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Fully Decoupling Trajectory and Scene Encoding for
Lightweight Heatmap-oriented Trajectory Prediction

1Renhao Huang, 2Jingtao Ding, 1Maurice Pagnucco, and 1Yang Song

Abstract—Recently, heatmap-oriented approaches have demon-
strated their state-of-the-art performance in pedestrian trajectory
prediction by exploiting scene information from input images
before running the encoder. To align the image and trajectory
information, existing methods centre the scene images to agents’
last observed locations or convert trajectory sequences into
images. Such alignment processes cause repetitive executions
of the scene encoder for each pedestrian in an input image
while there are often many pedestrians in an image, thus leading
to significant memory consumption. In this paper, we address
this problem by fully decoupling scene and trajectory feature
extractions so that the scene information is only encoded once
for an input image regardless of the number of pedestrians in
the image. To do this, we directly extract temporal information
from trajectories in a global pixel coordinate system. Then, we
propose a transformer-based heatmap decoder to model the
complex interaction between high-level trajectory and image
features via trajectory self-attention, trajectory-to-image cross-
attention and image-to-trajectory cross-attention layers. We also
introduce scene counterfactual learning to alleviate the over-
focusing on the trajectory features and knowledge transfer
from Segment Anything Model to simplify the training. Our
experiments show that our framework shows highly competitive
performance on multiple benchmarks, demonstrating scene-
compliant predictions on complex terrains and much less memory
consumption when handling multi-pedestrians. Code is publicly
available at https://github.com/HRHLALALA/Decouple-Traj.

Index Terms—Computer Vision for Automation; Semantic Scene
Understanding; Deep Learning for Visual Perception

I. INTRODUCTION

SCENE information is essential for accurate future path
predictions of pedestrians [1], [2]. Pedestrians are more

likely to walk on sidepaths and change their routes due to
obstacles such as trees and benches. Therefore, an essential task
in pedestrian trajectory prediction explores extracting useful
scene features from images for scene-compliant predictions.

Scene-compliant pedestrian trajectory prediction methods
typically aggregate image and trajectory features by using
pooling or soft-attention and regress the coordinates of future
trajectories [1]–[3]. More recent studies find that coordinate
regression may suffer from the overfitting problem [4] and
unexplainability for scene compliance [5]. Therefore, some
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methods regress heatmaps to enhance the scene understand-
ing [6], [7]. With the development of endpoint conditioned
trajectory prediction, some models [5], [8]–[11], categorised
as heatmap oriented trajectory prediction methods, regress
heatmaps to model the distribution of possible endpoints
and sample them to generate multiple scene-compliant future
trajectories, demonstrating leading performance in multiple
scene-compliant trajectory prediction benchmarks [12], [13].

However, images and trajectories belong to two different data
modalities. For heatmap-oriented methods, it is challenging
to integrate temporal information from observed trajectories
into scene features. To solve this problem, existing models
fuse these two modalities at the input layer so that these
two features can be integrated through image encoding. For
example, some methods [14]–[16] center the image to the
pedestrian’s last observed position and rotate it to their facing
direction, abbreviated as Pedestrian-centric Alignment [17],
[18] as shown in Figure 1a. Other methods [5], [9], [10] directly
convert the trajectories to distance maps or render them on
images, abbreviated as Map Rasterisation [5], [19] in Figure 1b.
However, different pedestrians require different inputs and
thus the scene encoder needs to be executed repetitively for
each pedestrian in a scene, resulting in significant memory
consumption when the number of pedestrians increases.

To effectively integrate scene and trajectory information
while minising memory consumption, our proposed solution is
to fully decouple trajectory and scene encoding as shown
in Figure 1c. Concretely, we create a global coordinate
system that is shared between trajectories and the image
space. During inference, we use observed trajectories based
on global pixel coordinates and integrate them with scene
features to regress heatmaps for endpoints. Therefore, the
image encoder is only executed once, avoiding excessive
memory consumption. However, such decoupling of images
and trajectories also means features from the two modalities
are extracted independently. Therefore, the main challenge is
to model the complex interaction between scene and trajectory
information and obtain a comprehensive representation useful
to the endpoint heatmap prediction.

In this work, we address this challenge as follows. We first
perform a coordinate encoding [20] on coordinates and then
a positional encoding [21] on the trajectory. Then, we send
them with image features into a lightweight transformer-based
heatmap decoder, containing three kinds of multi-head attention
mechanisms to model the interactions, where (1) trajectory self-
attention further extracts the temporal information in trajectory
features, (2) trajectory-to-image cross attention aims to query
useful scene information from image features and update
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(a) Pedestrian-centric Alignment (b) Map Rasterisation (c) Ours

Fig. 1: Pedestrian-centric alignment, map rasterisation and our architecture. Existing methods (light blue) prepare the image
inputs identical to each pedestrian and thus requires repeated execution of their scene encoders while our framework (yellow)
only execute it once rightly after observing the scene image.

trajectory features and finally, (3) image-to-trajectory cross
attention fuses useful trajectory features into image features.
After stacking these attentions several times, the updated
image features would contain rich trajectory information and
we send them into a scale-up convolution to generate high-
resolution heatmaps for endpoints. Furthermore, we find that
our model can share a similar coordinate-image interaction as
used in the Segment Anything Model (SAM) [22] and hence,
we explore the potential knowledge transfer from SAM to
our model to improve the training. Finally, we propose the
scene counterfactual learning to let the model focus more
on scene features. We consider the scenario when no scene
feature is provided and simply perform a subtraction on the
predictions from normal and counterfactual cases to obtain our
final predictions.

In summary, our contributions are as follows. First, we de-
sign a novel framework that decouples the scene and trajectory
feature extraction to avoid excessive memory consumption
due to repeated image encoding for multiple pedestrians.
Second, we propose a transformer-based heatmap decoder
that fuses the scene and image features and generates heatmaps
via trajectory self-attention, trajectory-to-image and image-to-
trajectory cross-attentions. Third, we further propose scene
counterfactual learning that makes the model focus more on
scene features and knowledge transfer from SAM, enhancing
the model performance. Finally, our experiments demonstrate
that our model shows its scene-compliance from the endpoint
distribution, requires less memory consumption when the
number of pedestrians increases and maintains competitive
performance with the state-of-the-art approaches for both short-
and long-term predictions on multiple benchmarks.

II. RELATED WORK

Pedestrian trajectory prediction tasks usually focus on
the social and scene (physical [1]) interactions, where their
corresponding tasks are socially-aware trajectory prediction
and scene-compliant trajectory prediction [1], [6], [9]. In this
paper, we focus on scene-compliant trajectory prediction.

Classical data-driven methods [1], [23] directly use the
pretrained image backbones to extract scene features and
perform soft attention on them to obtain important scene
features for trajectories. SS-LSTM [2] directly sends the
image features to recurrent networks together with trajectory
features. PITF [24] directly selects the scene feature at the

agent’s last observed location and concatenate it with trajectory
features. However, these methods all regress coordinates and
thus scene-compliance cannot be guaranteed. Then, Multiverse
[7] and ST-Grids [6] convert the trajectories into distance
maps and send them together with scene segmentation maps
into convolutional blocks and output heatmaps of future
trajectories. They illustrate the scene-compliance through the
heatmaps in their experiments. Then, endpoint-conditioned
models [5], [8], [9], [25] are proposed, suggesting that the
heatmaps can be used to indicate the distribution of endpoints.
GoalSAR [10] illustrates that the waypoints can also be scene-
compliant if the conditioned endpoints are scene-compliant.
P2T [15] considers endpoint heatmaps as reward maps and
performs inverse reinforcement learning on them. NSP [11]
directly uses the scene-compliant endpoints sampled from the
endpoint heatmap predicted by [9]. Therefore, heatmap-oriented
trajectory prediction has strongly illustrated its effectiveness
of scene-compliance in complex terrains. However, they are
memory-consuming and thus cannot handle large number
of pedestrians in real time. HyerTraj [26] suggests that the
repetitive upsampling stages cause huge memory consumption
during waypoints decoding. Therefore, they generate convolu-
tion kernels for each sampled endpoint and use them to render
heatmaps for waypoints. Our model successfully addresses
the memory consumption from repetitive execution of scene
encoding without a performance drop.

In vehicle trajectory prediction, scene representation is
unified as high-definition (HD) maps. Early methods converted
into the rastered images [19], centered at the observed locations
of ego vehicles. Then, vector representation [27] is proposed
which compresses the geometric information into polylines.
This representation is more efficient and less noisy than raster
images [28], [29] and thus becomes the default setting in current
vehicle trajectory prediction studies. Our method focuses on
the pedestrian trajectory prediction, where RGB images as the
scene representations in default. Therefore, vehicle trajectory
prediction is not in-scope for this study.

III. METHODOLOGY

A. Overview

An overview of our framework can be seen in Figure 2.
Our framework includes a ViT-based scene encoder Fscene

[30], a trajectory encoder Ftraj and a heatmap decoder Fdec.
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Fig. 2: An overview of our framework for the endpoint prediction, which includes a scene encoder, a trajectory encoder and a
transformer-based heatmap decoder, with 89M, 0.4M and 4.1M trainable weights. Our trajectory encoder contains a coordinate
encoder to encode pixel coordinates and a position encoding for temporal information. Both scene and trajectory encoders are
frozen during the training. Our scene encoder does not require the trajectory information and can be executed once rightly after
observing the scene image.

Before the prediction, we send the RGB scene image I into
the scene encoder to obtain image features fscene. During the
prediction phase, the observed trajectory of target pedestrian
i is received as Xt

i , where Xt
i = {(xt

i, y
t
i)|t = 1, 2, · · · , tobs},

and the trajectory encoder extracts temporal embeddings
ftraj . The heatmap decoder first fuses these two embeddings
using multiple attention layers in the fusion module and a
dynamic scale-up convolution is used to generate endpoint
heatmaps Ytpred

i . Finally, an endpoint Ŷ tpred
i is sampled and

a waypoint decoder [10], [11] is used to complete the middle
trajectory towards the sampled endpoint, named waypoints
and denoted as Ŷ t

i = {(x̂t
i, ŷ

t
i)|t = tobs + 1, ..., tpred − 1}.

The predicted sequence is evaluated against the ground truth
Y t
i = {(xt

i, y
t
i)|t = tobs+1, ..., tpred}. In this paper, we mainly

focus on the endpoint prediction.

B. Scene and Trajectory Encoder

Scene Encoder. A strong image encoder is needed to extract
rich and high quality image features from the input image I .
In this work, we select a Vision Transformer (ViT) [30], a
high-performance transformer-based image encoder, to obtain
the image features fscene. We also use the weights pretrained
on SA-1B [22], the largest segmentation dataset in the world.
We follow the default preprocessing step in [30] to prepare
the image by rescaling and padding them to a resolution of
1024 × 1024 and adapt the trajectories to fit this resolution.
Formally, we summarise this part as follows:

fscene = Fscene(I) = ViT(I) (1)

Trajectory Encoder. We first map Xt
i into a global

pixel coordinate system, originating at the top left cor-
ner of the scene image. These coordinates are further
normalised by the size of the scene image Xt

i =

(
xt
i

W ,
yt
i

H ). We then use the coordinate encoder to project
the coordinates into a high dimension Fourier features
as γt

i = (sin(20πXt
i ), cos(2

0πXt
i ), · · · , cos(2Dim−1πXt

i )),
where Dim is a hyperparameter of the dimension of encoded
coordinates. As mentioned in [20], this encoding scheme can
help the model more easily approximate a higher frequency

function and distinguish different coordinates. We then send γt
i

into a Gated Recurrent Unit (GRU) [21] as positional encoding
to further extract the temporal features ftraj :

ftraj = Ftraj(X
t
i ) = GRU(γt

i ). (2)

We believe that a single GRU is more effective than the
positional encoding in [31] since the observed trajectory is
relatively short and simple and recurrent neural networks can
also be a strong positional encoding for transformers [32].

C. Transformer-based Heatmap Decoder

Our heatmap decoder aims to (1) model the interactions
between the ftraj and fscene extracted from different data
modalities and (2) regress heatmaps for endpoints. Taking the
inspiration of Transformer-based segmentation models [22],
[33], we use a stacked Transformer decoder to model three
kinds of interactions: the trajectory self-attention, trajectory-to-
image cross-attention and image-to-trajectory cross-attention,
each one is a multi-head attention (MHA) block [31] as follows:

MHA(Q,K, V ) = LN(Q+MLP (σ(
QKT

√
DimK

) · V )) (3)

where Q, K, V are queries, keys and values respectively while
σ and LN are the SoftMax and LayerNorm operators. Finally,
we use a scale-up convolution to generate high resolution
heatmaps for endpoints.
Trajectory Self-attention (T2T). T2T aims to explore the
temporal relationship among trajectory features and inte-
grate them with output embeddings, formulated as f ′

traj =
MHA(f ′

traj , f
′
traj , f

′
traj), where f ′

traj = (ftask||ftraj) ini-
tially as the input at the first layer. Here, we introduce
output embeddings ftask, which are learnable embeddings
used as prompts for different heatmap generation tasks, e.g.,
heatmaps for required waypoints in long-term prediction, and
can be extended as other conditional variables for multimodal
predictions [25] in future works.
Trajectory-to-Image Cross-attention (T2I). Secondly, we
filter out useful scene features based on trajectory fea-
tures. Therefore, we use f ′

traj as the queries and f ′
scene
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as keys and values to perform the cross attention f ′
traj =

MHA(f ′
traj , f

′
scene, f

′
scene), where f ′

scene = fscene initially.
Note that this process is similar to the Soft Attention in [1]
where the embeddings in f ′

traj contain rich scene interaction
information and can be used for coordinate regression.
Image-to-Trajectory Cross-Attention (I2T). Since our model
aims to regress heatmaps to indicate the endpoint distribution,
it is essential to know the relationship between pixels and tra-
jectory features. To model this, we use f ′

scene as queries while
f ′
traj as keys and values to generate a new f ′

scene containing the
trajectory information f ′

scene = MHA(f ′
scene, f

′
traj , f

′
traj).

Since f ′
scene is still two dimensional and has the same size as

fscene, we can simply convert f ′
scene to heatmaps.

Scale-up Convolution. Generating heatmaps with higher
resolution brings more accurate endpoint estimation. Therefore,
we upsample f ′

scene with 4x of resolution via multiple layers
of transpose convolutions. In addition, since we use output
embeddings as prompts to generate heatmaps at different future
steps, we perform an extra T2I layer rightly after the last I2T
to generate (f̂task||f̂traj) as suggested in [22] and aggregate
the output embeddings with the attended pedestrians’ features.
Then, we sent them into 3-layer MLPs to generate the kernels
for 1× 1 dynamic convolution to generate different heatmaps.
Mathematically, we can use the following equation to generate
the heatmap at the last prediction step:

Ŷi
tpred

= Conv(f ′
scene) ∗ MLPtask(f̂

i,tobs
traj + f̂

tpred
task ) (4)

where f̂
tpred
task denotes the f̂task for generating the heatmap

at the last prediction step. Note that aggregating the updated
output tokens and trajectory embeddings allows our model to
be extended to multi-pedestrians in future works to reduce the
consumptions from scale-up blocks.

D. Training and Inference

Scene Counterfactual Learning. Ideally, future trajectories
are predicted jointly with the scene and observed trajectories.
However, we observe that the model can become over-fitted
and learn a direct relationship between observed and future
trajectories while ignoring the scenes. For example, most
pedestrians’ trajectories are straight due to the straight sidepath.
In some case, the observed trajectory follows a smooth, slow-
changing path that can directly lead to the endpoint even
without seeing the scenes. In these cases, the model would
find its shortcut to directly estimate the endpoint distribution
based on observed trajectories, which would however cause
problems for cases with more complex paths.

To address this problem, we ask: how do the pedestrians
move without seeing the scene? Inspired by [34], we propose
to utilise counterfactual analysis, a useful technique to infer the
causality between two variables, which are image features and
endpoints in our method. Concretely, we perform intervention
by substituting image features with counterfactual values f cf

scene

agnostic to the scene image, e.g., zero tensors. Then, we
compute the difference of predictions with and without using
counterfactual values. Formally, we formulate this part as
follows:

Ŷt
i,cf = Ŷt

i −Fdec(f
cf
scene, ftraj). (5)

This strategy forces the model to make a prediction after
seeing the image features. To enhance such causality, we use
Ŷt

i,cf as our final results for both training and testing.
Knowledge Transfer from Segment Anything for Effective
Training. We notice that training our model from scratch is
hard due to the complex interactions between trajectory and
image features. Therefore, we propose to perform a knowledge
transfer from a promptable segmentation model, SAM. This
model uses coordinates as prompts, integrates them with image
embeddings using attention and generates heatmaps of target
objects, which finally become the segmentation masks after
thresholding. We adopt a similar idea in our approach so that
prompt-image interaction in SAM can help our model better
capture the scene-trajectory interactions. In particular, we adopt
the pretrained prompt encoder and mask decoder in SAM as
our coordinate encoder and heatmap decoder. We also note that
SAM has four output tokens for segmentations with different
granularities. We use one of them to generate endpoint heatmap
and the others to generate auxiliary waypoints. We then fine-
tune them using our ground truth Gaussian heatmaps converted
from 2D coordinates of endpoints. Finally, we use the Binary
Cross Entropy (BCE) loss to optimise the model for generating
endpoint heatmaps: L = BCE(Ŷt

i,cf , Y
t
i ).

Inference. After the endpoint heatmap is predicted, we first
sample the endpoints and conditioned waypoints (for long-
term predictions) using the Test-Time-Sampling-Trick and
Conditional Waypoints Sampling proposed in [9]. We then input
the endpoints (as well as waypoints for long-term prediction)
into a waypoints decoder to predict the middle waypoints. The
design of the waypoints decoder can be alternative in [5], [9]–
[11]. Since the waypoint decoder is not our focus in this paper,
we simply choose a four-layer MLP for short-term prediction
and a scale-up convolution for long-term predictions, extremely
lightweight for waypoint generation.

IV. EXPERIMENTS

A. Experimental Setup

Datasets. Our experiments are conducted on the SDD [12] and
InD [13] datasets. We directly use the preprocessed train-test
splits from [9] named SDD-TrajNet, SDD Long-term and
InD Long-term. The trajectories are downsampled to 2.5Hz
and 1Hz for short-term and long-term predictions, respectively,
and the non-pedestrian trajectories are filtered. We also build a
SDD-Full as in [15] to include road users other than pedestrians
to match the experimental setting in [1], [14], [15]. For short-
term prediction, we use 8 and 12 steps for observation and
prediction, respectively, and only use the last endpoint as the
condition for waypoint prediction. For long-term prediction,
we use 5 and 30 steps for observation and prediction and
the trajectory completion is conditioned on the endpoint and
waypoint at the 15th prediction timestep. All these settings are
consistent with those in [9], [10], [15].
Evaluation Metrics. Following the commonly used evaluation
metrics in trajectory prediction, we use Average Displacement
Error (ADE) and Final Displacement Error (FDE), which are all
L2 errors. For ADE, we compare the entire trajectory generated
from the waypoint decoder while for FDE, we compare the
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Short-term Prediction Long-term Prediction Off-road Rate

Model Year SDD-TrajNet SDD-Full SDD Long-term InD Long-term SDD-TrajNet

S-GAN [35] 2018 N/A 27.25/41.44 155.32/307.88 38.57/84.61 N/A
SoPhie [1] 2019 N/A 16.27/29.38 N/A N/A N/A

GoalGAN [14] 2020 N/A 12.20/22.10 N/A N/A N/A
PECNet [36] 2020 9.96/15.88 N/A 72.22/118.13 20.25/32.95 0.071

P2T [15]* 2020 12.81/14.08 15.90/18.40 N/A N/A 0.058
YNet [9]* 2021 7.85/11.85 12.03/17.03 47.94/66.71 14.99/21.13 0.048

TDOR [16]* 2022 7.64/12.12 N/A N/A N/A 0.06
SocialVAE [37]* 2022 8.10/11.72 N/A N/A N/A N/A

TUTR [38]* 2023 7.76/12.69 N/A N/A N/A N/A

Ours* 2024 7.44±0.02/11.63±0.08 12.37±0.03/15.14±0.06 51.32±0.34/64.85±1.41 17.97±0.55/22.88±1.21 0.043

TABLE I: Overall minADE20/minFDE20 (↓) and Off-road Rate (↓) results in pixels on the SDD and InD datasets for short-term
and long-term prediction. Our experiments were conducted five times with random restart. The best and the second best scores
are bolded and underlined. “*” denotes the methods using test-time sampling trick in [9].

sampled endpoints with the last location of the ground truth
trajectory. Since our model focuses on the endpoint prediction
as [9], FDE is the most representative evaluation metric for our
method. We also follow the evaluation protocol in stochastic
trajectory prediction which uses minA(F)DEK to denote the
best measurement among K different proposals, where we use
K = 20 samples by default. To measure the scene compliance,
we follow [15], [16] to compute the Off-road Rate, the rate
of predictions outside the walkable places. To mitigate the
randomisation from endpoint sampling, we follow [9], [10] to
repeat the evaluation process five times using different random
seeds and use the average values as our final results.
Implementation Details. To satisfy the required image resolu-
tion of 1024× 1024 in ViT [30], we scale the scene images
and pad the shorter side with zeros. In addition, we directly
adopt the prompt encoder and the mask decoder in [22] as
our coordinate encoder and heatmap decoder as mentioned in
Section III-D. During the training, the ground truth heatmaps
are created with a σ as 8. We train our model with an Adam
optimiser with a learning rate of 0.0001 and batch size of 8.
For short-term predictions, we train the model for 200 epochs
and optimise predicted heatmaps at {6, 8, 10, 12}th future time
steps. For long-term predictions, we train the model for 300
epochs and optimise {11, 15, 21, 30}th future time steps. To
reduce the rotation and translation variance, we follow [9], [10]
to randomly combine transpose, flipping, translation, affine and
10◦ of rotations as data augmentation.
Baselines. We compare our model with existing pedestrian
trajectory prediction models [1], [9], [14]–[16], [35]–[38].
Among these, GoalGAN [14] and P2T [15] are two heatmap-
oriented models that use pedestrian-centric alignment while
[9] rasterises trajectories into distance maps and generates
heatmaps for endpoints and middle waypoints. For TDOR
[16], we record the performance using the same sampling
trick as [9]. We mainly consider YNet [9] as our baseline
approach because since 2021, it has the leading performance
among all heatmap-oriented methods on SDD and InD datasets
for short-term and long-term predictions. Other highly-ranked
methods on the leaderboard including GoalSAR [10] and NSP
[11] follow the same overall model as YNet but design more
advanced waypoint decoders. Since our method uses only
simple waypoint decoders as in YNet, but replaces the overall
architecture for the endpoint prediction, our method is more
directly comparable with YNet, but not GoalSAR or NSP.
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Fig. 3: Memory consumption benchmark of our model compar-
ing with YNet using images of 256× 512, 512× 1024 pixels
using the short-term prediction protocol. The x-axis is the
number of pedestrians. All models are tested on on a 32GB
Telsa V100 and 64GB memory.

B. Quantitative Results

Overall Performance on SDD and InD Datasets. Table I
shows the performance on SDD and InD datasets on short-term
and long-term prediction. Our performance on SDD has a better
FDE performance than our baselines on both long-term and
short-term predictions and becomes the new state-of-the-art on
this benchmark. For the InD dataset, our FDE performance
is slightly lower than YNet by only one pixel, which is still
highly competitive. Therefore, all methods indicate that our
model has an excellent performance for the endpoint prediction,
which strongly proves the success of our framework. In addition,
YNet uses segmentation masks as the scene inputs, which filters
much noisy information from the RGB image. We directly send
into the model the RGB images, largely reducing the labelling
effort and still having competitive performance. Finally, our
model has the fewest predictions outside the walkable region
on SDD-TrajNet, proving that our model is scene-compliant.

Our ADE results are slightly worse than our baselines mainly
due to the selection of extremely lightweight waypoint decoders
to simplify the experiments. In our future work, we will explore
more advanced techniques [9]–[11] for waypoint decoding.
Memory Consumption Benchmark. To measure memory
consumption, we test our model and our baseline YNet on a
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Fig. 4: Time consumption benchmark of our model comparing
with YNet using images of 256× 512, 512× 1024 pixels. The
X-axis is the number of agents. We use the same setting as
Memory Consumption Benchmark. YNet-512× 1024 switches
to an iterative prediction when there are more than 81 agents.

32GB Telsa V100 and 64GB memory. The measurement begins
with sending scene images and trajectories to the scene encoder
and finishes when the heatmaps are produced. We conduct the
benchmark on images with resolutions of both 256× 512 or
512×1024 pixels. Note that our model automatically resizes the
scene image to a resolution of 1024×1024. For simplicity, we
directly use the random vectors as images and trajectory inputs.
Figure 3 shows that the memory consumption largely scales
in YNet with the resolution increases while ours is even much
lower than YNet-256×512, mainly because we only execute
image encoding once while YNet needs repeated executions for
different pedestrians. In addition, YNet can handle a maximum
of 323 and 81 pedestrians on these two resolutions. Our model
accepts a higher resolution than YNet but can predict 701
pedestrians, twice and eight times more than the baselines
on images with low and high resolutions, which is suitable
for almost all scenarios. Therefore, our method provides the
opportunity to accept dense scenarios, which will be further
evaluated in our future studies.
Time Consumption Benchmark. We also measure the time
consumption of YNet [9] and our model using the same
environment of the memory consumption benchmark. Figure 4
shows when using images with resolution of 1024, the time
consumption of our model is much lower than YNet-512×1024,
but slightly higher than YNet-256×512. In addition, our time
consumption scales more slowly than YNet-512×1024 and
YNet-256×512, proving the advantage of fusing the features
in the latent space to latency. The latency bottleneck from the
ViT encoder and attention opterations. In future studies, we can
distil a lighter version as [39] or choose optimised attention
operations [40] for acceleration.

C. Ablation Study

Trajectory Encoding. We compare different alternatives for our
coordinate encoder and positional encoder. Firstly, we simply
replace the coordinate encoder with a three-layer MLP. Table II
shows that using the MLP leads to a worse performance which

Coordinate encoder minADE20↓ minFDE20↓

MLP 8.06 13.34
High Frequency [20] 7.60 12.05

Positional Encoder minADE20↓ minFDE20↓

Wave Encoding [31] 8.03 13.03
GRU 7.60 12.05

TABLE II: Performance on SDD-TrajNet of different coordinate
encoding (upper half) to encode absolute pixel coordinates and
positional encoding (lower half) to inject temporal information.

Fimg Ftraj Fdec minADE20 minFDE20

✓ 8.37 14.12
✓ ✓ 8.61 14.49
✓ ✓ 8.12 13.54
✓ ✓ ✓ 7.60 12.05

TABLE III: Performance on SDD-TrajNet before and after
loading pretrained weights from SAM to our trajectory encoder
and heatmap decoder.

proves that the high-frequency encoding is needed for global
pixel coordinates and can be a strong training-less encoding
scheme. Then, we compare the performance of using the
positional encoding in [31] and GRU. Table II also shows
that using GRU has a better performance than the position
encoding in this case, illustrating that GRU is a powerful
position encoding strategy.
Knowledge Transfer from Segment Anything. As described,
we can transfer knowledge from SAM by using the pretrained
components from it. As shown in Table III, using a pretrained
prompt encoder only may even lead to a worse performance.
A plausible explanation is that these pretrained embeddings
cannot provide useful information without a pretrained heatmap
decoder or even provide a worse initialisation. Then, using
a pretrained weights from mask decoder largely improve the
results. Finally, using the entire pretrained SAM performs the
best, suggesting that the correlation between prompt encoder
and mask decoder also provides important knowledge to
accelerate the optimisation of our model.
Importance of Scene Information. We first experiment to
explore the performance without scene information by replacing

SDD-TrajNet SDD-Longterm

Values minADE20 minFDE20 minADE20 minFDE20

fscene= Zeros 7.71 12.68 51.81 73.80
Base 7.60 12.05 51.52 65.86

fcf
scene=

Random 7.69 12.30 51.67 65.91
Empty 7.70 12.38 52.94 68.76
Zeros 7.44 11.63 51.32 64.85

TABLE IV: Performance using different scene features (upper)
and scene counterfactual values (lower) on SDD-TrajNet and
SDD-Longterm datasets. Base denotes the scene features from
the original image. Random and Zeros are tensors with random
numbers between [-0.1,0.1] and zeros respectively. Empty is
the scene features from a blank image.
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Fig. 5: Visualisations of short-term (Fig.4a/b/e/f) and long-term (Fig.4c/d/g/h) predictions with observed trajectories (yellow),
sampled endpoints (red), ground truth endpoint/trajectories (green) and predicted trajectories (cyan). Fig. e/f/g.h are heatmaps
for predicted endpoints. These visualisations illustrate that our model (1) successfully fuses the high-level scene and trajectory
features and (2) has strong capability of scene compliance.

the scene features fscene with zero tensors during the training.
The upper part of Table IV indicates that the performance drops
when the model cannot see the scene image, which further
suggests that scene information is essential to our model. Then,
we further perform the counterfactual learning using different
counterfactual values f cf

scene for scenes such as zeros (Zeros),
random values (Random) and embeddings from an empty image
(Empty). The lower part of Table IV shows that using the zero
tenors provides the largest improvement among these three
choices, which is consistent with the suggestions in [34].
Qualitative Results. To further demonstrate that our fusion
of scene and trajectory features is successful, we visualise
in Figure 5 the scenarios from short-term and long-term
predictions, where Figure 5a and Figure 5b are two randomly
selected scenarios to show the overall accuracy while the
rest are selected scenarios that mostly demonstrate the scene
compliance. For short-term predictions, we show in Figure 5a
and Figure 5b predictions for all pedestrians in the scene, where
all predictions have consistent speeds and directions as the
ground truth, illustrating that our model correctly considers
trajectory features. Furthermore, Figure 5e and Figure 5f
visualise the predicted endpoint heatmaps of two additional
scenarios, where regions with high probabilities are mostly
walkable places (roads), demonstrating that our predictions are
scene compliant. For long-term predictions, Figure 5c shows
a clear collision avoidance with trees and the distribution in
Figure 5g excludes the location of the flower bed. Furthermore,
we can see in Figure 5d and Figure 5h that the predictions
consider the road geometry, providing high probabilities to
regions along the roadside. In summary, all these visualisations
prove that (1) our model successfully integrates the trajectory
and image features even though they belong to two different
modalities and (2) provide scene-compliant predictions.

D. Limitation and Future Work

Firstly, we can explore methods to handle abnormal be-
haviours. For example, in Figure 5c, the pedestrian faces the

tree at the last observed step and thus our model gives high
probability to regions around the tree for conditioned waypoints,
while the ground truth changes the direction suddenly after
a few timesteps. To mitigate this problem, we can either
explore more diverse datasets or explore advanced conditions
to control the predictions. Secondly, we do not consider
social interaction because crowds in current datasets are too
sparse to train a social interaction module while other datasets
such as ETH/UCY do not provide diverse scenes to train the
scene interaction. In our future studies, we will find a better
training dataset and extend our model to perform the social
interaction, such as extending our scene encoder to support
videos [41], accepting social interactions in trajectory encoder
[42] or waypoint decoding [11], [36]. Finally, our current
method is designed for image-based scene representations
for pedestrian trajectory prediction. Although several vehicle
trajectory prediction studies also convert HD maps to images
[19], the polyline-based representation [27] is preferred as
mentioned in Section II. In our future work, our method can be
extended for such different applications after finding a unified
scene representation.

V. CONCLUSIONS

We propose a new lightweight heatmap-oriented trajectory
prediction framework that avoids repeated execution of scene
encoder for different pedestrians. We directly uses a scene
image without any alignment and 2D coordinates to generate
heatmaps for endpoints. We successfully use global pixel coor-
dinates for trajectory features and fuse them with scene features
via a multilayer attention module in our heatmap decoder, each
layer containing multihead trajectory self-attention, trajectory-
to-image cross-attention and image-to-trajectory cross-attention.
Furthermore, due to the analogy between our model and SAM,
we transfer the knowledge from SAM to enhance the training.
Finally, to further enhance the correlation between scene
features and endpoints, we propose to use scene counterfactual
learning by considering the counterfactual cases agnostic to the
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scene image. Experiments show that our model has competitive
FDE performance on endpoint predictions, can handle more
pedestrians in parallel and illustrates its scene-compliance in
scenarios with complex terrains.
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