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ABSTRACT
Sequential recommender systems (SRSs) have become a research
hotspot recently due to its powerful ability in capturing users’
dynamic preferences. The key idea behind SRSs is to model the
sequential dependencies over the user-item interactions. However,
we argue that users’ preferences are not only determined by their
view or purchase items but also affected by the item-providers
with which users have interacted. For instance, in a short-video
scenario, a user may click on a video because he/she is attracted to
either the video content or simply the video-providers as the vlog-
gers are his/her idols. Motivated by the above observations, in this
paper, we propose IPSRec, a novel Item-Provider co-learning frame-
work for SequentialRecommendation. Specifically, we propose two
representation learning methods (single-steam and cross-stream)
to learn comprehensive item and user representations based on
the user’s historical item sequence and provider sequence. Then,
contrastive learning is employed to further enhance the user embed-
dings in a self-supervised manner, which treats the representations
of a specific user learned from the item side as well as the item-
provider side as the positive pair and treats the representations
of different users in the batch as the negative samples. Extensive
experiments on three real-world SRS datasets demonstrate that
IPSRec achieves substantially better results than the strong com-
petitors. For reproducibility, our code and data are available at
https://github.com/siat-nlp/IPSRec.
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1 INTRODUCTION
Sequential recommendation (SR) models each user as a sequence of
items interacted in the past and aims at predicting the next item for
the user. Recent advances on SR are overwhelmingly contributed by
deep learning techniques [1, 3, 4, 10, 12, 18], which have taken the
state-of-the-art of SR to a new level. In general, these models could
be classified into four categories, namely recurrent neural network
(RNN) based models [3], convolutional neural network (CNN) based
models [10, 16], self-attention based models [4, 6, 9, 18], and graph
neural network (GNN) based methods [12, 13, 15]. In this paper,
we instantiate the self-attention models as our backbone network
given its easiness for implementation and superior performance
that has been well evaluated in the literature [6, 9, 18].

More recently, contrastive learning techniques, which aims to
learn effective representations by pulling semantically close neigh-
bors together and pushing apart non-neighbors, have shown im-
pressive performance in SR tasks [7, 14]. The key idea behind the
contrastive learning is to randomly perturb the input data twice
as the positive pair and sample unobserved items for each input
sample as negative samples. Then, the users’ and items’ represen-
tations can be learned in a self-supervised manner by maximizing
the similarity between the representations of a positive pair while
minimizing the similarity between that of negative pairs.

Despite the effectiveness of previous studies, there are still sev-
eral challenges for learning high-quality item and user representa-
tions. First, existing methods were focused on modeling the sequen-
tial dependencies given the user-item interactions and overlooked
the influence from item-providers. However, based on our obser-
vations, the users’ preferences are not only determined by their
view or purchase items but also affected by the item-providers. For
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Figure 1: The architecture of IPSRec framework. IPSRec consists of a single-stream version IPSRec-S (on the left) and a cross-
stream version IPSRec-C (on the right).

instance, in a short-video scenario, a user may click on a video
because he/she is attracted to either the video content or simply the
video-providers as the vloggers are his/her idols; in an E-commerce
scenario, a user may purchase a dress because it suits her taste
or she trusts the seller. It is necessary to take into account both
user-item interactions and user-item-provider interactions. Second,
most previous contrastive learning methods for SR tasks randomly
select unobserved items as negative samples. However, when a
user interacts with a huge amount of items, the irrelevant items
may wash out the user’s real interest, leading to inferior sequential
recommendation.

To deal with the aforementioned challenges, we propose IP-
SRec, a novel Item-Provider co-learning framework for Sequential
Recommendation with contrastive learning. First, we propose two
representation learning methods (single-steam and cross-stream)
to learn comprehensive item and user representations based on the
user’s historical item sequence and provider sequence. Specifically,
in single-stream IPSRec, we concatenate the item sequence and
provider sequence together, and then leverage the self-attention
operation on the concatenated sequence to obtain the integrated
item, provider and user representations. In cross-stream IPSRec, we
first learn the item and provider representations separately via self-
attention, and then deploy a co-attention fusion module to capture
interactions between item and provider representations. Second,
we utilize the contrastive learning framework to further refine the
user representations in a self-supervised manner from both the item
side and the provider side, which treats the representations of a
specific user learned from the item side as well as the item-provider
side as the positive pair and treats the representations of different
users in the batch as the negative pairs.

We summarize our main contributions as follows. (1) To the best
of our knowledge, we are the first to emphasize the importance of
item-providers for the SR tasks. We propose two attention-based
methods (single-stream and cross-stream) to learn high-quality
item and user representations given the user’s historical item se-
quence and provider sequence. (2) We propose a contrastive learn-
ing method to further refine the user representations in a self-
supervised manner, which learns the user representations from
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Figure 2: Self-attention and co-attention fusion modules.

both the item sequence and the item-provider sequence. (3) Exten-
sive experiments on three real-world SR datasets demonstrate that
IPSRec outperforms the strong baselines by a substantial margin.

2 OUR METHODOLOGY
Problem Definition. The goal of SR is to predict the next item

with which a user will likely interact in a near future. Formally,
given the users’ historical item sequence 𝑋 𝑖 = [𝑥𝑖1, . . . , 𝑥

𝑖
𝑡 ] (also

denoted by 𝑥𝑖1:𝑡 ) and the corresponding item-provider sequence
𝑋𝑝 = [𝑥𝑝1 , . . . , 𝑥

𝑝
𝑡 ] (also denoted by 𝑥𝑝1:𝑡 ), where 𝑥

𝑖
𝑡 and 𝑥

𝑝
𝑡 denote

the 𝑡-th interacted item and item-provider respectively, our goal
is to predict the next item 𝑥𝑖

𝑡+1 that the user would like to interact
with at time step 𝑡 + 1.

The Overall Architecture. In this paper, we propose IPSRec, a
novel item-provider co-learning framework for enhancing sequen-
tial recommendation, which consists of two alternative versions
(i.e., a single-stream version IPSRec-S and a cross-stream version
IPSRec-C). Figure 1 illustrates the overview of the IPSRec frame-
work. Specifically, in IPSRec-S, we first concatenate the item se-
quence and provider sequence together, and then perform the self-
attention operation on the whole sequence to obtain the fused item



and user representations. While in IPSRec-C, we first model the
item sequence and provider sequence separately with self-attention,
and then deploy a co-attention fusion module to model the interac-
tions between item and provider representations. In addition, we
propose a contrastive learning method to further refine the user rep-
resentations in a self-supervised manner. Next, we will introduce
IPSRec-S, IPSRec-C, and contrastive learning in detail.

2.1 IPSRec-S
In IPSRec-S, we first concatenate the item sequence and provider
sequence together, and then perform self-attention operation on
the whole sequence to obtain the fused representations. Similar to
SASRec [4], the main architecture of IPSRec-S is a Transformer [11],
which consists of an embedding layer and amulti-head self-attention
module.

For each item 𝑥𝑖 in users’ historical item sequence 𝑋 𝑖 , we first
convert it into an embedding vector e𝑖 . The item sequence 𝑋 𝑖 is
thereby represented by an item embedding matrix E𝑖 = [e𝑖1, . . . , e

𝑖
𝑡 ].

Similarly, we can obtain the provider embedding matrix E𝑝 =

[e𝑝1 , . . . , e
𝑝
𝑡 ] for the whole provider sequence 𝑋𝑝 .

To preserve the chronological order and segment information of
the item and provider sequences, we constructed an item positional
embedding matrix P𝑖 = [p𝑖1, . . . , p

𝑖
𝑡 ], a provider positional embed-

ding matrix P𝑝 = [p𝑝1 , . . . , p
𝑝
𝑡 ], and a segment embedding matrix S

consisting of an item segment embedding vector s𝑖 and a provider
segment embedding vector s𝑝 . Formally, we add up the item em-
bedding, item positional embedding and item segment embedding
as the initial input vector for each item in the item sequence at time
step 𝑡 :

h
𝑆𝑖 (0)
𝑡 = e𝑖𝑡 + p𝑖𝑡 + s𝑖 (1)

Meanwhile, we can get the initial input vector h𝑆𝑝 (0)
𝑡 for each

provider in the provider sequence at time step 𝑡 similarly.
In IPSRec-S, the item sequence embedding and the provider se-

quence embedding are concatenated together to form the combined
initial input of the Transformer:

H𝑆 (0) = [h𝑆𝑖 (0)1 , . . . , h
𝑆𝑖 (0)
𝑡 , h

𝑆𝑝 (0)
1 , . . . , h

𝑆𝑝 (0)
𝑡 ] (2)

Given the combined input H𝑆 (0) , we employ an 𝑙-layer Trans-
former to compute the representations of each item and provider:

H𝑆 = Transformer(H𝑆 (0) ) (3)

where each Transformer layer contains two sub-layers (i.e., a multi-
head self-attention layer and a fully connected feed-forward layer),
and the residual connection and layer normalization are applied to
each of the two continuous sub-layers. In particular, the multi-head
self-attention (SA) layer is the core module of the Transformer
architecture, which is formulated as:

SA(Q,K,V) = softmax

(
QK⊤√︁
d/h

)
V (4)

where queries (Q), keys (K) and values (V) are all derived by a linear
projection from the combined input H𝑆 (0) . Noting that

√︁
𝑑/ℎ is the

scaling factor to avoid large values of the inner product [11].
Then, we regard the item representation h𝑆𝑖𝑡 inHS = [h𝑆𝑖1 , . . . , h𝑆𝑖𝑡 ,

h
𝑆𝑝
1 , . . . , h

𝑆𝑝
𝑡 ] as the final user representation to predict the next

Table 1: Dataset statistcs (after preprocessing). Noting that
“I-Actions” and “P-Actions” are short for number of user-item
interactions and user-provider interactions, respectively.

Dataset #Users #Items #I-Actions #Providers #P-Actions

Tmall 885,760 1,144,125 7,592,214 9,998 7,592,214
Twitch 100,001 739,992 3,051,733 162,626 3,051,733
WeChat 20,001 96,565 7,317,882 18,430 7,317,882

item, which can be optimized by the standard cross-entropy loss
LCE:

𝑝 (𝑥𝑖𝑡+1) = softmax(h𝑆𝑖𝑡 W1) (5)
LCE = −𝑝 (𝑥𝑖𝑡+1) log𝑝 (𝑥𝑖𝑡+1) (6)

where 𝑝 (𝑥𝑖
𝑡+1) and 𝑝 (𝑥

𝑖
𝑡+1) represent the ground truth distribution

and the prediction distribution for the next item respectively.W1
is a learnable projection parameter.

2.2 IPSRec-C
Different from IPSRec-S, in IPSRec-C, we first model the item se-
quence and provider sequence separately with self-attention, and
then deploy a novel co-attention fusion module to learn the inter-
actions between item and provider representations.

Embedding Layer. Similar to IPSRec-S, we add up the item embed-
ding, item positional embedding and item segment embedding to ob-
tain the initial item sequence embeddingH𝐶𝑖 (0) = [h𝐶𝑖 (0)

1 , . . . , h
𝐶𝑖 (0)
𝑡 ].

We can also get the initial provider sequence embedding H𝐶𝑝 (0) =

[h𝐶𝑝 (0)
1 , . . . , h

𝐶𝑝 (0)
𝑡 ] in the same way. Then, we employ two sepa-

rate Transformers to encode the item sequence as well as provider
sequence respectively and learn the interactions between them
through a co-attention fusion module.

Co-attention Fusion Module. After getting the separate repre-
sentations of the item sequence and the provider sequence from
the corresponding Transformer encoders (i.e., Transformeri and
Transformerp), a co-attention fusion module is devised to learn
the fused representations by emphasizing the interactions between
representations of the item side and the provider side, as illustrated
in Figure 2. Formally, the co-attention fusion function is defined as:

CAi (Qp,Ki,Vi) = softmax

(
Qp (Ki)⊤√︁

d/h

)
Vi (7)

CAp (Qi,Kp,Vp) = softmax

(
Qi (Kp)⊤√︁

d/h

)
Vp (8)

where queries (Q𝑖 ), keys (K𝑖 ), values (V𝑖 ) are from the item side
and queries (Q𝑝 ), keys (K𝑝 ), values (V𝑝 ) are from the provider side,
which are all derived by a linear projection with the corresponding
representations (i.e., Transformeri (H𝐶𝑖 (0) ) and Transformerp (H𝐶𝑝 (0) )),
formulated as:
Q𝑖 = WQ𝑖Transformeri (H𝐶𝑖 (0) ), Q𝑝 = WQ𝑝Transformerp (H𝐶𝑝 (0) ) (9)

K𝑖 = WK𝑖Transformeri (H𝐶𝑖 (0) ), K𝑝 = WK𝑝Transformerp (H𝐶𝑝 (0) ) (10)
V𝑖 = WV𝑖Transformeri (H𝐶𝑖 (0) ), V𝑝 = WV𝑝Transformerp (H𝐶𝑝 (0) ) (11)

where WQ𝑖 , WQ𝑝 , WK𝑖 , WK𝑝 , WV𝑖 and WV𝑝 are learnable projec-
tion parameters. With this co-attention fusion function, we can



achieve full interactions between item representations and provider
representations.

After learning the co-attention fusion between item and provider
representations, we can derive the final fused item representa-
tions H𝐶𝑖 = [h𝐶𝑖

1 , . . . , h𝐶𝑖

𝑡 ] and provider representations H𝐶𝑝 =

[h𝐶𝑝

1 , . . . , h
𝐶𝑝

𝑡 ], respectively. And we regard the last item represen-
tation h𝐶𝑖

𝑡 in H𝐶𝑖 as the final user representation to make subse-
quent predictions and utilized the standard cross-entropy loss LCE
to optimize the whole model, similar to IPSRec-S.

2.3 Contrastive Learning Framework
In this paper, we model item sequence and provider sequence si-
multaneously for better capturing the user preferences, and we
argue that it should be consistent on the item side and the provider
side. In this paper, we utilize the contrastive learning framework
in [2] to further refine the user representations in a self-supervised
manner from both the item side and the provider side, which treats
the representations of a specific user learned from the item side
and the item-provider side as the positive pair, and treats the rep-
resentations of different users in the batch as the negative pairs.
In particular, we adopt the Noise Contrastive Estimation (NCE)
loss LCL [2] to optimize the item representations and provider
representations:

LCL = − log
exp

(
𝜌

(
h𝑖𝑡 , h

𝑝
𝑡

)
/𝜏

)
exp

(
𝜌

(
h𝑖𝑡 , h

𝑝
𝑡

)
/𝜏

)
+ ∑

h𝑝−𝑡 ∈𝑆−
exp

(
𝜌

(
h𝑖𝑡 , h

𝑝−
𝑡

)
/𝜏

) (12)

where h𝑖𝑡 (represents h
𝑆𝑖
𝑡 or h𝐶𝑖

𝑡 ) and h𝑝𝑡 (represents h𝑆𝑝𝑡 or h𝐶𝑝

𝑡 )
represent the last item representation and provider representation
respectively. That is, h𝑖𝑡 and h𝑝𝑡 also represent the user represen-
tations from the item side and the provider side respectively. 𝜌
represents dot product to measure the similarity between the repre-
sentations, following [7, 14]. 𝜏 is a temperature parameter (set to 1
by default) to control the discreteness of the output. h𝑝−𝑡 denotes the
negative provider representations in the set 𝑆− of in-batch negative
samples.

Finally, we jointly optimize the weighted-sum of the standard
cross-entropy loss LCE and the contrastive learning loss LCL in a
multi-task way. The combined overall loss L is defined by:

L = LCE + 𝜆LCL (13)

where 𝜆 is a hyperparameter to control the weight of the contrastive
learning loss, which is set to 0.1 in our experiments.

3 EXPERIMENTAL SETUP
3.1 Experimental Datasets
We conduct extensive experiments on three real-world datasets:
Tmall1, Twitch [8] and WeChat2. Each dataset contains users’ his-
torical behaviors in chronological order, including users’ involved
items and the item-providers that users have interacted with. The
statistics of the three datasets are reported in Table 1.

1https://tianchi.aliyun.com/dataset/dataDetail?dataId=53
2https://algo.weixin.qq.com/

3.2 Baselines and Evaluation Metrics
To verify the effectiveness of IPSRec, we compare it with several
strong representative baselines, including GRU4Rec [3], Caser [10],
SASRec [4] and SR-GNN [13]. We adopt three popular top-𝑁 rank-
ing evaluation metrics to measure the recommendation perfor-
mance, including HR@𝑁 (Hit Ratio), MRR@𝑁 (Mean Recipro-
cal Rank) and NDCG@𝑁 (Normalized Discounted Cumulative
Gain) [17]. Here, 𝑁 is set to 5 and 10 for comparison.

3.3 Implementation Details
For each user, we divide the last interacted item and provider as the
test data, and hold out the penultimate interacted item and provider
as the validation data, following [4, 14]. The remaining interacted
items and providers are used for training. We set the maximum item
sequence length and provider sequence length to 20, 50 and 100 for
Tmall, Twitch andWeChat respectively. The embedding size of item
or provider is set to 64. In addition, the numbers of layers and heads
in the Transformer are set to 2. For all the baselines, we utilize the
public implementations in [17] for reproducing the experimental
results. We employ Adam [5] to optimize the parameters of IPSRec
with learning rate 0.001, where the batch size is set to 256.

4 EXPERIMENTAL RESULTS
4.1 Quantitative Results
Table 2 reports the overall performance of IPSRec (including IPSRec-
S and IPSRec-C) and baseline models on the three datasets. We can
observe that IPSRec consistently and substantially surpasses the
compared models by a noticeable margin on all the three datasets.
For example, on Tmall, Twitch and WeChat, IPSRec (better result in
IPSRec-S and IPSRec-C) obtains 7.6%, 5.8% and 9.6% improvements
in terms of HR@5 over the best baseline, which indicates the su-
periority of our item-provider co-learning when compared to just
modelling the item side.

4.2 Ablation Study
In order to evaluate the impacts of different components to the supe-
riority of IPSRec, we conduct ablation study in terms of discarding
item-provider co-learning and contrastive learning , as reported in
Table 3. Noting that our proposed IPSRec will degenerate to the
similar architecture of SASRec when removing the item-provider
co-learningmodule, resulting in the sharp decreases of performance.
In addition, when removing the contrastive learning loss LCL (i.e.,
w/o CL), the performance on all of the three datasets decreases
significantly, demonstrating the importance and necessity to keep
it consistent on the item side and the provider side regarding as the
user preferences.

5 CONCLUSION
In this paper, we proposed IPSRec, a novel item-provider co-learning
framework for sequential recommendation. We were the first to
emphasize the importance of item-providers in capturing user pref-
erences in SR tasks. In addition, we utilized contrastive learning
framework to learn comprehensive user representations from both
the item side and the provider side. Extensive experiments on three



Table 2: Overall results. Note that the improvements of IPSRec over all baseline models are statistically significant in terms of
paired t-test with p-value < 0.01.

Dataset Metric GRU4Rec Caser SASRec SR-GNN IPSRec-S Improv. IPSRec-C Improv.

Tmall

HR@5↑ 0.0638 0.0422 0.0706 0.0620 0.0743 5.2% 0.0760 7.6%
HR@10↑ 0.0767 0.0544 0.0880 0.0760 0.0964 9.5% 0.0956 8.6%
MRR@5↑ 0.0484 0.0305 0.0489 0.0450 0.0518 5.9% 0.0530 8.4%
MRR@10↑ 0.0501 0.0321 0.0512 0.0468 0.0552 7.8% 0.0556 8.6%
NDCG@5↑ 0.0523 0.0334 0.0543 0.0492 0.0568 4.6% 0.0587 8.1%
NDCG@10↑ 0.0564 0.0373 0.0599 0.0537 0.0652 8.8% 0.0650 8.5%

Twitch

HR@5↑ 0.0907 0.0711 0.0972 0.0823 0.1014 4.3% 0.1028 5.8%
HR@10↑ 0.1348 0.1074 0.1487 0.1220 0.1549 4.2% 0.1560 4.9%
MRR@5↑ 0.0485 0.0374 0.0482 0.0440 0.0493 2.3% 0.0505 4.8%
MRR@10↑ 0.0544 0.0422 0.0550 0.0493 0.0564 2.5% 0.0575 4.5%
NDCG@5↑ 0.0589 0.0457 0.0603 0.0535 0.0622 3.2% 0.0634 5.1%
NDCG@10↑ 0.0732 0.0574 0.0769 0.0663 0.0795 3.4% 0.0805 4.7%

WeChat

HR@5↑ 0.0452 0.0402 0.0469 0.0426 0.0514 9.6% 0.0510 8.7%
HR@10↑ 0.0733 0.0635 0.0740 0.0696 0.0824 11.4% 0.0801 8.2%
MRR@5↑ 0.0225 0.0214 0.0235 0.0221 0.0255 8.5% 0.0263 11.9%
MRR@10↑ 0.0254 0.0244 0.0271 0.0256 0.0296 9.2% 0.0301 11.1%
NDCG@5↑ 0.0281 0.0260 0.0293 0.0271 0.0319 8.9% 0.0324 10.6%
NDCG@10↑ 0.0365 0.0335 0.0380 0.0358 0.0418 10.0% 0.0417 9.7%

Table 3: Ablation study results.

Method
Tmall Twitch WeChat

HR@5↑ MRR@5↑ NDCG@5↑ HR@5↑ MRR@5↑ NDCG@5↑ HR@5↑ MRR@5↑ NDCG@5↑

SASRec 0.0706 0.0489 0.0543 0.0972 0.0482 0.0603 0.0469 0.0235 0.0293
IPSRec-S 0.0743 0.0518 0.0568 0.1014 0.0493 0.0622 0.0514 0.0255 0.0319
w/o CL 0.0712 0.0498 0.0546 0.0977 0.0481 0.0603 0.0467 0.0230 0.0296
IPSRec-C 0.0760 0.0530 0.0587 0.1028 0.0505 0.0634 0.0510 0.0263 0.0324
w/o CL 0.0717 0.0495 0.0551 0.0980 0.0487 0.0611 0.0473 0.0247 0.0302

real-world datasets demonstrated that IPSRec achieves substantially
better performance than the strong competitors.
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