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Abstract

Accounting for over 20% of the total carbon emissions, the
precise estimation of on-road transportation carbon emissions
is crucial for carbon emission monitoring and efficient mitiga-
tion policy formulation. However, existing estimation meth-
ods typically depend on hard-to-collect individual statistics of
vehicle miles traveled to calculate emissions, thereby suffer-
ing from high data collection difficulty. To relieve this issue
by utilizing the strong pattern recognition of artificial intelli-
gence, we incorporate two sources of open data representative
of the transportation demand and capacity factors, the origin-
destination (OD) flow data and the road network data, to build
a Hierarchical hEterogeneous graph learning method for oN-
road Carbon Emission estimation (HENCE). Specifically, a
hierarchical graph consisting of the road network level, com-
munity level, and region level is constructed to model the
multi-scale road network-based connectivity and travel con-
nection between spatial areas. Heterogeneous graphs consist-
ing of OD links and spatial links are further built at both the
community level and region level to capture the intrinsic in-
teractions between travel demand and road network accessi-
bility. Extensive experiments on two large-scale real-world
datasets demonstrate HENCE’s effectiveness and superior-
ity with R2 exceeding 0.75 and outperforming baselines by
9.60% on average, validating its success in pioneering the use
of artificial intelligence to empower carbon emission man-
agement and sustainability development. The implementation
codes are available at this link: https://github.com/tsinghua-
fib-lab/HENCE.

Introduction
Alarmed by the global warming trend, countries are mak-
ing joint efforts to mitigate carbon emissions and achieve
sustainable development (United Nations Framework Con-
vention on Climate Change (UNFCCC) 2015; Lashof and
Ahuja 1990). On-road transportation carbon emissions, tak-
ing up a large share of 28% of the total carbon emissions
in the United States (Citaristi 2022), is the crucial and pri-
oritized carbon mitigation target (Song et al. 2012; Wang,
Chen, and Fujiyama 2015). Thereby, it is essential to de-
velop techniques to precisely estimate on-road carbon emis-
sions since the comprehension of emission distribution and
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Figure 1: Visualization of road network scale and per capita
transportation demand for counties of the United States. The
lighter color corresponds to the higher emission.

magnitude is fundamental for formulating targeted and effi-
cient carbon mitigation policies (Zhang et al. 2019).

On-road carbon emissions are primarily affected by travel
demands and road network conditions (Gomez-Ibanez et al.
2009): While travel demands generally determine the ap-
proximate travel distance level, the road network connec-
tivity and layout impact the routing and traffic situations.
Existing on-road carbon emission estimation methods typ-
ically rely on collected travel miles statistics to learn how
the region’s travel demand is satisfied by the road network’s
connectivity, thereby calculating the corresponding carbon
emission. Specifically, these emission estimation methods
collect mileage data from either the roadway perspective
or the vehicle perspective. Roadway-based methods moni-
tor flows on each road to calculate the corresponding total
vehicle miles traveled, while vehicle-based methods aggre-
gate individual vehicle trajectory statistics to obtain the to-
tal miles (Gately, Hutyra, and Wing 2019; Gately, Hutyra,
and Sue Wing 2015; Perugu 2019; Hui et al. 2007). The
collected mileage data are then multiplied by the empiri-
cal emission per unit mileage statistic to calculate the on-
road carbon emissions (Liu et al. 2015). Since both types
of methods collect data with a bottom-up paradigm where
the coverage and precision of the collected individual data
are highly required, they all suffer from high data collection
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efforts and expenses.
The recent boom of artificial intelligence methods, which

have shown their strengths in automating the process of pat-
tern mining and indicator prediction (Aiken et al. 2022;
Wang et al. 2016; Dong, Ratti, and Zheng 2019), and
the availability of various sources of open data, present a
promising solution for on-road carbon emission estimation
with low data collection cost: On one hand, a trained predic-
tion model can spare the high data collection expenses in-
herent in existing carbon estimation methods for prediction
targets. On the other hand, with the investigated correlations
between on-road carbon emission and its impact factors, we
can better estimate on-road carbon emission changes under
factor interventions, thereby gaining valuable insights for ef-
ficient carbon-mitigation policy formulation.

Therefore, corresponding to the two primary factors of
on-road carbon emissions, traveling demand, and road net-
work conditions, we introduce two open data sources repre-
sentative of the factors, the origin-destination (OD) flow data
and road network data, and build a graph learning model
to predict on-road carbon emissions with them. While the
transportation demands determine the general travel distance
levels, the varying road network connectivity across the re-
gions leads to distinct transportation efficiency, thereby im-
pacting the on-road carbon emissions. The scatterplot shown
in Figure 1 also proves evidence for the fact that county car-
bon emissions are highly correlated with transportation de-
mand per capita and road length, validating the sufficient in-
clusion of on-road carbon emission information in OD data
and road network data. However, comprehensively model-
ing the joint impacts of road networks and OD flows on on-
road carbon emissions faces several challenges, which can
be formulated into the following two aspects:

• Road network and OD network interact at multiple
spatial scales of the region where different emission pat-
terns exist. While long-distance travel usually relies more
on motorways that connect spaces at the region scale, short-
distance travel is mostly fulfilled by regular roads within
zones. The driving patterns vary on different types of roads,
and so do the corresponding emissions. It is essential to ex-
plicitly model how such multi-scale transportation is ful-
filled by the hierarchical road network system to estimate
the on-road carbon emissions accurately.

• Road networks and ODs impact on-road carbon emis-
sions in a coupled way with complex and heterogeneous
interactions. A region’s on-road carbon emission is the
matching consequence of road network accessibility and
transportation demand across the region, where both fac-
tors vary a lot across space, and so is their interaction.

To address the aforementioned challenges, we construct
our Hierarchical hEterogeneous graph learning model for
oN-road Carbon Emission estimation (HENCE). Consider-
ing the multi-scale nature of connectivity and travel relations
between areas, we construct a hierarchical graph comprised
of the road network level, community level, and region level
to model the relations at various scales explicitly. While
the community-level graph captures between-community
road network connectivity for short-distance intra-region

OD modeling, the region-level graph is designed to model
the matching degree between inter-region OD flows and
region-level connectivity represented by motorways. To fur-
ther capture the intricate interactions between road network
connectivity and transportation demand, we construct a het-
erogeneous graph for both the community level and the re-
gion level, where two types of edges corresponding to the
spatial road network connectivity and travel relations respec-
tively are built and attentional message aggregation is devel-
oped to model their interactions. With the bottom-up pooling
and message-passing mechanism, we obtain the representa-
tions of the regions fully characterizing how transportation
demands are met by their road networks and predict on-road
carbon emissions with the representations. Overall, the main
contribution of this work can be summarized into the follow-
ing aspects:

• To address the severe issue of high data collection diffi-
culty in existing on-road carbon emission estimation meth-
ods that hinders efficient carbon emission estimations, we
develop a prediction model that incorporates open data
to estimate on-road transportation carbon emissions. Two
sources of open data indicating the regional transportation
demand and spatial connectivity respectively are incorpo-
rated: OD flow data and road network data.

• We propose a hierarchical heterogeneous graph learning
model that comprehensively models how diverse trans-
portation demands are satisfied by road network-based spa-
tial connectivity at various scales.

• Experimental results on two large-scale real-world datasets
validate our model’s effectiveness, with R2 exceeding 0.75
and outperforming existing state-of-the-art methods by
9.60%. The outstanding performance of our model also
demonstrates the potential of artificial intelligence in con-
tributing to sustainable development.

Related Works
Traditional On-road Carbon Emission Calculation
Methods. Traditional carbon emission estimation methods
typically rely on multiplying the total traveling distances of
various vehicle types by empirical carbon emission amount
per unit mileage. Therefore, the key point lies in the acquisi-
tion of travel distances for different modes of transportation.
Existing inventories and models typically collect bottom-up
travel distances from the roadway perspective or the vehicle
perspective. Specifically, DARTE (Gately, Hutyra, and Wing
2019; Gately, Hutyra, and Sue Wing 2015), the first annual
on-road carbon emissions database for the conterminous
USA, relies on Federal Highway Administration’s Highway
Performance Monitoring System to monitor the roadway-
level vehicle miles traveled. MOVES (Perugu 2019), as a
representative of mobile source emission models (Hui et al.
2007; Liu et al. 2020), takes individual vehicle travelling in-
formation, such as trajectories and speeds, as inputs to ac-
curately estimate vehicle emissions. However, both perspec-
tives have a high requirement for data collection infrastruc-
ture, resulting in heavy collection expenses and difficulty in
large-scale estimation across time and space.
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Figure 2: Our hierarchical heterogeneous graph learning
method for on-road carbon emission estimation.

Data-driven On-road Carbon Emission Estimation
Methods. With the advancements of machine learning and
the availability of tremendous data, several data-driven
methods have been employed to estimate carbon emissions
efficiently. Concerning road-level emission estimation, a
three-layer perception neural network was built to utilize
the characteristics of collected vehicle and road network
data to infer road-level on-road carbon emissions (Lu et al.
2017). About regional on-road carbon emission prediction,
several works (Khajavi and Rastgoo 2023; Huo et al. 2023)
introduce machine learning methods, including SVM and
random forest, to explore the impacts of road conditions,
travel demand, and other factors on on-road carbon emis-
sions. However, these methods rely on the correlation be-
tween aggregated regional statistics and regional on-road
carbon emissions, failing to model the heterogeneous spa-
tial distribution of road networks and travel demands that
may exist for regions with similar aggregated statistics.

Method
Model Framework
To leverage the capacity of artificial intelligence for mod-
eling the joint impact of the road network and origin-
destination flow on on-road carbon emissions, we propose
the HENCE model. First, a hierarchical graph is constructed
to characterize the multi-scale road network connectivity re-
lations and travel relations between areas, in which hetero-
geneous graphs are incorporated at several levels to model
the interactions between road network-based spatial acces-
sibility and travel demand. Furthermore, a multi-level infor-
mation fusion and prediction module is designed to charac-
terize the differences in regions’ travel outwardnesses.

The construction scheme of the hierarchical heteroge-
neous graph is visualized in Figure 2, which consists of
three levels: the road network level, the community level,
and the region level. Different levels are connected based on
the affiliation relationships between them. At the road net-
work level, a graph is constructed according to the topol-
ogy of the road network, and attributes of road intersec-
tions and segments are modeled as initial features of the
nodes and edges respectively. To effectively abstract lo-

cal road network structures and model how intra-region
short-distance travel are satisfied by the road network con-
nectivity inside the region, we construct a community-
level heterogeneous graph for each region with commu-
nity nodes and two types of edges. Specifically, the com-
munity node describes the intra-community road network
conditions whose features are pooled from the road network
level. For the two types of edges, the spatial link represents
the road network-based connectivity between adjacent ar-
eas, and the OD link describes the travel demand between
areas. However, considering the indispensable amount of
cross-region transportation that associates areas at the re-
gion scale, we further construct a region-level heteroge-
neous graph to characterize how inter-region transportation
demands are met by between-region road network connec-
tivity. In this way, we obtain the intra-region embeddings
by aggregating the community-level representations and the
inter-region embeddings by message passing through the
region-level graph. An attention-based multi-layer percep-
tron (MLP) adaptively aggregates these two embeddings and
makes the final estimations of on-road carbon emissions.

In the following sections, we will first give a detailed elab-
oration on the heterogeneous graph learning module that is
used at both the community level and the region level. Then
more details will be presented on the information propaga-
tion of the hierarchical graph that models the multi-scale
connectivity relations and travel relations between areas.
Furthermore, we will present how to fuse the learned rep-
resentations for final on-road carbon emission estimations.

Heterogeneous Graph Learning Module for Road
Network and OD Interaction Modeling
Travel demand and road network connectivity jointly impact
carbon emissions of on-road vehicles as evidenced by Fig-
ure 1. While the travel demand generally determines the ve-
hicle travel distances, the road network structures and con-
ditions affect the specific routing and travel speeds of each
journey, thereby further influencing carbon emissions.

Therefore, we construct a heterogeneous graph whose two
types of edges correspond to such two types of factors: spa-
tial links that are built between spatially adjacent areas to
characterize road network connectivity and OD links that
are built between areas to represent mutual transportation
demand. For the node of the graphs, its features are the rep-
resentation of transportation information within the node’s
semantic area that is initially pooled from the lower level.
The features of the spatial links are the pooled road network
representations for roads connecting these two nodes, and
the features of the OD links are the origin-destination flow
values for OD pairs.

Based on the constructed heterogeneous graph, we further
develop the message-passing mechanism to model the intri-
cate interactions between road networks and travel demand.
Considering the edge-featured graph attentional (EGAT)
convolutional layer’s capability to utilize edge features and
node features jointly, we adopt it as the basic message-
passing method to propagate information for each type of
edge (Wang, Chen, and Chen 2021). Denoting the node fea-
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tures as V and the edge features as E, the EGAT layer prop-
agates information as formulated:

V
′

i =
∑
j∈Ni

αij ·WVj , (1)

E
′

ij = A[Vi||Eij ||Vj ]. (2)

where
αij = Softmax

(
hij

)
, (3)

hij = LeakyReLU
(
a⊤U [Vi||Eij ||Vj ]

)
, (4)

Here V
′

i is the updated node representation for node i, E
′

ij
is the updated edge representation for edge ij. Ni refers to
node i’s one-hop neighborhood, αij is the attention score
between node i and node j, a is the attentional weight vector,
and W , A and U are the learnable weight matrices.

Therefore, the road network connectivity of a region is
represented by the information propagation through spatial
links (rn) and the transportation demand is represented by
the information propagation through OD links (od):

V
′

m,E
′

m = EGAT
(
V ,Em

)
,m ∈

{
rn, od

}
, (5)

An attentional aggregation follows to characterize the in-
teractions between road network and transportation demand:

V
′
=

∑
m∈

{
rn,od

}βm · V
′

m, (6)

where

αm = cT · Tanh
(
W · V

′

m + b
)
,m ∈

{
rn, od

}
, (7)

βm =
exp

(
αm

)∑
i∈
{
rn,od

} exp
(
αi

) . (8)

By repeating the calculation process in Equ 5 and Equ 6
for L times where L is a tunable parameter, we obtain
the heterogeneous graph node representations V

′
that fully

characterize the joint impacts of road network connectivity
and transportation demand.

Hierarchical Graph Learning Module for
Multi-scale Information Propagation
The hierarchical graph has two essential roles, which are
to characterize hierarchical connectivity inherent in road
networks and to comprehensively consider the impacts of
multi-scale transportation demands between areas on on-
road carbon emissions. In this section, we will present how
these two roles are accomplished by HENCE’s information
propagation and aggregation mechanism.

A road network graph is constructed at the bottom level
where nodes correspond to road intersections and edges cor-
respond to road segments. To fully leverage the road inter-
section attributes (relative longitude and latitude of the in-
tersection in the county and degree) and road segment at-
tributes (relative longitude and latitude of the road centre,

road length, and road class) to represent the connectivity in-
formation, we employ the EGAT convolutional layer (Wang,
Chen, and Chen 2021) to propagate information on this
graph. Denoting road intersection attributes as Vr and road
segment attributes as Er, this process can be formulated as:

V
′

r ,E
′

r = EGAT
(
...
(
EGAT︸ ︷︷ ︸

Lr layers

(
Vr,Er

)))
. (9)

A community-level heterogeneous graph is constructed
to model how fine-grained spatial connectivity meets short-
distance intra-region travel demand. We pool information
for road intersections and road segments inside each com-
munity as the initial community attributes characterizing its
inner road network structure and connectivity. For commu-
nities with spatial links, we pool the representations of road
segments connecting these communities as spatial link at-
tributes, thereby characterizing the road network connec-
tivity between communities. Meanwhile, we input the OD
flow values between communities as OD link attributes. The
pooling process can be formulated as follows:

Vc,m = Concat
([
ϕ
(
{V

′

r,i}|i∈Cm

)
, ϕ

(
{E

′

r,ij}|i,j∈Cm

)])
,

(10)

Ec,mn,rn = ϕ
(
{E

′

r,ij}|i∈Cm,j∈Cn

)
, (11)

where ϕ is the optional pooling function among sum, max,
mean pooling, etc. C is short for communities.

With the built community-level graph, we adopt the het-
erogeneous graph learning module to model how the road
networks meet the intra-region transportation demands. By
pooling its outputs, the community representations V

′

c , we
obtain the region-level intra-region representations Vg,intra.

Considering the vast amount of cross-region transporta-
tion and their indispensable contribution to regional on-road
carbon emissions as well, we build a region-level heteroge-
neous graph to model the interaction between region road
network connectivity and cross-region transportation de-
mands. The construction of the region-level heterogeneous
graph is identical to the community-level ones, whose node
features are the intra-region representations pooled from the
community level, and the spatial link and OD link corre-
spond to spatially adjacent regions and OD-connected re-
gions respectively. By applying the heterogeneous graph
learning module to this graph, we comprehensively model
the interactions between regions and obtain the inter-region
representations Vg,inter. To mention, as calculating one re-
gion’s inter-region representation involves the pooled rep-
resentations of neighboring regions, it will thereby involve
extensive computations on these regions’ community-level
and road network-level graphs. To control the computational
cost of our model, the region attributes are only updated af-
ter a complete training cycle, which is one epoch. The pro-
cess can therefore be formulated as: For the training epoch
T , the inter-region representations Vg,inter

(T ) are calculated
with Vg,intra

(T−1) which are the intra-region representa-
tions generated by the model trained after T − 1 epochs.
In this way, we balance the computational costs and model
training efficiency.
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Multi-scale Information Fusion and Prediction
As regions have different traveling outwardness, the contri-
butions of intra-region ODs and inter-region ODs on on-road
carbon emissions vary across regions. Therefore, we use the
attention fusion functions in Equ 6 to aggregate intra-region
representations derived from the community scale and the
inter-region representations derived from the region scale
into the ultimate region representations Vg . An MLP model
is introduced to predict the on-road carbon emission for re-
gion i. Denoting the prediction results as {Ŷi}, we adopt the
mean squared error loss function for loss calculation and pa-
rameter optimization for region set A:

L =
1

|A|
∑
i∈A

(
Yi − Ŷi

)2
. (12)

Experiment
Experimental Setups
Dataset Due to the scarcity of reliable on-road carbon
emission databases, we conduct experiments on two pre-
diction years of the well-acknowledged American on-road
carbon emission database, DARTE (Gately, Hutyra, and
Sue Wing 2015; Gurney et al. 2009)1. DARTE relies on a
national monitoring system to monitor the vehicle counts
and total miles traveled on US roads, based on which on-
road carbon emission statistics are calculated for all coun-
ties in the United States. Since its latest released year is
2017, we set our experimental tasks as predicting regional
on-road carbon emissions for 2015 and 2017 between which
ODs and road networks of the United States have devel-
oped to a certain extent. For each year, we obtain its corre-
sponding road network data from the OpenStreetMap2, and
OD data from Longitudinal Employer-Household Dynam-
ics program3, which publishes fine-grained commuting ODs
based on employment statistics obtained by the tax authority.
According to the administrative subdivisions of the United
States, the county corresponds to the region and the census
tract corresponds to the community in our experiment.

Baselines Carbon Prediction Machine Learning Meth-
ods: (1) SVM (Huo et al. 2023) Support Vector Machine,
which finds a hyperplane that distinctly regresses the data
points. (2) Random Forest (Khajavi and Rastgoo 2023). A
decision tree method using bagging ensemble strategy.
Graph Learning Methods: We compare our HENCE
model with methods incorporating new message-passing or
pooling mechanisms. (1) EGAT (Wang, Chen, and Chen
2021). The edge-featured graph attention network integrates
edge features in the calculation of the message and attention
weights. (2) EGNN (Satorras, Hoogeboom, and Welling
2021). The equivariant graph neural network represents
graphs in a way equivariant to rotations, translations, reflec-
tions and permutations. (3) SortPooling (Zhang et al. 2018).
A pooling mechanism that sorts the nodes and selects a sub-
set of top-ranked nodes for pooling. (4) DiffPool (Ying et al.

1https://daac.ornl.gov/CMS/guides/CMS DARTE V2.html
2https://planet.openstreetmap.org/planet/full-history/
3https://lehd.ces.census.gov/data/#lodes

2018). A differentiable graph pooling module to learn hier-
archical pooled representations of graphs.
Road Representation Learning Methods: (1)
RFN (Jepsen, Jensen, and Nielsen 2019). This work
proposes a relational fusion network to aggregate node
relations and edge relations to represent the road network.

For fair comparisons, all baselines are inputted with road
network and OD information. For machine learning meth-
ods, we construct the input attributes combining road net-
work features (including the total number of intersections,
roads, and the total road length), and aggregated OD in-
formation (including total inflow, outflow, count of intra-
county OD, and count of inter-county OD). For graph learn-
ing and road representation methods, we concatenate OD
information attributes with the learned road network repre-
sentation vectors for final prediction. Since EGAT (Wang,
Chen, and Chen 2021), EGNN (Satorras, Hoogeboom, and
Welling 2021), and RFN (Jepsen, Jensen, and Nielsen 2019)
only output representations at the node and edge level, we
use a mean pooling layer to pool the learned node and edge
representations to the region level for region-level on-road
carbon emission estimation.

Metrics and Implementation Three evaluation metrics
commonly used for evaluating indicator prediction are se-
lected: coefficient of determination (R2), mean absolute er-
ror (MAE), and rooted mean squared error (RMSE) (Han
et al. 2020; Jean et al. 2016; Xi et al. 2022). We apply Adam
optimizer for parameter learning and perform a grid search
on all hyperparameters of both our model and baselines,
with a search range of the number of graph convolutional
layers in {2, 3, 4}, learning rate in [1e-4, 5e-2], and batch
size in {8, 16, 32, 64}. We adopt the mean pooling layer as
the pooling function in our model’s implementation.

Overall Performance
Comparisons on Year 2015 and Year 2017 dataset presents
us with the following findings:

• Our model significantly outperforms existing state-of-
the-art methods. As shown in the dataset, compared with
the best baseline method, our model improves R2 by 9.60%
and reduces MAE by 14.40% on average. The consistent
and significant improvement of our method on all metrics
validates the effectiveness of our method in capturing how
the complex interactions between road networks and OD
impact on-road carbon emissions.

• Our model is capable of capturing the intrinsic corre-
lations between OD, road networks, and on-road car-
bon emissions. For 2015 and 2017 between which road
network and OD have both evolved, our model all achieves
an outstanding improvement over baselines. Therefore, we
can conclude that our model is capable of capturing diverse
correlations between OD patterns and road networks across
different datasets.

• Existing methods fail to capture the multi-scale intrin-
sic relations between road network and OD network.
Feature-based carbon prediction machine learning methods
ignore the spatiality nature of road networks and OD net-
works. While EGAT (Wang, Chen, and Chen 2021) and
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Year 2015 Year 2017

Groups Models R2 MAE RMSE R2 MAE RMSE

Carbon Prediction Methods SVM 0.5083 0.7003 0.9361 0.5702 0.6767 0.9222
Random Forest 0.6708 0.5892 0.7659 0.7325 0.5148 0.7276

Graph Learning Methods

EGAT 0.5386 0.6628 0.9068 0.6786 0.5685 0.7990
EGNN 0.5296 0.6447 0.9157 0.6324 0.6126 0.8530

Sortpooling 0.3287 0.8254 1.0940 0.3988 0.8351 1.0910
DiffPool 0.3498 0.8002 1.0767 0.4751 0.7340 1.0191

Road Representation Method RFN 0.3091 0.8491 1.1099 0.4570 0.7559 1.0367

HENCE 0.7502 0.4890 0.6672 0.7865 0.4541 0.6500
Improv. 11.83% 17.01% 12.89% 7.37% 11.79% 10.67%

Table 1: Overall performance of HENCE in two datasets. Bold denotes best results and underline denotes second-best ones.

Year 2015 Year 2017

Models R2 MAE R2 MAE

w/o spatial link 0.652 0.578 0.719 0.533
w/o OD link 0.689 0.610 0.706 0.560

w/o CL 0.722 0.531 0.761 0.494
w/o RL 0.601 0.610 0.668 0.571

HENCE 0.750 0.489 0.787 0.454

Table 2: Ablation studies on two datasets. Here CL is short
for community level and RL is short for region level.

EGNN (Satorras, Hoogeboom, and Welling 2021) lever-
age graphs to represent road networks, the flat graph de-
sign makes it hard to capture the multi-scale relations be-
tween areas. Meanwhile, the complex heterogeneity of lo-
cal road network structures contributes to the difficulty of
adaptively abstracting road networks, which may explain
the poor performance of DiffPool (Ying et al. 2018). More-
over, existing graph learning models lack mechanisms to
model the interactions between road networks and trans-
portation demand, thereby failing to capture their joint im-
pacts on on-road carbon emissions.

Ablation Study
Our proposed HENCE model consists of three key compo-
nents: the hierarchical graph abstracting the complex road
network, and two heterogeneous graphs at both the commu-
nity and region level modeling the interactions between road
network connectivity and intra-region and inter-region trans-
portation respectively. To evaluate the contribution of the hi-
erarchical graph structure, we conduct experiments on two
variants: our model excluding the community-level model-
ing and the region-level modeling respectively. To validate
the necessity of constructing the heterogeneous graph that
adaptively models the interactions between road network-
based spatial connectivity and transportation demands, we
exclude the spatial link and OD link respectively from all
heterogeneous graphs of our model.

As shown in Table 2, excluding either spatial links or
OD links from our model’s community level and region
level reduces the performance substantially, leading to a
10.84% and 9.22% decrease of R2 on average, showing
that spatial connectivity information and transportation de-
mand information are vital in estimating on-road carbon
emissions. This emphasizes the critical role of the hetero-
geneous graph learning module in comprehensively model-
ing their interactions. We further compare the performance
of our HENCE model with the variants excluding either
the community-level graph or the region-level graph. Both
variants show a substantial performance decrease: Remov-
ing the community-level modeling brings a 3.51% decrease
of R2 on average. This validates the effectiveness of the
community-level graph for abstracting diverse local road
network structures and modeling the interaction between
intra-region ODs and the road network. Moreover, removing
the region-level graph decreases R2 by 17.46%. Such a sub-
stantial decrease indicates the higher contribution of inter-
region transportation to on-road carbon emissions, thereby
emphasizing the importance of modeling how road network
conditions meet inter-region transportation demands.

Transferability Study
Spatial Transfer Study Through the experiments above,
we have comprehensively validated the effectiveness of our
model. However, in real applications, we may face label in-
sufficiency problems where we lack enough on-road carbon
emission training labels for our prediction targets. There-
fore, it is of practical importance to investigate our model’s
spatial transferability. We divided the counties of the United
States into two sets of source-target pairs based on an east-
west and north-south division4 and conducted a transferabil-
ity test on the Year 2017 dataset.

As shown in Table 3, HENCE achieves the best experi-
mental results in both transfer scenarios. The average per-
formance gain of HENCE over the baseline with the best
performance, Random Forest (Khajavi and Rastgoo 2023),

4https://github.com/tsinghua-fib-lab/HENCE
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West-east North-south

Models R2 MAE R2 MAE

SVM 0.607 0.642 0.513 0.682
RF 0.701 0.516 0.630 0.563

EGAT 0.542 0.656 0.570 0.592
EGNN 0.607 0.651 0.580 0.589

SortPooling 0.398 0.837 0.338 0.878
DiffPool 0.425 0.813 0.393 0.806

RFN 0.422 0.817 0.367 0.837
HENCE 0.781 0.449 0.727 0.480

Improv. 11.5% 13.0% 15.4% 14.7%

Table 3: Experimental results of HENCE and existing state-
of-the-art methods in two transfer scenarios.

Models R2 MAE RMSE

Random Forest 0.5644 0.6891 0.9279
EGAT 0.6549 0.5980 0.8265
EGNN 0.5800 0.6662 0.9111

HENCE 0.7452 0.5188 0.7102

Table 4: Temporal transfer study. Models are trained on the
Year 2015 dataset and tested on the Year 2017 dataset.

is 13.43% on R2 metric and 13.81% on MAE. The high val-
ues of R2 performances further validate our model’s capac-
ity of handling practical transfer applications. Therefore, we
can conclude that our model can capture the complex in-
trinsic correlations between road network, OD network, and
on-road carbon emissions that generalize across regions.

Temporal Transfer Study Road networks and OD are
also evolving under local development or policy interven-
tions. Accurately estimating future on-road carbon emis-
sions with evolving road networks and OD flows holds great
significance for efficiently managing on-road carbon emis-
sion evolutions and evaluating carbon-reduction policies.
Therefore, we evaluate our model’s performance under tem-
poral transfer, training our model on the Year 2015 dataset
and applying the trained model to predict on-road carbon
emissions in 2017. The performance results of HENCE and
the three best baselines are listed in Table 4, which shows
that our model achieves an excellent transfer performance
with R2 exceeding 0.74 and outperforming the best base-
line by 13.79%. Compared to the performance of being
trained and evaluated both on Year 2017 dataset, our model’s
R2 performance is only slightly lower with a 5.25% gap.
The excellent temporal transferability results indicate our
model’s capacity to capture the time-invariant intrinsic cor-
relation between OD network, road network, and on-road
carbon emissions.

Explanatory Insights
The heterogeneous graphs we employ at both the region
level and community level are aimed at modeling the in-

tricate interactions between road networks and OD at dif-
ferent spatial scales. The adaptive attention weights for the
links indicate the varying explainability of the two factors
for different regions. Therefore, to investigate the correla-
tion between transportation demand, road network connec-
tivity, and emission level, we visualize the aggregation at-
tention weights derived by Equ 7 for both types of links in
the community-level graph and the region-level graph.

Figure 3: Aggregation weights for OD and spatial links.

As shown in Figure 3, our model puts more attention on
the OD links for regions with larger emissions, whether for
community-level short-distance travel or region-level long-
distance travel. It may be due to better road construction for
large-emission regions where people rely more heavily on
road transportation. Therefore road network connectivity is
consistently high in these regions and spatial links convey
less information. Meanwhile, for regions with relatively low
emissions, the road network connectivity significantly im-
pacts their traffic efficiency, accounting for the emission dis-
crepancy for regions with similar transportation demands.
Hence, for large-emission regions which are our carbon mit-
igation priorities, the most efficient carbon mitigation strat-
egy may be better land use planning to decrease travel dis-
tances and navigation towards public transportation.

Conclusion

In this work, we propose an effective hierarchical heteroge-
neous graph learning method for on-road transportation car-
bon emission estimation with the open data of road network
and OD. With the hierarchical graph modeling multi-scale
relations between urban spaces and the heterogeneous graph
characterizing the intrinsic interactions between travel de-
mand and road network-based connectivity, HENCE com-
prehensively models how diverse travel demands are ful-
filled by road network-based spatial connectivity. Extensive
experiments demonstrate HENCE’s effectiveness in com-
plex and diverse application scenarios, proving the great po-
tential of employing artificial intelligence to empower sus-
tainability development.
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