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ABSTRACT
Human daily activities, such as working, eating out, and traveling,
play an essential role in contact tracing and modeling the diffusion
patterns of the COVID-19 pandemic. However, individual-level ac-
tivity data collected from real scenarios are highly limited due to
privacy issues and commercial concerns. In this paper, we present
a novel framework based on generative adversarial imitation learn-
ing, to generate artificial activity trajectories that retain both the
fidelity and utility of the real-world data. To tackle the inherent
randomness and sparsity of irregular-sampled activities, we innova-
tively capture the spatiotemporal dynamics underlying trajectories
by leveraging neural differential equations. We incorporate the
dynamics of continuous flow between consecutive activities and
instantaneous updates at observed activity points in temporal evo-
lution and spatial transformation. Extensive experiments on two
real-world datasets show that our proposed framework achieves
superior performance over state-of-the-art baselines in terms of
improving the data fidelity and data utility in facilitating practi-
cal applications. Moreover, we apply the synthetic data to model
the COVID-19 spreading, and it achieves better performance by
reducing the simulation MAPE over the baseline by more than 50%.
The source code is available online: https://github.com/tsinghua-
fib-lab/Activity-Trajectory-Generation.
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1 INTRODUCTION
The continuous spread of COVID-19 with increasing infectivity
(like Omicron Virus) has possessed an intractable challenge of
pandemic prevention and control [46]. As COVID-19 is transmitted
mainly by person-to-person contacts, effective contact tracing is
quite essential and governments are taking measures to keep close
contacts in quarantine to prevent the pandemic from spreading.
Activity trajectories record individuals’ participation in various
location-based activities, such as traveling, working, and eating out,
and thus play a fundamental role in the pandemic modeling and
control. On the one hand, the complex spatiotemporal associations
underlying daily activities can give rise to recessive infection that
is difficult to deal with. On the other hand, compared with general
mobility trajectories, the semantic information, i.e., activity type, is
provided in the activity trajectory, which is more useful for tracing
close contacts and precision epidemiology [25, 35].

Despite the great value of individual activity trajectories in pan-
demic control, such data are highly limited in applications due to
privacy issues and commercial concerns [23]. Meanwhile, the direct
replay of real-world data has limitations in supporting advanced
modeling [9], e.g., counterfactual scenarios that what will happen if
people reduce the use of public transportation. Therefore, realistic
simulation of individual-level daily activities to generate massive
high-quality activity trajectories becomes an essential and mean-
ingful research problem, which covers the deficiency of real-world
data in modeling the pandemic spread and facilitating rational
policymaking.

To effectively model the diffusion patterns of the pandemic, it
is necessary to simulate fine-grained activities (i.e., what activity
to take at what place and time) of massive individuals in daily life.
Though many works have studied [8, 9, 19] the problem of mobility
prediction/simulation, they mainly focus on the regularities and
variations of spatial movements without considering concrete activ-
ity types, which however are important for modeling the pandemic
spread. Moreover, due to the inherent randomness and sparsity of
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Figure 1: Spatiotemporal distributions of a real-world dataset.
(a) interval distributions of repeat actions; (b) distance distri-
butions between the activity location and home.

irregular-sampled activities and higher uncertainties induced by
larger intervals, existing methods, such as RNN-based [8, 9] and
Markov-based approach [2, 53], are insufficient for modeling real-
world activity trajectories with the discrete-time or time-invariant
assumption.

Figure 1 illustrates the results of preliminary analyses on a real-
world activity dataset. As we can observe in Figure 1(a), different
activities reveal diverse time interval distributions between the two
observations. For example, going to work is relatively more regular
than eating out. Besides, though researchers [45] have proved that
the overall distribution of spatial movements is fat-tailed that can
be described by limited parameters, Figure 1(b) delivers obviously
distinct spatial patterns, where traveling accepts a longer geograph-
ical distance. The trajectory appears to be just a sequence of activity
transitions, however, it is the underlying spatiotemporal dynamics
that intrinsically drive these activity points and exhibit distinct
temporal and spatial distributions. Therefore, to better match re-
ality, it is necessary to inherently take the latent dynamics into
consideration and capture them in a principle way.

In this paper, we present a framework based onGenerative Adver-
sarial Imitation Learning (GAIL) [15] to generate artificial activity
trajectories. To effectively capture complex transition patterns with
spatiotemporal dependency, we propose to model continuous-time
spatiotemporal dynamics underlying the observed activities. By
characterizing trajectories as point processes, we design the policy
function with a neural spatiotemporal point process model, where
the evolution of spatiotemporal dynamics is captured by the hidden
states. Specifically, we jointly incorporate the dynamics of continu-
ous flow between consecutive activities and instantaneous updates
at observed activity points in temporal evolution and spatial trans-
formation. To tackle the challenge that irregular-sampled activities
are inherently random and sparse, we model the dynamic evolu-
tion in continuous time and space by leveraging neural differential
equations [4]. Finally, based on the learned dynamics, the activity
with time and location is generated sequentially. In summary, our
main contributions are as follows:
• To the best of our knowledge, we are the first to capture under-
lying spatiotemporal dynamics via neural differential equations
for modeling activity trajectories.
• We propose a novel activity simulation framework based on
GAIL, which models the activity decision as a spatio-temporal
point process and designs an activity decision model informed
by the learned spatiotemporal dynamics in continuous domain.
• Extensive experiments on two real-world datasets show that our
proposed framework outperforms state-of-the-art baselines in

generating activity trajectories with retained fidelity. Besides, we
validate the utility of the generated data in supporting practical
applications, i.e., activity prediction. Furthermore, we demon-
strate the effectiveness of the synthetic data in modeling and
simulating the COVID-19 spreading.

2 PRELIMINARIES
2.1 Problem Definition
In this section, we formally define our research problem of learning
to generate activity trajectories. It is equal to generating activity
sequences with the timestamp and spatial locations. We first de-
fine the location-based activity and activity trajectory, and then
formulate our research problem.

Definition 1. Location-based Activity. An activity-based loca-
tion is described by a four-element tuple 𝜏𝑖 = (𝑡𝑖 , 𝑘𝑖 , 𝑙𝑎𝑡𝑖 , 𝑙𝑜𝑛𝑖 ), where
𝑡𝑖 is the sampled timestamp, 𝑘𝑖 is the activity type, 𝑙𝑎𝑡𝑖 and 𝑙𝑜𝑛𝑖 are
latitude-longitude coordinations.

Definition 2. Activity Trajectory. An activity trajectory is a
sequence of location-based activities generated by an individual in
daily life. It is represented by a sequence of chronologically ordered
points 𝑆 = [𝜏1, ..., 𝜏𝑛], where 𝜏𝑖 represents a location-based activity.

Problem 1. Given a real-world activity trajectory dataset, our
goal is learning to simulate individuals’ decision-making process to
generate artificial activity trajectories while retraining the fidelity
and utility of the real-world data.

2.2 Background
Spatial-temporal Point Process. STPP [6] models a sequence
of stochastic events occurred in continuous space and time. In
summary, it is characterized by a non-negative intensity function
given the history of events up to time 𝑡 ,H𝑡 = {(𝑡𝑖 , 𝑥𝑖 ) |𝑡𝑖 ≤ 𝑡}:

𝜆(𝑡, x|H𝑡 ) = lim
Δ𝑡→0,Δx→0

P(𝑡𝑖 ∈ [𝑡, 𝑡 + Δ𝑡], 𝑥𝑖 ∈ 𝐵(x,Δx) |H𝑡 )
|𝐵(x,Δx) |Δ𝑡 , (1)

where 𝐵(x,Δx) denotes an infinitesimal spatial ball centered at
location x ∈ R𝑑 with radius Δx. The conditional intensity function
𝜆(𝑡, x|H𝑡 ) represents the probability of the event occurring in the
time interval (𝑡, 𝑡 +Δ𝑡] and locating in the spatial ball 𝑆 = 𝐵(x,Δx).
𝜆∗ (𝑡, x) = 𝜆(𝑡, x|H𝑡 ) is used to represent the conditional intensity
where ∗ denotes the dependence on the history H𝑡 . Given the
history of N events H within a time interval [0,𝑇 ], the joint log-
likelihood of observing H is given as follows:

log𝑝 (H) =
𝑁∑︁
𝑖=1

log𝜆∗ (𝑡𝑖 , x𝑖 ) −
∫ 𝑇

0

∫
R𝑑

𝜆∗ (𝜏, x)𝑑𝑥𝑑𝜏 . (2)

The conditional intensity function 𝜆∗ (𝑡, x) plays a critical role in
the realization of the STPP, which decides the occurring time and
spatial location of the event.

Generative Adversarial Imitation Learning. GAIL [15] is
derived from an alternative approach of imitation learning and
formulates the problem of learning a policy function 𝜋𝜃 to generate
expert-like action conditioned on the state. In the meantime, a
discriminator𝐷𝜙 is trained to distinguish between policy-generated
and real-world state-action pairs, and further rewards the policy
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function for confusing itself. The objective of GAIL is to solve a
minimax problem as follows:

max
𝜙

min
𝜃
−𝜆𝐻 (𝜋𝜃 ) + E𝜋 [log𝐷𝜙 (𝑠, 𝑎))] + E𝜋𝐸 [log(1 − 𝐷𝜙 (𝑠, 𝑎))] ,

(3)
where E𝜋 represents the expected reward of the sequences under
the policy 𝜋 , and 𝜋𝐸 represents the policy under the expert se-
quences. 𝐻 (𝜋𝜃 ) is an entropy regularization term, which controls
to find the policy 𝜋 with maximum causal entropy.

Our proposed framework is based on the basic GAIL framework.
In addition to the policy and reward functions that have to be
optimized, we also innovatively learn the spatiotemporal dynamics
to better characterize the decision process of the activity choice.

2.3 Sequential Decision Processes
The activity trajectory is generated by an individual’s sequential de-
cisions on what activity to perform at what time and location. The
activity choice is affected by the individual’s historical decisions.
Therefore, we depict an individual’s activity choice as a Markov
Decision Process (MDP), which can be described by a 5-element
tuple < S,A,T,G,R >, where S is the state space,A is the action
space, T represents the state transition, G denotes the spatiotem-
poral dynamics underlying state transitions, and R is the reward
function. The basic elements of the MDP are defined as follows:
• State: It is defined as the history of activities 𝑠𝑡 = [𝑎1, ..., 𝑎𝑖 ]𝑡𝑖<𝑡 ,
where𝑎𝑖 = (𝑡𝑖 , 𝑘𝑖 , 𝑙𝑎𝑡𝑖 , 𝑙𝑜𝑛𝑖 ) includes the information of the times-
tamp, activity type, and latitude-longitude coordinations.
• Action: It is defined as the activity selected each step in the
trajectory, which can be described as 𝑎𝑖 = (𝑡𝑖 , 𝑘𝑖 , 𝑙𝑎𝑡𝑖 , 𝑙𝑜𝑛𝑖 ).
• State transition: After the selected action, the state 𝑠𝑡 will be
update to 𝑠𝑡 = [𝑎1, ..., 𝑎𝑖 , 𝑎𝑖+1].
• Spatiotemporal dynamics: They are defined as the evolution of
the hidden states between consecutive activities and the update
at activity times, which are continuous in time and space.
• Reward function: It evaluates the utility of taking an action
under the state, whose input is the state-action pair. It is unknown
and has to be learned.

3 METHOD
In this section, we present a novel framework, entitled ActSTD,
which learns to generate Activity trajectories with capturing un-
derlying SpatioTemporal Dynamics. We first overview the ActSTD
framework, and then elaborate on the details of key components.

3.1 Overview
As shown in Figure 2, the proposed framework has three key compo-
nents: (i) learning spatiotemporal dynamics G𝑠𝑡 , which is modeled
by a neural spatio-temporal point process, (ii) the policy function
𝜋𝜃 , which learns to generate action 𝑎 similar to real-world cases
based on the state 𝑠 and spatiotemporal dynamics𝑔, (iii) the discrim-
inator𝐷𝜙 , which is trained to distinguish between policy-generated
and real-world cases.

The left part of Figure 2 shows the learning of spatiotemporal dy-
namics underlying state transitions. It takes the state extracted from
the observed trajectory as input and learns an embedding process
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Figure 2: Illustration of the ActSTD framework. It has three
key components: the spatiotemporal dynamicsG𝑠𝑡 , the policy
net 𝜋𝜃 , and the discriminator 𝐷𝜙 .

𝑔(𝑡) in continuous time to describe the spatiotemporal dynamics.
Specifically, we use neural differential equations [4] to describe the
continuous characteristics both in time and space. Then, the policy
network 𝜋𝜃 takes both the state 𝑠 and the dynamics 𝑔 as inputs
to obtain an action distribution 𝜋𝜃 (𝑎 |𝑠, 𝑔) and sample an action
𝑎 accordingly. Subsequently, the discriminator 𝐷𝜙 distinguishes
between the generated state-dynamics-action tuple (𝑠, 𝑔, 𝑎) and the
observed tuple (𝑠, 𝑔, 𝑎), and provides the reward for confusing its
binary classification to in turn optimize the policy function.

3.2 Learning Spatiotemporal Dynamics
In the ActSTD framework, we consider an important factor under-
lying the decision process, namely, the spatiotemporal dynamics.
Different from the previous modeling in GAIL, where the state is
only updated upon the occurrence of a new action, we innovatively
model the evolutionary dynamics between activity observations,
which can adequately consider the continuous characteristics of
states in time and space. The temporal dynamics and spatial dynam-
ics are entangled by sharing the same hidden states ℎ(𝑡). For easy
understanding, we introduce the modeling of these two dynamic
mechanisms, respectively.

3.2.1 Temporal Dynamics. The evolution of ℎ(𝑡) is modeled by
Neural Jump Stochastic Differential Equations [18], which is similar
to a recurrent neural network with continuous-time hidden states
between observed points. It should be pointed out that ℎ(𝑡) serves
as a summary of the activity history and act as the condition to
predict future activity. On the one hand, ℎ(𝑡) evolves continuously
between observed points. On the other hand, the observed points,
namely, the occurrence of location-based activities, can trigger in-
stantaneous updates to ℎ(𝑡), which incorporates the activity effects
to the latent dynamics. The mechanism consisting of continuity and
discontinuity is essential, because it not only captures the underly-
ing patterns between activities, but also allows historical activity
points to affect future development. In summary, the continuous
flow and instantaneous update can be formulated as:

𝑑h(𝑡)
𝑑𝑡

= 𝑓ℎ (𝑡, h(𝑡), x(𝑡)) (between activity times) (4)

lim
Δ𝑡→0+

h(𝑡𝑖 + Δ𝑡) = 𝑔ℎ (𝑡𝑖 , h(𝑡𝑖 ), x(𝑡𝑖 )) (at activity times) (5)

where 𝑓ℎ is modeled by an MLP, 𝑔ℎ is modeled by a GRU to update
the hidden states, and 𝑡𝑖 denotes the activity time.
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3.2.2 Spatial Dynamics. Following neural STPP [3], we apply
Continuous Normalizing Flow (CNF) [33] to model the conditional
spatial density 𝑝 (x|𝑡). In the same way, the update of the normaliz-
ing flow is also conditioned on the hidden state ℎ(𝑡), with the as-
sumption that the activity history influences the spatial distribution.
Similar to the pairwise continuity in temporal dynamics, the dynam-
ics of spatial distribution also include continuous flow and instanta-
neous updates: (i) the spatial distribution follows a continuous-time
normalizing flow between observed spatial locations, (ii) the spatial
distribution can also be updated instantaneously by new activi-
ties, which is modeled by a discrete normalizing flow model. Such
dynamics can be formulated as follows:

𝑑x(𝑡)
𝑑𝑡

= 𝑓𝑥 (𝑡, h(𝑡), x(𝑡)) (between activity times) (6)

lim
Δ𝑡→0+

x(𝑡𝑖 + Δ𝑡) = 𝑔𝑥 (𝑡𝑖 , h(𝑡𝑖 ), x(𝑡𝑖 )) (at activity times) (7)

where 𝑓𝑥 is modeled by a continuous normalizing flow and 𝑔𝑥 is
realized by a standard linear flow.

3.3 Policy Design
The policy function is defined as a conditional intensity function
𝜆∗ (𝑡), which is used to sample the activity with the information of
the timestamp, activity type, and spatial location. The conditional
intensity function 𝜆∗ (𝑡) is defined as follows:

𝜆∗ (𝑡) = P{event in [𝑡, 𝑡 + 𝑑𝑡) |H𝑡 } , (8)

where ∗ denotes the dependence on the history H.
In our setup, the activity marks are considered, including the

activity type 𝑘 and spatial location (𝑙𝑜𝑛, 𝑙𝑎𝑡). Thus, we model them
using two conditional distributions 𝑚(𝑘 |𝑡) and 𝑝 (x|𝑡). The two
distributions represent the probability that the activity type 𝑘 and
the spatial location 𝑥 are selected conditioned on the occurrence
of activity at time 𝑡 . Following [3], we also perform decomposition
of the conditional intensity function. Specifically, it is divided into
three components as follows:

𝜆∗ (𝑡, 𝑘, x) = 𝜆∗ (𝑡)𝑚(𝑘 |𝑡)𝑝 (x|𝑡, 𝑘), (9)

where 𝜆∗ (𝑡) denotes the intensity of the temporal process,𝑚(𝑘 |𝑡)
denotes the probability of activity type 𝑘 given the time 𝑡 , and
𝑝 (x|𝑡, 𝑘) is the conditional spatial density of x conditioned on the
time 𝑡 and activity type 𝑘 . We model the first two terms by calcu-
lating intensity of each activity type 𝜆∗

𝑘
(𝑡) as follows:

𝜆∗
𝑘
(𝑡) = 𝐿𝜆 (ℎ(𝑡)), 𝜆∗ (𝑡) =

𝐾∑︁
𝑘=1

𝜆∗
𝑘
(𝑡), 𝑚(𝑘 |𝑡) = 𝜆∗

𝑘
(𝑡)/

𝐾∑︁
𝑘=1

𝜆∗
𝑘
(𝑡),

(10)
where 𝐿𝜆 is realized by an MLP followed with a softplus nonlin-
ear layer to guarantee the positive value of intensities. Figure 3
demonstrates how we sample an activity with the policy function.
After obtaining the intensity 𝜆∗ (𝑡) and the activity type distribu-
tion𝑚(𝑘 |𝑡), we sample a time interval by Δ𝑡 ∼ Exp(𝜆∗ (𝑡)) and an
activity type 𝑘 ∼ Categorical(𝑚(𝑘 |𝑡)). Then, the conditional spatial
density evolves following the spatial dynamics.

𝜆∗(𝑡, 𝑘, 𝑥)

𝜆∗(𝑡)

𝑚(𝑘|𝑡)

𝑝(𝑥|𝑡, 𝑘)

𝑡𝑖~𝜆
∗(𝑡)

𝑘𝑖~𝑚 (𝑘|𝑡)

𝑥𝑖~𝑝 (𝑥|𝑡, 𝑘)

Figure 3: Illustration of the sampling process. Given the de-
composed distributions, the time interval 𝑡𝑖 , activity type 𝑘𝑖 ,
and spatial location 𝑥𝑖 are sampled.

3.4 Discriminator Design
GAIL uses a reward function to evaluate the actions by comparing
the policy-generated actions with expert actions. It is modeled by
a discriminator 𝐷𝜙 which provides rewards to guide the policy
optimization. As shown in Figure 2, the input of the discriminator
is a three-element tuple (𝑠, 𝑔, 𝑎). We leverage an LSTM to encode
the state history 𝑠 and use an embedding layer to obtain the repre-
sentation of the action 𝑎. Then we concatenate the state embedding,
action embedding, and dynamics representation, and feed it into
an MLP layer followed by a binary classifier. The optimization of 𝜙
is done with the following loss function:

L𝐷 = E(𝑠,𝑔,𝑎) ∈T𝐸 log𝐷𝜙 (𝑠, 𝑔, 𝑎) + E(𝑠,𝑔,𝑎) ∈T𝐺 log(1 − 𝐷𝜙 (𝑠, 𝑔, 𝑎)),
(11)

where T𝐸 and T𝐺 are real-world activities and policy-generated ac-
tivities, respectively. Thus, the reward can be calculated as follows:

𝑅 = log𝐷𝜙 (𝑠, 𝑔, 𝑎) . (12)

3.5 Hybrid Training Technique
To enhance the learning of spatiotemporal dynamics, we propose
a hybrid training technique to train the ActSTD framework. In
the neural spatiotemporal point process, the likelihood is clearly
defined and computationally tractable. Therefore, it can be trained
via maximum likelihood as follows:

log𝑝 (H) =
𝑁∑︁
𝑖=1

log𝜆∗ (𝑡𝑖 ) +
𝑁∑︁
𝑖=1

log𝑚(𝑘𝑖 |𝑡𝑖 ) +
𝑁∑︁
𝑖=1

log𝑝 (𝑥𝑡𝑖 |𝑡𝑖 , 𝑘𝑖 )

−
∫ 𝑇

0
𝜆∗ (𝜏)𝑑𝜏 . (13)

Additionally, we learn the policy and reward functions using an
adversarial learning objective based on Eq. (3). Although MLE is
statistically efficient, the combination of the adversarial learning is
necessary because the optimality of MLE holds only without model
misspecification for the generator [49]. Besides, [14] has shown
that a purely adversarial learning paradigm tends to generate good
samples but with low likelihoods. The ActSTD framework allows
both maximum likelihood learning of the spatiotemporal dynam-
ics and adversarial learning of the policy and reward functions.
Algorithm 1 in Appendix shows the training procedure with hy-
brid techniques. Besides, we also consider other training options
and investigate the performance experimentally in Section 4.3. The
optional training methods include:
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• Option 1 (Pre-trained): Pre-train the spatio-temporal dynamics
modelG𝑠𝑡 withMLE, and then fixG𝑠𝑡 when optimizing the policy
net 𝜋𝜃 with PPO algorithm and the discriminator 𝐷𝜙 by a binary
classification task.
• Option 2 (Hybrid-trained):The spatiotemporal dynamicsmodel
G𝑠𝑡 , the policy net 𝜋𝜃 , and the discriminator𝐷𝜙 are all updated in
the training process. Specifically, G𝑠𝑡 is updated with real trajec-
tories by MLE, 𝜋𝜃 and 𝐷𝜙 are trained with adversarial learning.
• Option 3 (Jointly-trained):The spatiotemporal dynamicsmodel
G𝑠𝑡 is integrated into the policy net and is jointly optimized with
the policy net by the PPO algorithm [43].

4 EXPERIMENT
In this section, we perform extensive experiments on two real-world
activity datasets to answer the following research questions:

• RQ1: Compared with state-of-the-art baselines, can our frame-
work deliver more realistic activity simulations?
• RQ2: How do different training methods that learn spatiotempo-
ral dynamics contribute to the final performance?
• RQ3:What’s the utility of the generated activity trajectories in
supporting practical applications?
• RQ4: What’s the performance of our framework to facilitate the
modeling of epidemic spreading?

4.1 Experimental Settings
4.1.1 Datasets. Weevaluate the performance of theActSTD frame-
work on two large-scale real-world activity datasets. As activity data
are characterized by visits to different types of locations, we use the
location category as the activity type. The first dataset was collected
by a major mobile network operator in China, which includes 10000
users in Beijing for a duration of one month. This dataset contains
the following categories: Company, Concerts, Culture and Art, Ed-
ucation, Entertainment, Food, Government, Life Service, Market,
Medicine, School, Shop, Sports, Travel, and University. The second
dataset [51] was collected from Foursquare, including 1000 users
with a duration of one month. The anonymous user ID, timestamp,
activity type, and latitude-longitude coordinations are recorded
in both datasets. This dataset contains activity types as: Arts and
Entertainment, Athletics and Sports, Clothing Store, College and
University, Food, Food and Drink Shop, Medical Center, Movie The-
ater, Nightlife Spot, Office, Outdoors and Recreation, Professional
and Other places, School, Shop and Service.

4.1.2 Baselines. We compare the ActSTD’s performance with
the following state-of-the-art baselines: SMM [24], TimeGeo [19],
LSTM [17], SeqGAN [54], TrajGAIL [5], Movesim [9] and Neural
STPP [3]. The details of baselines are introduced in Appendix B.

4.1.3 Performance criteria. The objective of this work is to gen-
erate activity trajectories that are similar to real-world activities.
Here, we define the "similarity" between the generated activities
and real-world activities from two aspects: dataset level and indi-
vidual level. First, the dataset-level similarity denotes the distribu-
tional or statistical similarity between two datasets from an overall
perspective. This macro-level similarity measures how closely the
generated dataset matches the reality of statistical characteristics

by comparing distributions of key patterns. Second, the individual-
level similarity measures the similarity of an individual’s generated
trajectory to the observed cases. For example, given the same state,
a good simulator should not only predict the next activity accu-
rately, but also perform well in generating the future trajectories
with multiple consecutive steps.

For the dataset-level evaluation, we choose essential aspects of
activity patterns for statistical similarity as follows:
• Distance: The moving distance between activities in individuals’
trajectories, which is a metric from the spatial perspective.
• Radius: Radius of gyration is the root mean square distance of
all activity locations from the central one, which measures the
spatial range.
• Interval: Time intervals between adjacent activities in activity
trajectories, which is a metric from the temporal perspective.
• DailyAct: Daily performed activities [9], which is calculated as
the number of activities per day for each individual. It reflects a
certain degree of daily rhythms.
• ActType: The distribution of activity type, which is calculated
as the frequency of each activity at the macro-level.

Specifically, we use Jensen–Shannon divergence (JSD) [11], to mea-
sure the discrepancy of these distributions between the generated
data and real-world data. The JSD metric is defined as follows:

JSD(𝑝 | |𝑞) = 𝐻 ((𝑝 + 𝑞)/2) − 1
2
(𝐻 (𝑝) + 𝐻 (𝑞)) (14)

where 𝑝 and 𝑞 are two distributions for comparison, and 𝐻 is the
Shannon entropy. Lower JSD denotes a closermatch to the statistical
characteristics and thus indicates a better generation result.

In the individual-level evaluation, we following existing stud-
ies [52] and use the standard evaluation metrics for prediction
performance, i.e., accuracy. Specifically, we both predict the activity
type and spatial location.

4.2 Overall Performance (RQ1)
We demonstrate the performance of ActSTD and state-of-the-art
baselines, where both dataset-level similarity and individual-level
similarity are evaluated in the following sections.

4.2.1 Dataset-level Evaluation.
Table 1 reports the results of our framework and state-of-the-art

baselines for the dataset-level evaluation.
Performance on Mobile Network Operator Dataset. As we

can observe in Table 1, SMM performs the worst across all metrics,
indicating that the time-invariant assumption cannot describe real-
world activity patterns. TimeGeo outperforms SMM significantly,
especially for the spatial-related metrics including Distance and
Radius. It is reasonable as TimeGeo directly fits the distribution of
the jump-size (Distance) by a fat-tailed distribution [45], which can
well capture distance characteristics. However, it fails to model the
choice of activity type, which suggests that the activity decision
does not solely rely on the distance. The incorporation of deep neu-
ral networks improves the similarity of activity type significantly,
and SeqGAN even achieves the best performance on the ActType
metric. Despite this, these models cannot achieve acceptable re-
sults on other spatial-related and temporal-related metrics, which
reflect the intractable challenge of capturing the spatiotemporal
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Dataset Mobile Network Operator Foursquare
Metrics (JSD) Distance Radius Interval DailyAct ActType Distance Radius Interval DailyAct ActType

SMM 0.348 0.583 0.184 0.649 0.047 0.245 0.244 0.117 0.405 0.066
TimeGeo 0.056 0.203 0.015 0.174 0.040 0.146 0.528 0.133 0.199 0.079
LSTM 0.121 0.556 0.044 0.319 0.004 0.124 0.420 0.078 0.266 0.021

SeqGAN 0.101 0.549 0.035 0.226 0.003 0.097 0.372 0.065 0.271 0.018
TrajGAIL 0.248 0.539 0.175 0.416 0.007 0.158 0.484 0.230 0.693 0.023
Movesim 0.289 0.556 0.160 0.232 0.009 0.154 0.480 0.260 0.693 0.011

Neural STPP 0.168 0.296 0.009 0.051 0.013 0.215 0.430 0.034 0.105 0.0066
Ours 0.071 0.142 0.0077 0.0084 0.004 0.082 0.138 0.054 0.093 0.0063

Table 1: Performance of the proposed ActSTD framework and baselines in terms of JSD. Lower JSD value indicates a better
performance. Bold means the best results and underline means the second-best results.

Figure 4: Weekday distributions of the real-world data, the
generated data by our framework and two best baselines.

dynamics underlying activity trajectories. Neural STPP achieves the
second-best performance on spatial-related and temporal-related
metrics, which proves the importance and necessity of considering
spatiotemporal dynamics. Overall, ActSTD achieves the best per-
formance, which ranks 1st on three metrics and 2nd on two metrics.
For the three metrics that rank 1st, ActSTD reduces the JSD from
14.4% to 83.5%. For the two metrics ranking 2nd, ActSTD also has
comparable performance compared with the best baseline.

Performance on Foursquare Dataset. The evaluation results
on the Foursquare dataset are different from the Mobile Network
Operator dataset, which can be explained by the data sparsity and
the small data scale. Due to the data sparsity that intervals between
consecutive activities are obviously longer, the activity trajectory
in the Foursquare dataset does not exhibit obvious regularities. As
a result, models including SMM and TimeGeo, which need to esti-
mate temporal and spatial regularity parameters from the training
data, deliver worse performance. Particularly, the TimeGeo model
loses its advantage in modeling spatial characteristics. Despite the
changes in the dataset distribution, ActSTD still achieves the best
performance with ranking 1st on four metrics and 2nd on one met-
ric. For the four metrics that rank first, ActSTD reduces the JSD
from 4.5% to 43.0%. For the Interval metric ranking second, ActSTSD
still achieves comparable results with the best baseline.

Distribution Visualization. In addition, to further demonstrate
the performance gain on the dataset-level evaluation, we visualize
the weekday distribution of the real data, the data generated by
ActSTD and by the other two best baselines, SeqGAN and Neural
STPP. As we can observe in Figure 4, the data generated by our
framework has the most similar distribution to the ground truth.

In summary, the performance gain on two real-world datasets
and the visualization of the weekday distribution all show the better

(a) Activity prediction (Mobile) (b) Location prediction (Mobile)

(c) Activity rediction (Foursquare) (d) Location prediction (Foursquare)

Figure 5: Performance of the prediction task of our proposed
framework, SMM, and two best baselines. We vary the num-
ber of future steps in prediction as 1, 2, 5, 10.

performance of the proposed ActSTD framework in generating
activity trajectories that match the reality at the macro level.

4.2.2 Individual-level Evaluation. In the individual-level eval-
uation, we measure how similar each generated activity trajectory
is to the real circumstances by performing activity predictions. To
illustrate the performance of the ActSTD framework, we not only
predict the next activity, but also predict the following 𝑘 steps,
where 𝑘 ∈ {1, 2, 5, 10}. Specifically, we take the historical 10 activi-
ties as the known state and predict the next 𝑘 activities.

As we can observe in Figure 5, ActSTD performs the best across
prediction tasks. SMM performs the worst across all cases due to
the unrealistic Markov assumption [10] that the future conditional
distribution only relies on the current state and is independent of the
history. Besides, as the number of future steps to predict increases,
the performance of ActSTD and SeqGAN are not reduced a lot,
which can be explained as the optimization with long-term rewards.
In summary, the prediction performance of these methods at the
individual-level evaluation is consistent with the performance at the
dataset-level evaluation to a large degree, indicating the prediction
bears certain similarities to the simulation.
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Dataset Mobile Network Operator Foursquare
Metrics (JSD) Distance Radius Interval DailyAct ActType Distance Radius Interval DailyAct ActType
Pre-trained 0.168 0.222 0.0094 0.053 0.025 0.124 0.126 0.062 0.22 0.027

Jointly-trained 0.092 0.148 0.011 0.011 0.030 0.086 0.121 0.064 0.172 0.029
Hybrid-trained 0.071 0.142 0.0077 0.0084 0.004 0.082 0.138 0.054 0.093 0.0063

Table 2: Performance of different training methods in terms of JSD. Lower JSD value indicates a better performance. Bold
means the best results and underline means the second-best results.

4.3 Study of the Training Process (RQ2)

As discussed in Section 3.5, the spatiotemporal dynamics can be
learned in three optional ways: (1) Pre-train G𝑠𝑡 with MLE and fix
it in the adversarial learning, (2) Hybrid train G𝑠𝑡 with MLE and
policy net 𝜋𝜃 with PPO algorithm iteratively, (3) Jointly train G𝑠𝑡
together with the policy net 𝜋𝜃 in one model by PPO algorithm.
We illustrate the results of different training processes in Table 2.

As we can observe, the training method affects the final perfor-
mance of the ActSTD framework. In general, the hybrid training
technique achieves the best performance in most cases. The com-
bined training method, together with likelihood optimization and
adversarial learning, not only gives rise to samples that resemble
real cases but also increases the likelihood of the states and actions.

4.4 Case Study (RQ3)
In addition to the dataset-level and individual-level evaluations, we
also conduct case studies to assess the utility of the generated activ-
ity trajectories. We consider a scenario where real-world activity
records from large mobile operators cannot be directly shared with
other companies for practical applications due to privacy issues,
which is quite common in user-related applications. In these cases,
the ActSTD framework can be applied to generate artificial activity
trajectories that retain the utility of real-world data. Thus, the gen-
erated data can be utilized to augment limited scales of real-world
activity data in practical applications.

Here we perform location-based activity prediction [36, 52],
which is a classical and well-performed application on activity
data. Specifically, we leverage an LSTM with an attention mech-
anism as the prediction model. To compare the performance of
data augmentation, we also apply the data generated by the two
best baselines, Neural STPP and SeqGAN. As a result, the training
samples of the prediction model can be divided into four categories:
(1) only real-world data, (2) real-world data augmented by our
framework, (3) real-world data augmented by Neural STPP, and (4)
real-world data augmented by SeqGAN. Then the prediction model
is trained with the four types of inputs and evaluated on the same
test set. Furthermore, we vary the number of real-world data as
{100, 200, 500, 1000} to investigate the performance gain of the data
augmentation under different circumstances. Meanwhile, we all add
1000 generated activity trajectories for different amounts of real
data. We use the Mobile Network Operator data in this section, con-
sidering the data sparsity of the Foursquare data. Both the activity
type and the spatial location are predicted in the experiments.

As we can observe in Figure 6, the prediction model trained
with the augmented data exhibits better prediction outcomes. Be-
sides, the results show that the relative performance gain of data
augmentation is more obvious with small-scale real-world data,
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Figure 6: Results of Activity prediction with training data
augmented by generated data. For different number of real-
world data, i.e., 100, 200, 500, and 1000, we all add 1000 gener-
ated activity trajectories for data augmentation.

such as the results of the activity type prediction only with 100 or
200 real-world sequences. Moreover, as Figure 6(a) illustrates, the
data with only 200 real-world sequences while augmented by the
ActSTD framework has achieved better performance than the data
with even 1000 real-world data. These experimental results prove
the utility of the generated data in practical applications.

4.5 SEIR Modeling of COVID-19 (RQ4)
To testify the utility of the synthetic data in supporting epidemic
modeling, we leverage the activity from the mobile operator dataset
to simulate the epidemic spreading with the SEIR model following
recent works [9, 26]. We follow the setup of the detailed parameters
of SEIR simulation as [9, 26]. Specifically, there are eight key pa-
rameters, including close contact ratio (𝑐), transmission period (𝑇 ),
incubation period (𝑇𝑖 ), infection period (𝑇𝑓 ), reproduction rate (𝑅0),
transmission probability (𝛽), infectious rate (𝛼), recovery rate (𝑟 ).
Table 3 shows the parameter values in the simulation experiment.

Parameters 𝑐 𝑇 𝑇𝑖 𝑇𝑓 𝑅0 𝛽 𝛼 𝑟

Value 0.2 5.8𝑑 5.2𝑑 11𝑑 2.2 𝑅0/T 1/𝑇𝑖 1/𝑇𝑓

Table 3: Setup of parameters for modeling COVID-19 spread-
ing following [26], where 𝑑 denotes days.

To simulate the epidemic spreading with activity trajectory data,
we first construct a contact network by adding an edge between
two individuals if they stay in the same location and take the same
activity. Then in the simulation process, we assume that infected or

4758



KDD ’22, August 14–18, 2022, Washington, DC, USA Yuan Yuan et al.

exposed people contact with 𝑠 susceptible people with edges in the
contact network each day. The probability of two individuals with
an edge becoming a close contact is set as 𝑐 . The transmission prob-
ability 𝛽 is calculated as the basic reproduction rate divided by the
transmission period (5.8 days), which is the average number of days
from onset to first medical visit and isolation [26]. The infectious
rate from exposed (𝛼) is estimated as the inverse of the incubation
period, which is the average time exposed but not infectious (5.2
days in [26]). The spreading process is formulated as follows:

¤𝑆 = −𝑠𝑐𝛽, ¤𝐸 = 𝑠𝑐𝛽 − 𝛼𝐸, ¤𝐼 = 𝛼𝐸 − 𝑟𝐼, ¤𝑅 = 𝑟𝐼 (15)

where S is the number of the susceptible, E is the number of the
exposed, I is the number of the infectious, and R is the number
the removed. Based on the above dynamic mechanism, we can
simulate the epidemic spreading and obtain the daily number of
the exposed, the infectious, and the removed. In the experiment, 50
individuals are initialized as the exposed randomly. Considering
that the random initialization of exposed individuals will give rise
to different transmissions, we perform simulations ten times in
each experiment to avoid the influence of the random seed.

We conduct the simulation experiment on three types of data,
including real-world data, synthetic data of ActSTD, and synthetic
data of SeqGAN. Among them, real-world data serve as the ground
truth, and we evaluate the MAPE of different estimated populations
(E, I, R). Figure 7 shows the comparison results of the average error
across the simulation period. As we can observe, synthetic data
generated by our framework delivers closer simulation results to
the real data compared with the baseline methods, which reduce
the MAPE by over 50% on three kinds of populations.

5 RELATEDWORK
Applications of Activity Data. Location-based activity data have
benefited a plethora of applications including mobility prediction [8,
12], location or activity recommendation [28, 41], health care [21],
activity scheduling [16], friend recommendations, and social link
predictions. The data generated by our proposed simulation frame-
work can facilitate the above-mentioned applications without pri-
vacy concerns and large data scales. Besides, our framework is also
useful to investigate and understand individuals’ decision-making
processes and describe insightful activity patterns [30, 37]. For
example, with realistic activity data, researchers can analyze the be-
havioral patterns [38, 47] and further explain why users choose to
perform the activity at the time and location [37]. while extremely
valuable of the activity data, publicly available datasets [1, 37, 50]
suffer from data sparsity and small scales [23]. Under these circum-
stances, our framework is able to enrich the real-world datasets by
generating artificial datasets with retaining data fidelity and utility.

Deep Generative Models. Recurrent Neural Networks (RNNs)
have been widely used to predict the sequential activities with
considering the spatio-temporal contexts [22, 29]. Although RNN-
based models can be utilized to generate activity sequences, they
cannot consider the long-term influence and thus fail to perform
a realistic simulation. Recently, Generative Adversarial Network
(GAN) [13] has been proposed to learn a good generator in an
adversarial manner. Shortly afterwards, its sequential invariant,
SeqGAN [54], is proposed to address sequence generation tasks.
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Figure 7: Simulation results of COVID-19 spreading with
different synthetic data.
To mimic the decision-making process of agents, Generative Ad-
versarial Imitation Learning (GAIL) developed the initial imitation
learning by integrating the GAN framework, which has been ap-
plied in various decision-making scenarios [40, 55]. However, the
decision-making process of the activity choice is complex, and it
is essential to learn effective states that describe human activities.
Therefore, our proposed framework takes both the spatio-temporal
dynamics and the policy function to simulate the activity decision.

Learning Differential Equations. Differential equations, such
as ordinary differential equation and stochastic differential equa-
tion, are leveraged to model the dynamics in many physical, bio-
logical and economic systems [20, 27, 32, 34]. Recently, learning
parameters of differential equations with neural networks has been
successful for many physics-based problems [31, 42, 48]. Specifi-
cally, spatiotemporal dynamics are captured with dependencies and
propagation effects by utilizing differential equations in practical
applications, including traffic flow forecasting [7], fluid simula-
tion [44], earthquake and epidemic modeling [3]. Inspired by these
works, we take the first step to capture spatiotemporal dynamics
underlying activity trajectories to facilitate activity simulation.

6 CONCLUSION
In this paper, we propose a novel generative adversarial-based
framework, ActSTD, to simulate activity trajectories by capturing
underlying spatiotemporal dynamics. By incorporating the dynam-
ics of continuous flow and instantaneous updates in time and space,
our proposed simulation framework benefits the generation of
massive high-quality activity trajectories. Extensive experiments
demonstrate the superior performance of the proposed framework
in generating artificial data with both fidelity and utility. Moreover,
it achieves better performance in modeling the COVID-19 spread-
ing. As for future work, we will investigate the interactions between
individuals in the simulation process and extend the framework to
various practical applications.
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A DATASET STATISTICS

Table 4 illustrate the basic statistics of the mobile network op-
erator dataset and the Foursquare dataset, respectively. It shows
information including the number of users (#users), the number of
activity types (#activity types) and the average length of activity
trajectories (average length).

Statistics Mobil dataset Foursquare dataset

#users 10000 1000
#activity types 13 9
average length 82.92 58.56

Table 4: The basic statistics of the Mobile Network Operator
dataset and the Foursquare dataset.

In addition, we preprocess the used datasets by filtering users
with less than 50 activities in the Mobile Network Operator dataset
and users with less than 30 activities in the Foursquare dataset.
Then, we illustrate the distribution of activity trajectory length of
the two datasets in Figure 8 and Figure 9.

Figure 8: Distribution of the activity trajectory length in the
Mobile Network Operator dataset.

Figure 9: Distribution of the activity trajectory length in the
Foursquare dataset.

B BASELINES

We provide the details of baseline methods in our experiments.
• SMM [24]. Semi-Markov Model describes the time interval with
exponential distribution with gamma prior and builds a transition
matrix with Dirichlet prior to implementing a Bayesian inference.
• TimeGeo [19]. It assumes that an individual is attracted to
previously visited places based on historical preference as well as
new places depending on the distance from the current position.
• LSTM [17]. It is widely used in addressing sequences. Here this
model directly predicts the time interval, activity type and spatial
location based on the activity history.
• SeqGAN [54]. It solves the sequential generation problem by
introducing reinforcement learning into GAN. We apply this
method to generate the activity sequence.
• TrajGAIL [5]. It is a generative adversarial imitation learning
framework for trajectory generation. We apply this method for
both decisions on both activity type and spatial location choices.
• Movesim [9]. As a mobility trajectory simulation model pro-
posed recently, it integrates physical regularities and prior knowl-
edge into the SeqGAN model.
• Neural STPP [3]. It is the state-of-the-art baseline to model
spatio-temporal sequences.

C TRAINING ALGORITHM

Algorithm 1 Hybrid training process of ActSTD
Input: Observed true trajectories T𝐸 , initial policy, discriminator,

and spatiotemporal dynamics parameters 𝜃0, 𝜙0,G0.
Output: 𝜋𝜃 , 𝐷𝜙 , G𝑠𝑡
1: for 𝑖 ← 0, 1, 2... do
2: Rollout activity trajectories for the agents T𝐺 , where 𝜏 =

(𝑠, 𝑔, 𝑎) ;
3: Score 𝜏 fromT𝐺 with 𝐷𝜙 , calculate reward based on Eq. (12);
4: Update 𝜋𝜃 via PPO with the reward 𝑅 based on Eq. (12) ;
5: Update G𝑠𝑡 via MLE with T𝐸 based on Eq. (13) ;
6: Update 𝐷𝜙 based on Eq. (11).
7: end for

Algorithm 1 shows the training procedure of ActSTD with hy-
brid techniques, and other optional training methods share a similar
process. At each iteration, the policy parameters are used to gen-
erate activity 𝑎 and G𝑠𝑡 parameters are used to obtain dynamics.
After that, rewards for each state-dynamics-action tuple are calcu-
lated by the discriminator parameters and are utilized to update
the policy parameters via PPO algorithm [43]. Then the observed
true activities T𝐸 are used to optimize G𝑠𝑡 parameters with MLE.
The generated activities and observed activities subsequently serve
as training data to optimize discriminator parameters 𝐷𝜙 .

D IMPLEMENTATION DETAILS
D.1 Parameter Settings
In our experiments, two-layer MLPs are used in the network archi-
tecture with a hidden size of 32. The hidden size of MLPs is both set
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as 64 and the embedding size is set as 32. We perform the simulation
in a mini batch of 32. The policy network and the spatiotemporal
dynamics model are updated 5 epochs at each round, while the dis-
criminator is updated 3 epochs every two rounds. The learning rate
is set as 5e-5 via grid searching in a set of {3𝑒−4, 1𝑒−4, 5𝑒−5, 1𝑒−5}.

The deep learning models in our work are implemented with
Pytorch and classical methods are implemented with Python. The
models are all trained on a server with two CPUs and eight GPUs.
Empirically, our proposed ActSTD framework can be effectively
trained in less than 10 hours on a single GPU.

D.2 Evaluation Metrics
In addition to the JSD-based metrics (widely used distance metrics
for distributions [9, 39]) to evaluate the dataset-level similarity,

there are two other metrics used to evaluate the individual-level
performance and examine the data utility in practical applications.

Accuracy. We use accuracy to evaluate the performance of
individual-level activity prediction, which is the percentage of the
value predicted as the true value. Higher accuracy indicates a better
prediction performance.

MAPE. We use Mean Absolute Percentage Error to evaluate the
simulation results in the modeling of COVID-19 spread. The metric
is defined as follows:

MAPE =
100%
𝑛

𝑛∑︁
𝑖=1

𝑦𝑖 − 𝑦𝑖
𝑦𝑖

(16)

where 𝑦𝑖 is the simulation result with the synthetic data and 𝑦𝑖 is
the simulation result with real-world data. Lower MAPE indicates
a better simulation result.
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