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ABSTRACT
With the flourishing of location based social networks, posting

check-ins has become a common practice to document one’s daily

life. Users usually do not consider check-in records as violations of

their privacy. However, through analyzing two real-world check-in

datasets, our study shows that check-in records are vulnerable to

linkage attacks. To address this problem, we design a partition-
and-group framework to integrate the information of check-ins

and additional mobility data to attain a novel privacy criterion —

kτ ,l -anonymity. It ensures adversaries with arbitrary background

knowledge cannot use check-ins to re-identify users in other anony-

mous datasets or learning unreported mobility records. The pro-

posed framework achieves favorable performance against state-

of-art baseline in terms of improving check-in utility by 24%∼57%

while providing stronger privacy guarantee at the same time. We

believe this study will open a new angle in attaining both privacy-

preserving and useful check-in services.

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-6674-8/19/05.

https://doi.org/10.1145/3308558.3313506

CCS CONCEPTS
• Security and privacy → Privacy protections; Social network
security and privacy; • Networks→ Social media networks.

KEYWORDS
Check-ins, privacy-preserving data publishing, linkage attacks, mo-

bility data privacy

ACM Reference Format:
Fengli Xu, Zhen Tu, Hongjia Huang, Shuhao Chang, Funing Sun, Diansheng

Guo, and Yong Li. 2019. No More than What I Post: Preventing Linkage

Attacks on Check-in Services. In Proceedings of the 2019 World Wide Web
Conference (WWW ’19), May 13–17, 2019, San Francisco, CA, USA. ACM,

New York, NY, USA, 8 pages. https://doi.org/10.1145/3308558.3313506

1 INTRODUCTION
Check-in service has now become a popular feature that is widely

adopted by the mainstream social media platforms, such as Face-

book, Twitter and Wechat. It facilitates users to document their

daily activities with mobility trace and share them with public audi-

ence. Users usually do not associate the self-reported check-ins with

privacy risks, since they only check-in to places they feel comfort-

able [4]. However, the uniqueness of human mobility often exposes

their check-in records to linkage attacks, i.e., revealing their identi-

ties and unreported mobility records in other anonymous mobility

datasets, such as call detail records [5], transportation records [8],

and credit card records [12]. Moreover, recent researches show
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that most users are unaware or not able to fully anticipate the pri-

vacy risks embedded in posting check-ins [23]. Therefore, it is a

paramount task for the check-in service providers to quantify the

potential privacy exposures and put forward feasible solutions.

Previous efforts attempted to address the problem of linkage

attacks on mobility data by ensuring user’s anonymity in anony-

mous mobility datasets [12, 15]. That is, making sure adversary

cannot achieve unique linkages based on user’s check-ins through

generalizing the records in anonymous mobility datasets. However,

such approach often requires unacceptable data utility degenera-

tion [35], and cannot prevent adversary from learning additional

unreported mobility records [18]. It is also unrealistic for users

and check-in service providers to assume all anonymous mobil-

ity datasets have been properly sanitized, since studies repeatedly

demonstrated that insecure datasets had been irreversibly spread

across the Internet [13, 22]. Therefore, these findings suggest it is

impractical to prevent linkage attacks by sanitizing anonymous

mobility datasets. In this paper, we investigate and address this

problem through a novel angel — looking at the public mobility

records, i.e., check-ins.
In this paper, we put forward several contributions to attain

both privacy-preserving and useful check-in services. First, we

extend the frameworks of k-anonymity [26] and l-diversity [18]

into check-in privacy preserving, and devise a novel privacy cri-

terion kτ ,l -anonymity. It ensures the posted check-ins cannot be

exploited to distinguish user from at least other k − 1 users in any

anonymous mobility datasets, and for any time window of duration

τ user’s actual locations are indistinguishable from at least other

l − 1 locations. Second, we further propose a partition-and-group
framework to optimize the check-in utility under kτ ,l -anonymity

privacy guarantee by carefully partitioning user population into

small anonymity groups. Third, we conduct a thorough trace-driven

evaluation on the proposed framework based on two real-world

datasets. The evaluation results demonstrate that our framework

significantly outperforms state-of-art baseline method in terms of

achieving 24%∼57% check-in utility improvement while providing

stronger privacy guarantee in the same time. In addition, 32%∼62%

check-in utility boost of our framework is achieved by introducing

additional mobility data, which showcases the benefits of integrat-

ing additional mobility data in privacy-preserving check-in service.

Finally, our study reveals two intriguing trade-offs between the util-

ity and privacy in check-in services: (i ) in order to achieve modest

privacy gains, users need to sacrifice significant check-in utility, i.e.,
reducing spatio-temporal resolution of check-ins. (ii ) users may

increase the utility of their check-ins with same privacy level by

letting check-in service providers to collect moderate amount of ad-

ditional mobility data. Such findings may have direct implications

on how to defend linkage attacks with the joint effort of check-in

service providers and individual users.

2 RELATEDWORKS
Linkage Attack: The linkage attacks were widely studied in mul-

tiple scenarios and had received increasing attention in recent

years [17, 18, 26, 27]. The most prominent two branches are re-
identification attack and probabilistic attack [7]. Specifically, the

re-identification attack aims at recovering individuals’ identities

(a) Re-identification attack (b) Probabilistic attack

Figure 1: Illustration of linkage attacks on check-ins.

in anonymous datasets by achieving unique linkages with public

datasets. For example, 87% of American population can be uniquely

re-identified with the public accessible information of ZIP code,

gender and date of birth [26]. Similar findings have been established

in wide range of scenarios, including web browsing records [25],

call detail records [35], app usage records [27, 32] and so on. One

popular privacy model against such attack is k-anonymity, which

requires to make the records of each individual indistinguishable

from at least k−1 others [26]. On the other hand, probabilistic attack
is a more generic linkage attack, which aims at improving some

belief on individuals through correlating the datasets. Researchers

demonstrated that by combining online social network data and

sparse offline location data individual’s locations can be predicted

with high precision [19]. In addition, the salary class of individuals

can be accurately inferred by correlating census data with pub-

lic available information [18]. To defend such attacks, l-diversity
and t-closeness have been proposed to ensure the diversity on the

sensitive information within each anonymity group [17, 18, 29, 30].

We position our study in a novel scenario of defending against

the linkage attacks on social media check-ins. We aim to pro-

vide strong privacy guarantee for check-in service against both

re-identification attack and probabilistic attack, and design privacy

solution compatible with unstructured spatio-temporal data.

Mobility Data Privacy: The literature in this area can be fur-

ther broken down into two categories: aggregated mobility data

privacy and individual mobility data privacy. As for the former,

recent study found evidence that aggregated mobility data suffered

from the risks of leaking individual trajectories [28, 33]. In addition,

differential privacy has been applied on aggregated mobility data

to provide provable privacy guarantees for individuals [1, 14]. As

for individual mobility privacy, geo-indistinguishability model is de-

vised to achieve practical privacy guarantee in individual mobility

collecting [2, 6]. In addition, vast amount of literature were dedi-

cated to ensure location anonymity in the context of geo-referenced

queries in location based service [3, 10, 34]. On the other hand,

cloaking, generalization and suppression techniques are leveraged

to achieve k-anonymity in releasing anonymous individual tra-

jectories [15, 16, 20, 21, 24]. However, recent studies showed that

such approaches will be likely to result in significant data utility

degeneration [11, 35].

We tackle the specific problem of designing privacy-preserving

check-in service, which is closely related to prior effort in individual

trajectories releasing. However, it differs from previous works that

users have strong requirement for check-in utility and social desir-

ability, which poses significant challenges on privacy solutions.
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Figure 2: The distribution of the number of user’s check-ins
and mobility records.

3 PROBLEM FORMULATION
We first introduce the privacy framework of k-anonymity and l-
diversity, which is the basis of our model. Then, we elaborate on

our novel privacy criterion — kτ ,l -anonymity.

k-anonymity: The k-anonymity framework is originally devised

to defend the re-identification attacks in relational database [26].

In check-in privacy scenario, the adversary attempts to recover

user’s identity in other anonymous mobility datasets by achieving

a unique linkage between user’s anonymous mobility data and

public check-ins, which is illustrated in Figure 1(a). Therefore, it

requires data sanitizing techniques that render each individual’s

attributes indistinguishable from at least other k − 1 individuals’,
which forms an anonymity group that prevents any individuals

from being uniquely re-identified.

l-diversity: It is put forward to ensure users’ diversity on sensi-

tive attributes within each anonymity group [18]. Specifically, it is

designed to prevent probabilistic attack, where the adversary aims

to learn additional mobility records the users do not report, which

is illustrated in Figure 1(b). It requires each individual cannot be

uniquely re-identified with the non-sensitive attributes (i.e., check-

ins), while the sensitive attributes (i.e., unreported mobility records)

should be of at least l different categories within each anonymity

group.

kτ ,l -anonymity: Inspired by the insights and limitations of pre-

vious models, we design a novel privacy criterion kτ ,l -anonymity
to address the privacy issues in check-in services. Specifically, kτ ,l -
anonymity requires:(i ) any users on social media cannot be distin-

guished from at least other k − 1 users in any other anonoymous

mobility datasets based on their public check-ins; (ii ) for any time

window of duration τ users’ unreported locations cannot be dis-

criminated from at least l − 1 other potential locations. Therefore,
the knowledge adversary can acquire through linkage attacks, i.e.,
users identity in other anonymousmobility datasets and unreported

mobility records, is effectively bounded by user specific parameters

k,τ , l . In other words, kτ ,l -anonymity is able to provide strong pri-

vacy guarantee against both re-identification attack and probabilistic
attack.

4 DATASETS
4.1 Data Collection
We utilize two real-world datasets collected from large scale user

population in two mainstream social media platforms: WeChat and

Weibo. The detailed information is discussed as follows.

WeChat Dataset1: WeChat platform is currently the most pop-

ular social media platform in China. This dataset consists of 530,050

check-ins collected from 100,000 users, which are randomly selected

from the general user population spread across Beijing city. It cov-

ers two and a half month of usage, i.e., from Jan. 1 to Mar. 15, 2018.

We also collect an additional mobility dataset including over 193

millions mobility records from same user population during same

time period. The mobility records are collected when users invoke

location based services in WeChat, such as posting check-ins and

using map services.

Weibo Dataset2: This dataset is collected by a previous re-

search [31]. It contains 11,866,425mobility records and 78,412 check-

ins onWeibo platform from 17,425 users located in Shanghai during

one week, i.e., from Apr.19 to Apr.26, 2016. Different from WeChat

dataset, the Weibo dataset is collected by internet service provider

by performing deep packet inspection on cellular traffic.

To demonstrate the basic statistics of datasets, we show the prob-

ability distribution function (PDF) of number of mobility records

and check-in records of each user in Figure 2. From the results,

we can observe that they all follow a fat-tailed distribution, which

echos with the findings in previous researches [9]. It indicates that

our datasets are representative of typical check-in behaviors.

5 SOLUTION
5.1 Definitions
Formally, we define the additional mobility data of user i as Ri ={
r im

}
, where r im is them-th record of user i . It can be expressed

as a tuple r im = (x im , y
i
m , t

i
m ), with x im , yimand t im denoting the

longitude, latitude and time stamp, respectively. On the other hand,

we denote the check-in records as Ci =
{
cim

}
, where cim is them-th

check-ins of user i . Since the check-in records after sanitization

may have various spatial and temporal resolution, cim is defined as

(x̂ im , ∆x̂
i
m , ŷ

i
m , ∆ŷ

i
m , t̂

i
m , ∆t̂

i
m ), with [x̂ im , x̂

i
m+∆x̂

i
m] × [ŷim , ŷ

i
m+

∆ŷim] and [t̂ im , t̂
i
m + ∆t̂ im] denoting the coverage in spatial and

temporal dimensions, respectively.

5.2 Basic Operations
We limit our data sanitizing techniques to generalization and sup-
pression, i.e., addressing the privacy problem by reducing check-in’s

spatiotemporal resolution or leaving out check-ins. Such operations

avoid adding noises to check-in records that may displace users to

places they never been to or injecting fabricated check-ins, which

maintains the integrity of check-ins and avoid compromising their

social figures. On the other hand, to effectively defend against prob-
abilistic attack, we also define a diversity check operation to ensure

the diversity on sensitive information within anonymity groups.

In addition, we also define a cost function to measure the check-in

utility loss in attaining privacy criterion. The basic operations are

described as follows:

Generalization: It is to reduce spatial and temporal resolution of

check-ins so that they overlap with other user’s check-ins or unre-

ported mobility records. In this way, the adversary can no longer

uniquely link the check-ins with anonymous mobility data, which

1
https://weixin.qq.com/

2
https://weibo.com/

3407



(a) Generalization (b) Suppression (c) Diversity check

Figure 3: The illustrations of three basic data sanitizing operations.

effectively prevents the re-identification attacks. We define the gen-
eralization operation as G (c⋆, r⋆), where c⋆ and r⋆ are check-in

and other user’s mobility record, respectively. This operation will

output generalized check-ins, which is demonstrated in Figure 3(a).

Suppression: When the spatial and temporal resolution of check-

in records is too low, their utility is diminished. In real-world sce-

nario, some “outlier” check-ins may require significant generaliza-
tion to prevent re-identification attacks, which renders the check-ins
useless. Specifically, suppression operation S (c⋆) will return true
for leaving out the check-ins c⋆ when spatial coverage exceed Aθ
or temporal coverage exceed Tθ . That is, the system will recom-

mend users not to post such check-ins. The suppression operation

is demonstrated in Figure 3(b). Without loss of generality, Aθ and

Tθ are set to 1000km2
and 120 hours, respectively.

Diversity check:We define diversity check operation asD (
{
R⋆

}
,τ , l ),

with

{
R⋆

}
denoting the unreported mobility records of the in-

spected anonymity group. The illustration of diversity check is

presented in Figure 3(c). Specifically, the operation search the total

time duration with a sliding time window of duration τ and step

length of minimal time resolution ∆t . Then, it computes the number

of distinct locations in each time window with each individual con-

tribute at most one distinct location. If there is a time window with

less than l distinct locations then the operation returns f alse for
failing the diversity check. Otherwise, it returns true for passing.

Cost function: It is defined as a linear combination of the spatial

and temporal coverage of the investigated check-in, which can be

computed as follows,

U (cim ) =



λa ·
√
A + λt ·T , i f A < Aθ and T < Tθ ,

λa ·
√
Aθ + λt ·Tθ , otherwise,

where A = |∆x̂ im | × |∆ŷ
i
m | and T = |∆t̂

i
m | denote the spatial and

temporal coverage of generalized check-in. In this study, we set

both λa and λt to 0.5, which indicates 1 km diameter of spatial

coverage and 1 hour temporal coverage map to similar cost. In

addition, since the check-ins are suppressed if their spatial coverage

exceed Aθ or temporal coverage exceed Tθ , we set cost function at

maximum value to represent complete lost in utility.

Figure 4: Illustration of partition-and-group framework.

5.3 Partition-and-Group Framework
One key problem in optimizing the privacy mechanism on large

scale check-ins is how to partition the user population into opti-

mal anonymity groups. The check-in utility will be significantly

improved by carefully classifying the users into numerous small

anonymity group that passes diversity check compared with putting

all of them in one group. We use the word “legitimate” to refer

to the anonymity groups that pass the diversity check. Achieving
the optimal partition of user population requires to enumerate all

the legitimate anonymity group, which is a NP-hard problem and

cannot be readily solved in real-world scenario. We design a novel

partition-and-group framework to efficiently optimize the check-in

utility through a “divide-and-conquer” manner. The idea is to itera-

tively break down the user population into two small subsets until

the minimum legitimate anonymity groups are met, which is illus-

trated in Figure 4. An important problem is determining whether a

anonymity group is minimum legitimate anonymity group, i.e., the
anonymity group cannot be divided into smaller subsets that all

pass diversity check. We exploit a convenient property of diversity
check to address this problem, which is formally described in the

following proposition.

Proposition 5.1. If an anonymity group does not pass the diver-
sity check, then any subsets of this anonymity group will not pass
the diversity check.

Proof. Suppose the unreportedmobility records of an anonymity

group do not pass the diversity check of parameters (τ , l ). Based
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Algorithm 1: Partition-and-group algorithm.

Input: Check-in data C, mobility data R
Input: Anonymity k , diversity l , time window τ

Output: Sanitized check-in data
ˆC

foreach i, j ∈ C, j , i do
C⋆ ← kτ , l -merge(C[{i, j}],R[{i, j}], 2, 0, 0);
W [a,b]← sum([U (c⋆) | ∀ c⋆ ∈ C⋆]);

checkin_stack .insert (C);mobility_stack .insert (R);
stop ← f alse;
while stop , f alse do
C⋆ ← checkin_stack .pop ();
R⋆ ←mobility_stack .pop ();
if ! divide-2-group(C⋆,R⋆,W ,k, l ,τ ) then

checkin_дroup.insert (C⋆);
mobility_дroup.insert (R⋆);

else
C1,C2,R1,R2 ← divide-2-group(C⋆,R⋆,W ,k, l ,τ );
checkin_stack .insert ({C1,C2});
mobility_stack .insert ({R1,R2});

if checkin_stack == ∅ then
stop ← true;

while checkin_дroup , ∅ do
C⋆ ← checkin_stack .pop ();
R⋆ ←mobility_stack .pop ();

C⋆ ← kτ , l -merge(C⋆,R⋆,k, l ,τ );
ˆC.insert (C⋆);

Return ˆC;

on the definition of diversity check, there exist at least one time

window [t , t + τ ] that the number of distinct locations is less than

l . Since the number of distinct locations increases with number of

users monotonically, any subsets of inspected anonymity group

will have less than l distinct locations in [t , t + τ ]. Therefore, any
subsets of inspected anonymity group will not pass the diversity
check. □

The above proposition guarantees that an anonymity group is

minimum legitimate anonymity group if it cannot be further di-

vided into two legitimate subsets, since any subsets of anonymity

groups that cannot pass diversity check will not pass the diversity
check. Build upon this proposition, we design the partition-and-
group algorithm with the pseudocode presented in Algorithm 1.

The elementary building block is kτ , l -merge function, which first

performs diversity check on the given user group and then enumer-

ates through all the users within the group to find optimal mobility

records from each user for the check-in to generalize with. The
partition-and-group algorithm first computes the cost matrixW ,

withW [i, j] filled with the cost of achieving 2-anonymity on the

check-ins of user i and j with kτ , l -merge algorithm. Then, it itera-

tively partition each anonymity group into two subsets with divide-
2-group algorithm, andwhen an anonymity group cannot be divided

further it is considered as a final anonymity group. The divide-2-
group algorithm equally divides the user group into 2 anonymity

groups based on their distance to two pivot users that have maxi-

mum overall distance to other users. If both groups fail the diversity

check, the input anonymity group is deemed unable to be further

divided. On the other hand, the failed group keeps borrowing one

most distant user from the succeed group, until they both pass or

fail the diversity check. Finally, we apply kτ , l -merge function on

each final anonymity group to ensure all users are protected by

kτ , l -anonymity.

6 EVALUATION
6.1 Performance Comparison
Our solution, denoted by PNG, aims to achieve kτ , l -anonymity to

prevent both re-identification attack and probabilistic attack. In order
to show its superiority, we consider two baselines, i .e ., PNG(wo) and
GLOVE. PNG(wo) is a degraded version of PNG, in the condition that
only k-anonymity is guaranteed to defend re-identification attack.
On the other hand, GLOVE [15] is a state-of-art solution to achieve

same privacy guarantee as PNG(wo). To compare the performance

of these three solutions, we utilize threemetrics of average temporal

resolution, average spatial resolution and average utility cost of the

sanitized check-ins. Note that GLOVE cannot be scalable to large

populations due to the high computation complexity. In order to

ensure fair comparison, we measure the performance of these three

solutions based on two subsets with 5,000 users that are randomly

sampled from our two datasets for one-month duration.

We show the performance comparison of these three solutions

with different values ofk and l (=k/2) in Figure 5 and Figure 6.We can

observe that our PNG solution outperforms the other two baselines

in all privacy settings. With 4-anonymity and 2-diversity on Weibo

and WeChat datasets, the average temporal resolutions of sanitized

check-ins are 23h and 48h, while the spatial resolutions are 11km

and 12km, respectively. Such spatial and temporal resolution is

sufficient to accomodate user’s need in documenting their daily life.

However, the average spatial and temporal resolutions for PNG(wo)
are much higher, and most of sanitized check-ins from GLOVE are

too coarse-grained to use with the average temporal resolution

reaches as much as 104h. Similar results are observed in average

spatial resolution. Furthermore, when it comes to the average utility

loss, PNG has 24% and 53% improvements in the comparison with

PNG(wo) and GLOVE on WeChat dataset. In addition, PNG has 27%

and 57% improvements in the comparisonwith PNG(wo) andGLOVE
on Weibo dataset. In summary, all these results have demonstrated

that our proposed PNG solution can significantly reduce check-in

utility loss even when a stricter privacy criterion kτ , l -anonymity
is met.

6.2 Impact of System Parameters
Now we analyze the impact of three key system parameters, i .e ., k ,
l and the amount of available additional mobility records, on the

performance of our PNG solution.

First, based on both WeChat andWeibo datasets, we measure the

performance of PNG with different settings of k and l , and show the

results in Figure 7 and Figure 8. Take WeChat dataset for example,

with a fixed 2-diversity, the average temporal resolution, spatial

resolution and utility cost increase monotonously as k grows from 2

to 14. However, further increase of k does not result in a significant

check-in utility degeneration, suggesting that achieving a stricter

privacy guarantee will only cause limited margin check-in utility
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(a) Temporal resolution (b) Spatial resolution (c) Utility cost

Figure 5: The performance comparison between our solution and baseline on WeChat data.

(a) Temporal resolution (b) Spatial resolution (c) Utility cost

Figure 6: The performance comparison between our solution and baseline on Weibo data.
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Figure 7: The performance of our algorithm under different k and l on WeChat dataset.

2 4 6 8 10 12 14

k

10

20

30

40

T
e
m

p
o
ra

l 
R

e
s
o
lu

ti
o
n
 [
h
]

l=2 l=4 l=6 l=8

(a) Temporal resolution
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(b) Spatial resolution
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Figure 8: The performance of our solution under different k and l on Weibo dataset.

loss. In other words, it indicates our solution can achieve favorable

check-in utility when strong privacy protection is needed. As for

probabilistic attack, a lager l indicates stronger privacy protection.

For both WeChat and Weibo datasets, a larger l will also cause

additional check-in utility loss. However, the additional utility cost

for preventing probabilistic attack is much smaller when k is of

higher value. It indicates the PNG framework provides efficient

solution to defend both re-identification attack and probabilistic
attack.

Second, we evaluate the impact of the amount of additional mo-

bility data. Generally speaking, with more complete knowledge

about user’s mobility behavior, the system is able to better measure

the privacy sensitive of each check-in record and derive better pri-

vacy solutions. The results of different percentages of additional

mobility data are shown in Figure 9. In Figure 9(a), we can observe
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Figure 9: Impact of the amount of additional mobility data.
that only 20% additional mobility data in WeChat dataset grants

the system a 28.6% performance boost in check-in utility. In ad-

dition, when more than 60% additional mobility data is provided

the performance of system gradually reaches a relative high point,

with 30.9% utility improvement compares with no additional mo-

bility data. Similar results are observed on Weibo dataset, which

is shown in Figure 9(b). To conclude, the above evaluation verifies

our intuition that moderate amount of additional mobility data can

lead to significant check-in utility improvement, which showcases

the feasibility of our system in real-world scenario.

7 CONCLUSION
In this paper, we investigate the problem of understanding and

defending the linkage attacks on check-in services. We design a

novel partition-and-group framework that integrates the informa-

tion of check-ins and additional mobility data to provide privacy-

preserving and useful check-in service. Evaluation results show

that the proposed framework significantly outperforms state-of-art

baseline in terms of improving the check-in utility by 24%∼57% and

providing stronger privacy guarantee in the same time. We believe

our study opens a new angle on measuring and preserving user

privacy on check-in services.
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