
Preprint

RL OF THOUGHTS: NAVIGATING LLM REASONING
WITH INFERENCE-TIME REINFORCEMENT LEARNING

Qianyue Hao∗, Sibo Li∗, Jian Yuan, Yong Li†
Department of Electronic Engineering, BNRist, Tsinghua University
Beijing China

ABSTRACT

Despite rapid advancements in large language models (LLMs), the token-level
autoregressive nature constrains their complex reasoning capabilities. To en-
hance LLM reasoning, inference-time techniques, including Chain/Tree/Graph-of-
Thought(s), successfully improve the performance, as they are fairly cost-effective
by guiding reasoning through external logical structures without modifying LLMs’
parameters. However, these manually predefined, task-agnostic frameworks are
applied uniformly across diverse tasks, lacking adaptability. To improve this, we
propose RL-of-Thoughts (RLoT), where we train a lightweight navigator model
with reinforcement learning (RL) to generate task-adaptive logical structures at
inference time, enhancing LLM reasoning. Specifically, we design five basic logic
blocks from the perspective of human cognition. During the reasoning process,
the trained RL navigator dynamically selects the suitable logic blocks and com-
bines them into task-specific logical structures according to problem characteristics.
Experiments across multiple reasoning benchmarks (AIME, MATH, GPQA, etc.)
with multiple LLMs (GPT, Llama, Qwen, and DeepSeek) illustrate that RLoT
outperforms established inference-time techniques by up to 13.4%. Remarkably,
with less than 3K parameters, our RL navigator is able to make sub-10B LLMs
comparable to 100B-scale counterparts. Moreover, the RL navigator demonstrates
strong transferability: a model trained on one specific LLM-task pair can effec-
tively generalize to unseen LLMs and tasks. Our code is open-source at https:
//anonymous.4open.science/r/RL-LLM-Reasoning-1A30.

1 INTRODUCTION

Recent years have witnessed unprecedented advancements in large language models (LLMs), achiev-
ing remarkable success across diverse natural language tasks (Chang et al., 2024), including transla-
tion (Xu et al., 2024), semantic analysis (Lan et al., 2024b;a), and information retrieval (Hao et al.,
2024). Despite these advancements, the inherent token-level autoregressive nature of LLMs poses a
significant limitation for complex reasoning tasks (Zhao et al., 2023), such as solving mathematical
problems (Ahn et al., 2024) or answering intricate questions (Zhuang et al., 2023). These tasks
require sophisticated logical structures and long-term dependencies that go beyond the scope of
simple sequential token prediction, leaving a considerable gap between current LLM capabilities and
the demands of advanced reasoning applications.

Plentiful research has been devoted to enhancing LLM reasoning. On one hand, fine-tuning ap-
proaches attain substantial improvements on pretrained LLMs (Zhong et al., 2024; DeepSeek-AI
et al., 2025; Team et al., 2025). However, these methods demand massive computational resources
and large-scale datasets, being costly to implement. On the other hand, inference-time techniques,
exemplified by Chain-of-Thought (Wei et al., 2022), Tree-of-Thoughts (Yao et al., 2023), and Graph-
of-Thoughts (Besta et al., 2024), offer a lightweight alternative by enhancing reasoning through
predefined external logical structures. While cost-effective, their logical structures rely on manual
design and are task-agnostic, lacking the adaptability to diverse reasoning tasks.
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Addressing such limitations in inference-time techniques presents significant challenges. First,
reasoning tasks span various domains, including mathematics, STEM, commonsense, etc., where
tasks in each domain exhibit diverse characteristics, making it infeasible to manually design logical
structures specified for each task. Second, complex reasoning tasks often require multiple steps,
where the problem-solving status evolves after each step, requiring dynamic adjustments to the
logical structure for subsequent reasoning. Therefore, predefined logical structures fail to adapt to the
changes, limiting their effectiveness in stepwise reasoning tasks. These challenges highlight the need
for more adaptive inference-time techniques to handle reasoning tasks with diversity and dynamics.

Facing these challenges, we introduce RL-of-Thoughts (RLoT), a framework that leverages rein-
forcement learning (RL) at inference time to enhance the reasoning capabilities of LLMs. Specifically,
we model long-sequence reasoning as a Markov Decision Process (MDP) and design five human
cognition-inspired basic logical blocks as potential actions for decision-making. Within the MDP
framework, we train an RL agent, namely the navigator model, to dynamically select and combine
these blocks along the reasoning process, constructing task-specific logical structures and thereby
enhancing the LLM’s ability to handle complex reasoning tasks. We conduct experiments across a
wide range of reasoning benchmarks, including AIME (Olympic mathematics), MATH (elementary
mathematics), GPQA (STEM), StrategyQA (commonsense), etc. The results demonstrate that our
RLoT design outperforms various established inference-time techniques while being compatible
with multiple well-known LLMs, such as GPT, Llama, Qwen, and DeepSeek. Remarkably, our RL
navigator, which contains less than 3K parameters, is able to enhance the performance of sub-10B
LLMs, making them comparable to much larger LLMs with 10× parameters. Moreover, the RL
navigator exhibits strong transferability: a model trained with one specific LLM on one task domain
can effectively generalize to unseen LLMs and tasks without fine-tuning.

In summary, the main contributions of this work include:

• We propose RL-of-Thoughts (RLoT), an inference-time technique that leverages RL to
adaptively construct task-specific logical structures, enhancing LLM reasoning.

• We conduct extensive experiments to verify the effectiveness of our method to improve
LLM reasoning across various tasks. Compatible with multiple widely known LLMs, RLoT
outperforms established inference-time techniques by up to 13.4%.

• We demonstrate the transferability and efficiency of our method, where the trained navigator
model can transfer across various LLMs and reasoning tasks. With < 3K parameters, it
enhances multiple sub-10B LLMs to be comparable to 10× larger counterparts.

2 PRELIMINARIES

2.1 LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) are a class of advanced neural networks characterized by parameter
scales up to billions, primarily trained through next-token prediction objectives. Given a sequence
{w1, w2, ..., wt−1}, the models output wt to maximize the observation likelihood in the corpus as:

T∏
t=1

P (wt|w1, w2, ..., wt−1). (1)

Recent advancements in LLMs, exemplified by architectures like the GPT series (Brown et al., 2020;
Kalyan, 2023; Achiam et al., 2023), the Llama family (Touvron et al., 2023; Dubey et al., 2024),
etc, have demonstrated remarkable proficiency across diverse natural language understanding and
generation tasks, including semantic parsing, cross-lingual translation (Zhao et al., 2023; Chang et al.,
2024). Meanwhile, extensive researches integrate inference-time techniques like Chain-of-Thought
(CoT) (Wei et al., 2022) and Tree-of-Thoughts (ToT) (Yao et al., 2023) to enhance the multi-step
reasoning capability of LLMs. On the other hand, fine-tuning strategies leverage Outcome Reward
Models (ORM) and Process Reward Models (PRM) to optimize the reasoning process through reward-
guided learning (Lightman et al., 2023; Wang et al., 2024c; Luo et al., 2024). These approaches
address both structural limitations of auto-regressive decoding and the challenge of maintaining
logical coherence in complex tasks (Xu et al., 2025).
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2.2 MARKOV DECISION PROCESS (MDP)

A Markov Decision Process (MDP) provides the core framework for sequential decision-making
problems. An MDP is mathematically defined by the tuple (S, ρ,A, P,R), where S is the state space,
and ρ ∈ ∆(S) represents the probability distribution over initial states, with ∆(S) being the set of all
probability distributions over S . The action space is denoted by A. Given a specific action taken in a
particular state, the state transition probability function P : S ×A → ∆(S) and the reward function
R : S ×A → R define the likelihood of transitioning between states and the reward associated with
each action. At each time step t, the agent chooses an action at ∈ A in state st ∈ S, receives a
reward rt, and transitions to the next state st+1. The agent’s objective in an MDP is to maximize the
total accumulated reward over time, which is the sum of the discounted rewards obtained at each step.
The cumulative reward at time step t is expressed as Gt =

∑∞
k=0 γ

krt+k, where γ is the discount
factor that weighs the significance of future rewards.

3 METHODS

3.1 OVERVIEW
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Decompose

Score the current step in
these aspects from 1 to 3...

Correctness: 3
Complexity remained: 1...

Reasoning process

Basic logic blocks
...

Self-evaluation state

RL agent

R(s,a)=80.5

…
1
3

Fetch 
problem Step1: Debate StepN: Refine

Reason one step

        In this step,
we calculate...

    Reason
exactly 1 step.

Refine

        We correct
these mistakes...

        Check the 
current step.

Terminate

      The final 
answer is...

        Return the
final answer.

Decompose

         Decompose the 
problem into subtasks. 

Subtask1... Subtask2... Subtask3...

We summarize
the subtasks below...

?
StepN+1

PRM reward 

Step1: A promising plan is ...
...
StepN: We fixed a mistake...
StepN+1: We decompose the task...

The score of step N+1 is 80.5...

Reason one step

Decompose

Debate

Plan3...Plan2...Plan1...

We find that the 
best plan is plan1...

  Make different 
plans for the task.

Debate

Refine

Terminate

Basic logic blocks (action space)

Navigator

Action space

Legend
Prompt LLM response

Train & Inference Train only

PRM response

Trained module Frozen module

Figure 1: Framework of RL-of-Thoughts (RLoT). We train an RL agent as the navigator, which
dynamically selects and combines basic logic blocks along the reasoning process, constructing
task-specific logical structures for each task and thereby enhancing the LLMs’ ability to handle
complex reasoning tasks.

In this paper, we propose to enhance LLM reasoning at inference time with RL, namely RL-of-
Thoughts (RLoT). The overall framework of RLoT is illustrated in Figure 1. Specifically, we first
model long-sequence reasoning as a Markov Decision Process (MDP), where we design the action
space, state space, and state transition mechanism, making the sequence of decisions within an
episode correspond to the generation of a logical structure for reasoning (Section 3.2). Within this
MDP framework, we train an RL agent, referred to as the navigator model, which conducts sequential
decision-making to construct task-specific logical structures, thereby enhancing LLMs’ capability to
address complex reasoning tasks (Section 3.3).

3.2 LLM REASONING AS MDP

To leverage the sequential decision-making capability of RL for adaptively designing logical structures
at inference time based on problem characteristics, we first model long-sequence reasoning as a
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specially designed MDP. Within this MDP, the sequence of decisions in an episode corresponds to
the generation of a logical structure for reasoning. The designs of the state, action, reward, and state
transition are as follows.

State. The state space is designed to capture how the current solving status of the task is after steps of
reasoning, thereby supporting dynamic adjustments to the logical structure for subsequent reasoning.
We employ a self-evaluation mechanism to extract concise and informative states during the reasoning
process. Specifically, we prompt the LLM itself to evaluate the current reasoning steps from three
major and seven detailed aspects, which are listed in Table 1.

Table 1: Aspects for state self-evaluation.
Major A: Correctness B: Complexity C: Completeness

Detailed
A1: Correctness of modeling B1: Complexity to the final answer C1: Closeness to the final solution
A2: Clarity for further reasoning B2: Alternative methods in

further reasoning
C2: Completeness within the step

A3: Correctness of calculation

For each detailed aspect, we require the LLM to assign a score from 1 to 3, which is then aggregated to
form the state of the MDP. This approach summarizes complex reasoning steps into low-dimensional
states, offering a comprehensive overview of the changing problem-solving status during the reasoning
process, facilitating the RL agent in adjusting the strategy for subsequent reasoning accordingly.
Please refer to detailed self-evaluation prompts in Appendix K.1.

Action. When addressing difficult and complex problems, humans often employ specific cognitive
strategies. For example, we break down complex tasks into smaller components and review previous
steps when encountering anomalies in the solution. As evidenced by previous research, understand-
ing and applying these cognitive strategies can significantly enhance the reasoning capabilities of
LLMs (Wu et al., 2024; Xue et al., 2024).

With inspiration from human cognition, we design five “basic logic blocks” that can be flexibly
combined, constituting the action space in our MDP. By selecting and cascading the blocks, the agent
thereby constructs flexible logical structures, paving reasoning pathways from the initial problem to
final solutions. In detail, the basic logic blocks include:

• Reason one step: Perform reasoning for a single step of the current task, which may not
directly lead to the final answer but contributes to the overall process.

• Decompose: Break the current task into simpler subtasks and execute them sequentially.
Then, we prompt the LLM to briefly summarize the results of these subtasks as the final
result of this action.

• Debate: Generate multiple plans or approaches for the task at hand and compare them to
identify the most promising one. Then, we prompt the LLM to reason one step further based
on the selected plan.

• Refine: Review and revise the current reasoning step to improve clarity and correctness.

• Terminate: Based on all the previous steps, provide the final answer to the original problem
and show it in a specified format. This action marks the conclusion of the reasoning process.

We illustrate the structures and detailed prompts for each blocks in Figure 1 and Appendix K.2.

Reward. To evaluate the quality of the intermediate results after the agent selects an action during
the long-sequence reasoning process, we employ the Process Reward Model (PRM) to score the
intermediate results and set the PRM score of the intermediate result after each action as the single-
step reward for this action.

State Transition. In our MDP design, the state transition is straightforward. During the reasoning
process, executing a specific action based on the current problem-solving state is to prompt the LLM
to continue reasoning using the logical structure corresponding to that action. After reasoning, the
new problem-solving state is obtained through the aforementioned self-evaluation approach.

Also, we impose a few simple restrictions on the state transition, ensuring the correctness and
rationality of the constructed logical structures. First, once the answer is already presented in the
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response after executing some action, no further actions are permitted except for “Terminate”. Second,
the “Refine” action is automatically converted to “Reason one step” when it appears as the first action,
as no refinement to the original problem is needed. Finally, to avoid the reasoning process being too
long, we limit the maximum number of actions, and after reaching the limitation, the “Terminate”
action will be automatically executed.

3.3 TRAINING OF THE NAVIGATOR MODEL

Within the MDP framework outlined above, given a specific LLM type and a kind of reasoning
task, we train the navigator model. To enhance the learning for challenging reasoning tasks, we
extract hard questions from the training set of the target task, i.e., questions that the LLM cannot
answer when directly prompted. Then, we use these problems for training the navigator model,
from which we randomly select one in each episode and repeat it multiple times. We employ the
Double-Dueling-DQN algorithm (Van Hasselt et al., 2016; Wang et al., 2016), and include the online
and target network technique to improve the stability during training (Mnih et al., 2015).

We illustrate the training and inference pipeline of RLoT in Figure 1. During training, we hire
PRM to provide reward signals. The parameters of both the PRM and the LLM are kept fixed from
pre-trained models, and only parameters of the navigator model, i.e., the RL agent, are updated.
This significantly reduces the computational cost, making the training process highly efficient. After
training, the PRM model is no longer required, and the trained navigator model is used directly.
Given an intermediate reasoning state, the navigator selects an action, which is then used to prompt
the LLM to continue reasoning using the logical structure associated with the selected action. By
repeating this, the navigator model is able to guide the LLM in solving challenging reasoning tasks
with task-specific logical structures.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Reasoning Tasks. We conduct a comprehensive evaluation of our RLoT method across a wide range
of reasoning tasks, encompassing benchmarks in mathematics, STEM, and commonsense question
answering. For the mathematics domain, we adopt Olympic-level datasets, the AIME24 1 and
AMC23 2, as well as elementary math datasets GSM8K (Cobbe et al., 2021) and MATH (Hendrycks
et al., 2021c). These are widely recognized as representative benchmarks. In the STEM tasks, we
test on the MMLU-STEM (Hendrycks et al., 2021b;a) and GPQA (Rein et al., 2023) datasets, which
span various STEM domains and a range of difficulty levels. To evaluate the commonsense reasoning
ability, we employ the StrategyQA (Geva et al., 2021) benchmark, which presents challenging multi-
hop questions across diverse contexts. These benchmarks cover various domains, difficulties, and
task types, forming a systematic evaluation of the reasoning ability.

LLMs. Our RLoT framework is designed to be independent of specific LLMs, allowing it to be
compatible with any off-the-shelf LLM. To evaluate this, we test our approach using four repre-
sentative LLMs: Qwen2.5-7B-Instruct, Qwen2.5-14B-Instruct (Yang et al., 2024a), Llama3.1-8B-
Instruct (Dubey et al., 2024), GPT-4o-mini (Hurst et al., 2024), and DeepSeek-R1-Distill-Qwen-
7B (DeepSeek-AI et al., 2025). In this paper, we mainly focus on sub-10B LLMs, which are often
constrained in handling complex reasoning tasks due to their relatively smaller size. We expect that
our RLoT design can substantially enhance smaller LLMs by adaptively generating task-specific
logical structures at inference time, thereby making their reasoning capabilities comparable to, or
even exceeding, those of much larger LLMs. Without the need to modify the LLM’s parameters, this
approach will be fairly computationally efficient. Note that we abandon the results of Llama3.1-8B-
Instruct on the Olympic-level datasets since the capability of this base LLM is too limited to solve
these challenging problems.

Baselines. We compare RLoT against various baselines designed to enhance LLM reasoning at
inference time. First, we evaluate single-round question-answering techniques, including direct

1https://huggingface.co/datasets/AI-MO/aimo-validation-aime
2https://huggingface.co/datasets/AI-MO/aimo-validation-amc
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question answering (Direct QA), zero-shot Chain-of-Thought (Zero-shot CoT), and few-shot Chain-
of-Thought (Few-shot CoT) (Wei et al., 2022). For Zero-shot CoT, we employ prompts with “Let’s
think step by step”, and for Few-shot CoT, we include specific few-shot examples for each benchmark
in the prompts as outlined in prior work (Yang et al., 2024b; Fu et al., 2023; Rein et al., 2023; Wei
et al., 2022). Additionally, we consider multi-round techniques, including self-consistent Chain-of-
Thought (CoT-SC) (Wang et al., 2023) and Tree-of-Thoughts (ToT) (Yao et al., 2023). Following
the original settings, we perform majority voting across four reasoning samples in CoT-SC, and
we implement a logical tree with two layers and five nodes per layer in ToT. These multi-round
approaches facilitate comparison and voting across diverse reasoning paths, thereby enhancing the
reasoning capability of LLMs in complex tasks.

Implementation of RLoT. In our implementation, the navigator model is a simple three-layer
multilayer perceptron (MLP) with the Dueling Network architecture (Wang et al., 2016). The model
merely contains 2,566 parameters in total, where the lightweight design ensures efficient training and
inference. Following existing works like CoT-SC, we perform multiple repeated inferences for each
task and filter out the trails that do not meet self-consistency, enhancing the robustness of reasoning.

To obtain reward signals for actions, we utilize the Math-Shepherd as the PRM (Wang et al., 2024c).
This model is trained by previous researchers using automatically constructed process-wise su-
pervision data, reducing heavy reliance on manual annotation and thereby achieving remarkable
performance. For reproducibility, please refer to more detailed settings and the illustration of the
whole pipeline in Appendix J.

Table 2: Overall evaluation of RLoT’s capability to enhance multiple LLMs’ reasoning across
different tasks. The bold numbers indicate the best performance in each group of experiments, and
the underlined numbers indicate the best baseline method.

LLM Method Olympic math Elementary math STEM Commonsense Average
AIME24 AMC23 MATH GSM8K GPQA MMLU-STEM StrategyQA

Qwen2.5-14B-Instruct

Direct QA 13.33 57.50 78.62 93.93 36.60 85.38 72.34 62.53
Zero-shot CoT 16.67 62.50 78.56 94.23 38.39 85.63 75.98 64.57
Few-shot CoT 6.67 55.00 80.00 94.80 45.50 85.06 78.60 63.66

CoT-SC 6.67 47.50 80.04 94.08 45.54 86.71 80.06 62.94
ToT 10.00 55.00 79.50 93.78 45.08 86.55 78.17 64.01

RLoT (ours) 23.33 65.00 80.38 94.16 51.34 88.93 81.22 69.19

Qwen2.5-7B-Instruct

Direct QA 10.00 42.50 74.64 91.58 31.25 80.94 68.85 57.11
Zero-shot CoT 16.67 55.00 74.86 91.58 34.15 81.00 71.17 60.63
Few-shot CoT 13.33 45.00 75.50 91.60 36.40 81.16 74.38 59.62

CoT-SC 6.67 50.00 76.36 92.12 38.84 83.25 78.45 60.81
ToT 13.33 50.00 73.80 91.35 36.60 82.62 70.45 59.74

RLoT (ours) 23.33 60.00 76.7 92.87 44.64 85.06 79.04 65.95

Llama3.1-8B-Instruct

Direct QA

–

49.12 84.83 32.14 71.58 70.74 61.68
Zero-shot CoT 49.74 85.37 32.80 72.85 73.07 62.77
Few-shot CoT 48.52 84.50 33.03 70.66 72.05 61.75

CoT-SC 51.74 87.04 33.48 73.29 78.89 64.89
ToT 51.93 86.80 32.24 74.72 71.47 63.43

RLoT (ours) 56.56 90.07 46.88 80.56 84.42 71.70

GPT-4o-mini

Direct QA 13.33 55.00 76.58 93.33 43.08 85.70 77.00 61.17
Zero-shot CoT 6.67 67.50 76.76 93.93 40.20 85.76 78.17 64.14
Few-shot CoT 6.67 57.50 75.46 93.48 35.94 85.82 80.06 62.13

CoT-SC 6.67 45.00 76.84 93.63 46.42 86.55 82.53 62.52
ToT 6.67 50.00 74.30 93.33 44.42 85.92 76.42 61.58

RLoT (ours) 20.00 70.00 77.36 93.86 54.02 88.23 82.68 69.45

DeepSeek-R1-
Distill-Qwen-7B

Direct QA 46.67 60.00 92.27 95.74 54.47 83.61 79.48 73.18
Zero-shot CoT 53.33 62.50 91.48 95.20 53.13 85.28 78.89 74.26
Few-shot CoT 56.67 67.50 92.54 94.38 56.47 87.47 79.33 76.34

CoT-SC 56.67 67.50 95.54 96.13 60.94 89.03 82.82 78.38
ToT 50.00 55.00 95.18 94.54 55.13 86.55 80.91 73.90

RLoT (ours) 63.33 77.50 96.56 98.94 67.19 90.77 86.17 82.92

4.2 OVERALL PERFORMANCE

We train the navigator model with Qwen2.5-14B-Instruct on the MATH benchmark, where the
learning curve shown in Appendix A indicates good convergence. We use the obtained navigator
model to enhance the reasoning of multiple LLMs across different reasoning tasks and present the
results in Table 2. For the baseline performance, we prioritize using the results reported in the
official technical reports of each LLM (Yang et al., 2024a; Dubey et al., 2024; Hurst et al., 2024),
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if available. Otherwise, we evaluate the performance through our own experiments following the
settings established in previous works (Fu et al., 2023; Yang et al., 2024b; Yao et al., 2023).

The results show that our method performs well, consistently outperforming the established inference-
time baselines across almost all reasoning tasks when combined with various LLMs. Notably, our
approach brings about substantial improvements in the GPQA benchmark, which is a challenging task
where LLMs generally perform poorly. Specifically, when implemented with Llama3.1-8B-Instruct,
we achieve a 13.4% performance boost. Among the baselines, CoT-SC performs the best across most
tasks. Meanwhile, we find that despite being more complex in design, ToT performs poorly on many
reasoning tasks, which is also reported in previous studies (Wu et al., 2024; Zhang et al., 2024a;
Qi et al., 2024). Furthermore, we report the computational overhead and implementation latency
of RLoT in Appendix C, and also compare RLoT with more recently proposed test-time scaling
baselines in Appendix E. By directly generate specific logical structures for each question without
requiring search-and-trial, our method reached the best performance while maintain a low cost.

4.3 PARAMETER SIZE EFFICIENCY

In this section, we demonstrate the parameter size efficiency of our RLoT method in enhancing the
reasoning capability of sub-10B LLMs, making them comparable to LLMs with several times more
parameters. Specifically, we select three 10B LLMs, including Qwen2.5-14B-Instruct, Llama3.1-8B-
Instruct, and GPT-4o-mini, and their respective large-scale counterparts. It is worth noting that the
parameter size of GPT-4o series models was estimated in previous studies (Abacha et al., 2024).

In Appendix D, we present the performance of these models across various reasoning tasks using
Few-shot CoT, which is the standard technique commonly used in official technical reports (Yang
et al., 2024a; Dubey et al., 2024; Hurst et al., 2024) and previous studies (Liu et al., 2024; ret, 2024;
Tran et al., 2024; Kumar et al., 2024; Yu et al., 2024) in evaluation of LLMs. We also show the
performance of the 10B LLMs after enhancement with RLoT. The results indicate that our RL-based
navigator, which contains fewer than 3,000 parameters, significantly enhances the performance
of sub-10B LLMs, making them comparable to much larger counterparts with around 10× more
parameters. Specifically, RLoT empowers the sub-10B LLMs to be comparable to, compensating
most of the performance gap, or even surpassing their larger counterparts, demonstrating its efficiency.

4.4 TRANSFERABILITY

To better illustrate the transferability of our navigator model, we conduct further experiments regarding
transferring across different LLMs and reasoning tasks, respectively.

Transfer across Different LLMs. To verify the transferability of RLoT across different LLMs,
we respectively train navigator models with three different LLMs, namely Qwen2.5-14B-Instruct,
Llama3.1-8B-Instruct, and GPT-4o-mini, on the MATH benchmark. Without any fine-tuning, we
cross-test the obtained navigator models to enhance other LLMs on the MATH benchmark and
present the results in Table 3.

The results indicate that the trained navigator model exhibits strong transferability across different
LLMs. When implementing the navigator model to enhance the reasoning capabilities of a specific
LLM, we find that, regardless of whether the navigator model is trained on the same LLM or a
different one, its performance remains consistent. In all cases, the enhanced LLM outperforms the
best well-known inference-time baseline.

Transfer across Different Reasoning Tasks. To verify the transferability of RLoT across different
reasoning tasks, we respectively train navigator models with Qwen2.5-14B-Instruct on three different
benchmarks, namely MATH, GPQA, and StrategyQA. Without any fine-tuning, We cross-test the
obtained navigator models to enhance the reasoning capabilities of Qwen2.5-14B-Instruct on the
other tasks and present the results in Table 4.

The results indicate that the trained navigator model owns strong transferability across different
reasoning tasks. When utilizing the navigator model to enhance the reasoning capabilities of LLMs
for a specific task, we observe that, regardless of whether the navigator model is trained on the same
task or a different one, its performance remains largely consistent. In most cases, it surpasses the
best-performing inference-time baseline.
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Table 3: Evaluation of RLoT’s transferability across different LLMs. We train navigator models with
three different LLMs on the MATH benchmark and cross-test the obtained navigator models with
other LLMs. We also list CoT-SC, the best baseline method, for comparison.

Method Train Test

Qwen2.5-14B-Instruct
@MATH

Llama3.1-8B-Instruct
@MATH

GPT-4o-mini
@MATH

RLoT (ours)
Qwen2.5-14B-Instruct@MATH 80.38 56.56 77.36
Llama3.1-8B-Instruct@MATH 81.48 53.60 78.14

GPT-4o-mini@MATH 80.84 56.94 78.08

CoT-SC – 80.04 51.74 76.84

Furthermore, we find that the navigator models trained on mathematical (MATH) and STEM (GPQA)
problems exhibit better transferability to each other. However, the transferability between the
navigator trained on commonsense problems (StrategyQA) and the former two is relatively limited,
which is intuitive given the inherent relations and differences between domains of mathematics,
STEM, and commonsense reasoning.

Table 4: Evaluation of RLoT’s transferability across different tasks. We train navigator models with
Qwen2.5-14B-Instruct on three different tasks and cross-test the obtained navigator models on other
tasks. We also list CoT-SC, the best baseline method, for comparison.

Method Train Test

Qwen2.5-14B-Instruct
@MATH

Qwen2.5-14B-Instruct
@GPQA

Qwen2.5-14B-Instruct
@StrategyQA

RLoT (ours)
Qwen2.5-14B-Instruct@MATH 80.38 51.34 81.22
Qwen2.5-14B-Instruct@GPQA 80.76 53.57 80.64

Qwen2.5-14B-Instruct@StrategyQA 79.94 50.22 81.37

CoT-SC – 80.04 45.54 80.06

4.5 TYPICAL REASONING PATTERNS

Table 5: Typical patterns in the task-specific logical structures generated by RLoT (“Reason” is short
for “Reason one step”).

Task MATH GPQA StrategyQA

2-step pattern Reason-Refine Reason-Refine Reason-Debate
Reason-Decompose Reason-Debate Reason-Refine

3-step pattern Decompose-Refine-Reason Reason-Refine-Debate Reason-Decompose-Debate
Reason-Refine-Debate Reason-Decompose-Refine Reason-Refine-Debate

The experimental results above have demonstrated RLoT’s capability to enhance LLM reasoning
with task-specific logical structures. In Table 5, we summarize typical patterns observed in the
logical structures generated by RLoT when solving tasks from the MATH, GPQA, and StrategyQA
benchmarks using Qwen2.5-14B-Instruct.

From the 2-step patterns, we observe that the Reason-Refine mode emerges frequently. Particularly
in MATH and GPQA, which require massive mathematical calculations, this pattern compensates
for the LLMs’ relatively poor calculation abilities, leading to more reliable results. In the 3-step
patterns, operations like Decompose and Debate are frequently employed, which help break down
challenging problems or facilitate discussions to explore potential solutions. Additionally, the Refine
operation is often used before and after the Decompose and Debate steps, ensuring correct integration
with preceding and succeeding reasoning processes. These typical reasoning patterns exhibit strong
interpretability, further validating the capability of RLoT to generate task-specific logical structures
that enhance LLM reasoning. For better understanding, we provide an example in Appendix B to
illustrate how these logical structures empower the correct solution to a problem.
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4.6 ABLATION STUDIES, ANALYSES, AND DISCUSSIONS

To better justify our designs, we conducted a series of ablation studies, analyses, and discussions.
We discuss the reliability of the self-evaluation state design in Appendix F. We analyze the necessity
of employing RL to train the navigator model in Appendix G. We illustrate the role of the process
reward model (PRM) in training the navigator in Appendix H. Also, we verify the effectiveness of
our logic block designs and quantify the contribution of each logic block in Appendix I.

5 RELATED WORKS

5.1 INFERENCE-TIME REASONING OF LLMS

To improve LLMs’ reasoning capability, plentiful research has investigated inference-time techniques
without the need for model updates. On the one hand, predefined external logical structures are widely
applied as basic solutions. Most notably, Chain-of-Thought (CoT) (Wei et al., 2022) incorporates
intermediate reasoning steps within the prompt, enhancing the model’s abilities in complex tasks. As
a subsequent advancement, CoT with Self-Consistency (CoT-SC) (Wang et al., 2023) further refines
CoT by generating multiple reasoning chains and filtering out those that do not meet self-consistency,
thus increasing the reliability. Moreover, the concept of Tree-of-Thoughts (ToT) (Yao et al., 2023)
and Graph-of-Thoughts (GoT) (Besta et al., 2024) has been introduced, where the reasoning process
is represented as a graph, enabling exploration and backtracking from more promising outcomes.
Despite their success, these methods rely on task-agnostic logical structures that are applied uniformly
across diverse tasks, lacking flexibility.

On the other hand, recent researchers have proposed more adaptive inference-time approaches. From
hiring the decompose-analyze-rethink procedure (Xue et al., 2024) to utilizing Monte Carlo Tree
Search to discover more effective logical structures (Wu et al., 2024; Wang et al., 2024a), these
approaches dynamically compose appropriate logical structures for specific tasks to enhance the
reasoning performance. However, the search-and-trail design incurs massive extra computational
cost, limiting the efficiency of reasoning. In contrast, the proposed RLoT method employs RL to
train a navigator agent. With the trained navigator, our design can directly select and combine basic
logic blocks and generate task-specific logical structures, enabling more adaptive reasoning while
eliminating the searching cost.

5.2 RL AND LLMS

RL has become vital in the development of LLMs (Xu et al., 2025; Hao et al., 2025). One important
direction is aligning LLMs with human preferences, where the key method is Reinforcement Learning
from Human Feedback (RLHF) (Christiano et al., 2017; Ouyang et al., 2022). In RLHF, LLMs are
fine-tuned as actors in RL based on feedback derived from human preferences. Recently, extensive
helpful and harmless LLMs have been created using RLHF (Bai et al., 2022; Casper et al., 2023).
Beyond this, RL is also applied to enhance the reasoning capability of LLMs. In this context, reward
signals are derived from Outcome Reward Models (ORM) (Kazemnejad et al., 2024) or Process
Reward Models (PRM) (Lightman et al., 2023; Wang et al., 2024c; Luo et al., 2024), providing
feedbacks for the LLMs’ reasoning process during fine-tuning. By applying RL to LLMs with these
rewards, LLMs can iteratively improve their performance in multi-step reasoning tasks (Havrilla
et al., 2024a;b; Shao et al., 2024; DeepSeek-AI et al., 2025).

In summary, existing RL techniques have significantly enhanced LLMs’ capabilities by updating
model parameters, yet such fine-tuning demands substantial computational resources when applied
to each pre-trained LLM. In this paper, the proposed RLoT method applies RL at inference time,
leveraging the power of RL to train a lightweight navigator rather than the entire parameters of LLMs,
our method achieves low cost and wide compatibility with various pre-trained LLMs.

6 CONCLUSIONS

In this paper, we propose RL-of-Thoughts (RLoT), an inference-time technique that utilizes RL to
train a navigator model, which adaptively constructs task-specific logical structures, and thereby
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enhances the reasoning capabilities of LLMs. Through extensive experiments across various bench-
marks, we demonstrate the effectiveness of our method in improving the reasoning capability of
various widely known LLMs. Additionally, we show the strong transferability and efficiency of
our approach, where the trained navigator model can effectively transfer across different LLMs
and unseen reasoning tasks. With fewer than 3K parameters, our navigator model enables multiple
sub-10B LLMs to attain performance comparable to larger LLMs with up to 10 times the parameter
size. Our work highlights the potential of RL at inference time in enhancing the reasoning capabilities
of LLMs, paving the way for more adaptive and efficient LLM reasoning in the future.
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This study uses fully open-source or publicly available models and datasets, adhering to their
respective licenses. All resources are properly cited in Section 1 and Section 4. The selected datasets
and models are well-established, representative, and free from bias or discrimination.

REPRODUCIBILITY STATEMENT

For Reproducibility, we describe the general experimental settings in Section 4; we list the imple-
mentation details in Appendix J; and our source code are anonymously open source at https:
//anonymous.4open.science/r/RL-LLM-Reasoning-1A30.

REFERENCES

Deciphering and enhancing commonsense reasoning in llms from the perspective of intrinsic factual
knowledge retrieval. 2024. https://openreview.net/forum?id=MbtA7no8Ys.

Asma Ben Abacha, Wen-wai Yim, Yujuan Fu, Zhaoyi Sun, Meliha Yetisgen, Fei Xia, and Thomas
Lin. Medec: A benchmark for medical error detection and correction in clinical notes. arXiv
preprint arXiv:2412.19260, 2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges. arXiv preprint arXiv:2402.00157, 2024.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler. Graph
of thoughts: Solving elaborate problems with large language models. In AAAI, pp. 17682–17690.
AAAI Press, 2024.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In NeurIPS, 2020.

Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, et al. Open problems
and fundamental limitations of reinforcement learning from human feedback. arXiv preprint
arXiv:2307.15217, 2023.

10

https://anonymous.4open.science/r/RL-LLM-Reasoning-1A30
https://anonymous.4open.science/r/RL-LLM-Reasoning-1A30


Preprint

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3):1–45, 2024.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yao Fu, Litu Ou, Mingyu Chen, Yuhao Wan, Hao Peng, and Tushar Khot. Chain-of-thought hub:
A continuous effort to measure large language models’ reasoning performance. arXiv preprint
arXiv:2305.17306, 2023.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did Aristotle
Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies. Transactions
of the Association for Computational Linguistics (TACL), 2021.

Haixia Han, Jiaqing Liang, Jie Shi, Qianyu He, and Yanghua Xiao. Small language model can
self-correct. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
18162–18170, 2024.

Qianyue Hao, Jingyang Fan, Fengli Xu, Jian Yuan, and Yong Li. Hlm-cite: Hybrid language model
workflow for text-based scientific citation prediction. arXiv preprint arXiv:2410.09112, 2024.

11

https://arxiv.org/abs/2501.12948


Preprint

Qianyue Hao, Lin Chen, Xiaoqian Qi, Yuan Yuan, Zefang Zong, Hongyi Chen, Keyu Zhao, Shengyuan
Wang, Yunke Zhang, Jian Yuan, and Yong Li. Reinforcement learning in the era of large language
models: Challenges and opportunities. researchgate, 2025.

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu,
Maksym Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. Teaching large
language models to reason with reinforcement learning. arXiv preprint arXiv:2403.04642, 2024a.

Alex Havrilla, Sharath Raparthy, Christoforus Nalmpantis, Jane Dwivedi-Yu, Maksym Zhuravinskyi,
Eric Hambro, and Roberta Raileanu. Glore: When, where, and how to improve llm reasoning via
global and local refinements. arXiv preprint arXiv:2402.10963, 2024b.

Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob
Steinhardt. Aligning ai with shared human values. Proceedings of the International Conference on
Learning Representations (ICLR), 2021a.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021b.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021c.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Fangkai Jiao, Geyang Guo, Xingxing Zhang, Nancy F Chen, Shafiq Joty, and Furu Wei. Preference
optimization for reasoning with pseudo feedback. arXiv preprint arXiv:2411.16345, 2024.

Katikapalli Subramanyam Kalyan. A survey of gpt-3 family large language models including chatgpt
and gpt-4. Natural Language Processing Journal, pp. 100048, 2023.

Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking rl potential for llm reasoning through
refined credit assignment. arXiv preprint arXiv:2410.01679, 2024.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, et al. Dspy: Compiling
declarative language model calls into self-improving pipelines. arXiv preprint arXiv:2310.03714,
2023.

Shanu Kumar, Saish Mendke, Karody Lubna Abdul Rahman, Santosh Kurasa, Parag Agrawal, and
Sandipan Dandapat. Enhancing zero-shot chain of thought prompting via uncertainty-guided
strategy selection. arXiv preprint arXiv:2412.00353, 2024.

Xiaochong Lan, Yiming Cheng, Li Sheng, Chen Gao, and Yong Li. Depression detection on social
media with large language models. arXiv preprint arXiv:2403.10750, 2024a.

Xiaochong Lan, Chen Gao, Depeng Jin, and Yong Li. Stance detection with collaborative role-infused
llm-based agents. In Proceedings of the International AAAI Conference on Web and Social Media,
volume 18, pp. 891–903, 2024b.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Zihan Liu, Yang Chen, Mohammad Shoeybi, Bryan Catanzaro, and Wei Ping. Acemath: Advancing
frontier math reasoning with post-training and reward modeling. arXiv preprint arXiv:2412.15084,
2024.

12



Preprint

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, et al. Improve mathematical reasoning in language models by automated
process supervision. arXiv preprint arXiv:2406.06592, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534–46594, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang, Fan Yang, and Mao Yang. Mutual reasoning
makes smaller llms stronger problem-solvers. arXiv preprint arXiv:2408.06195, 2024.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark.
arXiv preprint arXiv:2311.12022, 2023.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao Zhang, Enming
Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han
Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze Li,
Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin Su,
Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi, Ling Ye,
Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong, Shaowei Liu,
Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao, Weimin Xiong,
Weiran He, Weixiao Huang, Wenhao Wu, Wenyang He, Xianghui Wei, Xianqing Jia, Xingzhe Wu,
Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang Hu, Yangyang
Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying Yang, Yiping Bao, Yulun Du,
Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang, Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu
Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu, and Zonghan Yang. Kimi k1.5: Scaling
reinforcement learning with llms, 2025. URL https://arxiv.org/abs/2501.12599.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Hieu Tran, Zonghai Yao, Junda Wang, Yifan Zhang, Zhichao Yang, and Hong Yu. Rare: Retrieval-
augmented reasoning enhancement for large language models. arXiv preprint arXiv:2412.02830,
2024.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Ante Wang, Linfeng Song, Ye Tian, Baolin Peng, Dian Yu, Haitao Mi, Jinsong Su, and Dong Yu.
Litesearch: Efficacious tree search for llm. arXiv preprint arXiv:2407.00320, 2024a.

Chaojie Wang, Yanchen Deng, Zhiyi Lyu, Liang Zeng, Jujie He, Shuicheng Yan, and Bo An. Q*: Im-
proving multi-step reasoning for llms with deliberative planning. arXiv preprint arXiv:2406.14283,
2024b.

13

https://arxiv.org/abs/2501.12599


Preprint

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9426–9439, 2024c.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In ICLR. OpenReview.net, 2023.

Yingxu Wang and Vincent Chiew. On the cognitive process of human problem solving. Cognitive
systems research, 11(1):81–92, 2010.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In International conference on machine
learning, pp. 1995–2003. PMLR, 2016.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Jinyang Wu, Mingkuan Feng, Shuai Zhang, Feihu Che, Zengqi Wen, and Jianhua Tao. Beyond
examples: High-level automated reasoning paradigm in in-context learning via mcts. arXiv preprint
arXiv:2411.18478, 2024.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan,
Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A survey of
reinforced reasoning with large language models. arXiv preprint arXiv:2501.09686, 2025.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton
Murray, and Young Jin Kim. Contrastive preference optimization: Pushing the boundaries of llm
performance in machine translation. arXiv preprint arXiv:2401.08417, 2024.

Shangzi Xue, Zhenya Huang, Jiayu Liu, Xin Lin, Yuting Ning, Binbin Jin, Xin Li, and Qi Liu.
Decompose, analyze and rethink: Solving intricate problems with human-like reasoning cycle. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024a.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024b.

Cheng Yang, Chufan Shi, Siheng Li, Bo Shui, Yujiu Yang, and Wai Lam. Llm2: Let large language
models harness system 2 reasoning. arXiv preprint arXiv:2412.20372, 2024c.

Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao, Minkai Xu, Wentao Zhang, Joseph E Gonzalez,
and Bin Cui. Buffer of thoughts: Thought-augmented reasoning with large language models.
Advances in Neural Information Processing Systems, 37:113519–113544, 2024d.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. In NeurIPS, 2023.

Xiaodong Yu, Ben Zhou, Hao Cheng, and Dan Roth. Reasonagain: Using extractable symbolic
programs to evaluate mathematical reasoning. arXiv preprint arXiv:2410.19056, 2024.

Di Zhang, Jianbo Wu, Jingdi Lei, Tong Che, Jiatong Li, Tong Xie, Xiaoshui Huang, Shufei Zhang,
Marco Pavone, Yuqiang Li, et al. Llama-berry: Pairwise optimization for o1-like olympiad-level
mathematical reasoning. arXiv preprint arXiv:2410.02884, 2024a.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen Zhuge,
Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow generation. arXiv
preprint arXiv:2410.10762, 2024b.

14



Preprint

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301, 2025.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Tianyang Zhong, Zhengliang Liu, Yi Pan, Yutong Zhang, Yifan Zhou, Shizhe Liang, Zihao Wu,
Yanjun Lyu, Peng Shu, Xiaowei Yu, et al. Evaluation of openai o1: Opportunities and challenges
of agi. arXiv preprint arXiv:2409.18486, 2024.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolqa: A dataset for llm
question answering with external tools. Advances in Neural Information Processing Systems, 36:
50117–50143, 2023.

15



Preprint

A LEARNING CURVES

In Figure 2, we show the learning curves during RL training of all navigator models used in exper-
iments in the main text. We use a sliding window averaging to smooth the reward, and from the
learning curves, we observe good convergence of the RL training.

Figure 2: Learning curves during RL training of all navigator models.

16



Preprint

B CASE STUDY

           {CoT Examples}.         
           Problem: {Problem}.
 Please generate the answer for the problem. Wrap the answer with 
\boxed{{answer}}.

         To find the area of the region satisfying the inequalities $y  \ge |x|$ and $y  
          \le -|x| + 3$, we need to analyze the boundaries defined by these inequalities.
To find the intersection points of these lines, we solve the equations:
- For $x \ge 0$: $y = x$ and $y = -x + 3$.
- For $x < 0$: $y = -x$ and $y = x + 3$.
...
The region of interest is a quadrilateral with vertices at $(0,0)$, $\left(\frac{3}{2}, 
\frac{3}{2}\right)$, $(0,3)$, and $\left(-\frac{3}{2}, \frac{3}{2}\right)$. This 
quadrilateral is symmetric about the y-axis and can be divided into two congruent 
right triangles.
Each triangle has a base of $\frac{3}{2}$ and a height of $\frac{3}{2}$. The area 
of one triangle is \frac{9}{8}.
...
Thus, the area of the region is: \[ \boxed{2.25} \].

           {CoT Examples}.         
           Problem: {Problem}.
 Please generate the answer for the problem. Wrap the answer with 
\boxed{{answer}}.

         To find the area of the region satisfying the inequalities $y  \ge |x|$ and $y  
          \le -|x| + 3$, we need to analyze the boundaries defined by these inequalities.
To find the intersection points of these lines, we solve the equations:
- For $x \ge 0$: $y = x$ and $y = -x + 3$.
- For $x < 0$: $y = -x$ and $y = x + 3$.
...
The region of interest is a quadrilateral with vertices at $(0,0)$, $\left(\frac{3}{2}, 
\frac{3}{2}\right)$, $(0,3)$, and $\left(-\frac{3}{2}, \frac{3}{2}\right)$. This 
quadrilateral is symmetric about the y-axis and can be divided into two congruent 
right triangles.
Each triangle has a base of $\frac{3}{2}$ and a height of $\frac{3}{2}$. The area 
of one triangle is \frac{9}{8}.
...
Thus, the area of the region is: \[ \boxed{2.25} \].

Few-shot CoT RLoT

          Problem: {Problem}.
          Please reason exactly ONE more step based on the current step here, and 
DONOT reason too many steps at once.

          Certainly, let's start by analyzing the given inequalities...
          The next step is to determine the points of intersection...
For \( x \ge 0 \), \( |x| = x \)... For \( x < 0 \), \( |x| = -x \)...
Now we know the points of intersection are \( \left( \frac{3}{2}, \frac{3}{2} 
\right) \) and \( \left( -\frac{3}{2}, \frac{3}{2} \right) \). 

          Please check and refine the current thought here, and DONOT conduct  
          further reasoning or calculation.

          Your analysis so far is correct...
          The next step would indeed be to calculate the area of the region bounded 
by these lines. This region forms a diamond (or rhombus) shape centered at the 
origin.

          Please propose three different alternative plans for solving the problem in 
          the current step.

          Plan1: Use the formula for the area of a rhombus.
          Plan2: Integrate the area between the curves.
          Plan3: Divide the region into triangles.

The most promising plan is Plan1: Given the diagonals of the rhombus, we can 
now calculate the area. 
...
Thus, the area of the region satisfying the inequalities \( y \ge |x| \) and \( y \le -|x| 
+ 3 \) is \( 4.5 \) square units. 

Problem: How many square units are in the region satisfying the inequalities $y \ge |x|$ and $y \le -|x|+3$?

Wrong geometric understanding.

Correct algebraic calculation.

Correct geometric understanding.

Correct method

Correct algebraic calculation.

Figure 3: A case study comparing few-shot CoT and RLoT on a representative problem in the MATH
dataset. Results are both generated by Qwen2.5-14B-Instruct.

As shown in Figure 3, we analyze a representative case to illustrate the detailed working procedure
of RLoT. The problem is sampled from the test set of MATH (Hendrycks et al., 2021c) benchmark,
which involves calculating the area between two functional curves, requiring a combination of
algebraic and geometric knowledge. While the Few-shot CoT method attempts to generate the answer
in one step, RLoT adopts a task-specific reasoning pathway, which includes Reason-Refine-Debate, a
typical pattern for solving complex math problems shown in Section 4.5.

Both Few-shot CoT and RLoT successfully calculate the intersection points of the curves. However,
the response of Few-shot CoT fails to accurately identify the shape of the shadowed area, leading
to incorrect bases for the triangles and, ultimately, an incorrect result. In contrast, RLoT utilizes
the Refine action to clarify the intermediate results and correctly identifies the shadowed area as a
rhombus. Subsequently, the Debate action proposes multiple plans and prioritizes directly using
the area formula for a rhombus over dividing it into triangles. By avoiding unnecessary geometric
division, RLoT achieves the correct answer.
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C COMPUTATIONAL OVERHEAD AND LATENCY

As shown in Table 6, RLoT improves the reasoning ability of LLMs with a low cost comparing
with complex inference-time techniques. The results show that at inference-time, RLoT’s token
consumption only accounts for 78 % of ToT, and the consumption is comparable to CoT-SC. This
is because the trained navigator can directly select appropriate logic blocks without searching like
ToT, improving the performance and reducing cost. Besides, our navigator with <3k parameters has
almost negligible inference cost itself.

Though RL training incurs extra costs, our lightweight navigator makes training efficient, and the
trained navigator can transfer across tasks, diluting the cost. Specifically, our navigator is trained for
3000 episodes, and each episode consumes an average of 5004 input and 1448 output tokens. Shared
across all test questions, it only adds less than 5% input and output tokens per question.

Table 6: Token consumption per question across tasks. The bold numbers indicate our method.
Model Method AIME24 AMC23 MATH GSM8K GPQA MMLU-STEM StrategyQA Average

Input Output Input Output Input Output Input Output Input Output Input Output Input Output Input Output

Qwen2.5-14B-Instruct

Direct QA 653 1433 619 1131 46 362 55 183 159 460 82 210 30 259 235 577
Zero-shot CoT 667 1489 633 1007 58 367 66 206 175 546 87 334 33 376 246 618
Few-shot CoT 1955 1341 1921 940 466 336 1089 135 1557 589 1114 259 421 223 1218 546

CoT-SC 7823 5330 7685 4109 2014 1320 4339 543 6295 1945 4448 1039 1586 897 4884 2169
ToT 5994 10844 3836 8029 4983 6277 3570 4312 6063 7404 4797 5363 5762 6491 5001 6960

RLoT (ours) 22004 3888 17963 3463 3735 1109 2310 634 5501 1485 2923 791 2348 756 8112 1732

Qwen2.5-7B-Instruct

Direct QA 642 1714 644 1443 44 366 58 182 159 546 66 404 22 279 234 705
Zero-shot CoT 667 1385 663 1180 47 393 78 222 184 522 82 413 32 401 250 645
Few-shot CoT 4230 1789 3875 1501 483 581 1074 188 1556 442 1128 221 396 348 1820 724

CoT-SC 16890 7131 15341 5821 1932 1443 4379 750 6290 1800 4433 883 1612 1391 7268 2746
ToT 5289 9180 3741 7621 6679 7525 5792 5301 5771 6489 5058 4669 3807 2013 5162 6114

RLoT (ours) 23093 4168 12876 2896 1437 807 1283 476 2112 889 1028 434 1735 606 6223 1468

Llama3.1-8B-Instruct

Direct QA

–

44 437 53 180 174 811 71 406 13 201 71 407
Zero-shot CoT 73 495 64 215 175 661 91 365 20 418 85 431
Few-shot CoT 510 472 1101 173 1568 769 1127 168 417 272 945 371

CoT-SC 2049 1885 4325 808 6120 3078 4429 808 1582 1071 3701 1530
ToT 3474 4307 5212 4780 5615 3794 5331 5999 4320 4868 4790 4750

RLoT (ours) 4481 1981 2842 1028 9818 3387 4408 1486 3049 1094 4920 1795

GPT-4o-mini

Direct QA 601 1356 571 1184 43 404 54 223 165 397 86 175 13 201 219 563
Zero-shot CoT 614 1435 585 1192 50 422 68 260 160 525 89 326 16 382 226 649
Few-shot CoT 1853 1365 1823 1202 513 408 1107 205 1575 505 1119 275 409 254 1200 602

CoT-SC 7414 5493 7294 5097 2030 1554 4442 823 6305 2027 4360 1005 1601 1014 4778 2430
ToT 4639 4929 5726 4521 4534 5649 5890 5810 5175 5841 4950 5324 3833 1467 4964 4792

RLoT (ours) 26529 4778 19513 3973 3483 1575 3069 1048 4372 1550 1882 710 1612 673 8637 2044

DeepSeek-R1-
Distill-Qwen-7B

Direct QA 879 11793 597 4686 541 4960 533 1364 808 5462 521 2094 436 1268 616 4518
Zero-shot CoT 906 12129 640 5140 565 4697 547 1381 822 5443 574 2012 450 1344 643 4592
Few-shot CoT 2360 7778 2086 5120 1938 3301 3253 1303 4390 5194 2063 1890 1197 1275 2470 3694

CoT-SC 9240 32005 8556 21859 7749 13071 12976 5123 17562 20553 7883 7820 4791 5094 9822 15075
ToT 5879 34616 4474 45524 3076 25913 6680 26033 4481 19222 2158 9604 8393 11697 5020 24658

RLoT (ours) 13556 21870 15684 31915 4003 8450 8347 12389 3734 18787 6732 8613 6445 10546 8357 16081

Average Direct QA 694 4074 608 2111 144 1306 151 426 293 1535 165 658 103 442 308 1507
Zero-shot CoT 714 4110 630 2130 159 1275 165 457 303 1539 185 690 110 584 324 1541
Few-shot CoT 2600 3068 2426 2191 782 1020 1525 401 2129 1500 1310 563 568 474 1620 1317

CoT-SC 10342 12490 9719 9222 3155 3855 6092 1609 8514 5881 5111 2311 2234 1893 6452 5323
ToT 5450 14892 4444 16424 4549 9934 5429 9247 5421 8550 4459 6192 5223 5307 4996 10078

RLoT (ours) 21296 8676 16509 10562 3428 2784 3570 3115 5107 5220 3395 2407 3038 2735 8049 5071
RLoT plus training cost 21649 8779 16863 10664 3782 2887 3924 3217 5461 5322 3749 2509 3392 2837 8403 5174

Besides token consumption, we show the average solving time (min) per problem along with the
standard deviation across 3 repeats in Table 7.

Table 7: Average solving time (minutes) per problem across various benchmarks. Standard deviations
from 3 repeats are shown in parentheses.

Method AIME24 AMC23 MATH GSM8K GPQA MMLU-STEM StrategyQA Average
Direct QA 0.44(0.02) 0.25(0.01) 0.13(0.00) 0.05(0.00) 0.17(0.01) 0.08(0.00) 0.05(0.00) 0.17(0.01)

Zero-shot CoT 0.44(0.02) 0.25(0.02) 0.13(0.01) 0.06(0.00) 0.17(0.02) 0.08(0.00) 0.06(0.00) 0.17(0.01)
Few-shot CoT 0.52(0.03) 0.42(0.02) 0.17(0.01) 0.18(0.01) 0.33(0.02) 0.17(0.02) 0.10(0.01) 0.27(0.02)

CoT-SC 2.09(0.13) 1.74(0.12) 0.64(0.03) 0.71(0.07) 1.32(0.09) 0.68(0.05) 0.38(0.02) 1.08(0.07)
ToT 1.86(0.07) 1.91(0.15) 1.33(0.12) 1.35(0.11) 1.28(0.06) 0.98(0.10) 0.97(0.11) 1.38(0.10)

RLoT (ours) 2.75(0.21) 2.48(0.22) 0.57(0.02) 0.61(0.05) 0.95(0.05) 0.53(0.03) 0.53(0.04) 1.20(0.09)

Our navigator can directly generate a task-specific logical trajectory, reducing the LLM interaction
cost. Also, our lightweight navigator itself brings almost negligible cost.
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D PERFORMANCE COMPARISON WITH LARGER LLMS

Table 8: Performance comparison between sub-10B LLMs enhanced by RLoT, and larger LLMs with
several times of parameters.

LLM Size Method MATH GSM8K GPQA MMLU-STEM StrategyQA Average Gap

Qwen2.5-Instruct 14B Few-shot CoT 80.00 94.80 45.50 85.06 78.60 76.79 -4.13
RLoT (ours) 80.38 94.16 51.34 88.93 81.22 79.21 -1.71

72B Few-shot CoT 83.10 95.80 49.00 89.80 86.90 80.92 –

Llama3.1-Instruct 8B Few-shot CoT 48.52 84.50 33.03 70.66 72.05 61.75 -12.51
RLoT (ours) 56.56 90.07 46.88 80.56 84.42 71.70 -2.56

70B Few-shot CoT 68.00 95.10 46.70 84.81 76.71 74.26 –

GPT-4o mini (8B) Few-shot CoT 75.46 93.48 35.94 85.82 80.06 74.15 -4.44
RLoT (ours) 77.36 93.86 54.02 88.23 82.68 79.23 +0.64

(200B) Few-shot CoT 76.60 93.73 53.60 87.90 81.10 78.59 –

In table 8, we show the performance of the sub-10B LLMs after enhancement with RLoT. The results
indicate that our RL-based navigator, which contains fewer than 3,000 parameters, significantly
enhances the performance of sub-10B LLMs, making them comparable to much larger counterparts
with around 10× more parameters. Specifically, our RLoT method empowers the sub-10B LLMs
to be comparable to, compensating most of the performance gap, or even surpassing their larger
counterparts, demonstrating remarkable efficiency.
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E EXTENDED BASELINE COMPARISONS

E.1 TEST-TIME SCALING BASELINES

In addition to math reasoning models, we also compare RLoT with multiple models which cover
different categories and designs. The details of baselines are listed below.
Fixed reasoning patterns. Baselines from this category adopts a fixed workflow to obtain the answer,
which

• DeAR (Xue et al., 2024): The problem is consequently decomposed, analyzed and refined
in this workflow. The workflow follows a recurrent manner to a detailed decomposition of
original problem.

• Self-Refine (Madaan et al., 2023): This method adds a simple refine step after every
reasoning step to correct potential mistakes.

Tree search.Tree-based models divide the reasoning task into sub-steps, and searches for a best path
to the final answer. Tree-based methods usually requires multiple rounds Q/A, resulting in high
reasoning cost.

• One-step-greedy: Using PRM model to greedily select the best thought at each step.
• Basic Monto-carlo Tree Search: An effective tree-searched method that explore the tree

via multiple roll-outs. The MCTS is also supervised by the PRM.
• Litesearch (Wang et al., 2024a): An low-cost tree search method that assigns larger search

budget to a more promising nodes.
• Q∗ (Wang et al., 2024b): Q∗ adopts a value function that estimate the "distance" between

the current thought and the correct answer. Then an A∗ algorithm, which is widely applied
in shortest path problem, is used to finish tree-search.

• rStar (Qi et al., 2024): Use Monte Carlo Tree Search during inference to select actions.
• AFlow (Zhang et al., 2024b): An automated framework that uses MCTS to efficiently

explore LLM agentic workflow.

Others.

• DSPy (Khattab et al., 2023): A programming model that can express and optimize sophisti-
cated LM pipelines.

• Graph of Thoughts (GoT) (Besta et al., 2024): A graph-based model which allows arbitrary
combination of thoughts according to the manually designed graph architecture. We carefully
design graphs for each specific dataset.

• Buffer of Thoughts (BoT) (Yang et al., 2024d): A Retrieval-Augmented Generation (RAG)
model that enhance reasoning via reasoning patterns in the buffer. These patterns are
continuously updated during inference time.

As shown in Table 9,we compare these methods on representative datasets, GSM8K, GPQA, and
StrategyQA, which covers three different domains. Results show that our model outperforms all
baseline methods among all datasets.

By flexibly organizing logic blocks, our design can outperform these baselines. To compare the
efficiency and effectiveness, we show the token consumption per question for representative baselines:

Unlike search-based methods that require multiple explorations, our design directly generates task-
specific logical trajectories, allowing for better performance with a similar or lower cost.
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Table 9: Extended baseline comparisons. The bold numbers indicate the best performance in each
group of experiments, and the underlined numbers indicate the best baseline method.

LLM Method GSM8K GPQA StrategyQA Average

Qwen2.5-Instruct-7B

DirectQA 91.58 31.25 68.85 63.89
DeAR (Xue et al., 2024) 88.38 36.16 71.13 65.22

Self-Refine (Madaan et al., 2023) 88.55 32.59 73.94 65.03

Tree search

One-step-greedy 89.08 32.59 73.07 64.91
Basic MCTS 90.07 34.82 75.69 66.86

Litesearch (Wang et al., 2024a) 89.76 33.04 75.84 66.21
Q* (Wang et al., 2024b) 91.51 34.60 77.00 67.70

rStar (Qi et al., 2024) 91.96 38.62 77.15 69.24
AFlow (Zhang et al., 2024b) 91.36 37.72 76.56 68.55

DSPy) (Khattab et al., 2023) 88.32 34.15 74.09 65.52
Graph of Thoughts (GoT) (Besta et al., 2024) 88.96 33.04 75.42 65.81
Buffer of Thoughts (BoT) (Yang et al., 2024d) 92.35 34.51 74.33 67.06

RLoT (ours) 92.87 44.64 79.04 72.18

Table 10: Token consumption and performance scores per question for representative baselines.

LLM Method GSM8K GPQA StrategyQA Average

Score Token Score Token Score Token Score Token

Qwen2.5-Instruct-7B

DirectQA 91.58 240 31.25 705 68.85 301 63.89 415
Self-Refine 88.55 678 32.59 1784 73.94 939 65.03 1134

rStar 91.96 2636 38.62 4127 77.15 2987 69.24 3483
RLoT (ours) 92.87 1759 44.64 3001 79.04 2341 72.18 2367

E.2 MATH DOMAIN BASELINES

To better demonstrate the effectiveness of our design, we compare RLoT with more baselines that
have been specifically designed for math reasoning tasks. We involve fine-tuning designs which are
computationally expensive.

• AceMath (Liu et al., 2024): A supervised fine-tuning model designed specifically for
mathematical reasoning. It first develops a math-specialized reward model using public
datasets and then performs fine-tuning and reasoning guided by this reward model.

• PFPO (Jiao et al., 2024): A supervised fine-tuning approach guided by pseudo reward
feedback. The feedback is generated either through a self-consistency mechanism or with
the assistance of more powerful LLMs.

We also include inference-time designs that hire complicated algorithms like Monte-Carlo Tree
Search (MCTS).

• LLM2 (Yang et al., 2024c): A lightweight model aimed at enhancing LLM reasoning
during inference. It achieves this by training a verifier to distinguish and prioritize better
LLM-generated responses.

• LLaMA-Berry (Zhang et al., 2024a): An inference-time Monte Carlo Tree Search (MCTS)
method that explores reasoning paths using a trained reward model.

• HiAR-ICL (Wu et al., 2024): A method that matches problems with multiple reasoning
templates at inference time. These templates are previously generated using MCTS on a
subset of the dataset.

We test with Llama3.1-8B-Insturct on MATH and GSM8K benchmarks and show the results in
Table 11. For the baselines, we use the performance reported in the original papers, and for RLoT,
we test with the same navigator model as in Section 4.2 in the main text. From the results, we can
observe that our method outperforms all inference-time baselines. Meanwhile, with substantially
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Table 11: Performance comparison of RLoT’s with more baselines. The bold numbers indicate the
best performance in each category.

Category Method MATH GSM8K Average

Fine-tuning AceMath (Liu et al., 2024) 64.42 90.45 77.44
PFPO (Jiao et al., 2024) 57.80 89.60 73.70

Inference-time

LLM2 (Yang et al., 2024c) 48.60 88.00 68.30
LLaMA-Berry (Zhang et al., 2024a) 54.80 89.80 72.30

HiAR-ICL (Wu et al., 2024) 55.00 90.70 72.85
RLoT (ours) 56.56 90.07 73.32

lower computational consumption, it reaches comparable performance to some fine-tuning methods
that require modification on the parameters of LLMs.
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F ANALYSES ON THE RELIABILITY OF SELF-EVALUATION STATE

Previous work shows that LLMs can evaluate and correct their own outputs (Han et al., 2024).
Meanwhile, multiple works (Madaan et al., 2023; Xue et al., 2024) have reached success with self-
correcting. Based on the literature, we design the structured self-evaluation that prompts the LLM
across granular aspects (Table 1), including the correctness of modeling and calculation. This design
aims to be more specific and reliable than the single judgment.

To validate the robustness, we randomly sample 100 intermediate reasoning texts and manually check
the self-evaluation. We find that the LLM’s assessment was accurate in 82 out of 100 cases. Also,
we deliberately introduced modeling and calculation errors in a reasoning path, and test whether our
self-evaluation mechanism is able to correctly identify. As shown in Table 12, the problem is from
GSM8K (Cobbe et al., 2021), which includes the relationship of three variables. In addition to the
correct reasoning step, we modify it to obtain two wrong reasoning steps, which respectively makes a
mistake on modeling and calculation. The result shows that the LLM is able to identify and classify
different kinds of mistakes, demonstrating the effectiveness of self-evaluation state extraction.

Table 12: An example of self-assessing of intermediate states.

Question Reasoning step Self-evaluated correctness

Modeling Calculation

Mark has a garden with
flowers. He planted plants

of three different colors in it.
Ten of them are yellow,

and there are 80% more of
those in purple. There are only
25% as many green flowers as

there are yellow and purple
flowers. How many flowers

does Mark have in his garden?

In this step, we aim at calculate the number
of purple flowers, which is 80% more

than the yellow ones.
We calculate by 10 \times (1 + 0.8) = 18

True True

In this step, we aim at calculate the number
of purple flowers, which is 80% more

than the yellow ones.
We calculate by 10 \times 0.8 = 8

False True

In this step, we aim at calculate the number
of purple flowers, which is 80% more

than the yellow ones.
We calculate by 10 \times (1 + 0.8) = 17

True False

Based on the validation, we consider our structured self-evaluation provides a sufficiently reliable
state representation for training the navigator.

Furthermore, we explore alternative designs of self-evaluation:

• MLP. Use the self-evaluation vector from a fixed LLM as input, only train an MLP as the
navigator.

• LLM (fixed). Directly prompt the LLM to select the action based on the raw reasoning
trajectory.

• LLM (finetune). Use the raw reasoning trajectory as input, train an LLM backbone with an
MLP classification head as the navigator.

Table 13: Comparison of alternative self-evaluation designs.
LLM Navigator GSM8K GPQA StrategyQA Average

Qwen2.5-Instruct-7B

DirectQA 91.58 31.25 68.85 63.89
LLM (fixed) 89.16 37.95 74.38 67.16

LLM (finetune) 88.32 34.15 70.01 64.16
MLP (ours) 92.87 44.64 79.04 72.18

As the results in Table 13 show, LLM (fixed) performs badly since pre-trained LLMs are not specified
for the task. LLM (finetune) even performs worse. Our method injects valuable human knowledge
for explicit, structured self-evaluation. In contrast, LLM (finetune) requires an implicit evaluation
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from raw text, which is much more complex and has more parameters to be tuned. This requires
substantially more consumption and specialized design to overcome the complexity and uncertainty.
Therefore, our method is a comprehensive design at a low cost. While some self-evaluation cases
may be inaccurate, the overall improvement demonstrates the general benefit.
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G ANALYSES ON THE ROLE OF RL IN TRAINING THE NAVIGATOR

To illustrate the necessity of using RL in training the navigator, we compare the RL navigator with
several other decision methods for deciding the next reasoning block. The methods includes the

• Fixed logic sequence. Fixed "Decompose-Reason-Refine" sequence like human thinking.
• Supervised-trained navigator. We first collected 20K state-action-score samples with

random actions. Then, we trained a model to predict the outcome for each action given a
state, and select the action with the highest predicted score during inference.

• LLM as navigator. Directly prompt another LLM to select the action based on the reasoning
context.

We also add:

• Repeated strong blocks. Repeat Debate or Refine until reaching the answer.

Table 14: Comparison with alternative navigator methods on various benchmarks.
LLM Method GSM8K GPQA StrategyQA Average

Qwen2.5-Instruct-7B

DirectQA 91.58 31.25 68.85 66.62
Repeated refine 87.72 32.37 72.34 66.65
Repeated debate 89.99 33.04 72.05 67.51

Fixed logic sequence 88.38 36.16 71.13 67.47
Supervise-trained navigator 89.84 36.83 70.31 67.94

LLM as navigator 89.16 37.95 74.38 69.17
RL-trained navigator (ours) 92.87 44.64 79.04 73.34

The results in Table 14 show that these methods are worse than RLoT:

• Fixed logic sequence. Rigid, unable to design flexible logical structures for specific tasks.
• Supervise-trained navigator. The randomly sampled state-action pairs lack the ability of

RL to purposely exploit effective parts of the sample space.
• LLM as navigator. Pre-trained LLMs are not specified for the logic selection task.

These show the importance of using RL for our navigator to flexibly select logic blocks.
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H ANALYSES ON THE ROLE OF PROCESS REWARD MODEL (PRM)

As literature (Zhang et al., 2025) indicates that math-trained PRMs perform well on MMLU-STEM,
and the performance of PRMs in math and STEM is generally correlated. Our navigator, which is
trained with a math PRM, achieves strong performance on GPQA (STEM). This also reflects the
generalization capability of PRM across domains. We also test an ORM to train the navigator.

Table 15: Comparison of RLoT using an Outcome Reward Model (ORM) vs. a Process Reward
Model (PRM).

LLM Method GSM8K GPQA StrategyQA Average

Qwen2.5-Instruct-7B
DirectQA 91.58 31.25 68.85 66.62

RLoT with ORM 91.96 41.52 73.94 70.71
RLoT with PRM (ours) 92.87 44.64 79.04 73.34

The results in Table 15 show that the PRM outperforms the ORM, indicating that the step reward
signal from PRM is crucial.

Further, to explore the impact of PRM quality, we test:

• ORM: As a minimal quality PRM.
• Degraded PRM: Add a std=0.1 Gaussian noise to our raw PRM.
• Better PRM: Qwen2.5-Math-PRM-7B, a stronger PRM.

Table 16: Impact of PRM quality on navigator performance.
LLM PRM GSM8K GPQA StrategyQA Average

Qwen2.5-Instruct-7B

None-DirectQA 91.58 31.25 68.85 63.89
ORM 91.96 41.52 73.94 69.14

MathShepherd-Mistral-7B + disturb 92.49 42.41 77.15 70.68
MathShepherd-Mistral-7B 92.87 44.64 79.04 72.18
Qwen2.5-Math-PRM-7B 93.10 45.31 80.06 72.82

These results in Table 16 show that a higher-quality PRM is beneficial. However, the navigator is
robustly beneficial with a lower-quality PRM, as long as the reward signal is directionally meaningful.
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I ANALYSES ON THE DESIGN OF LOGIC BLOCKS

We first check the test-time scaling for the logic blocks. Results in Figure 4 show that a longer
sequence of logic blocks brings a performance gain.

Figure 4: Test-time scaling with different number of logic blocks.

To examine the impact of each block, we remove each of them and train a navigator:

Table 17: Ablation study results for each logic block.
LLM Ablation MATH GPQA StrategyQA Average

Qwen2.5-Instruct-7B

w/o Decompose 75.42 31.92 77.00 61.45
w/o Debate 74.02 36.61 77.58 62.74
w/o Refine 75.76 41.29 72.93 63.33
Full RLoT 76.70 44.64 79.04 66.79

GPT-4o-mini

w/o Decompose 76.08 41.74 79.33 65.72
w/o Debate 74.68 45.31 78.75 66.25
w/o Refine 76.44 51.56 74.38 67.46
Full RLoT 77.36 54.02 82.68 71.35

The ablation results in Table 17 confirm that all blocks are effective.

We also analyze the impact of different logic blocks on different datasets. Results in Figure 5
show the average PRM reward gain of each logic block. The most useful block varies in different
tasks, specifically Debate for math tasks, Decompose for STEM tasks, and refine for common-sense
reasoning.

Figure 5: Contribution of each logic block in the reasoning sequence.

Further, we test some possible new blocks:

• Follow-up-question: Propose and answer a sub-question based on the current reasoning.

• Rephrasing: Reorganize the current reasoning.

• Compression: Condense the current reasoning.
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Table 18: Performance with additional logic blocks.
LLM Logic blocks MATH GPQA StrategyQA Average

Qwen2.5-Instruct-7B

Original in RLoT 76.70 44.64 79.04 66.79
Original + Follow-up-question 76.78 43.97 79.24 66.66

Original + Rephrasing 77.30 45.54 80.20 67.68
Original + Compression 76.06 43.53 77.87 65.82

The results in Table 18 showed that "Rephrasing" is beneficial, while "Follow-up-question" (perhaps
self-ask-and-answer has limited effect) and "Compression" (likely due to information loss) are not.
This shows the extensibility of RLoT: it provides a framework for the community to design more
reasoning blocks to enhance the performance.

28



Preprint

J IMPLEMENTATION DETAILS

J.1 SETTINGS

In this section, we provide the main implementation settings for reproducibility in Ta-
ble 19. Please refer to our source code at https://anonymous.4open.science/r/
RL-LLM-Reasoning-1A30 for the exact usage of each hyper-parameters and more details.

Table 19: Implementation details.
Module Element Detail

System
OS Ubuntu 22.04.2

CUDA 11.7
Python 3.11.4

Double-Dueling DQN

γ 0.9
Number of episodes 3000

Batch Size 64
Interval of target network updating 50

Optimizer Adam
Learning rate 0.01

Learning rate decay 0.5 per 1000 episodes
Replay buffer size 500

Start epsilon 1
Min epsilon 0.0

Epsilon decay 0.9995 per step

RLoT framework
Maximum number of actions 5

Number of trails for self-consistency 3
Temperature for LLMs 1.0

J.2 ILLUSTRATION OF THE FULL PIPELINE

Here we illustrate how every parts in our design work together as an whole pipeline.

1 DATA CONSTRUCTION

We pick out "hard problems", namely those that the LLM wrongly answers when directly prompted,
for training the navigator. Here are more details: we used Qwen2.5-14B-Instruct as a reference model
to select "hard problems" from the training sets. The direct prompts are:

Prompts:
{Problem} Please generate the answer for the problem.
(MATH) Wrap the answer with boxed{{answer}}.
(GPQA) End the answer with ’The answer is (CHOICE)’.
(StrategyQA) End the answer with ’YES/NO’.

The statistics on benchmarks involved in our training are shown in Table 20.

Table 20: Statistics on benchmarks involved in our training.
Dataset Total Hard Proportion (%)

MATH 7500 1736 23.15
GPQA 448 255 56.92

StrategyQA 1600 341 21.31

By selecting "hard problems", our navigator dedicates to strategies that enhance LLMs on problems
that they cannot solve directly. For our RL approach, we do not construct (input, expected_output)
pairs like supervised learning. The training data consists of individual questions. During training, the
model is fed with questions, and the outputs are evaluated to generate rewards, which are then fed
back to train the model. We will detail the key components and entire process of training below.
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2 STATE SELF-EVALUATION (STATE SPACE)

We obtain the 7-aspect state vector through a prompted self-evaluation mechanism. We feed the
problem and the existing reasoning into the LLM with the prompt in Appendix K.1. This design
compresses the textual reasoning trajectory into a low-dimensional state vector, making the policy
learning process more efficient and tractable.

Here is an input-output example of state self-evaluation, as seen in our case study in Appendix F:

Input
(Problem) Mark has a garden with flowers. He planted plants of three different
colors in it. Ten of them are yellow, and there are 80% more of those in
purple. There are only 25% as many green flowers as there are yellow and
purple flowers. How many flowers does Mark have in his garden?
(Existing reasoning) In this step, we aim at calculating the number of purple
flowers, which is 80% more than the yellow ones. We calculate by 10 * (1 + 0.8) = 17

Output
(State vector) {Modelling: True, Calculation: False, ...}

3 LOGICAL BLOCKS (ACTION SPACE)

First, these logic blocks are inspired by well-established cognitive strategies in human problem
solving. "Decompose," "Debate," and "Refine" are the core actions, supplemented by "Reason one
step" and "Terminate" to ensure complete reasoning flows.

For instance, "Decompose" reflects the widely studied divide-and-conquer approach, while "Debate"
aligns with strategies involving comparative evaluation (Wang & Chiew, 2010). Also, they are
empirically effective. Prior studies (Madaan et al., 2023; Xue et al., 2024) have demonstrated that
"Decompose" and "Refine" can significantly enhance the performance of LLMs on complex tasks.

Second, while preserving the high-level cognitive intuition, we have operationalized them into
specific primitives that the LLM can execute. The key differences are:

• Formalization with prompts: Each block corresponds to a prompt template that instructs
the LLM to perform a specific function (Appendix K.2).

• Standard Input/Output: All blocks operate on a unified interface. The input is the original
problem and the existing reasoning, and the output is a new segment of reasoning. This
allows flexible composition of logic blocks.

Third, here is an input-output example for the ’Debate’ block (as Appendix B):

Input
(Problem) How many square units are in the region satisfying the inequalities
$y \ge |x|$ and $y \le -|x|+3$?
(Existing reasoning) Let’s start by analyzing the given inequalities. The next
step is to determine the points of intersection... Now we know the points of
intersection are...

Output
(New reasoning) The most promising plan is: Given the diagonals of the rhombus,
we can now calculate the area.

The contributions of the logic blocks are discussed in Appendix I.

4 PROCESS REWARD

The PRM takes in the problem and existing reasoning and outputs a numerical score evaluating its
quality.

Here is an input-output example for the PRM:
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Input:
(Problem) How many square units are in the region satisfying the inequalities
$y \ge |x|$ and $y \le -|x|+3$?
(Existing reasoning) Let’s start by analyzing the given inequalities. The next
step is to determine the points of intersection... Now we know the points of
intersection are...

Output:
(Reward) 0.765

5 DEFINITION OF MDP

Combining the above components, our MDP is defined as follows:

• State: A low-dimensional vector generated from the LLM’s self-evaluation of the current
reasoning step.

• Action: One of five logic blocks that guide the next step reasoning.

• Reward: A score from a PRM that evaluates the quality of the reasoning step after an action
is taken.

6 TRAINING PROCESS

Follow the MDP framework, we train the navigator with Deep Q-Learning algorithm. The training
process is:

- For training episodes:
- Randomly sample a Problem. Existing reasoning={}.
- WHILE True:

- Problem + Existing reasoning --[Self-evaluation]--> State vector
- State vector --[MLP navigator]--> Logic block (action)
- Problem + Existing reasoning --[Logic block]--> New reasoning
- Existing reasoning <-- Existing reasoning + New reasoning
- Problem + Existing reasoning --[PRM]--> Reward
- Use the reward to train the MLP navigator
- IF reach the answer: BREAK

7 INFERENCE PROCESS

With the trained navigator, the inference process is:

- Problem. Existing reasoning={}. Answers={}.
- For self-consistency candidates number:

- WHILE True:
- Problem + Existing reasoning --[Self-evaluation]--> State vector
- State vector --[MLP navigator]--> Logic block (action)
- Problem + Existing reasoning --[Logic block]--> New reasoning
- Existing reasoning <-- Existing reasoning + New reasoning
- IF reach the answer: BREAK

- Answers <-- Answers + New answer
- Answers --[Self-consistency]--> Final answer

8 SELF-CONSISTENCY EVALUATION

To enhance the robustness of our final answers, we employ a self-consistency mechanism. Since the
final answers can be in different formats, we use sympy.parsing.latex library to parse the answers and
determine if they are mathematically equivalent. We select the final answer using majority voting. If
no majority exists, one answer is selected at random.

Here is an input-output example for self-consistency:
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Input:
(Answers) {0.5} {0.7} {1/2}

Output:
(Final answer) 0.5
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K DETAILED PROMPTS

In this section, we provide the prompts for obtaining states and performing actions to ensure repro-
ducibility. In the following prompt blocks, the text enclosed in braces "{}" denotes problem-specific
content, such as intermediate reasoning steps, while the remaining texts serve as fixed templates.

K.1 PROMPT FOR OBTAINING STATES

We use the following prompt to extract a state vector from an intermediate reasoning step. This
prompt guides the LLM in systematically evaluating the current step across multiple aspects. During
our experiments, we observed that LLMs effectively identify these aspects and provide detailed scores
for each aspect.

Listing 1: Prompts for obtaining states
1 {Problem and reasoning steps}
2 Please evaluate the current step from the following aspects.
3 A) Correctness
4 A1: Correctness of modeling:
5 Whether the current step is correctly derived from the origin

problem.
6 A2: Clarity for further reasoning:
7 Whether the current step is clearly presented, without ambiguity

, to support further reasoning.
8 A3: Correctness of calculation:
9 Whether the numerical computation in the current step is

performed correctly.
10 B) Complexity
11 B1: Complexity to reach the final answer:
12 Whether it still requires complex reasoning or calculation to

reach the final answer from the current step.
13 B2: Alternative methods in further reasoning:
14 Whether there exist multiple alternative methods to solve the

problem in the current step.
15 C) Completeness
16 C1: Closeness to the final solution:
17 Whether the current step is close enough to directly reach the

final answer.
18 C2: Completeness within the step:
19 Whether all necessary elements within this specific step are

known from the problem or previous steps.
20 For each aspect, please score 1 for False, 2 for Unsure, and 3 for

True, and score 0 if the current step does not involve this
aspect. Please attach the reason for each score.

21 Use the format ’A1 score=[SCORE] reason=[REASON]’.
22 Only score the current reasoning step here, and DONOT conduct

further reasoning.

K.2 PROMPTS FOR ACTIONS

Reason one step: The prompt below is designed to conduct the action of “Reason one step”. We
emphasize that it should focus on one step at a time, which better controls the output and prevents
mistakes in long reasoning paths.

Listing 2: Prompts for action “Reason one step”
1 Here is a problem and several reasoning steps.
2 {Problem and previous steps}
3 Please reason exactly ONE more step based on the current step here,

and DONOT reason too many steps at once.

Decompose: A “Decompose” action consists of the following three prompts. First, we use prompt 3
to break down the current problem into multiple subtasks. Next, prompt 4 is applied sequentially to
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each subtask to complete its execution. Since the current subtask may depend on previous ones, the
results of earlier subtasks are included (see line 4 of the prompt). Finally, the execution results are
summarized using prompt 5, which captures the key steps and outcomes. Only the summarized result
is utilized for subsequent reasoning actions.

Listing 3: Prompts for obtaining subtasks in action “Decompose”
1 Here is a problem and several reasoning steps.
2 {Problem and previous steps}
3 Please decompose the current task into subtasks, where we can solve

the original problem by combining these results of subtasks.
4 Only provide subtasks decomposition here, and DONOT conduct specific

reasoning or calculation.
5 Use the format ’### Subtask1: subtask1’.

Listing 4: Prompts for executing subtasks in action “Decompose”
1 Here is a problem and several reasoning steps.
2 {Problem and reasoning steps before decomposition}
3 For the next step, the task is decomposed into subtasks, here are

the reasonings in the first few subtasks.
4 {Executing results of previous subtasks}
5 Please conduct the following Subtask{subtask_id} to continue the

reasoning. text_decompose.
6 DONOT conduct a more detailed decomposition for the subtask.

Listing 5: Prompts for summarize subtasks in action “Decompose”
1 Here are a few detailed reasoning subtasks of a problem.
2 {Executing results of subtasks}
3 Please give a clear and concise summary of these subtasks, keeping

the key reasoning and results in each subtask.
4 Only provide the summary here, and DONOT conduct more reasoning or

calculation.

Debate: A "Debate" action involves multiple rounds of question-answering. First, the LLM generates
different plans for the task using prompt 6. Next, the plans are compared, and the most promising
one is selected using prompt 7, mimicking how human experts debate and discuss to reach a solution.
Based on the chosen plan, reasoning is advanced by one step through prompt 8. Similar to the
“Decompose” action, only the results of the final one-step reasoning (output of prompt 8) are retained
for subsequent reasoning processes.

Listing 6: Prompts for obtaining various plans in action “Debate”
1 Here is a problem and several reasoning steps.
2 {Problem and previous reasoning steps}
3 Please propose three different alternative plans for solving the

problem in the current step.
4 Only provide plans here, and DONOT conduct specific reasoning or

calculation.
5 Use the format ’### Plan1: plan1’.

Listing 7: Prompts for analysing and comparing plans in action “Debate”
1 Here is a problem and several reasoning steps.
2 {Problem and previous reasoning steps}
3 Currently, we have several alternative plans for solving the problem

in the current step.
4 {Generated Plans}
5 Please review and compare these plans carefully, and tell which one

is most promising for further reasoning. Only compare the plans
here, and DONOT conduct further reasoning or calculation.

6 Use the format ’The most promising plan is Plan[INDEX]: [REASON]’,
where [INDEX] is an integer index of the plan and [REASON] is a
detailed analysis.

34



Preprint

Listing 8: Prompts for executing the plan in action “Debate”
1 Here is a problem and several reasoning steps.
2 {Problem and previous reasoning steps}
3 For the next step, we have decided on the most promising plan:
4 {Plan}
5 Please reason **exactly one** more step according to the plan here,

and DONOT reason too many steps at once.

Refine: We use prompt 9 to perform the “Refine” action, which instructs the LLM to review and
improve the reasoning steps for clarity and correctness.

Listing 9: Prompts for action “Refine”
1 Here is a problem and several reasoning steps
2 {Problem and previous reasoning steps}
3 Please check and refine the current thought here, and DONOT conduct

further reasoning or calculation.

Terminate: The prompt for the “Terminate” action concludes the reasoning process by generating the
final answer. The only variation lies in the output format, which is adapted to the specific requirements
of each dataset.

Listing 10: Prompts for action “Terminate”
1 Here is a problem and several reasoning steps
2 {Problem and previous reasoning steps}
3
4 ## GSM8K
5 Please generate the answer for the problem. Please end the answer

with ’The answer is numerical_answer’.
6
7 ## MATH
8 Please generate the answer for the problem. Wrap the answer with \\

boxed{{answer}}.
9

10 ## MMLU-STEM and GPQA
11 End the answer with ’The answer is (CHOICE)’.
12
13 ## StrategyQA
14 Please generate the answer for the problem. At the end of your

answer, conclude the answer with ’The answer is yes’ or ’The
answer is no’.
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L USE OF LLMS

The authors used LLMs to aid or polish paper writing, but all content has been carefully reviewed by
the author. The authors used LLMs for literature retrieval and discovery, but all related works have
been carefully reviewed and organized by the author. The research ideation in this work was entirely
completed by the author and does not involve the use of LLMs.
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