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ABSTRACT

City-scale individual movements, resulting population flows, and urban morphology intricately intertwine, collectively contributing

to the complexity of urban mobility, impacting critical aspects of a city, including socioeconomic exchanges and epidemic

transmission. Existing models, derived from the fundamental laws governing human mobility, often capture only partial

facets of this complexity. This paper introduces DeepMobility, a powerful deep generative collaboration network to bridge the

heterogeneous behaviors of individuals and collective behaviors emerging from the entire population via constructing a unified

model that encapsulates the multifaceted nature of complex urban mobility. Our experiments, conducted on mobility trajectories

and flows in cities of China and Senegal, reveal that, in contrast to state-of-the-art deep learning models that simply “memorize”

observed data, DeepMobility excels in learning the intricate data distribution and successfully reproduces the existing universal

scaling laws that characterize human mobility behaviors at both the individual and population levels. DeepMobility also exhibits

robust generalization capabilities, enabling it to generate realistic trajectories and flows for cities lacking corresponding training

data. Our approach underscores the feasibility of employing generative deep learning to model the underlying mechanism of

human mobility, and establishes an effective generative machine learning framework to capture the complexity of urban mobility

comprehensively.

Human mobility, an indispensable component of urban functionality, serves as a linchpin for establishing vital connections

across diverse city regions, thereby enabling residents to access and leverage urban services1,2. Beyond fostering commercial

interactions and innovation diffusion, it concurrently engenders multifaceted challenges including traffic congestion3,4 and

epidemic transmission5–7. Consequently, human mobility plays a pivotal role in shaping urban dynamics across cultural,

economic, and environmental dimensions8–11. City-scale individual movements, the resulting population flows, and the urban

morphology are intricately intertwined, collectively contributing to the complexity of urban mobility. This complexity, with

its extensive historical research context12,13, further amplifies the dynamics governing urban economic and social systems,

highlighting the enduring significance of modeling the complexities of urban mobility for understanding urban patterns and

fostering sustainable development14,15.

In the pursuit of understanding the intricate dynamics of urban mobility, statistical physicists have increasingly focused on

the analysis of empirical mobility data to uncover universal patterns in human mobility since the turn of this century16–18. This

leads to the discovery of scaling laws governing both individual movements16,17,19–22 and population flows18,23–27. Individual

human movements, unlike physical particles, can be approximated by a scale-free Lévy flight, with truncated power law

distributed spatial distance16,17, up to a distance characterized by the individual’s radius of gyration, which also follows

truncated power law distribution17. Conversely, temporal memory effects, representing the tendency to revisit particular

locations, are characterized by the scaling laws including Zipf’s law of visitation frequency17, sublinear growth in the number

of unique locations visited20, and an ultraslow diffusion process20. In terms of collective behaviors, the flow of population

mobility can be broadly characterized by the gravity law23, which posits that the probability of movement between regions is

proportionate to their respective populations. Furthermore, this flow can be more precisely predicted by the radiation model18.

Temporal regularities emerge as well, notably the distance-frequency scaling law27, revealing an inverse square relationship

between the number of visitors to a location and their visit frequency. Additionally, power law distributions govern the number

of trips between regions and trips originating or ending in specific regions25,26. Despite the success in identifying these

fundamental laws, it is essential to note that the existing models, often developed through theoretical derivations, are limited in

their capacity to fully encompass all facets of these laws. The significant disparities among various mobility laws, particularly

those stemming from distinct levels of analysis of individual movements versus population flow, present a significant challenge

in the pursuit of a unified theoretical model.
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Recent advancements in Artificial Intelligence (AI), particularly in the domain of deep generative AI models, offer a

promising alternative to mechanistic approaches in constructing high-capacity models capable of capturing various mobility laws.

Deep learning models like generative adversarial networks (GANs)28 or variational autoencoders (VAEs)29 have demonstrated

remarkable versatility in learning the distribution of real-world mobility data, and generating synthetic data with comparable

statistical properties30. Previous research has successfully applied these models to specific modeling tasks, including the

generation of human trajectories that mimic individual movements31–36 and the prediction of population flows between pairs

of regions37–39. Notably, these deep learning-based models have shown higher accuracy compared to traditional theoretical

models18,23. However, despite the considerable realism achieved by these DL-based models in specific-level descriptions

of urban mobility, they predominantly focus on either individual trajectories or aggregated flows, but cannot consider both

simultaneously. The collective mobility patterns emerge from the bottom-up aggregation of individual movements, which in

turn impose constraints that influence individual behaviors. This bi-directional influence between individual and population

levels contributes to the complexity of urban mobility. Yet, effectively characterizing this intricate interplay in deep generative

models remains an unresolved challenge.

In response to this challenge, we introduce DeepMobility, a novel generative deep-learning approach that captures the

multifaceted nature of complex urban mobility. DeepMobility conceptualizes human movement as a sequential decision-

making process and employs a GAN-based framework to train a deep generative collaboration network for simulating human

mobility behaviors. This neural network comprises three components: a generator for producing individual trajectories and

aggregated population flows, a discriminator for assessing the quality of these trajectories and flows against real data, and a

critic for providing guidance from the discriminator so as to improve the generator. To characterize the dynamic interplay

between individual behaviors and broader population trends, DeepMobility incorporates two innovative collaborative learning

mechanisms: bottom-up interaction modeling and top-down feedback refinement. The bottom-up approach, implemented in the

generator, effectively integrates social interactions into individual movement patterns. Concurrently, the top-down approach,

functioning in the critic, allows for precise adjustments to individual behaviors based on aggregated population-level flow

patterns. In this way, it successfully bridges the heterogeneous behaviors of individuals and collective behaviors emerging from

the entire population to capture the multifaceted nature of complex urban mobility.

Utilizing data from three Chinese metropolises (Beijing, Shanghai, Shenzhen) and Senegal, we trained DeepMobility

models to generate human mobility trajectories and the resulting flows across urban regions. Remarkably, despite being purely

data-driven and free of predefined mechanisms, DeepMobility was able to simultaneously reproduce the existing multi-scale

scaling laws previously discovered by physicists. The emergence of this capability to reproduce complex patterns indicates that

DeepMobility goes beyond mere data memorization, capturing the underlying mechanisms of urban mobility in a way other

deep learning models have not. In terms of the realistic generation of trajectories and flows, our results show the significant

improvements over previous models. DeepMobility demonstrates advantages in five key statistical properties of trajectories and

achieves substantial enhancements in flow generation: up to 120% in Beijing, 112% in Shanghai, 136% in Shenzhen, and 81%

in Senegal. Moreover, we showcase DeepMobility’s geographical transferability by verifying its effectiveness in cities with

scarce mobility data, underscoring its broad applicability.

Results

DeepMobility framework

To fully model the complex urban mobility with both the individual movement laws and the emerging collective flow patterns,

we propose a deep generative collaboration network for generating the multiscale realistic human trajectories and the resulting

mobility flows in a city (Fig. 1). We aim to learn a mobility model that simulates an individual’s mobility decision-making

process based on observed data. Specifically, given an individual’s travel history x<t at time t, it estimates the probability of

visiting location lt , i.e., π(lt |x<t), and generates a spatiotemporal trajectory by sequentially sampling lt ∼ π(·|x<t) to obtain a

sequence of individual movements. Then, for the entire urban population, their movements are learned by following a joint

policy, i.e., Π(lt |x<t), and aggregate into region-wide flows that reflect daily rhythms of urban activities. To capture human

mobility patterns at both individual and population levels, we formulate the learning process of DeepMobility as the following

multi-objective optimization problem with respect to π:

min
π

(

Ldist

(

Pdata(lt |x<t),π(lt |x<t)
)

,Lerror

(

Ft,data,F(Π(lt |x<t))
)

)

. (1)

The first objective aims to minimize the distance between the statistical distribution of generated movements, i.e., π(lt |x<t),
and that of observed data, i.e., Pdata(lt |x<t), in terms of spatiotemporal regularity. The second objective aims to minimize the

reconstruction error of generated flows, i.e., F(Π(lt |x<t)), that are aggregated from population’s movements. The complexity

of this problem mainly lies in the bi-directional influence across individual and population levels of human mobility. First, the

bottom-up aggregation of mobility flows, indicated by Π(lt |x<t), essentially incorporates the influence of social interactions
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Fig. 1 Illustration of complex urban mobility from both the individual and population perspectives. The bottom layer represents

individual movement trajectories between urban locations, and the top layer denotes population flows between urban regions, where more

(fewer) arrow lines indicate larger (smaller) flows. Among trajectories, several samples belonging to each flow are highlighted with the same

color. Regions are shown as geographical polygons.

from the population, which means Π(lt |x<t) ̸= ∏
N
n=1 π(ln,t |xn,<t) and prohibits the traditional independent modeling. Second,

the individual mobility model π is simultaneously constrained by population-level mobility information, requiring a top-down

learning process.

The modeling framework of DeepMobility is presented in Fig. 2. It consists of three components, i.e., a generator, a

discriminator and a critic. The generator aims to generate individual trajectories with the resulting flows that are indistinguishable

from empirical data by the discriminator. Fig. 2a illustrates the generation process at the generator, with a GRU-based state

encoder that transforms location visit history into a fixed-length hidden vector and a hierarchical decoder that simulates the

mobility decision process to first decide the next visit region and then choose a specific location in this region. To achieve

collaborative learning from individual mobility to collective mobility and model the multiscale patterns and complexity, we

design a bottom-up social interaction modeling mechanism at the trajectory decoder. Specifically, we use two modules to

generate the next visit region based on individual preference and social interaction, respectively, and the final decision is made

between these two according to a learnable probability score that measures an individual’s uncertainty about following his/her

preference. The preference-based module uses an MLP that takes state embedding as input and outputs a vector indicating

the visitation probability of each region, while the interaction-based module also adopts an MLP-based structure37 that takes

regional attributes as input and predicts the visitation probability in terms of population movements. Fig. 2c illustrates the

multilevel structure of the discriminator that evaluates the realism of generated trajectories and the aggregated flows. The

individual-level discriminator also uses a GRU-based module as it needs to process a trajectory sequence and output the score

indicating whether it is similar to actual data, while the population-level discriminator directly computes the relative error

between the generated flow value and the ground truth. These feedbacks are sent back to improve the generator through another

critic network using a well-established proximal policy optimization algorithm (PPO)40, as illustrated in Fig. 2d-f. To achieve

collaborative learning from collective to individual mobility data, we design a top-down feedback refinement mechanism at the

critic. Specifically, the critic adopts a multilevel structure to approximate value functions for the generator output. Besides the

individual-level critic, another population-level critic leverages a value decomposition technique41 that transforms the overall

assessment of population movements into individual-level feedback, which directly refines mobility behavior in a top-down

manner (Method and Supplementary Section S1).
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Fig. 2 Overview of the proposed deep generative collaboration network DeepMobility. It consists of three components to learn the

complexity of urban mobility. The first component is a mobility generator, as shown in the left panel. This generator is implemented using a

GRU-based state encoder and a trajectory decoder that produces the next visited location by employing a bottom-up social interaction

modeling technique. Then a multilevel discriminator evaluates the utility of the generated movements from both individual and population

perspectives. This feedback is used to train a multilevel critic (detailed in the right panel) that decomposes the overall guidance from

population-level mobility and directly guides the optimization of the generator at the individual level (Top-down feedback refinement).

DeepMobility generates human mobility trajectories and the resulting flows at the urban scale

To assess the capability of the proposed DeepMobility modeling framework, we perform an experiment that utilizes it to

generate synthetic data and evaluate whether they represent intricate mobility patterns at both individual and population

levels (Experiment details are provided in Supplementary Section S2). First, for individual mobility patterns, we verify if the

generated trajectories are statistically similar to the real data by quantify the distribution differences using the Jensen-Shannon

divergence (JSD) and the Kolmogorov–Smirnov (KS) test33,42, which are bound by [0,1], with 0 indicating a perfect match

between two distributions. In particular, we focus on the following five fundamental metrics13,30,43: jump length ∆r (distance of

each travel), weekly trip distance rw, radius of gyration rg, waiting time ∆t (time spent at the same location), and daily visited

locations Sd of an individual. These metrics comprehensively cover empirically observed mobility patterns including spatial

and temporal regularity (∆r, ∆t)17, population heterogeneity (rg)17 and ultraslow growth of travel distance and visited location

number (rw, Sd)20. Then, for population mobility patterns, we use the Common Part of Commuters (CPC)27,37 and the Mean

Absolute Error (MAE)30,44 to calculate the distance between the real and the generated flows. The mobility flows are calculated

as how many people move from one region to another within a period, and CPC is bounded by [0,1] with 1 indicating the two

are identical and 0 suggesting no overlap. For performance comparison, we choose the four most widely used mechanistic

approaches and deep-learning approaches, including the CTRW model17, the EPR model20, the TimeGeo model42 and the

GAN model33,45.

To verify the modeling capability of DeepMobility at the individual mobility level, in Fig. 3a-d we calculate the JS divergence

of five metrics (∆r, rw, rg, ∆t and Sd) for generated trajectories of each model, finding that our model generates individual

trajectories with the highest statistical similarity (See complete numerical results in Supplementary Table 3). Further results of

the KS test (Supplementary Table 4) also verify such generation realism with 15 (out of 20) KS statistics of distributions no

larger than 0.2. Unlike mechanistic models, DeepMobility leverages the power of deep learning to learn individual features from

the mobility data. Thus it can capture diverse travel behaviors observed in the population, especially the P(rg) corresponding to

the individuals’ characteristic distance that has been empirically observed to have a high population heterogeneity. Unlike the

one-shot generation of a complete trajectory as in the GAN model, DeepMobility simulates the mobility decision process of an

individual and generates the next visit location in a sequential way, achieving significant realism improvement.

To test the capability of DeepMobility in generating complex mobility flows at the population level, in Fig. 3e-h we measure
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the CPC between the generated flows and the real flows for each model, observing a remarkable performance improvement up

to 120% (Beijing, 0.787 vs. 0.357), 112% (Shanghai, 0.686 vs. 0.324), 136% (Shenzhen, 0.560 vs. 0.216) and 81% (Senegal,

0.650 vs. 0.359). Our DeepMobility also achieves much less absolute error (MAE), equivalent to 17-30% of the best-performing

baseline model in four different cities (Supplementary Table 3). To compare further the generated flows with the empirical data,

we measure the number of travels between each pair of locations (Fig. 3i-l). Unlike our DeepMobility, both the mechanistic

model TimeGeo and the deep-learning model GAN generate unrealistic flows that deviate from the empirical data. In particular,

the GAN model tends to generate overestimated flows for those less-traveled pairs (number of travels < 1,000), and the TimeGeo

model performs the opposite in the cases of Shanghai and Shenzhen. Correspondingly, in Supplementary Fig. 5-6 we plot the

mobility networks describing the observed flows and the flows generated by three models (DeepMobility, GAN and TimeGeo),

finding that DeepMobility captures the overall structure of the flow network while GAN and TimeGeo generate much denser

connections and sparser connections, respectively.

To understand the origin of the aforementioned exceptional ability to capture intricate complexity within empirical

urban mobility data, we remove two collaborative learning mechanisms in DeepMobility and retrain three model variants to

evaluate their generation realism (Table 1). We find that, compared to a vanilla version without the designed collaborative

learning mechanisms, DeepMobility achieves a significant improvement of the CPC up to 60.6% (Beijing), 29.2% (Shanghai),

20.7% (Shenzhen) and 8.5% (Senegal). It confirms the necessity of designing such a deep generative collaboration network

to resolve the current discrepancy between individual mobility modeling and population mobility modeling. Furthermore,

bottom-up interaction modeling and top-down feedback refinement are incorporated in different modules, allowing us to

remove either of them to compare performance, finding that incorporating population influences into the decision process of

individual-level movements contributes more than refining the learning of individual mobility behavior. Note that neither of the

two designed mechanisms hurts generation realism at the individual mobility level, showing their strong compatibility.

By generating realistic individual trajectories and the resulting population flows at the urban scale, DeepMobility successfully

preserves the organic nature of the urban population, as individuals’ daily activities and lives are closely related to their mobility.

To demonstrate its capability of reconstructing individuals’ activities at various urban locations, we apply a location type

inference method42 to identify a collection of home locations from the generated trajectories, finding that their spatial distribution

is in good agreement with the empirical data (Supplementary Fig. 7 and Section S3.2). Another important empirical observation

of urban life through a mobility lens is the distribution of the most frequent daily mobility networks, i.e., daily motifs46. As we

show in Supplementary Fig. 8, the distribution of the identified nine distinct motifs is again consistent with the empirical data,

with JS divergence statistics less than 0.084 in four cities (Supplementary Section S3.2).

Reproduction of scaling laws governing human mobility

In order to validate whether DeepMobility is capable of reproducing scaling laws that have been empirically observed,

we subsequently investigate whether the generated trajectories and flows exhibit corresponding statistical patterns. As a

first step, in Fig. 4a-d we calculate the jump length ∆r at hourly intervals in the DeepMobility-generated data, finding

that p(∆r) ∼ (∆r+∆r0)
−β1exp(−∆r/κ1), the same form of truncated power law as the previous finding17. The exponent

β1 (∼ 1.2−1.3) remains similar in different cities. However, we observe that the scaling exponent β1, though in excellent

agreement with the empirical value β1 (∼ 1.1− 1.3), is relatively smaller than that in the literature (∼ 1.75), suggesting a

possible discrepancy between their underlying mechanisms. To further understand the origin of this discrepancy, in Fig. 4e-h

we measure the degree of spatial regularity in the generated population by calculating the radius of gyration rg for all individual

trajectories, finding that their distribution P(rg) is again consistent with the previous finding17,20, well-approximated with

a truncated power-law. Indeed, the measured value of the scaling exponent β2 ∼ (1.10,1.17) is also smaller (vs. 1.6517),

suggesting that this difference on population heterogeneity (rg) may account for above observed discrepancy (∆r). Most

important, however, is the fact that an increased heterogeneity of travel patterns indicated by smaller β2 can be a major challenge

for not only mechanistic models but also deep-learning models. As we show in these figures, the GAN model generates

trajectories directly and fails to reproduce empirically observed scaling laws, confirming the importance of learning to simulate

individual travel decisions as in DeepMobility.

Another key scaling property regarding individual mobility is the frequency f of the kth most visited location follows

Zipf’s law17 fk ∼ k−ζ (ζ ∼ 1.2), arising from the memory effect that individuals tend to return to previously visited locations

preferentially. By encoding individuals’ states using their visitation history x<t , DeepMobility can capture the aforementioned

preferential return mechanism20 in the learned policy πθ (lt |x<t). In Fig. 4i-l we measure fk for mobility data generated by

DeepMobility, finding that the observed scaling behavior is in excellent agreement with the previous finding, with scaling

exponent ζ ∼ (1.0,1.1) not far from that in the literature. To further understand how DeepMobility accounts for this visitation

pattern of humans, we remove the memory effect by not encoding the visitation history, finding that the newly generated data

exhibits a much more even distribution of fk as in scale-free random walk models17 (a smaller ζ , in Supplementary Fig. 9). On

the other hand, we show that DeepMobility-generated individuals also have a tendency to decrease the exploration of other
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locations over time20, as manifested by a sublinear growth in the number of distinct locations (Supplementary Fig. 10a-d and

Section S3.3), and their long-term spatial movements up to one year follow an ultraslow growth (< logarithmic)17 with time

evolution (Supplementary Fig. 10e-h and Section S3.3). The above reproduced mobility patterns associated with the memory

effect contribute to the high predictability of our generated mobility trajectories (Supplementary Fig. 11 and Section S3.3),

which is consistent with earlier findings19.

Finally, to test whether DeepMobility can reproduce the population-level scaling patterns, in Fig. 4d-p we show the ‘spectral’

flow ρi(r, f ), i.e., the number of visitors with a given visitation frequency f to each location i from a given distance r (to

their home location), finding that ρi(r, f ) decreases as the inverse square of the product of f and r. This power-law scaling

relation reproduced by DeepMobility is in excellent agreement with the discovered distance–frequency scaling27, largely owing

to our designed collaborative learning mechanisms that bridge the heterogeneous movements of individuals and collective

patterns emerging from the entire population (See deviated results of GAN in Fig. 4m-p, as well as corresponding results of

DeepMobility removing collaborative learning in Supplementary Fig. 12). Furthermore, we find that DeepMobility successfully

reproduces other empirically observed scaling patterns, including power law distributions in the number of trips between

regions25 and similar statistical properties of origin-destination demand networks across different cities26 (Supplementary

Fig. 13-14 and Section S3.3). The remarkable consistency between mobility patterns reproduced by DeepMobility and

fundamental laws established by physicists17,19,20,25–27 suggests that DeepMobility successfully captures the intricate interplay

between individual heterogeneous movements and collective behaviors in a manner unmatched by previous models.

DeepMobility captures the inherent mechanism of complex urban mobility that is geographically transferable

For generative models of urban mobility, the capability for geographic transferability reflects their ability to generalize in

capturing consistent mobility patterns across different cities. This is also essential for DeepMobility, as it means the model

captures the inherent mechanisms of complex urban mobility, rather than mere data memorization. Moreover, due to the

increasing cost of data acquisition, high-quality human mobility data is often scarce or even absent in some underdeveloped

urban regions. In real-world applications of urban mobility generation, practitioners may have to develop generative models

using available mobility data collected from some cities and then use these models to generate urban trajectories in other

targeted cities without any mobility data.

To accommodate transferable mobility generation between different cities, we improve the model design of DeepMo-

bility (Method, Supplementary Section S1.5), train this improved model on mobility data of one Chinese city and test its

generation realism in two other Chinese cities. To verify the geographic transferability of DeepMobility, in Fig. 5 a-d we

calculate evaluation metrics of generation realism at both individual and population levels and compare with three mechanistic

models (Complete results are shown in Supplementary Table 5). Note that, unlike deep-learning models such as GANs,

mechanistic models are intrinsically transferable. We find that DeepMobility-generated trajectories have the highest statistical

similarity to real data in terms of five individual-mobility metrics, i.e., (∆r, rw, rg, ∆t, Sd), and the resulting flows reconstruct

realistic population-level mobility with the highest accuracy (CPC and MAE). In particular, DeepMobility trained in one city

reproduces the spatio-temporal mobility patterns (P(∆r), P(∆t)) in another city, with JS divergence less than 0.1, and finally

captures the population heterogeneity (P(rg)). The improvement in flow generation is significant, over 60% (CPC) in 3×2

source-target pairs. In Fig. 5 e-g we show complete results of transferability evaluation for P(∆r), P(∆t) and flow similarity,

finding that the transferred DeepMobility is on par with its counterpart trained on the target city. Individual-level trajectories

are equally realistic (JS divergence < 0.1) and population-level flows yield CPCs that are remarkably close to non-transferred

ones (56-95%). These results indicate the potential capability of extending DeepMobility to generate realistic mobility data

with high utility for any given cities around the world.

Discussion

Recent advancements in generative AI technologies have markedly enhanced content generation capabilities, spanning text,

images, and videos. However, generating human behavior, in contrast to these forms of content, presents a more formidable

challenge due to the complexity of intricate linkages between individual actions and collective population dynamics. Our

research, focusing on human mobility behavior as an initial endeavor, demonstrates that a novel generative deep-learning

approach, enriched with effective collaborative learning mechanisms, can successfully bridge this gap and enable the generation

of complex urban mobility data across various cities. This development further implies, with minimal urban context information

on demographics and geography, how generative AI helps generate a vibrant, ‘organic’ urban population with intricate dynamics

by modeling the way individuals interact, engage, and utilize services in the course of their daily movements.

This new deep-learning approach is designed to generate both individual movements and the resulting population flows in a

city, making it possible to answer a long-standing question of whether deep-learning models can capture underlying mechanisms

driving complex urban mobility across both individual and population levels. Our results of reproducing mobility scaling laws

give a “yes” answer to this question (Fig. 4), confirming the importance of achieving collaborative learning between individual
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and population mobility. In this regard, machine intelligence can further augment understanding and learning of complex

mechanisms behind individuals’ mobility decisions47, and finally enable the data-driven discovery of new theories regarding

human mobility14,48,49.

An interesting question here is how trustworthy the designed deep model is in generating realistic synthetic data without

compromising privacy since empirical studies have found that individuals can be identified from mobility data due to the

uniqueness of their trajectories50,51. To that end, we examine the overlap ratio between real and generated trajectories, and also

the identifiability of a real individual from generated trajectories (Supplementary Section 3.5). We find that, for most individuals

in real data, their trajectories share only a small portion with the most similar generated trajectories, and it is mathematically

infeasible to identify a real individual when mixed with generated ones (Supplementary Fig. 15). Therefore, the proposed deep

generative model does not simply “memorize” the real mobility trajectories, but instead learns the underlying mechanisms

driving human mobility patterns.

From a practical standpoint, our developed DeepMobility framework has demonstrated the potential to generate realistic

and complex urban mobility data. This is particularly significant in cities lacking available mobility data, providing immediate

and valuable applications in the fields of epidemic disease containment, traffic engineering, and urban planning52–54. Looking

ahead, the framework can be enhanced by integrating the impact of urban road networks on human mobility, thus offering a

more comprehensive modeling approach55. In terms of future applications, DeepMobility has the potential to evolve into a

transparent tool for constructing open urban mobility data that could offer detailed insights into population movements within

cities globally. This advancement would serve as a valuable complement to the current static and coarse-grained mapping

of world populations56,57. By providing a more nuanced understanding of urban mobility patterns, DeepMobility will be

instrumental in supporting the development of sustainable and livable cities worldwide58–60.

Methods

M1. Datasets

We use four datasets to demonstrate the DeepMobility generation framework. The first two datasets (DS1, DS2) use the

anonymized location record of about 1.8 million users in Beijing, China and 0.32 million users in Shenzhen, China, respectively.

These users have signed up for a location-based service and their locations are recorded every hour for a one-month period.

The third dataset (DS3) covering Shanghai (China) consists of around 1.9 million anonymized users of China’s major telecom

company. The data are collected during a one-week period for billing purposes, recording the location at the beginning and the

end of each service (a call, an SMS, or an Internet connection). The fourth dataset (DS4) of Senegal is based on anonymized

call detail records (CDRs) from about 0.3 million users during a two-week period with a temporal resolution of 10 min. These

datasets capture daily human movements at both individual and population levels, i.e., trajectories and the resulting flows. The

details of data processing and feature extraction are provided in Supplementary Section S1.1.

M2. DeepMobility

GAIL based framework

To solve the generative learning problem of urban mobility in Equation (1), we resort to generative adversarial imitation

learning (GAIL)61 due to the analogy between mobility modeling and decision policy learning. Specifically, we define the

set of locations L as the action space A, and the set of visitation history X<t as the state space S. Then learning π(lt |x<t)
equals to finding optimal π(s,a) in GAIL. Moreover, to describe the complex decision process of a group of individuals,

we further extend MDP into Decentralized Partially Observable MDP (Dec-POMDP)62 that can be represented by a 7-tuple

< S,{An},P,R,{Ωn},O,γ >:

(1) S is a set of states and each state s consists of all agents. In the partially observable setting, agents have no access to the

overall state.

(2) An is a set of actions for agent n, and A =×nAn is the set of joint actions. Specifically, an action an,t indicates the next

place to visit for individual n at time t.

(3) P is a set of conditional transition probabilities between states, with P(s′|s,a) denoting transition probability from s to s′

given a joint action a. The transition is deterministic in this problem.

(4) R : S×A 7→ R denotes the reward function r(s,a).

(5) Ωn is a set of observations for agent n, and Ω =×nΩn is the set of joint observations.

(6) O is a set of conditional observation probabilities, i.e., {O(o,s,a)}. The observation is also deterministic in this problem.

Specifically, for an individual n at time t and location lt−1, his/her observation on,t combines both historical movements
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X<t = [x1,x2, ...,xt−1] and the distribution of population movements from lt−1 to other locations, denoted as F̃lt−1
. The

latter represents a limited ability of individuals to observe other people’s travel decisions.

(7) γ ∈ [0,1] is the discount factor.

Based on the above formulation, we propose a GAIL-based approach for learning π(lt |x<t) that aims to capture human

mobility patterns at both individual and population levels. The preliminary on GAIL is detailed in Supplementary Section S1.2.

Collaborative learning mechanisms

In order to establish a bidirectional link between individual and population levels of mobility modeling in DeepMobility, we

design the bottom-up and top-down collaborative learning processes, respectively.

(1) Bottom-up interaction modeling. We begin by developing a generator module capable of creating interconnected

movements from a big urban population. Aside from personal taste, an individual’s travel decisions are heavily influenced

by social interactions63,64. For example, trajectories traveled by a person show his/her daily pattern, implying a memory

effect in which historical movements influence future mobility behavior. Meanwhile, an individual may visit some unexpected

areas advised by his or her friends on occasion, suggesting social interactions among a population of individuals. To directly

characterize these interactions for N individuals, substantial pairwise linkages (∼ N2) would have to be computed, which is not

feasible. To address this issue, we propose the formulation of the mobility model πθ (at |ot) as a composite of two parameterized

decision processes:

π(at |ot) = Collab
(

πθI
(at |X<t),πθP

(at |F̃lt−1
)
)

, (2)

where πθI
(at |X<t) and πθP

(at |F̃lt−1
) represent two distinct decision policies considering individual preference and population

influence, respectively. The first part πθI
(at |X<t) captures individual preference by learning movement regularities from the

historical trajectory X<t , while the second part πθP
(at |F̃lt−1

) characterizes the social interaction influence from population

movements F̃lt−1
that are shaped by the urban environment. The collaboration between these two parts is designed as making a

discrete choice between them according to a parameterized Bernoulli distribution Bernoulli(ut), where ut =Uθu
(X<t) ∈ [0,1]

characterizes a learned probability that measures individual’s uncertainty on following his/her preference. Formally,

π(at |ot) =

{

πθI
(at |X<t), Prob= 1−ut

πθP
(at |F̃lt−1

), Prob= ut

. (3)

If the individual uncertainty on historical visitation is high, this individual is more likely to follow a population-level de-

cision (πθP
) instead of his/her preference (πθI

). The designed collaboration between two decision processes successfully

incorporates population influences at the individual level, achieving bottom-up social interaction modeling of complex urban

mobility.

(2) Top-down feedback refinement. Next, we design a critic module that improves the generator in terms of capturing

bidirectional influence between individual level and population level of urban mobility. The critic Vφ approximates the value

function of mobility decisions at the generator πθ and guides the optimization direction of πθ accordingly using policy learning

algorithms like PPO40 (Detailed in Supplementary S1.2). As πθ generates individual movements that are then aggregated into

population flows, Vφ should evaluate the value of each movement based on not only its fitness to individual-level patterns

but also its contribution to aggregated flows. The former is completed by an individual critic Vφi
(ot) that learns to predict the

correct value function of individual movements based on whether πθ (at |ot) matches patterns in empirical data. However, the

latter is far more challenging due to the high-dimensional space of joint actions at ∈ ×nAn and observations ot ∈ ×nΩn, arising

from the entire population. Therefore, to solve this issue, we propose to decouple the joint space optimization by decomposing

the population critic Qφp(ot ,at) from the entire population (∼N) into a sum of Qφp(on,t ,an,t) from each individual. Formally,

Qφp(ot ,at) =
N

∑
n=1

Qφp(on,t ,an,t). (4)

Then we optimize Qφp using Monte-Carlo policy evaluation as follows,

min
φe

EΠ

[

(Q̂Π(o,a)−Qφp(o,a))
2
]

,

where Q̂Π(o,a) = Êτ

[T−t

∑
k=1

γk−1rt+k | ot = o,at = a
]

,

and rt+k = r(ot+k,at+k) =
Ft+k,data −Ft+k,model

Ft+k,data

, at+k ∼ Πθ (·|ot+k).

(5)
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The global reward rt measures the relative error between the real flow matrix Ft,data and Ft,model generated by following joint

policy Π(at |ot). Note that
∂Qφp (ot ,at )

∂Qφp (on,t ,an,t )
≥ 0,∀i, thus the optimization of Qφp yields the same optimization direction on each

Qφp,n. In this way, we manage to make the optimization of the population-level critic Qφe(ot ,at) feasible by turning global

optimization into a series of coordinated optimization processes at the individual level, i.e., with respect to Qφp(on,t ,an,t).
Finally, we combine value estimations of πθ (at |ot) from two critics, i.e., Vφi

(ot) and Qφp(ot ,at), and update the generator

parameters using PPO (Detailed in Supplementary Section S1.3). The above design of value decomposition from population

level to individual level achieves the top-down refinement of πθ (at |ot) based on feedback from the quality of generated flows.

Generator architecture

Supplementary Fig. 1 shows the network architecture of the mobility generator.

(1) State encoder. We first utilize a Gated Recurrent Unit (GRU) to learn the state representation of the historical trajectory.

Specifically, we transform previously visited locations represented by one-hot encoding, along with temporal information,

into vectors et by an embedding layer; then we learn a representation of the individual’s historical trajectory ht using a GRU

network, which captures non-Markov, memory effects of individual mobility.

(2) Hierarchical decoder. Next, we adopt a hierarchical structure at the trajectory decoder that first outputs the next region r j

to visit and then selects a specific location l j that belongs to r j.

In the first stage, we design an interaction-fused region selection process that characterizes the influences from both

individual preference and social interaction. As in Equation (2), we select r j according to an uncertainty-based probability

score ut , which is obtained based on the following multi-head uncertainty estimation module:

ut = Sigmoid(var(vm)),

where vm = MLP(ht) =











v1

v2

...

vH











(6)

is a H-dimensional vector whose variance across different heads {1,2, ...,H} is used to estimate the state uncertainty. Note that

we use the Sigmoid function to transform it into a probability score between 0 and 1. If the estimated uncertainty ut is high, the

individual will be more likely to consider following collective behaviors. Otherwise, the individual prefers to follow her own

preference based on historical memory.

As for the specific network architecture that simulates the region selection process based on individual preference, we

utilize an MLP to transform ht into an n-dimensional vector and normalize it by a softmax function as follows:

πθI
(r j|X<t) =

exp(MLP(ht)) j

∑exp(MLP(ht))
, j ∈ {1,2, ...,Nr} , (7)

where Nr is the number of regions, and πθI
(r j|X<t) denotes the probability of visiting region r j.

As for simulating the region selection process based on collective behaviors, we consider the spatial movement distribution

of populations originating from the current region to other regions. We utilize the follow network architecture to learn

a Nr-dimensional probability πθP
(r j|F̃lt−1

), j ∈ {1,2, ...,Nr} as in Equation (2). The vector is calculated in the following

steps. First, an embedding layer transforms region attributes, including the population xr,pop and POI distribution xr,poi, into

region representation er, then the input vector ei j is obtained by concatenating the representation of the origin region eri
, the

representation of the destination region er j
, the distance representation e(di j) between two regions, and the time representation

e(t). Second, the input vectors ei j are all fed into the same network, which is an MLP with ten 64-dimensional hidden layers

and has the LeakyReLu as the activation function. The last layer outputs the probability to observe a trip from the origin region

ri to destination regions r j, j ∈ {1,2, ...,Nr}. The above process is formulated as follows:

er = Concat(Wpopone-hot(xr,pop)+Wpoione-hot(xr,poi)) ,

ei j = Concat(eri
,er j

,e(di j),e(t)) ,

πθP
(r j|F̃lt−1

) =
exp(MLP(ei j)) j

∑exp(MLP(ei j))
, j ∈ {1,2, ...,Nr} .

(8)

In the second stage, based on selected region r j, we design another location-selection process that chooses the next location

belonging to r j. To cope with a varied number of locations across different regions, we utilize an attention-based network to
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calculate the probability of visiting a specific location l j within r j as follows:

π(l j) =
exp(uT

j uw)

∑k exp(uT
k uw)

, j ∈ {1,2, ...,Nl,r} ,

where u j = tanh(MLP(e j))

and e j = Concat(ht ,el, j,e(di j),e(t)) .

(9)

Nl,r j
is the number of locations in region r j, ht is the history representation obtained from the state encoder, el, j = one-hot(l j)

is the embedding of the location, e(di j) is the representations of distance between current location li and target location l j, and

e(t) is the representation of the current time. uw queries the location characteristics associated with the current state, which is a

randomly initialized vector and is updated in the training procedure.

Discriminator architecture

We define multilevel reward functions that give a comprehensive evaluation of the generation outcome with respect to individual

and population levels, respectively. We characterize the two reward functions separately, where the first individual-level reward

function is characterized by a neural network-based discriminator Dφ with parameters φ , and the second population-level

reward function is directly available. Supplementary Fig. 2 illustrates the discriminator architecture. Specifically, the multilevel

rewards are calculated as follows:

rI,t = log(Dφ (ot ,at)) , (10)

rP,t =
Ft,data −Ft,model

Ft,data

, (11)

where ot ,at denotes the state and action at time t, F ∈ R
Nt×Nr×Nr is the flow matrix, Nt is the number of time periods, rI,t

denotes the individual-level reward, and rP,t denotes the population-level reward. Dφ is trained by a binary classification task

that distinguishes between real and generated state-action pairs. We adopt a non-parametric method for rP,t , which calculates

the relative distance between the generated flows and real-world cases.

As for the network architecture of Dφ shown in Supplementary Fig. 2, we also design a hierarchical structure that evaluates

the decisions at two stages, i.e., region and location, respectively. At the region level, the state ot is the historical sequence of

visited regions, and the action at is the selected region based on the state. Correspondingly, the state and action at the location

level are the historical location sequence and the selected locations, respectively. For both levels, the network consists of two

components: 1) an embedding layer to transform the historical sequence into vector representations, 2) a GRU to obtain the

sequence representation, 3) an output layer with a Sigmoid activation function to produce the classification result based on the

sequence representation. The discriminator’s output denotes the probability that the state-action pair comes from the real data.

The non-parametric discriminator calculates the distance between real and generated population flows.

Critic architecture

Supplementary Fig. 3 shows the network architecture of the individual-level critic and population-level critic. The individual-

level critic shares the same state encoder with the generator, including the Embedding layer and GRU layer, to obtain state

representations. Then we adopt an MLP to predict the individual state value Vφi
(ot). The population-level critic is modeled

by another MLP network, which takes in the concatenation of the state embedding and action embedding. Specifically, the

state embedding is obtained by a similar network as the individual-level critic, and the action embedding is obtained by an

Embedding layer. The joint value function Qφp(ot ,at) is obtained by aggregating the value Qφp(on,t ,an,t) from each individual

n. Mathematically, the above process is formulated as follows:

Vφi
(ot) = MLP(GRU(Emb(ot))) ,

Qφp(on,t ,an,t) = MLP(Concat(GRU(Emb(on,t)),Emb(an,t))) ,

Qφp(ot ,at) =
N

∑
n=1

Qφp(on,t ,an,t) ,

(12)

where on,t and ,an,t are the state and action of the nth individual, ot and at are the joint state and action, and Emb denotes

Embedding layers.

Transferable mobility generation

To accommodate transferable mobility generation between different cities, we refine the design of DeepMobility as follows.

First, we enhance the transferability of the location representation used in the generator. The widely used embedding
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technique30,33,65 is no longer applicable due to a lack of transferability. Instead, we encode all locations in different cities

using two characteristics, visitation popularity and POI number grouped by category. These two features reflect important

properties about location attractiveness and land use profile, respectively, and should have a general impact on individuals’

travel decisions, independent of the city in which they are located. Moreover, they are both location-based aggregation metrics

that can be readily collected at a low cost from location data providers (such as Safegraph) and crowd-sourcing platforms (such

as OpenStreetMap). The detailed design of transferable location representation is presented in Supplementary Fig. 4 and

Section S1.5. Second, to further guarantee the generalization capability of DeepMobility, we remove the design of top-down

feedback refinement, as it provides accurate but prone-to-overfitting supervision on the generated flows during training. Then

we train this improved DeepMobility on mobility data of one Chinese city and test its generation realism in the other two

Chinese cities. Note that we choose a generator with good transferability rather than one that produces statistically similar data.
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Individual-level metrics Population-level metrics

Model dailyloc jump length trip distance duration radius MAE CPC

Beijing

w/o M1 and M2 0.011 0.066 0.023 0.013 0.044 62.54 0.490

w/o M1 0.008 0.067 0.021 0.018 0.058 44.34 0.587

w/o M2 0.010 0.063 0.019 0.015 0.046 61.09 0.507

DeepMobility 0.021 0.058 0.023 0.026 0.044 22.68 0.787

Shanghai

w/o M1 and M2 0.004 0.033 0.041 0.004 0.070 100.7 0.531

w/o M1 0.002 0.028 0.011 0.003 0.025 78.84 0.635

w/o M2 0.003 0.042 0.030 0.003 0.043 100.0 0.545

DeepMobility 0.003 0.029 0.008 0.005 0.025 63.12 0.686

Shenzhen

w/o M1 and M2 0.100 0.141 0.042 0.013 0.148 346.5 0.464

w/o M1 0.077 0.150 0.063 0.022 0.170 266.4 0.548

w/o M2 0.073 0.158 0.053 0.011 0.156 287.4 0.490

DeepMobility 0.070 0.046 0.019 0.015 0.073 253.0 0.560

Senegal

w/o M1 and M2 0.028 0.095 0.035 0.006 0.056 324.6 0.599

w/o M1 0.053 0.035 0.004 0.006 0.032 255.1 0.620

w/o M2 0.009 0.044 0.035 0.007 0.036 277.9 0.610

DeepMobility 0.010 0.037 0.019 0.006 0.034 223.0 0.650

Table. 1 Ablation study on the two collaborative learning mechanisms. M1 stands for the bottom-up interaction modeling at the generator.

M2 stands for the top-down feedback refinement at the critic. The results show that the two designs have major contributions to the

population-level performance, and at the same time, capture the mobility patterns at the individual level.
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CTRW: CPC = 8.7 

EPR: CPC = 0.002

TimeGeo: CPC = 0.153

GAN: CPC = 0.357

Ours: CPC = 0.787

CTRW: CPC = 0.007

EPR: CPC = 0.045

TimeGeo: CPC = 0.237

GAN: CPC = 0.324

Ours: CPC = 0.686

CTRW: CPC = 0.008

EPR: CPC = 0.087

TimeGeo: CPC = 0.216

GAN: CPC = 0.210

Ours: CPC = 0.560

CTRW: CPC = 0.007

EPR: CPC = 0.074

TimeGeo: CPC = 0.359

GAN: CPC = 0.350

Ours: CPC = 0.650

Fig. 3 Comparison of generation realism, in terms of individual and population scales. For the four empirical datasets, comparison of the

performance in terms of JSD-based metrics (a-d), including Jump length, DailyLoc, Radius, Duration, and Trip distance, of the Continuous

Time Random Walk (CTRW), exploration and preferential return model (EPR), TimeGeo, GAN, and DeepMobility (Ours), for Beijing (a),

Shangahi (b), Shenzhen (c), and Senegal (d). Lower value of JSD-based metrics denotes a closer distribution with real data and thus

represents better performance, and our framework clearly achieves the best performance. e-h Comparison of the performance in terms of

Common Part of Commuters (CPC) of the CTRW, EPR, TimeGeo, GAN, and Ours. i–l Statistical illustration of the model-predicted and real

values of population flows for the four datasets. Symbols denote the average number of generated flows for each bin and lines represent the

10%-90% percentiles. The dashed line is a perfect agreement between the observed flows and the generations. The points below symbols are

scatter plot for each flow between a region pair. Our framework systematically outperforms other models.
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Fig. 4 Generated mobility data versus empirical data regarding different mobility laws at both individual and population levels. a-d

Our generated mobility data reproduces the truncated power law of jump length (∆r), with the distribution approximated by

p(x)∼ (x+ x0)
−β exp(−x/xcut). The solid black line represents the fitting result of ∆r, with β = {1.28,1.25,1.34,1.28} and

R2 = {0.976,0.942,0.971,0.914} for the four datasets, respectively. e-h Similar results of the reproduced truncated power law of radius of

gyration (rg), with β = {1.20,1.28,1.22,1.32} and R2 = {0.991,0.981,0.976,0.954}. i-l The generated mobility data reproduces Zipf’s law

of visitation frequency, where the visitation frequency fk to the kth most visited location is well approximated by a power law P(k)∼ k−ζ ,

with ζ = {1.15,1.05,1.01,1.10} and R2 = {0.973,0.981,0.966,0.963}. m-p The aggregated location visitation at the population level also

reproduces the distance-frequency scaling law of mobility flow, where the number of visitors to a location with a specific frequency ρ(r, f ) is

well-described by a power law fitting ρ(r, f ) = µ/(r f )η , with η = {2.01,2.04,2.09,2.08} and R2 = {0.926,0.927,0.940,0.964}.
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Fig. 5 Geographic transferability of DeepMobility. The models are trained on one source city and then evaluated on other target cities

without finetuning. a-d The generation performance on the target city Shanghai with different source cities (a-b Beijing and c-d Shenzhen)

regarding both individual and population scales. e-f The performance of DeepMobility on all source-target city pairs in terms of jump length

(e), duration (f) and CPC (g). The size of the circle denotes the metric value, and the deeper color denotes better performance.
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