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ABSTRACT
With the rapid development of the cellular network, network plan-

ning is increasingly important. Generating large-scale urban cel-

lular traffic contributes to network planning via simulating the

behaviors of the planned network. Existing methods fail in sim-

ulating the long-term temporal behaviors of cellular traffic while

cannot model the influences of the urban environment on the cellu-

lar networks. We propose a knowledge-enhanced GAN with multi-

periodic patterns to generate large-scale cellular traffic based on

the urban environment. First, we design a GAN model to simulate

the multi-periodic patterns and long-term aperiodic temporal dy-

namics of cellular traffic via learning the daily patterns, weekly

patterns, and residual traffic between long-term traffic and peri-

odic patterns step by step. Then, we leverage urban knowledge

to enhance traffic generation via constructing a knowledge graph

containing multiple factors affecting cellular traffic in the surround-

ing urban environment. Finally, we evaluate our model on a real

cellular traffic dataset. Our proposed model outperforms three state-

of-art generation models by over 32.77%, and the urban knowledge

enhancement improves the performance of our model by 4.71%.

Moreover, our model achieves good generalization and robustness

in generating traffic for urban cellular networks without training

data in the surrounding areas.

KEYWORDS
Cellular traffic, generation, knowledge graph, GAN

1 INTRODUCTION
Cellular networks are becoming an indispensable infrastructure

of urban lives in recent years [28], which allow mobile users to

access extensive network services anytime and anywhere. With the

commercialization of the next-generation cellular networks (5G),

the network planning problem, which aims to design how to deploy

5G base stations to satisfy the traffic requirements of mobile users,

is becoming increasingly important.[1, 14]. Therefore, a critical

and challenging problem arises: how would the planned cellular

network perform?

Cellular traffic load across base stations plays an important role

in assessing the planned cellular network performance in advance.

To facilitate the planning of the 5G network, many researchers

concentrate on modeling and simulating the urban cellular traf-

fic [11, 21, 22, 27, 42]. For instance, Ma et al. [27] use social char-

acteristics to model the daily traffic of cellular networks, which

include traffic fluctuation, entropy, temporal homogeneity, and us-

age density. Ding et al. [11] generate synthetic base station traffic

to model the daily dynamics of cellular traffic in large-scale urban

mobile networks based on the measurements of real traffic data.

Previous studies have failed to simulate the long-term temporal

behaviors of cellular traffic. However, when it comes to the issue

of cellular network planning, mobile network operators find the

long-term traffic pattern much more valuable. This makes it eas-

ier to set up the cellular network and lets them see how well the

planned cellular network works. For instance, long-term traffic can

assist mobile network operators in designing a cellular network

that takes future spatiotemporal traffic dynamics into account [35]

and in reducing energy consumption by creating a Hyper Cellular

Architecture (HCA) adaptable to traffic fluctuations [46].

For the purpose of cellular network planning, we propose to

generate long-term urban cellular traffic in this paper. Given a

target urban area and the planned cellular network infrastructure,

we aim to generate the prospective traffic by leveraging the urban

environment of the target area and the cellular network behavior

patterns learned from other areas. Notably, long-term urban cellular

traffic generation is challenging for the following reasons:

• Complicated temporal variations. As shown in Figure 1,

complicated temporal variations exist in cellular traffic gen-

erally, for example, multi-scale periodicity [36] and burst

phenomenon [8], leading to the coexistence of periodic cor-

relation and aperiodic correlation of traffic in the temporal

domain. Existing traffic generation methods [9, 13, 29] fo-

cus on generating short-term network traffic in packet- or

flow-levels and cannot model such multi-scale temporal

patterns and the long-term aperiodic temporal correlations.

• Complicated urban environment. The urban environ-

ment in which base stations are deployed, such as the re-

gional function and important urban facilities, continues

to have a significant impact on cellular traffic. Urban en-

vironments logically influence how mobile users behave

online and their work rhythm, which results in a variety

of cellular traffic dynamics characteristics. Many existing

studies have documented this phenomenon [23, 36]. The

multi-source urban data can be used to describe the urban

environment [45]; however, it is challenging to effectively

extract the features of the urban environment that charac-

terize the diverse and cross-correlated influences between

multi-source urban data.

1
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Figure 1: The real traffic of an example base station across one month.

To address the above challenges, the generation model should

be capable of learning the multi-periodic patterns and long-term

aperiodic temporal correlations while capturing the urban envi-

ronment influence factors in urban cellular traffic. In this paper,

we propose a knowledge-enhanced generative adversarial network

(GAN) model that generates large-scale cellular traffic based on the

urban environment. First, we design a GAN-based model to simu-

late multi-periodic patterns while capturing long-term aperiodic

temporal correlations of cellular traffic. In our model, we design two

GANs to learn the fundamental periodic patterns of cellular traffic

and create daily and weekly patterns as different combinations

of the fundamental patterns. Also, to capture long-term aperiodic

temporal correlations of cellular traffic, we develop a GAN based

on temporal convolutional networks (TCN), which satisfies tem-

poral causality and retains the information in urban traffic across

long time intervals. Second, we propose using a knowledge-based

paradigm to characterize the cellular network’s urban environment

through knowledge graph (KG) techniques. A knowledge graph

can extract structured knowledge from multi-source data and has

shown success in a number of knowledge-based applications, e.g.,

user profiling [38], recommendation [31], and language understand-

ing [25]. In our case, we construct an urban KG containing multiple

factors affecting cellular traffic, including the geographical regions,

business areas, point of interests (POIs), and their relations (e.g.,

attributes and affiliation). This allows us to model spatial depen-

dencies and environmental semantics. We then devise a knowledge

graph embedding (KGE) method to extract the urban environment’s

characteristics for cellular network traffic generation.

In summary, our contributions are summarized as follows:

• We propose a GAN model for long-term urban cellular

traffic generation
1
. Our model can simulate cellular traffic

while capturing both multi-periodic patterns and long-term

aperiodic correlations.

• We build an urban KG containing multiple factors affect-

ing cellular traffic to model the spatial dependencies and

content semantics of base stations in the surrounding ur-

ban environment. A powerful KGE method is devised to

learn urban knowledge to enhance the generation of urban

network traffic in the urban environment.

• Extensive experiments on real-world urban traffic datasets

demonstrate that our proposed model outperforms state-of-

the-art baselines by over 32%, where the performance gain

1
Our codes: https://github.com/shirdy/TrafficGeneration/tree/master/Urban/

of 4.71% is contributed by the urban knowledge enhance-

ment. For a certain target area, our proposed model that

was trained on other areas still does well, which shows that

our proposed model is good at generalization and is strong.

2 PROBLEM DEFINITION AND SYSTEM
OVERVIEW

2.1 Problem Definition
In urban cellular networks, thousands of cellular base stations,

which are also known as the cell sites or cellular towers, are provid-

ing network services via receiving and transmitting cellular traffic

continuously. Hence, we focus on generating fine-grained cellular

network traffic of base stations. For each cellular base station, we

divide the network traffic in a period into equal intervals, then

formally denote the traffic as 𝑉 = {𝑉𝑡 }𝑇𝑡=1, where 𝑉𝑡 represents the
network traffic volume in the 𝑡𝑡ℎ interval, and 𝑇 is the amount of

these intervals. Concentrated on simulating the traffic variation of

base stations, we normalize the traffic 𝑉 with its two norm, which

is represented by ∥𝑉 ∥
2
. Hence the normalized traffic is denoted as

𝑆 = {𝑆𝑡 }𝑇𝑡=1 = {𝑉𝑡/∥𝑉 ∥
2
}𝑇𝑡=1, where 𝑆𝑡 represents the normalized

network traffic in the 𝑡𝑡ℎ time interval. For the sake of convenience,

we divide the traffic into hourly intervals, and 𝑇 equals to the total

number of hours. Accordingly, the urban cellular traffic generation

problem can be expressed as follows:

Definition 1 (Urban Cellular Traffic Generation Prob-

lem). Given the normalized traffic {𝑆} of the base stations in source
areas, generating the prospective normalized traffic {𝑆} of the base sta-
tions in the target area. In addition, urban environment information
in the target area can be utilized in this process.

To deal with the complicated temporal patterns in base station

traffic [20, 32, 36, 39, 44], we define the daily pattern and weekly

pattern as follows.

Definition 2 (Daily Pattern). The daily pattern is the average
traffic in each day during the total 𝑇 hours, which is denoted as
follows,

𝑆𝑑 =

{
𝑆𝑑𝑡

}
24

𝑡=1
=


©«
⌊
𝑇
24

⌋∑︁
𝑖=0

𝑆𝑡+24𝑖
ª®®¬ /

⌊
𝑇

24

⌋
24

𝑡=1

, (1)

where 𝑆𝑑𝑡 represents the traffic of the the 𝑡𝑡ℎ hour in daily pattern,
and

⌊
𝑇
24

⌋
is the total number of days.

2
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Definition 3 (Weekly Pattern). The weekly pattern is the av-
erage traffic in each week during the total 𝑇 hours, which is denoted
as follows,

𝑆𝑤 =
{
𝑆𝑤𝑡

}
24∗7
𝑡=1

=


©«
⌊

𝑇
24∗7

⌋∑︁
𝑖=0

𝑆𝑡+24∗7𝑖
ª®®¬ /

⌊
𝑇

24 ∗ 7

⌋
24∗7

𝑡=1

, (2)

where 𝑆𝑤𝑡 represents the traffic of the the 𝑡𝑡ℎ hour in weekly pattern,
and

⌊
𝑇

24∗7
⌋
is the total number of weeks.

We plot the patterns and traffic of an example base station in

Figure 1, where the traffic across days and weeks shows similar

patterns.

2.2 System Overview
To address the challenges of capturing the complicated temporal

patterns and the urban environment influence in cellular traffic,

we design a GAN model to learn the long-term traffic behaviors

and construct a KG to learn the urban environment for each base

station. As shown in Figure 2, we input random noise into our

generation model to introduce the randomness of base station traf-

fic; the influence of urban environment is introduced into traffic

generation via the KGE of each base station. Specifically, the same

as other GAN models, our model can work with the input of noise

only. In addition to the noise, KGE introduces prior knowledge as a

part of the input, which provides conditions for the generation as a

prior distribution. Therefore, using KGE or not is optional in the

implementation of our model. In summary, with the given urban

environment of base stations integrated by a KG, we design a GAN

model to generate the corresponding daily patterns 𝑆𝑑 , weekly pat-

terns 𝑆𝑤 , and long-term traffic 𝑆 with the random noise and the

urban KGE.

3 METHOD
We design a knowledge-enhanced GAN to generate the daily pat-

tern, weekly pattern, and residual traffic between long-term traffic

and periodic patterns step by step, where the noise and KGE are

inputted to the GAN model for introducing randomness and urban

environment information, as shown in Figure 4. For better under-

standing, we introduce the urban KG and GAN model as follows.

Traffic Generation

Daily Pattern  
Generation

Weekly Pattern 
 Generation 

Residual Traffic
Generation 

POI

Business Area

Base Station

Urban Knowledge Graph

Brand of POI

Category of POI

Region

Entities

Embedding
Learner

KGEs

Noise

Real  
Urban Traffic

Generated  
Urban Traffic

Figure 2: Overview of the urban cellular traffic generation
problem.

3.1 Urban Knowledge Graph

LocateAt

CateOf

CateOf

BaServe

BelongTo

ServedBy BaseLocateAt

ServedBy

LocateAt
BaseBelongTo

POI2

Region1

Region2

Business Area

Cate
BaseBorderBy

BaseBorderBy

BaseBorderBy ……

……

……

Embedding1

Embedding2

Embedding3

Figure 3: Illustration of the urban knowledge graph.

To model the urban environment, both spatial information and

urban contents are significant. Urban contents refer to the meaning-

ful things that belong to a city, for instance, administrative division,

business area, bank, stores, residential area, etc. Inspired by the suc-

cess of applying KGs in many domains, we construct a KG to model

the urban contents as entities, and their spatial and semantic corre-

lation can be modeled as relations. The entities fall in six categories,

including base stations, POIs, regions, business areas, the categories

of POI, and the brands of POI. Specifically, as shown in Figure 3,

a base station is linked to other entities via four kinds of relation:

1) a base station is located in a region; 2) a base station belongs

to a business area; 3) a POI is served by a base station; 4) a base

station border by another base station. Particularly, as a POI can be

served by many base stations within their service radius, we select

the nearest five base stations to reduce the computational burden.

Similarly, the nearest five adjacent base stations are retained for

each base station. Moreover, we model the spatial and semantic

correlation between other entities as relations, for instance, a POI

belongs to a business area, and a business area serves a region.

Finally, the KG includes twenty four kinds of relations. Details can

be found in Appendix A.1, where Table 5 illustrates the entities and

relations in our KG, and shows the amount of entities and triplets.

Based on the constructed KG, we learn the embedding of each base

station via TuckER [4]. TuckER is a tensor factorization method

for KGE learning, outperforming a number of translation-based

models (e.g., TransE [5]), bilinear models (e.g., ComplEx [33]), and

neural network models (e.g., ConvE [10]) in practice.

3.2 Knowledge-Enhanced GAN
We design a knowledge-enhanced GAN to generate the long-term

cellular traffic with multi-periodic patterns. Figure 4 illustrates the

three stage of generation, including generating daily pattern, gener-

ating weekly pattern, and generating long-term traffic. Specifically,

each generation stage is implemented by a delicately designed GAN,

we input homologous noise and KGE to them, and they outputs the

corresponding daily pattern, weekly pattern, and total traffic.

3
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Figure 4: Cellular traffic generation via the knowledge-enhanced GAN.
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Figure 5: Illustration of the daily/weekly pattern generator.

3.2.1 Daily Pattern Generation. In the first stage, we generate the

daily patterns in urban cellular traffic via learning the basic daily

patterns and the combination methods. Primarily, we use a matrix

to learn the basic daily patterns of the traffic in the generator 𝐺𝑑
.

The matrix can be denoted as𝑀𝑑
𝐺
, in which each vector represents a

basic daily pattern. Therefore, the daily pattern can be represented

as the weighted sum of these basic pattern vectors. In the generator

𝐺𝑑
, as illustrated in Figure 5, we use a multilayer perceptron (MLP)

to learn the weight on each basic daily pattern vector from noise

𝑍 and KGE 𝐾 , and use a softmax layer for normalization. Then,

𝑀𝑑
𝐺
is multiplied by the learned weights to generate the simulative

daily pattern
ˆ𝑆𝑑 , which can be denoted as follows,

𝑆𝑑 = 𝐺𝑑 (𝑍 ;𝐾∗) = GELU

(
softmax(MLP(𝑍 ;𝐾∗))𝑀𝑑

𝐺

)
, (3)

where 𝐺𝐸𝐿𝑈 is the activate function. Reciprocally, in the discrimi-

nator 𝐷𝑑
illustrated in Figure 6, we calculate the projection of real

daily pattern 𝑆𝑑 or generated daily pattern
ˆ𝑆𝑑 on the basic daily

pattern matrix for discriminator (i.e.,𝑀𝑑
𝐷
), and use MLP to give the

discrimination result on condition of 𝐾 . As the traffic patterns in

weekday and weekend show obvious differences, we generate the

daily patterns in weekday and weekend respectively. Particularly,

the KGE 𝐾 acts as a condition variable in𝐺𝑑
and 𝐷𝑑

, and the green

dashed circles in Figure 5, 6 and the
∗
in Equation 3 denotes that

KGE 𝐾 is optional for the input. Therefore, the GAN could operate

normally both on condition of urban knowledge and without the

knowledge. For weekly pattern and residual traffic generation, KGE

𝐾 is also optional for the input.

mm
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MG 

G
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 Patterns 
R
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 Patterns 

K

Loss

Figure 6: Illustration of the daily/weekly pattern discrimina-
tor.

3.2.2 Weekly Pattern Generation. In the second stage, we gener-

ate weekly patterns similar to the daily patterns. Differ from the

daily pattern generator, the basic weekly pattern matrix 𝑀𝑤
𝐺

in

the generator 𝐺𝑤
for weekly pattern generation represents the

weekly patterns with daily patterns removed, which helps to re-

move the interferences between weekly patterns and daily patterns

in the generator. Therefore, in the generator, 𝐾 and 𝑍 are mapped

to the weights on the basic weekly patterns with daily patterns

removed, then multiplied by𝑀𝑤
𝐺

to generate the abridged weekly

pattern with daily pattern removed. Then, as illustrated by the blue

dashed box and line in Figure 5, we add the daily patterns in week-

day and weekend generated by the daily pattern generator to the

corresponding parts of abridged weekly pattern, and output the

unabridged weekly pattern, which is denoted as follows,

𝑆𝑤 = 𝐺𝑤 (𝑆𝑑 , 𝑍 ;𝐾∗) = GELU

(
softmax(MLP(𝑍 ;𝐾∗))𝑀𝑤

𝐺
+ 𝑅𝑃 (𝑆𝑑 )

)
,

(4)

where 𝑅𝑃 (𝑆𝑑 ) represents the repetition of generated daily patterns

𝑆𝑑 . In the discriminator 𝐷𝑤
, the basic weekly patterns matrix𝑀𝑤

𝐷
contains the unabridged basic weekly patterns, and the discrimina-

tion result is calculated similar to the daily pattern discriminator.

3.2.3 Residual Traffic Generation. With weekly pattern generated,

our target becomes simulating the long-term aperiodic correlations

by generating the residual traffic between long-term traffic and

periodic patterns, which refers to the residual components of the

total traffic after removing the weekly patterns in each week. We

4
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Figure 7: Illustration of the residual traffic generator.

design a TCN-based GAN to capture the long-term aperiodic corre-

lation via residual traffic, the generator 𝐺𝑟
and the discriminator

𝐷𝑟
are illustrated in Figure 7 and Figure 8 respectively. We adopt

TCN [3] with different kernel sizes to capture the daily, weekly,

and monthly correlations. TCN is a 1-D convolutional network that

uses casual convolutions and dilated convolutions, including input

layer, output layer, and several hidden layers. For each layer in the

TCN with a daily kernel, the values are calculated based on values

during the last day in the previous layer, which helps to capture

the influence in previous days across multiple layers. Similarly, the

TCNs with weekly and monthly kernels help to capture the influ-

ence in previous weeks or months. In the generator 𝐺𝑟
, 𝐾 and 𝑍

are mapped to the input layer of TCNs, and we use a linear layer to

combine the three output sequences to generate the residual traffic.

Then, the generated weekly pattern is added to the residual traffic

to generate the total long-term traffic, which can be denoted as

follows,

𝑆 = 𝐺𝑟
(
𝑆𝑤 , 𝑍 ;𝐾∗

)
= GELU

(
𝑆𝑟 + 𝑅𝑃 (𝑆𝑤)

)
= GELU

(
MLP

(
TCNs(MLP(𝑍 ;𝐾∗))

)
+ 𝑅𝑃 (𝑆𝑤)

)
,

(5)

where 𝑅𝑃 (𝑆𝑤) represents the repetition of generated weekly pat-

terns 𝑆𝑤 . In the discriminator 𝐷𝑟
, we input the simulative or real

traffic to the TCNs with different kernel sizes. Then based on the

output of TCNs, we use an MLP to give the discrimination result

on condition of 𝐾 .

3.2.4 Model Training and Loss. Figure 4 illustrates the three stage
in our model training. In the first stage, we train the daily pattern

generator 𝐺𝑑
and daily pattern discriminator 𝐷𝑑

to generate the

daily pattern
ˆ𝑆𝑑 . In the second stage, we train the weekly pattern

generator 𝐺𝑤
and weekly pattern discriminator 𝐷𝑤

to generate

the weekly pattern ˆ𝑆𝑤 based on the output daily pattern
ˆ𝑆𝑑 in the

first stage. In the third stage, we train the residual traffic generator

𝐺𝑟
and total traffic discriminator 𝐷𝑟

to generate the total traffic 𝑆

based on the output weekly pattern ˆ𝑆𝑤 in the second stage. In each

stage, we use Wasserstein distance [2] with gradient penalty [15]

in our model, which is demonstrated to be effective in performance

improvement for GANs. The loss function is as follows,

𝐿 = E
𝑆∼P𝐺

[𝐷 (𝑆)] − E
𝑆∼P𝑅

[𝐷 (𝑆)] + 𝜆 E
𝑆∼P

𝑆

[
(
∇

𝑆
𝐷 (𝑆)


2
− 1)2

]
, (6)

where 𝐷 (𝑆) is the discrimination results of real samples 𝑆 , and

P𝑅 represents the real data distribution, 𝐷 (𝑆) is the discrimination

results of generated samples 𝑆 , and P𝐺 represents the generator

distribution, 𝑆 are samples uniformly along straight lines between

TCN  with  daily  kernel

TCN with weekly kernel

TCN with monthly kernel Linear

Sigm
oid

D(R)

D(F)

Long-term Traffic Discriminator  Dr

Loss G
enerated
Traffic

R
eal 

Traffic

K

Figure 8: Illustration of the long-term traffic discriminator.

pairs of objects sampled from the real and generated data, 𝐷 (𝑆)
is its discrimination results and P

𝑆
represents its distribution. In

each stage, the generator is trained to minimize the loss, while the

discriminator is trained to maximize it.

Particularly, we pre-train the basic daily pattern matrix𝑀𝑑
and

the basic weekly pattern matrix 𝑀𝑤
to improve the training effi-

ciency. For the basic daily pattern matrix𝑀𝑑
, we calculate the real

daily patterns on the training set, cluster them into 𝑁 clusters via

K-means algorithm [19], and take the average of daily patterns in

cluster 𝑖 as the initial value of 𝑖𝑡ℎ basic daily pattern vectors 𝐶𝑑
𝑖
.

Hence 𝑀𝑑 = [𝐶𝑑
1
,𝐶𝑑

2
, ...,𝐶𝑑

𝑁
], where each 𝐶𝑑

𝑖
represents a basic

daily pattern, and 𝑁 is the total number of basic daily patterns.

Simultaneously, the initial value of the basic weekly pattern matrix

𝑀𝑤
can be calculated based on the clustering results of real weekly

patterns.

4 EXPERIMENTS
We conduct experiments on a real cellular dataset to answer the

following three research questions:

• RQ1: How does our proposed model perform compared

with the state-of-the-art(SOTA) models in cellular traffic

generation?

• RQ2: Can the proposed model leverage urban knowledge

to improve the cellular traffic generation?

• RQ3: How is the generalization and robustness of our pro-

posed model? Specifically, for urban cellular networks with-

out training data in the surrounding areas, can the proposed

model achieve good performance?

We first describe the experiment settings, then answer the three

research questions as follows.

4.1 Experiment Setting
4.1.1 Dataset. We acquire a cellular traffic dataset collected by

an ISP from Shanghai, a big city in China. The dataset contains

the network traffic records of 5,326 base stations all over Shanghai,

which are collected between Aug 1st and Aug 28th 2014. As shown

in Table 1, we divide the dataset into three sub-datasets according

to the location of base stations, including the center area, suburb

area, and outer suburb area.

4.1.2 Baselines. We compare our proposed model with the fol-

lowing three baselines. Notably, to answer RQ2, we evaluate each

model with two different kinds of inputs: 1) urban KGEs 𝐾 and

noise vectors 𝑍 , 2) only noise vectors 𝑍 .
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TransGAN [18]. TransGAN is a transformer-based GAN frame-

work, which consists of a generator with several transformer blocks

that progressively increases feature resolution, and correspondingly

a multi-scale discriminator to capture simultaneously semantic con-

texts and low-level textures. For cellular traffic generation, we adjust

the scales of transformer blocks to capture the multi-scale temporal

patterns.

RNN-based GAN. Long short term memory (LSTM)[16] is an

RNN architecture that is known for memorizing history values

over arbitrary intervals. We construct a GAN using two LSTMs

as the generator and discriminator. The input for the generator is

the KGE 𝐾 and noise 𝑍 , while the output is the generated cellular

traffic. Then, the generated and real traffic data are input to the

discriminator to give discriminating results.

TCN-based GAN.We construct a GAN using several TCNs[3]

as the generator and discriminator, which is similar to the residual

traffic generator and long-term traffic discriminator in our frame-

work shown in Figure 7 and Figure 8. The difference is that the

KGE 𝐾 and noise 𝑍 are directly mapped to the total traffic of base

stations through TCNs, linear layers, and normalization layers in

the generator.

4.1.3 Metrics. We evaluate our model via the following four met-

rics: Traffic Volume, First-order Difference, Daily Frequency Com-

ponent, and Weekly Frequency Component. Detailed descriptions

of metrics can be found in Appendix A.2.

4.1.4 Parameter Setting. To keep the balance between computation

complexity and representational capacity, we set the dimensions of

KGEs and noise vectors to 32. Then, we train our model and baseline

models on each sub-dataset with 300 iterations, and test the trained

model on the other two sub-datasets. Specifically, as the inputs of

these trained generation models include both KGE 𝐾 and random

noise 𝑍 , we apply each trained model on each testing sub-dataset

for 20 times with random noise 𝑍 initialized from different seeds.

Moreover, to evaluate the effectiveness of urban knowledge, we

remove KGE 𝐾 from the inputs of each generation model during

both training and testing to apply contrast tests. Finally, we compute

the metrics on generated and real data and calculate each metric’s

mean value and standard deviation.

4.2 Performance Comparison (RQ1)
We compare the performance of our proposed model with the other

models via the metrics of traffic volume distribution, first-order dif-

ference distribution, daily periodicity, and weekly periodicity. Gen-

erally, our model outperforms the other models. Table 2 presents the

evaluation results of the cellular traffic generated by different mod-

els, where ’Trans’ represents the TransGAN model, ’RNN’ repre-

sents the RNN-based GAN model, ’TCN’ represents the TCN-based

Table 1: The three areas and corresponding base station num-
bers in our dataset.

Area Center Suburb Outer Suburb

District Number 7 4 5

Base Station Number 1665 2480 1181

GAN model, and ’+K’ represents urban knowledge enhancement.

For the JSD of traffic volume, our model gives the best result, which

indicates that our model outperforms the other models on captur-

ing the traffic volume distribution of cellular traffic. For the JSD of

the first-order differences, our model gives the second-best result

while RNN-based GAN model gives the best result, because RNN is

good at capturing short-term variation. For daily periodicity, our

model outperforms all the other models, which proves that we can

successfully learn the daily temporal patterns in cellular traffic. For

weekly periodicity, our model reaches a result close to the best. In

practice, we find that not all base stations show obvious weekly

traffic pattern, indicating that the weekly frequency component

can show similar intensity with other frequency components, and

can be easily disturbed by noise in frequency domain. Overall, our

model outperforms baseline models by 32.77% at least.

To present the performance of our model visually, we compare

the real and generated temporal patterns of a selected base station

in Figure 9. Compared with the best baseline model, i.e., RNN-based

GAN, our model generates more realistic daily and weekly patterns.

Our generated data are more similar to the real data shown in

Figure 1. In contrast, TransGAN and TCN-based model can hardly

capture the daily patterns, and RNN-based model generates traffic

with only tiny fluctuations. Detailed descriptions can be found in

Appendix A.3.

In summary, our proposed model performs better compared with

the SOTA baseline models in cellular traffic generation, which prove

the capacity of capturing multi-periodic patterns and long-term

aperiodic correlations for our model.

4.3 Urban Knowledge Effect (RQ2)
To evaluate the effect of urban knowledge, we conduct an experi-

ment of predicting the clusters of base stations via their KGEs to

verify whether the learned KGEs contain any urban information

at first. Considering the surrounding urban functional regions, the

base stations can be classified into five clusters: resident, transport,

office, entertainment, and comprehensive [36]. We split the real

dataset into training and testing set accounting for 50% and 50%,

train several classifiers on the training set and apply the trained

model to the testing set. To control the impact of classification

methods, the experiment includes five common-used classification

algorithms: k-nearest neighbors (kNN), logistic regression (LR), ran-

dom forest (RF), MLP, and multinomial naive Bayes (NB). Table 3

presents that most of the classification results are greater than 65%,

indicating that the learned KGEs contain the information of the

surrounding urban functional regions, e.g., the type of its urban

function. Moreover, the learned KGEs may also contain other kinds

of urban information.

We then prove that the learned KGEs can improve the cellular

traffic generation in our model. As discussed in Section 2.2 and

Section 3.2, the KGEs are inputted to our proposed model and other

baseline GAN models as optional condition variables, and the GAN

models operate normally both with and without knowledge. We

compare the performances of the models on condition of urban

knowledge and without the knowledge. Table 2 shows that most of

the generation models with knowledge enhanced perform better
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Table 2: Evaluation results of cellular traffic generated by different models, where lower results are better. Bold denotes the
best(lowest) results and underline denotes the second-best results.

Metrics
Traffic Volume

First-order
Difference

Daily Frequency
Component

Weekly Frequency
Component Δ

JSD Δ JSD Δ RMSE Δ RMSE Δ

Trans 0.5025 ± 0.0070 74.53% 0.1378 ± 0.0029 85.08% 0.0427 ± 0.0048 112.28% 0.0085 ± 0.0009 49.78% 80.42%

Trans+K 0.4948 ± 0.0151 71.87% 0.1075 ± 0.0066 44.36% 0.0384 ± 0.0050 91.06% 0.0049 ± 0.0006 −12.51% 48.69%

RNN 0.5748 ± 0.0509 99.65% 0.0813 ± 0.0408 9.19% 0.0477 ± 0.0108 137.04% 0.0063 ± 0.0018 12.52% 64.60%

RNN+K 0.4317 ± 0.0511 49.94% 0.0631 ± 0.0169 −15.21% 0.0388 ± 0.0050 92.79% 0.0058 ± 0.0010 3.55% 32.77%

TCN 0.4099 ± 0.1799 42.37% 0.0747 ± 0.0304 0.31% 0.0401 ± 0.0048 99.38% 0.0061 ± 0.0009 8.83% 37.72%

TCN+K 0.4241 ± 0.1137 47.29% 0.1024 ± 0.0360 37.56% 0.0407 ± 0.0049 102.52% 0.0068 ± 0.0010 20.15% 51.88%

Ours 0.3072 ± 0.1323 6.70% 0.0850 ± 0.0551 14.17% 0.0211 ± 0.0075 4.96% 0.0052 ± 0.0009 −6.99% 4.71%

Ours+K 0.2879 ± 0.0401 0 0.0744 ± 0.0323 0 0.0201 ± 0.0073 0 0.0056 ± 0.0007 0 0

(a) Ours+k: Weekday. (b) Ours+k: Weekend. (c) Ours+k: Weekly.

(d) Ours: Weekday. (e) Ours: Weekend. (f) Ours: Weekly.

(g) RNN: Weekday. (h) RNN: Weekend. (i) RNN: Weekly.

Figure 9: Comparison between the real temporal patterns and
the generated temporal patterns, according to the weekday
patterns, weekend patterns, and weekly patterns in each col-
umn. (a,b,c) Temporal patterns generated by our knowledge-
enhanced model, (d,e,f) temporal patterns generated by our
model without knowledge, (g,h,i) temporal patterns gener-
ated by knowledge-enhanced RNN-based GAN.

Table 3: Results of base station cluster prediction via KGE.

Model kNN LR RF MLP NB

Accuracy 0.6432 0.6834 0.6801 0.5777 0.6879

than models without knowledge, which demonstrates the effective-

ness of the learned KGEs for cellular traffic generation. For our

model, introducing urban KGEs could improve the performance by

4.71%. For all the models in average, the urban knowledge enhance-

ment improves the performances by 13.53%. In addition, Figure 9

plots the traffic generated by our model with urban knowledge

removed, which performs weaker than our knowledge-enhanced

model on capturing daily and weekly patterns, yet better than the

knowledge-enhanced baseline models.

In summary, our proposed model can leverage urban knowledge

to improve the cellular traffic generation.

4.4 Generalization and Robustness (RQ3)
To verify the generalization and robustness, we train our model on

each area, and apply the trained models to all the areas. Table 4

shows the evaluation results, where ’O-C’ represents applying the

model trained on the cellular traffic in the outer suburb area to

generate cellular traffic in the center area. Models trained on the

cellular traffic in the suburb area perform best, which can be ex-

plained by the sizes of training sets. As the number of base stations

in the suburb area is more than the other areas, it has the largest

training set, the models trained on it perform best accordingly. The

results show that for the cellular traffic in a certain target area,

models trained on the cellular traffic in other areas perform no

worse than models trained on itself generally, illustrating that our

proposed model can achieve good performance for urban cellular

networks without training data in the surrounding areas. Therefore,

our proposed model is capable of generalizing the long-term tem-

poral behaviors and urban knowledge effect mechanisms learned

from the cellular traffic data in the training areas to the other areas,

and operates robustly across different areas.

In summary, our proposed model achieves good generalization

and robustness on generating traffic for urban cellular networks

without training data in the surrounding areas.

5 RELATEDWORK
Our work assists mobile network planning and optimization by

simulating cellular traffic via delicately designing a knowledge-

enhanced GAN with multi-peridoc patterns. To summarize the

related works for our work, we introduce the representative re-

searches on network traffic generation and the applications of KG.
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Table 4: Evaluation results of cellular traffic in each area generated by our model trained on different areas, where lower results
are better. Bold denotes the best (lowest) results and underline denotes the second-best results.

Metrics
Traffic Volume

First-order
Difference

Daily Frequency
Component

Weekly Frequency
Component Δ

JSD Δ JSD Δ RMSE Δ RMSE Δ

O-C 0.3348 ± 0.0123 37.95% 0.0915 ± 0.0270 82.24% 0.0388 ± 0.00005 171.72% 0.0095 ± 0.00003 84.14% 94.01%

O-S 0.3311 ± 0.0125 36.41% 0.0940 ± 0.0129 87.17% 0.0323 ± 0.00004 126.17% 0.0088 ± 0.00002 70.54% 80.07%

O-O 0.3178 ± 0.0131 30.93% 0.1002 ± 0.0196 99.50% 0.0262 ± 0.00004 83.07% 0.0063 ± 0.00004 23.25% 59.20%

C-C 0.2773 ± 0.0203 14.24% 0.0707 ± 0.0088 40.88% 0.0295 ± 0.00007 106.57% 0.0076 ± 0.00005 46.82% 52.13%

C-S 0.2812 ± 0.0259 15.85% 0.0767 ± 0.0226 52.71% 0.0234 ± 0.00006 64.03% 0.0073 ± 0.00005 42.67% 42.70%

C-O 0.2714 ± 0.0338 11.80% 0.0901 ± 0.0279 79.54% 0.0177 ± 0.00007 24.05% 0.0056 ± 0.00006 9.42% 31.20%

S-C 0.2662 ± 0.0199 9.67% 0.0441 ± 0.0202 -12.19% 0.0201 ± 0.00006 40.32% 0.0074 ± 0.00003 43.78% 20.39%

S-S 0.2416 ± 0.0318 -0.46% 0.0425 ± 0.0261 -15.40% 0.0164 ± 0.00006 14.93% 0.0071 ± 0.00005 36.91% 9.00%

S-O 0.2427 ± 0.0154 0 0.0502 ± 0.0323 0 0.0143 ± 0.00007 0 0.0051 ± 0.00007 0 0

5.1 Network Traffic Generation
In the early stage, network traffic generation is solved by network

traffic models [34, 40] and applied to test network equipment, net-

work services, and security products [43]. Recently, machine learn-

ing methods are applied to network traffic generation, e.g., auto-

regressive models [6, 41]. As a state-of-art generative model, GAN

also becomes popular for network traffic generation [9]. Ring et

al. [29] generate network traffic flows via three GAN-based pre-

processing approaches, and Dowoo et al. [13] generate pcap files

via the PcapGAN model trained on cyber attack data and normal

data. However, the above GAN models focus on generating traffic

flows or packets of individual entities in the network, requiring

detailed configurations and parameters (e.g., network protocols, IP

addresses, etc), which is inapplicable for collective network traffic

generation tasks like urban cellular traffic generation. Moreover,

Lin et al. [24] generate traffic forms data via the DoppelGANger

model, which can generate data attributes and feature series simul-

taneously. Nevertheless, urban cellular traffic data contains only the

one-dimensional feature and no attributes, for which their model

is inapplicable.

These generation models for network traffic data provide us

experience to generate cellular traffic. Based on these models, our

proposed model generates both the multi-periodic patterns and the

long-term aperiodic correlations of cellular traffic data enhanced

by urban knowledge.

5.2 Knowledge Graph Application
KG is widely used in multiple real-world AI applications by inject-

ing rich structured knowledge to improve representation learning,

such as natural language understanding (NLU), question answering,

and recommendation systems [17]. For example on NLU, Liu et al.

[26] infuse domain knowledge into BERT contextual encoder, Sun

et al. [30] introduce named entity masking and phrase masking to

integrate knowledge into the continual multitask learning language

model. For single-fact QA, Chen et al. [7] propose BAMnet to model

the two-way interaction between questions and KG with a bidirec-

tional attention mechanism. For multi-hop reasoning, Ding et al.

[12] propose CogQA to combine implicit extraction and explicit

reasoning and construct a cognitive graph model based on BERT

and GNN for multi-hop QA. For recommend system, Wang et al.

[37] propose MKR to associate multitask representation and rec-

ommendation by sharing latent features and modeling high-order

item-entity interaction.

The above works demonstrate the effectiveness of KGs in various

application scenarios. Inspired by these applications, we construct

the urban KG to describe the urban environment for the base sta-

tions, and introduce the urban KGEs into traffic generation.

6 CONCLUSION
In this paper, we propose a knowledge-enhanced GAN to generate

urban cellular traffic. First, we learn the multi-periodic patterns and

long-term aperiodic correlations via daily patterns, weekly patterns

and residual traffic step by step. Then, we utilize urban knowledge to

enhance traffic generation by constructing an urban KG containing

multiple factors affecting cellular traffic in the surrounding urban

environment. We evaluate our proposed model on a real traffic

dataset, where our model outperforms the state-of-art generation

models at by over 32.77% in terms of key fidelity metrics, and the

urban knowledge enhancement improves the performance of our

model by 4.71%Moreover, traffic generation performances on urban

cellular networks without training data in the surrounding areas

demonstrate the generalization and robustness of our proposed

model.

We have released our codes, the trained generation models, and

the generated urban cellular traffic data on Github to support the

reproducibility. Our proposed model can also generate all kinds of

traffic data with multi-periodic patterns and long-term aperiodic

correlations, for instance, website visiting and urban passenger

traffic. We believe this work promotes further studies of the traffic

generation problem. One limitation of our work is conducting cross-

area experiments in the same city instead of cross-city experiments.

Therefore, we plan to collect urban cellular traffic data and construct

urban KGs in more cities for cross-city experiments in future work.
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A APPENDIX
A.1 Urban Knowledge Graph Schema
Urban is an important part of our research which inspire us to build

a knowledge graph to introduce the urban information for our task.

Table 5 lists the entity types and shows the subject and object of

each kind of relation. These entities and relations can describe both

semantic knowledge and interaction features.

A.2 Evaluation Metrics
Traffic Volume. We evaluate the distribution of traffic volume for

the generated cellular traffic by comparingwith the real distribution.

Jensen–Shannon divergence (JSD) is a commonly used metric to

describe the similarity between two distributions, which is defined

as,

JSD(PG, PR) =

√︄
KL(PG∥P{S̃} ) + KL(P{S̃} ∥PR)

2

, (7)

where P𝑅 represents the real data distribution, P𝐺 is the generator

distribution, P{𝑆 } represents the point-wise mean of P𝑅 and P𝐺 , and
KL is the Kullback-Leibler divergence.We calculate the JSD between

the distribution of traffic volume in each generated dataset {𝑆} and
the corresponding real sub-dataset {𝑆}, which can be denoted as

JSD(P{Ŝ} , P{S} ), and a lower JSD means a closer distribution to the

real data, which indicates a better generation model.

First-order Difference. To evaluate the variation in each gen-

erated traffic series 𝑆 , we compute the first-order difference series

for 𝑆 , which can be denoted as 𝑆 ′ =
{
𝑆𝑡+1 − 𝑆𝑡

}𝑁−1
𝑡=1

. Then, the

first-order differences of generation dataset and real sub-dataset

can be denoted as {𝑆 ′} and {𝑆 ′} respectively. We calculate the

JSD between the first-order differences of each generated dataset

and the corresponding real sub-dataset, which can be denoted as

JSD(P{Ŝ′ } , P{S′ } ).
Daily Frequency Component.We evaluate the daily period-

icity of the generated traffic via calculating daily frequency com-

ponent. Firstly, we compute the frequency spectrum of each gen-

eration cellular traffic series 𝑆 , which is denoted as 𝐹 = 𝐹𝐹𝑇 (𝑆).
The proportion of daily frequency component can be calculated

by 𝐹𝑑 =

𝐹 [ ⌊
𝑁
24

⌋ ]
2

/∥𝐹 ∥2, where ∥𝐹 ∥2 is the two norm of to-

tal frequency spectrum, and

𝐹 [ ⌊
𝑁
24

⌋ ]
2

is the two norm of daily

frequency component. Then, for each generation cellular traffic

series 𝑆 , we compute the root-mean-square error (RMSE) to the

corresponding real cellular series 𝑆 on daily frequency component,

which can be denoted as RMSE(F̂d, Fd) =
√︃
(F̂d − F

d)2.
Weekly Frequency Component. We evaluate the weekly pe-

riodicity of the generated traffic via calculating weekly frequency

component, the proportion of which can be denoted as 𝐹𝑤 =𝐹 [ ⌊
𝑁

24∗7
] ]

2

/∥𝐹 ∥2, where
𝐹 [ ⌊

𝑁
24∗7

] ]
2

is the two norm ofweekly

frequency component. Similarly, we compare the generated and

real weekly frequency component via computing RMSE(F̂w, Fw) =√︃
(F̂w − F

w)2.

(a) Weekday Pattern. (b) Weekend Pattern. (c) Weekly Pattern.

(d) All Generated Traffic.

Figure 10: The traffic generated by our model.

(a) Weekday Pattern. (b) Weekend Pattern. (c) Weekly Pattern.

(d) All Generated Traffic.

Figure 11: The traffic generated by our model without KGE.

(a) Weekday Pattern. (b) Weekend Pattern. (c) Weekly Pattern.

(d) All Generated Traffic.

Figure 12: The traffic generated by TransGAN.

A.3 Temporal Patterns Generated by Other
Models

Figures 10, 11, 12, 13, 14 show the temporal patterns generated

by our model and all the knowledge-enhanced baseline models.

As shown in Figure 12(a) 12(b) 14(a) 14(b), TCN-based model and

TransGAN model can’t reflect intra-day periodic characteristics,

because the twomodel have peaks late at night. And data generating

from RNN-based model illustrated in Figure 13(d) has very little

fluctuation, which can’t reflect the real cellular traffic variation., Our

model shows better on various cycle characteristics than baseline

models.
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Table 5: Details of Urban Knowledge Graph.

Entity Amount Relation Triplets Relation Triplets

Base

Station (BS)

12,576 BorderBy(Region,Region) 13,550 CoCheckin(POI,POI) 13,621

POI 1,717,851 NearBy(Region,Region) 39,312 Competitive(POI,POI) 6,848

Region 2,597 LargeOD(Region,Region) 650 RelatedBrand(Brand,Brand) 466

Business

Area (BA)

277 SimilarPOIs(Region,Region) 4,170 Brand2Cate1(Brand,Cate1) 1,164

Cate1 14 BaServe(BA,Region) 13,256 Brand2Cate2(Brand,Cate2) 1,136

Cate2 56 LocateAt(POI,Region) 1,717,851 Brand2Cate3(Brand,Cate3) 945

Cate3 480 BelongTo(POI,BA) 1,536,715 SubCateOf_2to1(Cate2,Cate1) 56

Brand 945 Cate1Of(POI,Cate1) 1,717,851 SubCateOf_3to1(Cate3,Cate1) 480

Cate2Of(POI,Cate2) 1,717,851 SubCateOf_3to2(Cate3,Cate2) 480

Cate3Of(POI,Cate3) 1,717,851 BrandOf(POI,Brand) 62,607

ServedBy(POI,Base) 8,511,497 BaseLocatedAt(Base,Region) 12,576

BaseBelongTo(Base,BA) 10,576 BaseBorderBy(Base,Base) 62,770

(a) Weekday Pattern. (b) Weekend Pattern. (c) Weekly Pattern.

(d) All Generated Traffic.

Figure 14: The traffic generated by TCN-based GAN.

Figure 15: Regionalism in Shanghai.

(a) Weekday Pattern. (b) Weekend Pattern. (c) Weekly Pattern.

(d) All Generated Traffic.

Figure 13: The traffic generated by RNN-based GAN.

A.4 Base Station Area Division
In our research, we need a reasonable way to reflect the different

cellular traffic temporal patterns between various areas. Generally

speaking, different administrative districts may have different in-

dustrial, recreational and residential attributes. So we divide base

stations into three parts based on administrative districts and ge-

ographical location. Figure 15 visually illustrates how we divide

regions.
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