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ABSTRACT

Predicting future origin-destination (OD) flow is essential for ur-
ban planning since it provides feedback for planning adjustment
and reference for road planning. However, OD prediction for ur-
ban planning scenarios is unique as it typically lacks training data.
A common practice is to refer to data from other cities, which
causes the out-of-distribution (OOD) problem. A promising solu-
tion is to leverage causal information in the data. However, there
are two challenges in utilizing causal information in urban plan-
ning scenarios: (a) Urban system has numerous factors, and only
part of them indicate causal information. (b) The planned city de-
velopment correlates with original city characteristics, therefore
bringing confounding bias to the causal modelling process. In this
paper, we propose designs to solve both challenges. Specifically, we
first design a causal disentangled representation module to identify
causal factors in attributes. Second, we adopt a variational sample
re-weighting module to reduce the confounding bias. Our proposed
model outperforms seven state-of-the-art baselines on three real-
world datasets, achieving an average improvement of 9.59% in the
MAE metric. Further in-depth analysis shows our method’s robust-
ness across different urban planning scenarios and outstanding
performance in predicting extremely large OD flows, which cor-
roborates the contribution of our designs to the urban planning
field.
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1 INTRODUCTION

Cities are still expanding and renewing rapidly nowadays [7]. To
ensure the rational and efficient use of land, urban planning has
received increasing research attention [26]. Predicting future origin-
destination flow under planned city development is an essential
problem in urban planning. For one aspect, people’s movement in
the city indicates how their demand for facilities is met. Therefore
planners can refer to the city accessibility exhibited by predicted
future city OD to adjust urban planning policy. For another, the
transportation planning domain also relies on predicted future OD
to plan future city transportation in advance [23]. Therefore, the
precise prediction of future OD flow is valuable for multiple aspects
of urban planning.

There have been many solutions to the general OD prediction
problem. These attempts can mainly be divided into model-based
methods and data-driven methods. Model-based methods typically
attribute people’s physical mobility patterns to some intrinsic mech-
anism, such as the gravity model [39] and the intervening opportu-
nity model [31, 32]. Such model-based models have good explain-
ability but show limited performance for only including basic region
features. With the fast development of machine learning and deep
learning, data-driven methods are introduced which utilize the cor-
relation between features and target [22, 30] to make predictions.
Liu et al. [19, 37] further introduce graph methods that characterize
the adjacency of regions to learn region representation.

However, the OD prediction task for urban planning scenarios
differs from the traditional one. Since, in urban planning scenarios,
planners focus on how planned city development will influence OD,
the OD prediction can therefore be regarded as a counterfactual
regression where data-driven methods will bring confounding bias.
Moreover, in practical applications, planners suffer from the ab-
sence of historical data since urban planning is primarily required
in less developed regions where the data reserve capacity is weak.
Therefore, planners usually rely on development data from other re-
gions as a reference. This way, the attribute distribution distinctions
between regions introduce the out-of-distribution (OOD) problem.
Since existing data-driven trials are all correlation-based, it is hard
for these methods to adapt to such an OOD situation. Therefore,
nowadays, the urban planning domain still depends on traditional
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Figure 1: OD prediction for urban planning, which is to
predict future city OD based on historical city OD and the
planned city development.

model-based methods to predict the future OD [2, 21, 23], resulting
in limited prediction performance.

Considering the specialities of OD prediction for urban planning,
we turn to causal learning prediction methods for solutions. Firstly,
causal learning methods are better at learning causal information,
thereby predicting the counterfactual outcome more accurately.
Secondly, causal methods can capture true causal relationships and
better generalize to the OOD situations. Since causal relationships
are mostly robust across the training set and testing set even in
an OOD situation, stable causal relationships rather than spurious
correlation inside the dataset help the model tackle the OOD prob-
lem [8]. To conclude, it is promising to introduce causal learning
methods to our task. However, there are three challenges for us in in-
corporating causal methods: (1) The treatment, which is the planned
city development in our task, is a bundle continuous treatment and
hard to model. Since we want to model how planned development
will impact future city OD, we have to model the causal influence
of planned development, which is the treatment in causal terms.
While existing causal prediction methods only deal with binary
treatment cases, the planned development is usually depicted by
the change in the count of all kinds of POIs, a bundle continuous
treatment. Modeling bundle continuous treatment is challenging
since we cannot go the way of defining treatment groups and bal-
ancing between different groups [40]. (2) Our treatment is heavily
confounded by region attributes because the treatment, which is
the planned city development in our task, is not randomly assigned
to every region but largely depends on region attributes [1]. (3)
The urban system has various factors [5], but not all these factors
causally affect city OD. Some of the factors may even cause bias
in the prediction of the OOD situation. Therefore, it is essential to
find the underlying causal factors and predict OD flows only on
them.

To deal with these challenges, we propose an OD prediction
model with cauSal dIsentangled Representation and re-welghting
(SIRI)!. Specifically, we first design the causal disentangled repre-
sentation module to identify the causal factors of region attributes
in an adversarial learning way. The underlying factors can be dis-
sected into instrumental, confounding, and adjusting factors. We
only predict our target by confounding and adjusting variables
since they causally affect the target. Secondly, we introduce the
variational sample re-weighting module to ease the confounding
bias brought by confounding factors. Finally, we combine these
two modules in an end-to-end way and conduct extensive exper-
iments to validate our method’s effectiveness. Further in-depth
analysis shows our method’s consistent superiority in various ur-
ban planning scenarios and outstanding performance in predicting

Thttps://github.com/tsinghua-fib-lab/SIRI
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extremely large OD flows, which corroborate our work’s value to
urban planning.
We highlight our contributions as follows:

e We propose a novel OD prediction method for practical use
in urban planning scenarios, which can predict future OD
distribution influenced by planned city development. Since
OD prediction for the urban planning domain is an impor-
tant task but faces unique challenges, our work successfully
leverages causal information to tackle the challenges.

e We design an end-to-end solution with two novel causal
modules, the causal disentangled representation module and
the variational re-weighting module, to learn the causal in-
formation and leverage it to predict future OD impacted
by the planned city development. Our model’s capability of
handling bundle continuous treatment, which is the planned
city development in our task, is also remarkable progress for
the causal learning field.

e We conduct extensive experiments on three real-world datasets
from different cities and with different scales. Experimental
results show that our model outperforms existing state-of-
the-art methods by 9.59% on average in the MAE metric.
Further in-depth analysis shows our method’s consistent
superiority over all urban planning scenarios and extraordi-
nary ability to predict extremely large OD flows.

2 PROBLEM DEFINITION

Our goal is to design a causally empowered OD prediction frame-
work for urban planning scenarios as shown in Figure 1. We regard
POI changes in count as the expression form of planned city de-
velopment and want to predict future city OD under the planned
POI changes. Specifically, we are given historical OD flow matrix
Xy, region attributes X, and POI changes T corresponding to the
urban planning policies, and our task is to predict future OD flow
matrix Y. The task can be formulated as below,

Y = F(Xf, Xa, T), (1)

where X7, Y € R™M X, € R™"a T ¢ R"™™ with n, n, and n;
denoting number of regions, dim of region attributes and dim of
POI changes, respectively.

Since we want to model how POI changes impact future city OD
distribution, POI changes T are the treatment variables in our task
in the context of causal learning [20].

3 METHODOLOGY
3.1 OD Prediction Backbone Model

Since our problem is to predict the future city OD flow under
planned city development, we adopt a well-acknowledged OD pre-
diction framework, DeepGravity [30], as our backbone model on
which we make causal adaptations to fit urban planning scenarios.

Design of the backbone model is shown in Figure 2(a). This model
interprets OD prediction as an outflow allocation task and predicts
the destination probabilities of flows departing from an origin. As
we can see in the graph, for every OD pair, the features X and the
POI changes T of both the origin and the destination are fed into a
feedforward network to output a score. By applying softmax on the
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Figure 2: The OD prediction model with cauSal dIsentangled Representation and re-welghting (SIRI) (a) The OD prediction
backbone model: DeepGravity. (b) Inputs for the feedforward network. (c) Our proposed causal feedforward network, SIRIL.

scores of all OD pairs originating at O, we get the probabilities of
O’s outflow going to respective destinations. Finally, the OD flow is
available by multiplying the outflow of origin i by the probability
of it ending at destination j.

The inputs of the feedforward network in our task are shown in
Figure 2(b). For every OD pair (i, j) fed into this network, we input
the attributes of origin i and destination j, the distance between
origin and destination d;; and the historical flow of this OD pair
fij as environmental variables X (I;, [j). As both POI changes of the
origin and the destination will impact the OD flow, we aggregate the
planned POI changes of the origin and destination as the treatment
variables T (I, 1j). X(I;,1;) and T(I;, ;) constitute the overall inputs
of our feedforward network.

Based on this OD prediction backbone model, we make causal
adjustments to the feedforward network, substituting it with our
proposed SIRI model as shown in Figure 2(c). The SIRI model com-
prises two causal designs, the causal disentangled representation
module and the variational re-weighting module. In the latter sec-
tions, we will elaborate on the SIRI model comprehensively.

3.2 Causal Disentangled Representation Module

The urban system can be regarded as a complex system with nu-
merous factors and intricate relationship [14]. Although we can use
all those numerous attributes to fully leverage all data correlation,
not all these correlation is stable across training set and testing set.
Since in urban planning scenarios, usually, regions to be planned
are less-developed regions that barely have a good data reserve,
planners have to train the model on developed regions with known
development data. Therefore, the distribution gap between training
data and testing data is further broadened, worsening the out-of-
distribution(OOD) situation. Considering that causal relationships
are generally salient and stable, basing the prediction on causal
relationships saves the model from noise and bias brought by spu-
rious correlation and helps the model better generalize to OOD
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Figure 3: Causal graph of underlying factors of attributes to
treatment and outcome.

situations [28]. In this sense, we design the causal disentangled
presentation module to identify the underlying factors of attributes
that causally affect the outcome and predict the outcome of these
causal factors.

Without loss of generality, there are three types of underlying
factors for attributes based on factors’ causal relation to treatment
and outcome [13]. We plot the causal graph of these factors with
treatment and outcome in Figure 3. In causal terms, factors that only
causally affect treatment are referred to as instrumental factors T,
whereas factors that only causally affect the outcome are referred
to as adjusting factors Y. The factors that causally affect treatment
and outcome simultaneously are referred to as confounding factors
A. As we can see, only confounding factors and adjusting factors
have a causal effect on the outcome. Therefore, our final prediction
of the outcome should not include the instrumental factors.

In previous work, Hassanpour [13] proposed a disentangled
representation module to identify the three types of underlying
factors. However, this work is limited in handling binary treatment.
Since the treatment in our case is bundle continuous treatment,
we make several adaptations to this module to fit our scenario.
Here we elaborate on our disentangled representation module. The
sketch of the module is shown in Figure 4. The representation part
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Figure 4: The causal disentangled representation module in SIRI. (a) The representation layer with three encoders. (b) The
reconstruction decoder. (c) The causal regression predictors. (d) The causal disentangling predictors.

is shown in Figure 4(a). To ensure the correct identification of the
representations, we propose downstream designs to regulate the
optimization of representation part as shown in 4(b)(c)(d). Overall,
our disentangled representation module is composed of:

Representation learning encoders as shown in all three sub-
figures in Figure 4: Each of them encodes one type of underlying
factors, the adjusting factors Y(x), the confounding factors A(x),
and the instrumental factors I'(x).

Reconstruction decoder as shown in Figure 4(b): It recon-
structs the input attributes X by encoded three underlying repre-
sentations I'(x), A(x), Y(x). The reconstruction of X is denoted
as H(T'(x), A(x),Y(x)). This decoder is included to ensure that the
three encoders grasp all the underlying factors of the attributes.

Regression networks ’predictors’ as shown in Figure 4(c);
The first predictor H1 (T'(x), A(x)) is to model the treatment. The
second predictor H(A(x), Y (x), T) is to predict the outcome. Since
T'(x) and A(x) are the only factors that causally affect T, I'(x)
and A(x) should embed all information in attributes for treatment
assignment and show a good performance in predicting treatment
T.So as A(x), Y(x) and T for outcome.

Although in this way, we can embed all factors causally affect
T in T'(x), A(x), and all factors causally affect Y in A(x), Y(x) and
T, we have no guarantee that I'(x) only affects T and Y(x) only
affects Y. In other words, there must be some regularization on
Y(x) to be disentangled with outcome T, so as I'(x) to Y. We first
work on disentangling Y(x) and T. Existing disentangle methods
are all limited in handling binary treatment, which typically adopt
some distance metric to balance the distribution Pr(Y|T = 0) with
Pr(Y|T = 1). However, there are too many conditional distributions
Pr(Y|T) when treatment is non-binary and continuous since T can
take numerous values. Thereby, it is hard to apply existing distance
metrics to disentangle bundle continuous treatment T with Y (x).

Our solution to this dilemma is based on an assumption that if
even the best predictor cannot predict T by Y (x) well, then we can
regard T and Y (x) as disentangled. Therefore, we add components
for disentangling to this module:

Regression networks ’disentanglers’ as shown in Figure 4(d):
H3(T'(x)) is to predict the outcome Y by I'(x). H4(Y(x)) is to pre-
dict the treatment T by Y (x). Guided by the assumption, we achieve

2458

the disentanglement in an adversarial way. That is, take disentan-
gling T and Y(x) for illustration. At every iteration of training,
we first maximize the loss of regressing T by Y(x) so that the un-
derlying factors Y(x) will adjust to the representation space that
disentangles with T. Then we fit the regressor to this new repre-
sentation space by minimizing the loss of regressing T by Y(x).
When the regressor fails to predict T by Y(x) however we minimize
the prediction loss, we think Y(x) embeds no information about
T and they are disentangled. We can apply the same procedure to
disentangle ' with Y. The loss terms in this module are formulated
as below: N
L=+ > Ll H(T(x). AGx), X(xi))
N

Lps = %iL(yi,Hzm(xi),r(xi)))
1 I:II

Lpz = ) Leto H(T(xi), Ax))
1 l:]l

Las = 5 D, Lo H3 (i)

I
N

1
Laz= ; Lti, HA4(X (x1))). (2
Therefore, the overall training objective of our causal disen-
tangled representation module can be formulated as iteratively
minimizing these two adversarial losses:

L(C,A Y, H Hy, Hy) =Lr + @ Ly + B -Lps —y - Lay =8 - Las
3

©

where a, f, y and § are the hyper-parameters to balance these losses.

In this way, we disentangle our attributes to three causal types
of underlying factors. Not only can we base prediction on the real
causal factors, Aand Y to get better generalizability, but we iden-
tify the exact confounding factors A, which makes for the latter
deconfounding part.

L(H3,H4) =y- Ld,l +5- Ld,Z



Causal Learning Empowered OD Prediction for Urban Planning

3.3 Variational Re-weighting Module for
Deconfounding

Since our task is to predict future city OD under planned city de-
velopment, we want to know what the OD distribution will be
like when the city POIs are distributed in a new way. In this sense,
our problem answers a counterfactual question since we can only
clearly infer the impacted OD flows when we have precise com-
mand of how POI changes affect OD flows. However, counterfactual
regression usually suffers from treatment confoundedness. Gen-
erally, the treatment, which is the planned POI changes, is never
randomly assigned: urban planning policies depends on the local
city development and conditions [1]. For example, we will design
more amenities for an ageing city, but this case may not necessarily
generalize to other cities. In this way, the change of amenity POIs is
confounded by citizen age where we cannot differentiate the influ-
ence of amenity POI changes and citizen average age on OD flows.
Therefore, we can conclude that making counterfactual prediction
by observational data induces confounding bias [40], resulting in
the model failing to infer impacted future OD flow.

An acknowledged solution is to decorrelate attributes and treat-
ments in the observational dataset. While Randomized Controlled
Trials [11] is the most intuitive method for causal inference, such
randomization is unrealizable in real practice. Previous work gen-
erally adopts re-weighting methods [3, 25] to put larger weights
on instances with treatment that is rarely assigned and smaller
weights on instances with common treatment. The propensity score
is incorporated to measure the treatment assignment probabilities.
However, almost all these re-weighting methods are limited in
dealing with binary treatment, except that generalized propensity
score-based re-weighting [9] extends the solution to multi-valued
treatment cases, and Zou [40] proposed a variational sample re-
weighting method to deal with bundle binary treatment. But our
case is even more complex since we have to handle bundle contin-
uous treatment. An urban planning policy not only includes the
adjustment of various types of POIs, but for every type of POIL the
adjustment is typically a numerical value, referring to the change
of POI numbers. However, we find that the mathematical deduction
in [40] can be extended to the cases where bundle treatments are
continuous. Therefore, we introduce this method to our case to
realize deconfounding.

As shown in Figure 5, this method first adopts a variational au-
toencoder to learn the low dimensional latent representation Z of T.
The distribution p(Z) of the latent treatment representation denotes
the prior distribution of the latent treatment representation and
is usually assumed to follow standard normal distribution N (0, I).
After getting the distribution of Z, we can deduce the re-weighting
weights as below,

d_ p(t) p(t) ~ 1
i - - =
p(tilx;) sz(ZIxi)p(tilz)dz sz(Z| l)pp(éltlj)d
_ 1 1
/zp(zbcl)p;(jg))dz [ p(lt) EEED dz
1
p(z.xi)
/p(Z|tl)P(Z)P(x)
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p(z.xi)
r(2)p(xi)°
based classifier py|x 7 to estimate how much z and x; are entangled.
We denote the entangled case as L = 1 and the disentangled case

as L = 0. Then, applying Bayes’ Rule [34], this method transform
p(z.xi)

p(2)p(xi)

To calculate this method introduces a neural network

to a new form,

p(zxi)) _plzxill=1) p(L=0)p(L=1zx)
p(@)p(xi) plzxilL=0) p(L=1)p(L=0lzx)
In this way, we transform the weights’ calculation to classify p(L|X, Z).
As shown in Figure 5(a), we feed (X, Z) with labels of L into the clas-
sifier to train li)t(,za;()i used the trained classifier to get p(L|X, Z) and

P(@)p(xi)
to calculate the final re-weighting sample weights.

After obtaining the sample weights, we add them to the pre-
diction loss term % Zﬁl L1 (yi, Ho(A(xi), Y(x;))). The revised loss
term L(T, A, Y, Hy, Hy) is as below,

©)

to calculate Finally we take the results back to Equation 5

N
1
Lpte= 5 ) Wi L(ys Ha(A(xi). X(x1))) )
i=1
L(F, AT, H, HI,Hz) =L, +a- Lp,l* + ﬁ . Lp,Z -y Ld,l -5 Ld,Z
7)

In this way, we carefully decorrelate our treatment with the con-
founding factors, which helps our final OD flow predictor capture
the causal effect of treatment and factors more precisely. More-
over, the causal constructing representation module enhances the
deconfouding performance since it helps us identify the exact con-
founding factors underlying all attributes. Thereby, we can only
decorrelate confounding factors with treatment without interven-
ing in the prior distribution of treatment induced by instrumental
factors.

3.4 End-to-end Training Framework

To fully tackle the challenges, we design the causal disentangled
representation module to identify underlying causal factors of at-
tributes and introduce the variational re-weighting module for
deconfounding. Since the variational re-weighting module relies
on the learned disentangled representation to calculate the weights
more precisely, we split the training into two stages. During the first
stage of the training, we train the OD prediction backbone model
with the causal disentangled representation module. The training
target is to iteratively minimize Equation (3) and Equation (4). After
identifying the causal factors, we calculate the re-weighting weights
based on Equation (5) and add the weights to the prediction loss.
During the second stage, we continue training to minimize the
re-weighted loss Equation (7) until convergence. In this way, we
get an end-to-end training procedure as shown in Algorithm 1.

4 PERFORMANCE EVALUATION

We conduct extensive experiments on datasets from different cities
and of different scales to fully evaluate our proposed method. We
compare our method with seven existing state-of-the-art OD predic-
tion methods. We also do the ablation study and in-depth analysis of
our proposed method to validate our method further. In this section,
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Algorithm 1 A causally empowered OD prediction model

1: Initialize encoders T, A, Y, decoder H, predictors Hy, Hy, disen-
tanglers Hz, Hy in the feedforward network of the DeepGravity
OD prediction framework.

: // Learn the causal disentangled representations.

: repeat

Optimize loss Equation (3) and update T, A, Y, H, Hy, Hy

Optimize loss Equation (4) and update Hs, Hy

. until loss Equation (3) < ¢

: // Learn the deconfounding sample weights.

: Calculate sample weights w based on Equation (5) and (5).

. // Add sample weights to the causal disentangled module and

continue training.

repeat

Optimize loss Equation (7) and update I', A, Y, H, Hy, Hy
Optimize loss Equation (4) and update Hs3, Hy
until loss Equation (7) < ez

R R T RN )

10:
11:
12:
13:

we first introduce our experimental setups, including the datasets,
baseline methods, and evaluation protocols. Then, we elaborate on
the experiment results and performance analysis.

4.1 Experiment Setups

4.1.1 Dataset. We conduct experiments on three real-world, large-
scale datasets from different cities to validate our method. Repro-
ducing practical urban planning scenarios, we train on developed
regions with known historical data and predict on less-developed
regions to be planned. The brief statistics of the three datasets can
be referred to in Table 1.

Changsha Partial Dataset We collect data from Tianxin Dis-
trict and Yuhua District, the most developed areas in Changsha,
as the training samples and predict on Wangcheng District and
Changsha County. The latter two districts are developing at high
speed these days. We have the attributes of these districts, the POI
changes from Nov. 2019 to Nov. 2020, and the OD flow distribu-
tion in Nov. 2019 as input. Our target is to predict the OD flow
distribution in Nov. 2020.

Changsha Global Dataset This dataset covers all urban dis-
tricts in Changsha. The training set covers the five relatively more
developed regions, Yuhua District, Kaifu District, Tianxin District,
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Yuelu District, and Furong District. The testing set includes the two
relatively less developed regions, Wangcheng District and Chang-
sha County. The training settings are the same as in the Changsha
Partial Dataset.

Beijing Partial Dataset This dataset covers two large districts
in Beijing, the Chaoyang district and the Tongzhou district, and the
latter district is a recent planning and development emphasis in
Beijing. In this dataset, we train on data from Chaoyang District and
predict on Tongzhou District. We predict the OD flow distribution
in Jul. 2021, given the OD flow distribution of Jul. 2020 and POI
changes in this interval.

4.1.2  Baselines. To evaluate the performance of our model, we
compare our framework with seven well-established methods from
three groups.

Traditional Model-based Methods in the Urban Planning Field:

e Radiation Model [31]: This model assumes that mobility is
determined by the population density distribution of the
city. The relative probability of mobility from origin i to
destination j is formulated as

P;P;

i (Pi+5ij)(Pi+Pj+Sij),
where P; is the population of region i and S;; is the overall
population inside the circle of radius d;; centered at i.
Modified Gravity Model [4]: A modified version of the orig-
inal Gravity Model with two power exponents added. It
assumes that the OD flow between two regions is in pro-
portion to the propulsiveness (outflow) and attractiveness
(inflow) of the two regions and inversely proportional to the
distance between them.

®)

pi%a;P
fij = dij?

Traditional Machine Learning Method:

©)

e Random Forest [15]: A tree-based ensemble learning method.
Deep Learning-Based Non-graph Methods:
e Gravity Neural Network [22]: A neural network that takes
the same input as our model.
e DeepGravity Model [30]: Our backbone OD prediction model.
The brief introduction of DeepGravity can be referred to in
Section 3.1.
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Statistics Changsha Partial Changsha Global Beijing Partial
City Changsha Changsha Beijing
Districts in training data Tianxin, Yuhua Tianxin, Yuhua, Kaifu, Yuelu, Furong Chaoyang
Districts in testing data ~ Wangcheng, Changsha County Wangcheng, Changsha County Tongzhou
#regions in training data 287 688 510
#regions in testing data 457 457 4381
Dimension of attributes 35 35 35
Dimension of treatments 12 12 12

Table 1: The basic statistics of our datasets.

Deep Learning-Based Graph Methods:

e SI-GCN [37]: This model constructs a graph based on the
adjacency matrix of regions and then adopts a graph convo-
lutional network to model the spatial interaction. We adapt
this model to fit our scenario, with the predictor predicting
future OD flow using the concatenation of both the learned
representations of O and D and the historical OD flow.

e GMEL [19]: This model constructs a graph of adjacency and
adopts two graph neural networks with attention (GAT) to
learn the origin embedding and destination embedding, re-
spectively. Besides the OD flow prediction task, the author
introduces two downstream tasks to predict the inflow and
outflow. The learned embedding of Os and Ds and the his-
torical OD flow are fed into a gradient boosting machine to
predict the future OD flow.

4.2 Evaluation Metrics

To measure the prediction performance, we adopt two commonly
used evaluation metrics: Common Part of Commuters(CPC) and
Mean Absolute Error(MAE). CPC measures the common part of
agreements between predicted OD flows and the true OD flows,
and it is a widely acknowledged metric for OD prediction. MAE is
an intuitive and concise metric for regression problems.

22 mi”(ﬁ'ﬁﬁj)

CPC = n
2ijfij+ 2ij fij

(10)

1 A
MAE = — " |fij - fijl (1)
714
where f; j denotes the predicted OD flow value for OD pair (i, j)
and f;; denotes the corresponding true OD flow value.

4.3 Overall Performance Comparison

To validate our model, we conduct extensive experiments on three
datasets and compare the model performance with SOTA baseline
methods. The performances of existing methods are listed in Table 2.
We can draw four insights from it.

e Our model’s superior performance on all the three
datasets: As we can see from the Table, our model outper-
forms all SOTA baseline methods across all three datasets.
Compared with the best existing method, which is the Deep-
Gravity method, our model achieves performance gain sig-
nificantly, with a relative gain of 4.25%, 5.60%, and 1.34%
on the CPC metric and 10.29%, 12.99%, 5.50% on the MAE

2461

metric. Such an improvement greatly proves the validity of
our model designs.

e Our model’s robustness across different cities and re-
gions: Comparing our performance gain for all three datasets,
we can conclude that our model achieves robust and consis-
tent performance gain regardless of the city from which the
dataset is collected and the scale of the dataset.

o Insufficient ability of traditional urban planning meth-
ods to utilize data. The traditional urban planning methods,
ranging from the gravity model and modified gravity model
to the radiation model, all have significant restrictions on
the type of data input and only utilize some basic data like
population (inflow, outflow) and distance. In this way, these
models fail to consider the heterogeneity of regions and
therefore only show poor performance.

Existing deep learning methods’ poor ability to gen-

eralize. Existing deep learning methods fail to generalize

to urban planning scenarios where planned areas may have
some attribute distribution shift with known areas since they
are typically based on correlation to make predictions. Such

a spurious correlation is not robust and may not generalize

to the testing set, resulting in relatively poor performance.

Also, for graph-based methods, since the planned area and

known area are two graphs that barely overlap, the graph

representation networks are greatly challenged by being
transferred to a new graph. This explains the poor perfor-
mance of graph-based deep learning methods.

4.4 Ablation Study

To further validate every module in our model, we conduct an ab-
lation study on our model, and the results are shown in Figure 6.
To show the effectiveness of the decomposed framework and the
re-weighting module, respectively, we compare the original OD
backbone model DeepGravity(DG) with the corresponding variants,
DG+Disentangled Representation module and DG+Re-weighting
module. For DG+Re-weighting, the confounding variables we cal-
culate weights on are all the input attributes. Then we compare
our final model design, which is the DG+SIRI, with all the models
mentioned above. As we can see from the figures, adding either the
decomposed framework or the re-weighting module to the origi-
nal DeepGravity model brings performance gains across all three
datasets. Combining the two modules together brings the greatest
performance improvement. These results prove the validity of both
modules.
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Changsha Partial Changsha Global Beijing Partial

Groups Models CPC MAE CpPC MAE CPC MAE
Traditional Model-based Methods Radiation Model 0.204  201.60 0.223  137.22 0.280  60.20
Modified Gravity Model  0.406 56.16 0.388 42.99 0.367 32.74

Traditional Maching Learning Method Random Forest 0.470  104.40 0.570 64.20 0.730 24.32
Graph-based Deep Learning Methods SI-GCN 0.270  121.80 0.270 81.31 0.690  37.40
GMEL 0.537 103.90 0.450 74.22 0.710  45.37

Non-graph Deep Learning Methods Gravity Neural Network  0.305 114.70 0.457 71.99 0.731  26.52
DeepGravity(DG) 0.697 39.36 0.697 28.26 0.745 17.28

Our method Our Model 0.728 35.31 0.736 24.59 0.755 16.33
Performance Gain 4.25%  10.29% 5.60%  12.99% 1.34% 5.50%

Table 2: Experimental results on our datasets.

== DeepGravity(DG)
= DG+Reweighting Module
DG +Representation Module

= DeepGravity(DG)

= DG+Reweighting Module
DG+Representation Module

= DG+SIRI

Changsha Partial Changsha Global Beijing Partial
Dataset

15
Changsha Partial Changsha Global Beijing Partial
Dataset

Figure 6: Ablation study results with CPC metric and MAE
metric.

To further analyze the two modules, we compare the perfor-
mance gain brought by the two modules across all three datasets.
As we can see, for the Changsha Partial and Changsha Global
datasets, the performance gain brought by the disentangled rep-
resentation module is slightly greater. For the Beijing dataset, the
performance gains brought by the two modules are close. These
findings provide evidence for the necessity of solving the OOD
dilemma, which our disentangled representation module targets.
Meanwhile, the re-weighting module brings a steady improvement
to all three datasets.

4.5 Performance in Different Urban Planning
Scenarios

In previous sections, we validate the effectiveness of our model in
a hybrid urban planning scenario. Despite the overall performance
gain, we are still unsure whether our model works for all kinds of
specific urban planning scenarios. Therefore, in this section, we do
sub-experiments on four typical planning scenarios to test whether
the performance gain is consistent and robust. The four typical
scenarios are to plan small or large development in less developed
or developed regions. We evaluate the relative performance gain of
predicted OD flows to regions from different scenarios, which is the
ratio of reduced MAE to the mean MAE of the flows. We measure
the initial development level of regions with POI count and set the
fifty per cent point at 50, as shown in Figure 7, as the threshold
of being developed. To quantify the level of planned development,
we refer to the POI growth rate and regard 0.3 as the threshold.
Our model’s performance gains compared with the best baseline
method for the four scenarios are shown in Figure 8.

As we can see, our model generates significant performance
gains in all four urban planning scenarios, with the lowest gain
exceeding 4.5%. These results prove the robustness of our model.
Also, for regions that have little planned development, our model
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Figure 7: Distribution of POI count and POI growth rate. We
define the thirty percentile as the threshold point.
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Figure 8: Performance gain rate in MAE metric for four typi-
cal urban planning scenarios.

brings great performance gain regardless of whether they are devel-
oped. This is within our expectations since such regions are often
common in training datasets, and we have more prior knowledge
of them. Predicting scenarios that have large planned development
is usually more challenging since such cases are relatively rare,
and the development of such regions varies mutually. Experimental
results show that our model also makes a 4.78% improvement in
such scenarios, which proves our method’s capacity to precisely
model how planned development impacts OD flows.

4.6 Performance Highlights in Predicting Large
OD Flows

Previous correlation-based methods often show limited perfor-
mance in predicting large OD flows since such samples are too
rare to learn correlation. However, large OD flows are important
and must be paid extra attention to in city governance when in-
volving a large population. For example, a regular large commuting
flow between two regions may cause severe traffic congestion and
trouble these commuters [36]. To our delight, our model exhibits
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Figure 9: Relative error reduction of our model in predicting

large OD flows.

a great performance improvement in predicting large OD flows,
as shown in Figure 9. To fairly measure how much performance
gain our model brings to an OD pair, we refer to the relative error
reduction metric, which is the ratio of prediction error reduction
by our method to the true value of our prediction target. As we can
see, for OD flows that exceed 10°, the relative error reduction is
significant. 75% of the OD pairs receive a performance gain, and 73%
of them receive a relative gain higher than 10%. Although some of
the OD pairs receive decreased performance, the decrease is quite
slight compared to the overall progress. Such progress in predicting
large OD flows illustrates our causal designs’ capability to learn
how planned development impacts OD flows and then utilize the
learned relationship to make inferences in predicting large OD
flows. This gives further proof of the value of our model.

In conclusion, we conduct extensive experiments on three real-
world datasets and compare our model with four groups of SOTA
baselines. Experimental results validate the superiority of our model.
We design further experiments to demonstrate the effectiveness
of every module and the robustness of our model across all urban
planning scenarios. Experiments also show our model’s outstanding
performance in predicting large OD flows, which are valuable for
city governance. These findings corroborate our model’s value to
the urban planning field.

5 RELATED WORK

OD Prediction: There are typically two kinds of OD prediction
problems. The first type is to generate OD flow with contemporary
region attributes, and the second is to forecast future OD based
on historical OD flow series. Although, in our problem, current
OD flow is provided to predict the future OD flow, our task is
within the scope of the first type of OD prediction since no his-
torical series are involved. Early researchers solve the first type of
OD prediction problem using some model-based methods [4, 38].
Gravity model [18, 39] assumes that the OD flows from one region
to another is proportional to the product of both regions’ popula-
tions and inversely proportional to the distance between the two
regions. Radiation model [31] assumes that the probability of a
flow departing from region i to region j is intervened by the at-
tractiveness of regions between i and j. With the development of
deep learning, data-driven methods are drawing increasing atten-
tion [22, 24, 30]. Since OD flows not only depend on origins and des-
tinations but also are affected by adjacent regions, graph representa-
tion tools are introduced to grasp spatial influence [10, 19, 29, 35, 37].
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These methods typically construct an adjacency graph and adopt
GAT [33] or GCN [17] to learn node representations. Then a tree-
based regressor or a neural network predicts the OD flow from the
learned representations. However, existing OD prediction methods
are all correlation-based, making them fail to generalize to out-of-
distribution scenarios common in urban planning practice.

Counterfactual Regression: Counterfactual regression problems
answer a question: what would the patient have been had he re-
ceived some treatment? To answer that question requires precise
knowledge of the causal relationship between the treatment and
the ’patient’. However, since the treatment is assigned to the pa-
tient based on one’s conditions, there usually exists a correlation
between treatment and other features, which brings the confound-
ing bias in estimating the treatment effect. Randomized Controlled
Trial [11] is a fair and ideal way to assess the causal effect of the
treatment. Since randomized treatment may not be practical in real
cases, several methods are proposed to decorrelate treatment and
input features statistically. Some proposed re-weighting methods
based on propensity [3, 6, 12, 25], and some adopted representation
learning methods to decrease the feature representation discrep-
ancy between different treatment groups [16, 27]. Negar et al. [13]
moves re-weighting methods forward by finding the essential fac-
tors in input features that cause confounding bias and only cal-
culating sample weights on these confounding factors. However,
all these methods are initially designed for binary treatment cases
and cannot be generalized to bundle treatment. Hao et al. [40] pro-
posed a variational sample weight learning method to deal with
bundle treatment cases. Since, in our cases, treatment refers to POI
changes of all kinds and is bundle continous treatment, we further
generalize [40] to solve our problem.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a causal decomposition and re-weighting
OD prediction method to solve the out-of-distribution problem for
OD prediction under urban planning scenarios. We evaluate our
method on three real-world datasets from different cities and at
different scales. Experimental results validate the effectiveness of
model designs. Further analysis of our model shows its robustness
and superiority across all typical urban planning scenarios. Overall,
our work incorporates causal designs to solve OD prediction tasks
in urban planning scenarios, and extensive experiments demon-
strate the excellent performance of our designs. In future work,
a promising direction is to predict future OD distribution with a
larger time interval where longer-term planning takes effect. Also,
we may work on more forms of planning other than those involving
POlIs.
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