on economy, education, environment, health, 
etc. [32, 33]. Especially, socioeconomic indicators like population, 
educational background and household income are good proxies 
for SDG monitoring [11]. The traditional door-to-door surveys for 
such statistics however are costly, labor-intensive, time-consuming 
and further afected by recent COVID-19 pandemic [33]. In contrast, 
the inclusive, ubiquitous and frequently-updated web applications 
paves the way for high-quality, economical and timely SDG moni-

toring. Recently, researchers predict socioeconomic indicators with 
the enormous amount of web data especially the urban imagery 
[6, 25, 43], i.e., the satellite imagery and the street view imagery 
provided in web map services like Google Map and web platforms 
like Instagram. 

Built upon the great success of deep learning in computer vision 
[9, 21], most studies adopt convolutional neural networks (CNNs) 
to learn visual representations of urban imagery for socioeconomic 
prediction. Specifcally, earlier studies follow the task-specifc su-

pervised learning for visual representations with neighborhood 
demographics [1, 11] and country poverty [17, 48] as supervision 
signals, which require massive labeled data for training and sufer 
from generalization issues [37]. To overcome such issues, recent 
studies turn to self-supervised learning with contrastive objectives, 
a.k.a, contrastive learning [27], and learn a single representation 
vector for one image to generalize across diverse prediction tasks 
[2, 44]. Based on manually designed similarity metrics, these studies 
learn visual representations of urban imagery by maximizing the 
agreement between similar images in latent space under an image 
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Figure 1: Illustration of infusing various types of knowl-
edge for urban imagery-based socioeconomic prediction, e.g., 
“nearBy”, “fowTransition” and “similarFunction” relational 
links describe urban knowledge in spatiality, mobility and 
function (POI category distribution), respectively. 

view-based contrastive learning framework [50]. For example, a 
commonly used metric on spatiality knowledge is from Tobler’s 
First Law of Geography [30] that spatially near images should have 
similar semantics and thus closer representations [5, 18, 20, 45]. 
Moreover, a recent study [47] applies the typical contrastive learn-

ing framework, SimCLR [7], for satellite imagery-based socioe-
conomic prediction, assuming that images with similar point of 
interest (POI) features should have closer representations 1. Ow-

ing to the task-agnostic representation learning from unlabeled 
data, contrastive learning becomes a promising avenue for urban 
imagery-based socioeconomic prediction. 

Despite this, existing contrastive learning based methods heavily 
rely on manually designed similarity metrics for urban imagery 
representation learning, which only capture one or two types of 
semantic knowledge in urban environment and thus afect the 
practical performance in socioeconomic prediction. According to 
recent works of leveraging multi-source urban data for socioe-
conomic prediction [46, 49], there are various types of semantic 
knowledge available for urban imagery-based socioeconomic pre-
diction, e.g., the spatiality knowledge of spatial neighborhood, the 
mobility knowledge of signifcant fow transitions and the func-

tion knowledge of similar POI category distributions, as shown 
in Figure 1. Thus, how to infuse comprehensive knowledge into 
contrastive learning for urban imagery-based socioeconomic pre-
diction becomes an important research problem, which however is 
challenging in: 

• Efective structure for knowledge identifcation. Unlike 
the well-known domain knowledge like Tobler’s First Law of 
Geography, other types of aforementioned knowledge lack ex-
plicit domain defnition. Moreover, further knowledge infusion 
requires an efective structure to store and represent the knowl-

edge, increasing the difculty of knowledge identifcation for 
urban imagery-based socioeconomic prediction. 

1
Here POI features correspond to POI category distributions of regions identifed in 

urban imagery. 

• Contrastive learning for knowledge infusion. Existing stud-

ies adopt the image view-based contrastive learning framework 
where the similarity metric is manually designed with a single 
type of knowledge. Therefore, they fail to infuse various types of 
knowledge for urban imagery-based socioeconomic prediction. 

To address such challenges, in this paper, we propose a Knowledge-

infused Contrastive Learning model for urban imagery-based so-
cioeconomic prediction, termed as KnowCL. Firstly, motivated by 
the recent success of the structured knowledge graph (KG) for ur-

ban knowledge modeling [26, 29, 40, 41, 53], we introduce urban 
knowledge graph (UrbanKG) to identify comprehensive knowledge 
in multi-source urban data. In the UrbanKG, entity nodes character-

ize urban elements like regions, POIs and business centers, while 
relation edges describe semantic connections between them, i.e., 
the knowledge in spatiality, mobility and function. Moreover, we 
present cross-modality based contrastive learning for knowledge 
infusion by exploiting the naturally associated pairing of urban im-

agery and regions in UrbanKG
2
. To be specifc, for an urban image, 

KnowCL develops a visual encoder to extract its visual representa-

tion, and a semantic encoder to extract KG embedding of its associ-
ated region entity in UrbanKG [42], which are further optimized for 
maximum agreement with contrastive loss on image-KG pairs. The 
learnt visual representations of urban imagery are further fed into 
traditional regression models for diverse socioeconomic prediction 
tasks. Therefore, KnowCL frstly leverages UrbanKG for knowledge 
identifcation, then represents comprehensive knowledge with KG 
embedding, and combines with cross-modality based contrastive 
learning to achieve knowledge infusion for urban imagery-based 
socioeconomic prediction. The main contributions of this paper are 
summarized as follows: 

• To the best of our knowledge, we are the frst to investigate 
KG for urban imagery-based socioeconomic prediction, which 
provides an efective structure to comprehensively identify the 
semantic knowledge in spatiality, mobility, function, etc. 

• We propose a cross-modality based contrastive learning frame-

work, which infuses semantic knowledge into visual represen-

tations of urban imagery via the novel contrastive objective 
between the image and KG modalities. The proposed framework 
might shed light on urban imagery representation learning. 

• We conduct extensive experiments on three cities of Beijing, 
Shanghai and New York across six socioeconomic indicators. 
The results on both satellite and street view imagery demon-

strate that our proposed framework achieves signifcant per-

formance improvement compared with state-of-the-art models. 
Further ablation studies and analysis confrm the efectiveness 
and transferability of knowledge infusion for urban imagery-

based socioeconomic prediction. 

2 RELATED WORK 
As described before, the urban imagery-based socioeconomic predic-
tion studies focus on urban imagery representation learning, which 
extracts visual representations for downstream socioeconomic pre-
diction tasks. Based on whether the urban imagery representation 
learning process needs supervision signals from downstream tasks, 

2
The knowledge graph is identifed as another kind of modality data versus urban 

imagery data in visual modality. 
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related studies can be classifed into supervised learning, unsuper-

vised learning and self-supervised learning
3
. 

Supervised Urban Imagery Representation Learning for So-
cioeconomic Prediction. We frst discuss about the input source 
of satellite imagery. With the CNN model pre-trained on ImageNet 
[9] and light intensity as supervision signal, both Jean et al. [17] and 
Yeh et al. [48] extract satellite imagery representations for assets 
prediction in Africa. Similar frameworks are proposed in [15, 35] 
for economic indicator prediction. Han et al. [12] train a teacher-

student network with limited labels to predict demographics like 
household and income. As for street imagery case, Gerbu et al. [11] 
train a CNN model to identify the types and number of cars in 
street view imagery, which are further used to estimate socioeco-
nomic indicators like race and education. Lee et al. [23] leverage 
semantic segmentation and graph convolution network (GCN) to 
predict livelihood indicators of wealth index and BMI. Moreover, 
Law et al. [22] extract features from both satellite and street view 
imagery to estimate the house prices. However, above studies learn 
urban imagery representations supervised by a specifc downstream 
task, i.e., the learnt representations cannot generalize to various 
socioeconomic prediction tasks. 

Unsupervised Urban Imagery Representation Learning 
for Socioeconomic Prediction. Han et al. [13] adopt clustering 
algorithm and partial order graph to distinguish economic develop-
ment of satellite imagery, which are further used to train a scoring 
model for urbanization prediction. Suel et al. [38] apply the pre-
trained CNN model to extract street view imagery representations 
for inequality measurement in urban environment. Besides, He et 
al. [15] extract traditional image features like histogram of oriented 
gradients from both satellite and street view imagery to predict 
commercial activeness. However, such unsupervised learning meth-

ods only capture shallow features of urban imagery, which lead to 
inferior performance. 

Self-supervised Urban Imagery Representation Learning 
for Socioeconomic Prediction. Motivated by the milestones of 
self-supervised learning achieved in computer vision [7, 19, 44], 
researchers also leverage self-supervised learning especially con-

trastive learning for urban imagery-based socioeconomic predic-
tion, and focus on similarity metric design to distill expressive 
representations of urban imagery. Especially, most studies follow 
the Tobler’s First Law of Geography [30] that “everything is related 
to everything else, but near things are more related than distant 
things”, and design corresponding similarity metrics or loss forms. 
For example, Jean et al. [18] employs the triplet loss to minimize 
the distance between representations of spatially near satellite im-

ages but maximize the distance between those of spatially distant 
pairs, while Wang et al. [45] employs the similar loss for street view 
imagery case. Moreover, recent studies [5, 20, 47] mainly adopt 
the InfoNCE loss [34] with SimCLR framework [7] to encode such 
spatiality knowledge into visual representations. Xi et al. [47] fur-

ther incorporate a POI-based similarity metric such that images 
corresponding to similar POI category distributions should have 
closer visual representations. Furthermore, Li et al. [25] consider 
the spatiality based similarity metrics for both satellite imagery and 

3
The self-supervised learning is separated from the unsupervised one, which empha-

sizes using supervision signals generated from data itself. 

street imagery. According to the discussion above, most existing 
studies adopt the image view-based contrastive learning frame-

work, where a pair of images are compared to capture spatiality 
knowledge, failing to infuse various types of knowledge together. In 
comparison, our proposed KnowCL model captures comprehensive 
knowledge via UrbanKG and achieves efective knowledge infusion 
with cross-modality based contrastive learning framework. 

3 PRELIMINARIES & PROBLEM STATEMENT 
As stated in The sustainable Development Goals Report [33], the 
SDGs determine the survival of humanity, facing the current con-

fuence of crises. Especially, various socioeconomic indicators are 
characterized for SDG monitoring [8]: 
Defnition 1 (Socioeconomic Indicator). Socioeconomic indica-

tors measure the status of the region/nation on the socioeconomic 
scale, determined by a combination of social and economic fac-
tors such as population, amount and kind of education, household 
consumption, crime rate, etc. 

Moreover, the urban region becomes an important subject for 
socioeconomic indicator investigation, which are defned as: 
Defnition 2 (Urban Region). A city can be partitioned into a set 
of urban regions A, following certain partition criteria like road 
network division and administrative division [12, 45]. 

The urban imagery includes the satellite imagery and the street 
view imagery, which are visual appearances of the city from over-
head view and ground-level view, respectively [25, 43]. Figure 1 
provides some examples of the urban imagery. Specifcally, the satel-
lite images are collected by satellites, which capture the structure of 
regions in the city. The street view images are taken by automobiles 
or citizens along the street, which capture the internal environment 
of regions in the city. Moreover, an urban region usually associates 
with one satellite image but multiple street view images taken at 
diferent locations therein, which are defned as: 
Defnition 3 (Urban Imagery). Given a city, the urban imagery set 
is denoted by I = ISI/ISV 

with the satellite imagery set ISI 
and 

the street view imagery set ISV
. For ∀� ∈ A, its associated satellite 

∈ ISI
image is denoted by � SI , and its associated � street view � 
images are denoted by � SV = {�

�, 
SV

1
,· · ·, � SV 

�,1
,· · ·, � SV 

.� �,� } with � SV 
�,� ∈ ISV 

The UrbanKG generalizes the commonly used KG concept [16, 
42] to urban domain for urban knowledge modeling [26, 29, 40, 53], 
which is defned as: 
Defnition 4 (Urban Knowledge Graph). An UrbanKG is de-
fned as a multi-relational graph G = (E, R, F ), where E, R and 
F are the sets of entities, relations and facts, respectively, with 
F = {(�ℎ, �, �� ) |�ℎ, �� ∈ E, � ∈ R} hold. Especially, the entity set E 
includes urban elements like regions, POIs, business centers and 
categories, while the relation set R describes their semantic con-

nections on spatiality, mobility, function and business. The set of 
region entities in G corresponds to above defned region set A. 

Details of the UrbanKG will be presented in detail in Section 4.3. 
To capture the semantic knowledge for downstream applications, 
recent studies learn to embed entities and relations of a KG into 
low-dimensional vector space, a.k.a., KG embeddings [16, 39, 42]. 

Based on the preliminaries above, we then formally defne the 
urban imagery-based socioeconomic prediction problem as follows. 
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Problem 1 (Urban Imagery-based Socioeconomic Prediction). 
Given the region set A with its associated urban imagery set I, 
for ∀� ∈ A, the main goal is to learn the visual representation 
�� and well estimate the socioeconomic indicator �� . The ground 
truth values of �� is assumed to be unknown in urban imagery 
representation learning. 

4 METHODOLOGY 

4.1 Framework Overview 
Figure 2 presents the main framework of our proposed KnowCL 
model for urban imagery-based socioeconomic prediction problem. 
Since we consider the socioeconomic indicators on region level, we 
solve the challenges of knowledge identifcation and knowledge 
infusion with focus on regions in the city. 

Figure 2: The main framework of KnowCL model, where the 
urban imagery input can be either satellite imagery or street 
view imagery. The projector heads after encoders are omitted 
for simplicity in the illustration. 

To identify the comprehensive knowledge in urban environment, 
we frstly introduce the recently proposed UrbanKG structure to 
store and represent urban knowledge related with regions, which 
is then fed into a GCN-based semantic encoder to learn KG embed-

dings for region entities therein. As for satellite/street view images 
associated with regions, a CNN-based visual encoder is adopted 
for visual representations. Furthermore, we propose cross-modality 
based contrastive learning framework to achieve knowledge infu-

sion. Especially, the designed image-KG contrastive loss encourages 
one region’s KG embedding and its associated urban imagery rep-
resentation to exhibit high mutual information, through which the 
semantic knowledge preserved in KG embedding is successfully 
infused into urban imagery representation. Finally, the knowledge-

infused urban imagery representations are leveraged for diverse 
socioeconomic prediction tasks. 

4.2 Urban Knowledge Identifcation 
As defned in Section 3, we introduce UrbanKG to identify the 
urban knowledge for socioeconomic prediction. Specifcally, the 
entities in UrbanKG include regions partitioned by road network, 
business centers of commercial and consumption activities, POIs 
of infrastructures like restaurants, markets and schools, as well as 
categories of POI attributes, e.g., food, shopping, education, etc. 

Thus, the entity types in UrbanKG are Region, Business Center 
(BC), POI and Category. 

Table 1: The captured knowledge and corresponding rela-
tional structures in UrbanKG. 
Knowledge Relation Head Entity Tail Entity 

Spatiality 
borderBy 
nearBy 
locateAt 

Region 
Region 
POI 

Region 
Region 
Region 

Mobility fowTransition Region Region 

Function 
similarFunction 

coCheckin 
cateOf 

Region 
POI 
POI 

Region 
POI 

Category 

Business 
provideService 

belongTo 
competitive 

BC 
POI 
POI 

Region 
BC 
POI 

Moreover, we model the comprehensive knowledge in multi-

source urban data as semantic relations, which are summarized in 
Table 1. Various types of knowledge are represented in triple form 
with relation, head entity and tail entity. 

• Spatiality. We determine borderBy and nearBy relational links 
by spatial distance between regions, and use locateAt to identify 
POIs’ spatially located regions. 

• Mobility. we aggregate individual mobility trajectories to induce 
the signifcant fow transition between regions, which are linked 
by fowTransition. 

• Function. We consider widely used features in urban computing 
tasks [51] as function knowledge. For example, coCheckin con-

nects highly correlated POIs in terms of concurrence in check-in 
data, which implies two POIs are consecutively visited by several 
people, e.g., a cinema and a neighboring restaurant [28]. Since 
the region function is usually featured by POI category distribu-

tion therein [47], we connect regions with similar POI category 
distribution via similarFunction. Besides, cateOf describes the 
category attribute of POIs. 

• Business. We connect regions with their neighboring business 
centers via provideService, to capture the economic status of 
regions. Similarly, POIs are connected with neighboring business 
centers via belongTo. To further identify the competitiveness 
between POIs, neighboring POIs with the same category are 
connected via competitive [24]. 

Besides, reverse edges are added to model inverse relations, e.g., 
(POI, locateAt, Region) and (Region, ∼locateAt, POI). Following the 
structure above, we construct the UrbanKG with urban knowledge 
identifed for socioeconomic prediction. The construction details 
can be referred to Section A. 

4.3 Encoder Design 
4.3.1 Semantic Encoder Design. The semantic encoder aims to 
learn region embeddings with urban knowledge represented. To 
fully exploit both semantic information of various relations and 
structural information of graph topology in UrbanKG, we adopt 
the GCN-based encoder for region embeddings [28, 39]. 

Given the UrbanKG G = (E, R, F ), for ∀� ∈ E, � ∈ R, their 
�-dimensional embeddings after � layer are denoted by �� +1 

and� 
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��+1, respectively. The neighborhood of � is denoted by N� = 
{(�, � ) | (�, �, �) ∈ F }, and ��+1 ∈ R� 

can be calculated as: � 

⎛ ∑ ⎞ 
�� +1 = � �� � (��� , �� ) + �� , (1)� ⎜ dir(� ) self

��� ⎟
⎝(�,� ) ∈N� ⎠ 

where �� 
self are direction-specifc projection matrices 

dir(r) and �� 

for incoming/outgoing relations and self loop relation, respectively. 
� : R� × R� → R� 

is the composition function for message cal-
culation in GCN, e.g., element-wise summation and element-wise 
product [39]. � (·) is an activation function. Besides, we use pre-
trained embeddings from TuckER [3] for initialized embeddings. 

Let � KG (·) denote the semantic encoder with � layers of GCN 
following above design, and the region embedding for � ∈ A can 
be calculated as �� = � KG (G, �), i.e., �� � .= �� 

4.3.2 Visual Encoder Design. Our proposed KnowCL model allows 
various choices of network architectures for visual encoder design. 
For simplicity, we adopt the commonly used ResNet [14] to obtain 
visual representations of urban imagery. 

For � ∈ A with satellite imagery �� 
SI
, the visual representation 

can be calculated as � SI = ResNet(�� 
SI). As for street view imagery � 

� SV = {�
�, 
SV

1
,· · ·, � SV 

�,� }, the visual representation is calculated by aver-
age pooling on street view images therein:

� ∑ 
�� 
SV = 

1 � 

ResNet(��,� 
SV). (2)

� 
�=1 

Thus, let � Image (·) denote the visual encoder designed above, 
and the urban imagery representation can be obtained by �� = 
� Image (�� ) with �� = �� 

SI/� SV 
and �� = �� 

SI/� SV.� � 

4.4 Contrastive Loss Design & Optimization 
Motivated by cross-modality based contrastive learning between 
image and text modalities [36, 50], we design a novel image-KG 
contrastive loss for knowledge infusion. The core insight here is 
that both semantic representation (KG embedding) and visual rep-
resentation (urban imagery representation) of a region should be 
close to each other. 

First, for better representation quality, we introduce two indepen-

dent projection heads �KG (·) and �Image (·) after semantic encoder 
and visual encoder, respectively, as validated in empirical studies 
[5, 7]. The corresponding outputs of �̃� and �̃� for � ∈ A can be 
expressed as: 

�̃� = �KG (��) = �
2

KG
ReLU(�

1

KG��) (3) 
Image Image

�̃� = �Image (�� ) = � ReLU(� �� ), (4)
2 1

where four projection matrices are used to project representations 
for both modalities from their encoder space to the same space for 
contrastive learning. 

Moreover, following the core insight above, we extend the tradi-
tional InfoNCE loss [34] to image-KG contrastive loss, and the loss 
function for � ∈ A is expressed as: 

Image→KG KG→ImageL� = L� + L� 

exp(sim( �̃�, �̃�)) exp(sim(�̃�, �̃� )) 
= − log −log , (5)Í�

�=1 exp(sim( �̃�, �̃� )) 
Í�
�=1 exp(sim(�̃�, �̃� )) 

where the loss is computed in a minibatch of � samples, and 
Image→KG KG→Image

sim(·) represents the inner product. L and L� � 

are image-to-KG and KG-to-image contrastive losses, respectively, 
which maximally preserve the mutual information between image-

KG pairs. Unlike existing urban imagery-based socioeconomic pre-
diction studies using image view-based contrastive loss in the same 
modality [25, 47], our proposed image-KG contrastive loss is based 
on cross modalities of inputs, which successfully infuses the com-

prehensive knowledge captured in region embeddings into urban 
imagery representations. 

By optimizing the image-KG contrastive loss on the whole data, 
we obtain knowledge-infused urban imagery representations ��∈A 
from the visual encoder, which are further fed into the regression 
module of multi-layer perceptron (MLP) for socioeconomic indica-

tor training and prediction. 

5 EXPERIMENTS AND RESULTS 

5.1 Experimental Setup 
5.1.1 Datasets. We collect three datasets with urban imagery and 
socioeconomic indicator data for evaluation: Beijing (BJ), Shanghai 
(SH) and New York (NY). Regions in Beijing and Shanghai are 
partitioned by road network, while regions in New York are Census 
Block Groups (CBGs) used by US Census Bureau. The 256×256-

pixel satellite images with about 4.7 m-resolution are obtained from 
ArcGIS, which are further merged along irregular region boundaries 
for input satellite images. The 1024×512-pixel street view images 
in Beijing and Shanghai as well as the 512×512-pixel street view 
images in New York are obtained from Baidu Map API and Google 
Street API, respectively. 

As for socioeconomic indicator data, Beijing dataset includes 
(1) Pop.: population data from WorldPop, (2) Econ.: economic 
activity data from [10], (3) Rest.: restaurant business (takeaway 
order data) and (4) Consp.: consumption data from a life service 
platform, while Shanghai dataset includes (1) Pop.: population and 
(2) Econ.: economic activity data from same sources. New York 
dataset includes (1) Pop.: population and (2) Edu.: education data 
from SafeGraph, and (3) Crime: crime data from NYC Open Data. 
The UrbanKG data for three datasets are from [28, 41], and business 
knowledge related relations are omitted in New York dataset due 
to a lack of source data. All socioeconomic indicators are converted 
into logarithmic scale, i.e. � = ln(�raw + 1). Besides, regions in 
datasets with over 40 street view images are selected and randomly 
split into train/valid/test sets by a proportion of 6:2:2 in the socioe-
conomic prediction step. Table 2 summarizes dataset statistics and 
details are provided in Section A. 

Table 2: Dataset Statistics. 
Dataset 
Beijing 

Shanghai 

#Region 
789 
1,553 

#SV 
31,560 
62,120 

#SI 
18,289 
5,904 

|E | 
36,752 
58,145 

|R | 
10 
10 

|F | 
188,985 
363,159 

New York 1,142 45,680 1,560 87,020 6 357,464 

5.1.2 Baselines. We compare our model with several baselines 
in urban imagery-based socioeconomic prediction studies. The 
satellite imagery-based baselines include: 

• Tile2Vec [18]. Tile2Vec uses the triplet loss to minimize visual 
representations of spatially near satellite images and maximize 
those of distant pairs. 
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Table 3: Satellite imagery-based socioeconomic prediction results on three datasets. Best results are in bold and the best results 
are underlined. The last row shows relative improvement in percentage. 
Dataset Beijing Shanghai New York 

Model Pop. Econ. Rest. Consp. 
�2 

RMSE �2 
RMSE �2 

RMSE �2 
RMSE 

Pop. Econ. 
�2 

RMSE �2 
RMSE 

Pop. Edu. Crime 
�2 

RMSE �2 
RMSE �2 

RMSE 
ResNet-18 
Tile2Vec 
READ 

PG-SimCLR 

0.277 0.887 0.168 1.465 0.146 2.569 0.125 3.435 
0.274 0.888 0.092 1.531 0.108 2.626 0.074 3.534 
0.300 0.872 0.173 1.461 0.222 2.451 0.213 3.258 
0.356 0.837 0.361 1.285 0.275 2.368 0.269 3.140 

0.007 1.027 0.082 1.674 
0.125 1.041 0.065 1.689 
0.154 0.949 0.097 1.660 
0.307 0.858 0.166 1.596 

-0.404 0.788 0.518 0.085 0.324 0.751 
0.143 0.615 0.533 0.084 0.382 0.718 
-0.034 0.676 0.534 0.084 0.413 0.700 
-0.223 0.735 0.622 0.075 0.434 0.687 

KnowCL 
Improv. 

0.479 0.752 0.532 1.100 0.493 1.979 0.443 2.741 
34.5% 10.2% 47.3% 14.4% 79.3% 16.4% 64.7% 12.7% 

0.424 0.783 0.325 1.436 
38.1% 8.7% 95.8% 10.0% 

0.153 0.612 0.658 0.042 0.536 0.622 
7.0% 0.5% 5.8% 44.0% 23.5% 9.5% 

Table 4: Street view imagery-based socioeconomic prediction results on three datasets. Best results are in bold and the best 
results are underlined. The last row shows relative improvement in percentage. 
Dataset Beijing Shanghai New York 

Model Pop. Econ. Rest. Consp. 
�2 

RMSE �2 
RMSE �2 

RMSE �2 
RMSE 

Pop. Econ. 
�2 

RMSE �2 
RMSE 

Pop. Edu. Crime 
�2 

RMSE �2 
RMSE �2 

RMSE 
ResNet-18 
Urban2Vec 
SceneParse 
PG-SimCLR 

0.085 0.997 0.215 1.423 0.262 2.388 0.257 3.166 
0.026 1.029 0.059 1.559 0.094 2.646 0.103 3.478 
0.073 1.004 0.157 1.476 0.183 2.512 0.193 3.299 
0.237 0.911 0.288 1.356 0.409 2.136 0.439 2.750 

0.046 1.007 0.033 1.718 
0.012 1.025 0.007 1.741 
0.058 1.001 0.049 1.704 
0.015 1.023 0.112 1.646 

0.151 0.612 0.402 0.095 0.340 0.742 
0.046 0.649 0.232 0.107 0.020 0.904 
0.154 0.611 0.426 0.093 0.222 0.806 
0.283 0.563 0.569 0.080 0.482 0.657 

KnowCL 
Improv. 

0.416 0.796 0.557 1.069 0.470 2.024 0.449 2.725 
75.6% 12.6% 44.3% 21.2% 14.9% 5.2% 2.3% 1.0% 

0.359 0.826 0.281 1.482 
519.0% 17.5% 150.9% 10.0% 

0.377 0.524 0.586 0.079 0.552 0.612 
33.2% 6.9% 3.0% 1.3% 14.5% 6.8% 

• READ [12]. READ uses limited label data to train a teacher-

student network with satellite imagery. The pre-trained model 
in original paper is used for comparison. 

The street view imagery-based baselines includes: 

• Urban2Vec [45]. Urban2Vec follows the similar design with 
Tile2Vec but focuses on street view imagery. 

• SceneParse [52]. We use this scene parsing model to extract 
street view imagery representations following [23, 25]. 

We also apply two baselines for both satellite and street view 
imagery-based socioeconomic prediction: 

• ResNet-18 [14]. ResNet-18 is pre-trained on ImageNet [9], which 
is a backbone adopted in several related studies, and thus selected 
for comparison in both satellite and street view imagery. 

• PG-SimCLR [47]. PG-SimCLR originally employs SimCLR [7] 
for satellite imagery-based socioeconomic prediction, with spa-
tiality and POI category distribution considered in similarity 
metric design. We select it for both satellite and street view 
imagery cases considering its competitive performance. 

We implement the baselines following reported settings or using 
pre-trained models in their original papers, and the obtained urban 
imagery representations are fed into the MLP-based socioeconomic 
indicator regression module for training and prediction. 

5.1.3 Metrics & Implementation. We adopt the widely used rooted 
mean squared error (RMSE) and coefcient of determination (�2

) 
[12, 17, 47] for evaluation metrics. For the implementation, ResNet-

18 [14] and CompGCN [39] are adopted for visual and semantic 
encoders, respectively. We select Adam optimizer for parameter 
learning. In the contrastive learning step, we set the KG embed-

ding dimension as 64 while the number of GCN layers is selected 
from {1, 2, 3, 4}. The learning rate is set as 0.0003. In the socioe-
conomic prediction step, for each region, the learnt single urban 

imagery representation vector is used to predict various socioe-
conomic indicators with the learning rate and dropout searched 
from {0.0005, 0.001, 0.005} and {0.1, 0.3, 0.5}. Besides, we randomly 
select 10 street view images for each region in the main experiment. 
The implementation codes are available at the link

4
. 

5.2 Performance Comparison 
We evaluate the satellite imagery-based socioeconomic prediction 
performance in Table 3. Results on three datasets across six types 
of socioeconomic indicators demonstrate the superiority of our 
proposed KnowCL model, which improves the best baseline (PG-

SimCLR) by 7%-79% on �2 
in all cases. Especially, KnowCL achieves 

the signifcant performance improvements owing to the compre-

hensive knowledge infused by the cross-modality based contrastive 
learning. As for the performance comparison with contrastive learn-

ing based models like Tile2Vec and PG-SimCLR, the results show 
that introducing more knowledge can bring better performance. 
For example, Tile2Vec only considers spatiality knowledge in simi-

larity metric design while PG-SimCLR further considers function 
knowledge, leading to over 15% improvements on �2 

on average. 
Besides, traditional models focus on satellite images in grid shape, 
failing to extract high-quality visual representations for the more 
practical case of irregular shape partitioned by road network. 

As for the street view imagery-based socioeconomic prediction 
performance in Table 4, KnowCL also achieves state-of-the-art 
results, which further validate the efectiveness and robustness. 
Limited by the repetitive street view images collected in Shang-

hai dataset, all baselines perform poorly across population and 
economic activeness prediction tasks therein, while KnowCL lever-
ages UrbanKGs for informative representation learning from urban 
imagery with competitive performance achieved. 

4
https://github.com/tsinghua-fb-lab/UrbanKG-KnowCL 
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According to the absolute performance in Table 3 and Table 4, the 
socioeconomic indicators of diferent cities show diverse preference 
to urban imagery, e.g., KnowCL with satellite imagery obtains the 
best absolute performance for population prediction in Beijing and 
Shanghai, while the street view imagery becomes the better choice 
for population and crime prediction in New York. This phenomenon 
is mainly determined by city structures and socioeconomic indicator 
characteristics. Diferent from complex city structures in Beijing 
and Shanghai, New York follows the grid layout with block regions 
in similar shapes, which provides limited information for population 
estimation. Besides, the street view imagery can provide an internal 
view for urban environment safety perception, as validated in [31]. 
Such results further indicate that both satellite and street view 
imagery can provide complementary information to each other, 
and our proposed KnowCL model can fully exploit the value of 
urban imagery, which is quite essential for urban environment 
perception and SDG monitoring. 
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Figure 3: Predicted population versus true population across 
all regions on Beijing dataset. Blue line is at 45°. �2 and �2 

� 
correspond to the results of testing regions (red dots) and all 
regions (red and blue dots), respectively 

To further analyze the predictive power of our proposed KnowCL 
model, in Figure 3, we compare the predicted and true population 
for all regions in Beijing dataset, and results for other datasets are 
provided in Section B. The results show that KnowCL can well 
replicate the population of most regions (see the dots along 45° 
line) via urban imagery, explaining 52%-63% of the variation in 
population on two datasets. 

5.3 Ablation Study 
5.3.1 Efectiveness of Knowledge Identification. To validate the ef-
fectiveness of identifed knowledge in UrbanKG, Figure 4 presents 
the performance comparison of UrbanKG without certain type of 
knowledge. We select Beijing and New York datasets for evaluation, 
on which satellite and street view imagery inputs achieve the best 
absolute performance, respectively. The business knowledge on 
New York dataset is not provided in UrbanKG and thus not reported. 

All four types of semantic knowledge identifed by UrbanKG are 
essential for socioeconomic prediction, according to the fndings 
in Figure 4. Particularly, the knowledge that is hardly captured 
by urban imagery is more important, e.g., the mobility knowledge 
of crowd fow transitions between regions brings 5%-30% gains 
for predicting all socioeconomic indicators, because both satellite 
and street view imagery cannot capture such dynamic information 
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Figure 4: Performance comparison of diferent identifed 
knowledge on Beijing and New York datasets with satellite 
and street view imagery, respectively. 

without additional knowledge infused. Additionally, the impacts of 
various types of semantic knowledge vary to socioeconomic indi-

cators. For example, in New York dataset, the education indicator 
is highly correlated with function knowledge while the population 
indicator prefers to spatiality knowledge, which enlightens us to 
identify comprehensive knowledge for a broader urban imagery-

based socioeconomic prediction with more indicators considered. 

5.3.2 Efectiveness of Knowledge Infusion. A major novelty of this 
paper is introducing the cross-modality based contrastive learn-

ing with the image-KG contrastive loss for knowledge infusion, 
which is diferent from the single-modality based ones in exist-
ing studies [18, 47]. To validate the efectiveness, we develop a 
direct image-image contrastive loss for knowledge infusion, which 
is similar to PG-SimCLR [47], termed as KG-SimCLR. Specifcally, 
KG-SimCLR calculates KG embedding similarity for positive region 
pairs, and requires their associated urban images to be closer in 
visual representation space. 

Table 5: Performance comparison �2 of diferent knowledge 
infusion ways on Beijing and New York datasets. 

Beijing New York 
Model Pop. Econ. Rest. Consp. Pop. Edu. Crime 

SI KG-SimCLR 
KnowCL 

0.272 0.197 0.192 0.175 
0.479 0.532 0.493 0.443 

-0.302 0.555 0.341 
0.153 0.658 0.536 

SV 
KG-SimCLR 
KnowCL 

0.209 0.229 0.299 0.329 
0.416 0.557 0.470 0.449 

0.053 0.382 0.294 
0.377 0.586 0.552 

Figure 5: Most similar urban imagery matching between Bei-
jing and Shanghai datasets via learnt urban imagery repre-
sentations by KnowCL. The population indicator and cosine 
similarity are presented below the images. Satellite images 
might be in irregular shape due to the shape of associated 
regions. 
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Figure 6: The �2 for the transferability test on satellite and 
street view imagery-based population prediction. 

Table 5 presents the performance comparison between KG-SimCLR 
and KnowCL with diferent urban imagery inputs. The signifcant 
performance gaps between two models on both satellite and street 
view imagery-based socioeconomic prediction indicate that simply 
using existing image view-based contrastive loss cannot achieve 
efective knowledge infusion. Especially, directly modeling the 
comprehensive knowledge in KG as a similarity metric provides a 
quite weak self-supervision signal for visual representation learn-

ing, while our proposed cross-modality based contrastive learning 
framework infuses such knowledge via similarity matching in rep-
resentation space. Overall, the ablation studies demonstrate the 
efectiveness of our proposed knowledge infusion design and can 
potentially apply in various urban imagery-based research. 

5.4 Transferability Study 
5.4.1 Prediction Performance Across Cities/Countries. The experi-

ment results above validate the efectiveness of UrbanKG, which 
however might be not available in underdeveloped and developing 
cities/countries due to data defciency. Thus, here we investigate 
the practical case of socioeconomic prediction in transfer setting 
[35]: Given the visual encoder of a KnowCL model trained on a 
source city with urban imagery and UrbanKG data, we apply it for 
socioeconomic prediction in target cities where only urban imagery 
data are available. The transferability task checks whether KnowCL 
infuses shared knowledge across cities into the visual encoder for 
urban imagery-based socioeconomic prediction. 

We vary the source-target city pairs and report the population 
prediction performance in Figure 6, where both satellite imagery 
and street view imagery are evaluated. Here 40 street view images 
for each region in of-diagonal transfer experiments are used for 
robust performance. According to the results, the diagonal line 
shows the highest correlation due to the same city transferred from 
the source to the target. Moreover, compared with baselines trained 
and evaluated on the same dataset in Table 3 and Table 4, KnowCL 
achieves competitive transfer performance for both satellite and 
street view imagery-based population prediction in Bejing and 
New York datasets, as validated by similar scatter sizes in each row. 
For example, SH→BJ transfer experiment achieves a �2 

of 0.373 
compared with 0.356 of the best baseline (PG-SimCLR) achieved 
in non-transfer setting. Such results validate the transferability of 
our proposed KnowCL model for socioeconomic prediction across 
cities/countries, which mainly owes to the shared knowledge iden-

tifed in UrbanKG and infused in visual encoder by cross-modality 

based contrastive learning. Hence, pre-trained KnowCL model can 
be leveraged for socioeconomic prediction in cities without Ur-

banKG. Besides, we also investigate the transferability of the best 
baseline PG-SimCLR in Section B, which is less competitive due to 
limited knowledge considered. 

5.4.2 Visual Analogies Across Cities. We also investigate the visual 
similarity between urban imagery across cities. Specifcally, given 
an urban image in source city, we compute the cosine similarity 
between its visual representation and all visual representations in 
another city, and select the most similar ones for comparison [45], 
as shown in Figure 5. As for the satellite imagery matching in Fig-
ure 5(a), similar regions share the similar distribution of buildings 
as well as populations. On the other hand, the street view imagery 
matching in Figure 5(b) successfully identifes regions with similar 
physical appearance and populations. Thus, the knowledge-infused 
urban imagery representations capture not only visual features but 
also socioeconomic information associated with regions. 

6 CONCLUSION 
In this paper, we present a novel approach to make predictions on 
population, economic activity, consumption, education, and public 
safety indicators from web-collected urban imagery covering both 
satellite and street view imagery. Our proposed knowledge-infused 
contrastive learning model KnowCL is built upon the comprehen-

sive knowledge identifed by urban knowledge graph, and further 
designs an image-KG contrastive loss for efective knowledge infu-

sion into urban imagery representations. KnowCL is the frst solu-

tion that introduces the knowledge graph and the cross-modality 
based contrastive learning framework for urban imagery-based so-
cioeconomic prediction. Extensive experiments validate the model 
efectiveness and transferability in diferent cities across several 
socioeconomic indicators. 

We demonstrated model’s potential in socioeconomic prediction 
with ubiquitous urban imagery, which is of great importance to 
sustainable development in data-poor regions and countries. Al-

though our model outperforms baselines, the results may be less 
interpretable, so in future work we will consider exploring in-depth 
the semantics of UrbanKG for interpretability. 
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A DETAILS OF DATASET 

A.1 UrbanKG Construction 
Here we introduce the details of urbanKG construction. For region 
entities in UrbanKG for Beijing and Shanghai datasets, we partition 
the city into multiple regions by the road network, which are shown 
in Figure 7. The region entities in New York dataset follows the CBG 
division by US Census Bureau, whose visualization can be referred 
to the ofcial link

5
. Each region entity is provided with a sequence 

of longitude-latitude pairs �� = {(���� 
1 , ���� 

1), · · · , (����� , ����
� )} as 

region boundary. POI entities and business center entities are pro-
vided with location information of longitude-latitude pairs like 
�� = (���� , ���� ). The category entities are POI properties identifed 
by experts, e.g., food, shopping, accommodation, business, resi-
dence, education, etc. 

(a) Beijing (b) Shanghai 

Figure 7: Visualization of region entities in UrbanKG for 
Beijing and Shanghai datasets. 

Based on the entities above, the relational links defned in Table 1 
can be extracted as follows. 

• borderBy. Given two regions �, �, they are connected by borderBy 
if |�� ∩ �� | > 0, i.e., sharing the same boundary points. 

• nearBy. Given two regions �, �, they are connected by nearBy if 
∥� ¯ � − � ¯ � ∥ ≤ 1��, where � ¯ �, �� are center location of regions. ¯ 

• locateAt. Given a POI � and a region �, they are connected by 
locateAt if �� is in the closure by region boundary �� . 

• fowTransition. Given two regions �, �, they are connected by 
fowTransition if the aggregated fow transition between two 
regions exceeds the threshold. 

• similarFunction. Given two regions �, � and the category dis-
tribution vectors of POIs therein ��, �� , they are connected by 
similarrFunction if ��� (��, �� ) ≥ 0.95 with cosine similarity. 

• coCheckin. Given two POIs �1, �2, they are connected by coCheckin 
if the number of records that consecutively visit �1 and �2 ex-

ceeds the threshold. 
• cateOf. A POI is connected to its associated category by cateOf. 
• provideService. Given a region � and a business center �� , they 

are connected by provideService if ∥� ¯ � − ��� ∥ ≤ 3��. 
• belongTo. Given a POI � and a business center �� , they are con-

nected by belongTo if ∥�� − ��� ∥ ≤ 3��. 
• competitive. Given two POIs �1, �2, they are connected by com-
petitive if ∥��1 − ��2 ∥ ≤ 500� and they are in the same category. 

5
https://data.cityofnewyork.us/City-Government/2010-Census-Blocks/v2h8-6mxf 

A.2 Data Sources & Preprocessing 
The data sources in our experiments and their links are provided 
as follows. 

• Satellite imagery data. ArGIS, https://geoenrich.arcgis.com/. 
• Street view imagery data in Beijing & Shanghai. Baidu Map 

API, http://api.map.baidu.com. 
• Street view imagery data in New York. Google Street API, 

https://maps.googleapis.com/. 
• Population data in Beijing & Shanghai. WorldPop. https: 

//www.worldpop.org/. 
• Population & education data in New York. SafeGraph, https: 

//www.safegraph.com/. 
• Crime data in New York. NYC Open Data, https://opendata. 

cityofnewyork.us/. 

Since we focus on the more practical case of irregular region 
boundaries partitioned by road network, in the data preprocessing 
step, we merge multiple grid-based satellite images to match the 
region boundary. Thus, the satellite images for regions might be in 
irregular shape, as shown in Figure 5(a). 

B MODEL DETAILS & EXPERIMENT RESULTS 

B.1 Training Algorithm 
Algorithm 1 summarizes the learning procedure of our proposed 
KnowCL model for urban imagery-based socioeconomic prediction. 
The overall framework is divided into two steps of knowledge-

infused contrastive learning and socioeconomic prediction. In the 
frst step, lines 4-5 build semantic encoder and visual encoder for 
diferent modalities of inputs, and lines 6-11 execute the cross-
modality based contrastive learning in a minibatch way with model 
parameter updated. As for the second step in lines 12-14, only the 
regression module is trained with observed socioeconomic indicator 
data, which is then used for socioeconomic prediction. 

Algorithm 1 Learning procedure of KnowCL model. 

1: Input: UrbanKG G = (E, R, F ), urban imagery data I, region 
set A, socioeconomic indicator data D = {(�,��) |� ∈ A}. 

2: Output: The socioeconomic indicator �� ′ for a region � ′ with-

out observed label. 
3: Step 1: Knowledge-infused Contrastive Learning 
4: Initialize semantic encoder � KG (·); 
5: Initialize visual encoder � Image (·); 
6: for � = 1, 2, · · · , �iter do 
7: Sample a minibatch A

batch ∈ A of size �; 
8: �� = � KG (G, �), �� = � Image (�� ), ∀� ∈ A

batch
; 

9: �̃� = �KG (��), �̃� = �Image (�� ), ∀� ∈ A
batch

; 
10: Compute the image-KG contrastive loss L� using (5); 
11: Update encoder parameters w.r.t. the gradients, ∇L� . 

12: Step 2: Socioeconomic Prediction 
13: Train regression module MLP(·) on D; 
14: Predict socioeconomic indicator �� ′ = MLP(� Image (�� ′ )). 

B.2 Predicted v.s. True Indicators 
Similar to the setting in Figure 3, we present the comparison of 
predicted and true population results on Shanghai and New York in 
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(a) Satellite Imagery (SH) (b) Street View Imagery (SH) (c) Satellite Imagery (NY) (d) Street View Imagery (NY) 

Figure 8: Predicted population versus true population across all regions on Shanghai and New York datasets. Blue line is at 45°. 
�2 and �� 

2 correspond the results of testing regions (red dots) and all regions (red and blue dots), respectively 
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Figure 9: Visualization of urban imagery based on PCA algorithm, where dot color represents the value of corresponding 
population to the urban imagery. 
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Figure 10: The 2  � for the transferability test of PG-SimCLR 
on satellite and street view imagery-based population pre-
diction. The visual encoder is trained on one source city and 
then evaluated on other target cities. 

Figure 8. It can be observed that most predicted samples are located 
along the line at 45°. 

B.3 Transferability Study 
To validate the transferability of our proposed KnowCL model, we 
also investigate the transferability of the best baseline PG-SimCLR 
in Figure 10. Compared with results of KnowCL in Figure 6, PG-

SimCLR is less competitive in transfer setting. 

B.4 Parameter Study 
Figure 11 further investigates the infuence of street view images 
on Beijing and New York datasets. Specifcally, in the knowledge-

infused contrastive learning step, we keep the number of street 
view images per region to 10, and tune the number of street view 
images used in socioeconomic prediction step. According to the 
results, with the increasing of used street view images, the pre-
diction performance across most of socioeconomic indicators frst 
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Figure 11: �2 versus the number of street view images per 
region used for socioeconomic prediction on two datasets. 
increases and then converges. This phenomenon may partly owe 
to the image quality as well as the limited information captured in 
street view imagery. Moreover, such results also imply that intro-

ducing more stree view images for socioeconomic prediction may 
not bring performance improvement, which is heavily afected by 
the noise therein. 

B.5 Component Analyses 
To analyze the information captured in urban imagery representa-

tions, we employ principal component analysis (PCA) algorithm on 
learnt visual representations by KnowCL for dimension reduction, 
which are presented in Figure 9. We use the dot color to indicate 
the population at corresponding regions. Especially, the cluster-

ing phenomenon in respective of populations can be observed in 
Figure 9(a)-(d) on Beijing and Shanghai datasets, which validate 
the efectiveness of cross-modality based contrastive learning even 
without population supervision signals. As for the results in New 
York dataset, such phenomenon is not that obvious because the 
population in New York is uniformly distributed in block based 
regions, as we can see that most dots in Figure 9(e)-(f) are in similar 
colors. All the experiment results validate the efectiveness and ro-
bustness of our proposed knowledge-infused contrastive learning 
model for urban imagery-based socioeconomic prediction. 
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