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Abstract
Developing a practical model for predicting the dynamics of epidemic spread is critical, the results of which can be used 
to evaluate the effectiveness of prevention and control measures as well as the allocation of medical and health resources. 
However, accurate prediction is challenging because epidemic spread is closely associated with population mobility, which 
is nonlinear and complex, making reliable prediction difficult. Furthermore, the epidemic observed data is sparse and 
irregularly sampled, rendering the traditional time series models ineffective. Under these circumstances, this paper designs a 
graph neural ordinary differential equations approach, which combines Ordinary Differential Equation Networks (ODENet) 
and Graph Neural Networks (GNNs). This approach adopts a new attention mechanism taking into account the interaction 
between regional epidemic information and interaction between regions, achieving the precise continuous-time epidemic 
prediction based on non-Euclidean data. In addition, we use Transformer to deduce the value of the initial hidden state via 
future observable data in an innovative way, reconstructing the hidden state successfully. We conduct a lot of experiments 
based on the contact matrix and simulated epidemic data in San Francisco from March 2020 to May 2020, results show that 
our method can not only forecast the dynamics of epidemic spread, but also mine hidden patterns in observable data and 
extract hidden states.
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1  Introduction

In recent years, a number of large-scale respiratory diseases, 
such as COVID-19, H1N1, and SARS, have erupted on a 
global scale, exerting a significant influence on both people’s 

lives and social stability. Taking the current COVID-19 
outbreak as an example, the World Health Organization 
(WHO) received reports of over 772 million confirmed cases 
of COVID-19 as of 17 December 2023, including nearly 
seven million deaths [1]. This epidemic has put existing 
medical resources and systems to the test. Accurately pre-
dicting the dynamics of epidemic spreading can assist health 
departments and medical institutions in making effective 
responses, such as resource allocation, prevention and con-
trol measures, and medical preparations to protect people’s 
lives and health.

However, developing a successful data-driven approach 
to model regional-level epidemiological dynamics is very 
challenging: on the one hand, the spread of large-scale 
human infectious diseases is closely linked to the mobil-
ity behavior of populations, which is highly non-linear and 
complex. In terms of epidemic transmission at the regional 
level, due to different occupations, ages, genders, living 
habits, and other factors, the travel destinations and spe-
cific travel routes of residents in different regions will be 
quite different(Kleczkowski and Grenfell 1999). On the 
other hand, epidemic data is typically irregularly sampled, 
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the time period for nucleic acid sampling usually fluctuates 
flexibly with the intensity of the epidemic. As a result, the 
sampling time of epidemic data may be one day, one week, 
or one month. However, the time series prediction models 
that are now in use, such as the Long Short Term Memory 
(LSTM), Gated Recurrent Unit (GRU), and Temporal Con-
volutional Network (TCN) (Graves 2012; Cho et al. 2014; 
Bai et al. 2018), are based on regularly sampled data.

The capacity of graph neural networks (GNNs) to process 
non-Euclidean data well has made them a popular choice for 
tasks involving epidemic prediction in recent years, there 
has been a lot of interest in using GNN to simulate the geo-
graphic characteristics of epidemic transmission networks, 
representative works include causal-GNN (Wang et  al. 
2022), cola-GNN (Deng et al. 2020) and STAN (Gao et al. 
2021), etc. Other studies aim to jointly capture the temporal 
and spatial properties of the epidemic transmission process 
by combining GNN with conventional time series processing 
models (such as Recurrent Neural Network (RNN)) (Sesti 
et al. 2021). Nevertheless, there are some issues that have 
consistently gone unattended. On the one hand, for the GNN 
model, when the number of layers stacked is too much, it 
will suffer from over smoothing, which will lead to poor per-
formance of the model (Li et al. 2018; Zhou et al. 2020). On 
the other hand, most of the existing time series processing 
tools can only achieve the prediction task under the condi-
tion of equal interval sampling data and discrete time. The 
existing research shows that the adoption of Neural Ordi-
nary Differential Equation Networks (ODENet) in GNN 
models can avoid or solve the above problems (Poli et al. 
2019; Huang et al. 2021). Last but not least, the interaction 
between regional epidemic information and interregional 
population mobility is an important aspect that has been 
largely overlooked in current research.

In this paper, we propose a novel graph neural ordinary 
differential equations approach which combines GNN and 
ODENet to address the aforementioned issues. This method 
tries to integrate the epidemic information of the region itself 
and the interaction information between regions through a 
well-designed fusion matrix, and model differential equa-
tion systems employing GNNs on the graph to accurately 
represent the instantaneous rate of change of nodes’ states. 
Transformer (Vaswani et al. 2017) is used to realize the 
reconstruction of the hidden state during the evolution of the 
epidemic. Our contributions can be summarized as follows:

•	 We propose to combine GNN and ODENet to make fine-
grained epidemic forecasting. Thanks to the character-
istics of ordinary differential equations (ODEs), we can 
predict the dynamics of epidemic spread on continuous 
time domain on the graph structure.

•	 We investigate a fusion attention matrix that takes into 
account the correlation between epidemic across regions 

and the influence of population movement on the spread 
of epidemic. By incorporating these factors, our approach 
achieves a more comprehensive and accurate analysis and 
prediction of epidemic.

•	 We incorporate the Transformer model in a novel way 
into our approach, taking advantage of its ability to 
globally model the input sequence via the self-attention 
mechanism. As a result, the Transformer model captures 
the sequence’s underlying patterns and regularities (Voita 
et al. 2019), allowing us to infer the initial hidden state 
from the observed time series data, realising the recon-
struction of the hidden state throughout the entire obser-
vation period.

•	 Extensive comparison experiments are performed on 
two COVID-19 datasets with different modeling settings. 
The results demonstrate that our proposed model1 out-
performs the baseline models and achieves up to 7.06% 
performance improvement in long-term prediction tasks. 
To confirm the efficacy of each component of our model, 
we also created a set of ablation studies. The verifica-
tion experiment confirmed that our model can predict the 
number of people in the latent period. The experiments 
based on the multi-scale sampling training strategy also 
demonstrated the capability of our model to accurately 
predict epidemics using irregularly sampled data.

2 � Related work

2.1 � Spatial‑temporal prediction

Spatial-temporal prediction refers to the prediction of the 
unknown system state in time and space. In the past few 
decades, spatial-temporal prediction has been widely used 
in traffic forecasting (Yu et al. 2017; Fang et al, 2021; Yang 
et al. 2021), weather forecasting (Shi et al. 2015), earth-
quake forecasting (Bhatia et al. 2018), etc. Liu et al. (2017) 
propose to use the Conv-LSTM and Bi-LSTM modules to 
concentrate the spatial-temporal feature and period feature 
to predict the traffic flow. Li et al. (2017) introduce a dif-
fusion convolutional recurrent neural network (DCRNN), 
which models spatial dynamics and temporal dynamics 
using two-way random walks and recurrent neural networks, 
respectively.

With the rise of graph neural networks, many research-
ers have attempted to developed spatio-temporal graph 
neural networks (STGNNs) to solve spatiotemporal pre-
diction problems. Spatio-Temporal Graph Convolutional 
Networks(STGCN) (Yu et al. 2017) uses a spatio-temporal 

1  A repository with our source code can be found at: https://​github.​
com/​xiong​zhang​xyq/​GNNOD​ENet.

https://github.com/xiongzhangxyq/GNNODENet
https://github.com/xiongzhangxyq/GNNODENet
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blocks to integrate graph convolution and gated temporal 
convolution for traffic prediction. Spatial-Temporal Graph 
Ordinary Differential Equation Networks(STGODE) (Fang 
et al, 2021) is a new continuous representation of Graph 
Convolutional Network (GCN) to increase the depth of 
GCN, expand the spatial receptive field, and capture deeper 
spatial-temporal dependence. STAN (Gao et al. 2021) cap-
tures geographic and temporal trends using attention-based 
graph convolutional networks, and designs a loss term based 
on physical laws, improving the long-term prediction perfor-
mance. In addition, some studies have focused on complex 
local and global spatiotemporal dependencies (Zhang et al. 
2021; Liu et al. 2023), recognizing the value of multivariate 
time series (Jin et al. 2022) and proposing more sophisti-
cated predictive models.

In view of the strong correlation between the epidemic’s 
spread and the contact of the population in the city, epicemic 
prediction can be regarded as a spatial-temporal prediction 
problem here. However, different from traffic flow forecast 
and weather forecast, whose datas can be collected regu-
larly, epidemic data collection usually shows more diversi-
fied granularity (e.g., days, weeks) with a delay and even 
missing, and epidemic outbreaks also exhibit abruptness. 
The introduction of an efficient epidemic prediction model 
for long-term predictions of epidemics on the continuous 
time domain based on limited data is extremely important. 
Here we adopt ODENet to solve the question, and achieve 
epidemic prediction on continuous time domain.

2.2 � Epidemic modeling

According to the characteristics of different infectious dis-
eases, mathematicians and epidemiologists have developed 
different models to predict epidemic. Some studies model 
epidemics based on differential equations, the two classical 
models of this category are the susceptible-infected-suscep-
tible (SIS) model and the susceptible-infected-recovered 
(SIR) model. Some follow-up studies have expanded the 
SIS model and SIR model to further consider complex evo-
lution process (Maier and Brockmann 2020; Zhang et al. 
2020). In addition to establishing traditional dynamic equa-
tion models, many researchers have developed probability-
based models (Balcan et al. 2009; Chang et al. 2021), due to 
their great abilities for modeling nonlinear properties. These 
approaches, while their excellent effectiveness, have some 
drawbacks, including numerous idealistic assumptions that 
cannot be guaranteed to be accurate.

Given the severity of the pandemic and the need for accu-
rate forecasting of the epidemic’s spread, machine learning 
approaches have recently started to emerge as a promising 
methodology to combat epidemic (Xie et al. 2022; Wang 
et al. 2020; Zhu et al. 2019). Wu et al. (2018) separately 
employ convolutional neural networks (CNNs) for spatial 

correlations and Recurrent Neural Networks (RNNs) for 
temporal correlations to make epidemic predictions.

However, it is obvious that non-Euclidean network struc-
ture data does not adapt itself to traditional convolution for 
regular grids. GNNs come into being, and have been widely 
used in epidemic forecasting. Some studies combine GNNs 
and time series forecasting models to capture spatial corre-
lation and temporal correlation (Panagopoulos et al. 2021; 
Sesti et al. 2021; Kargas et al. 2021). Wang et al. (2022) pro-
posed Causal-based Graph Neural Network (CausalGNN) 
which is a GNN-based model taking causal computations 
into account when making spatio-temporal epidemic fore-
casting. Deng et al. (2020) proposed a brand-new graphic 
messaging framework based on the idea of fusing the graph 
structure and time series features in the dynamic propaga-
tion process. Even though most of the above models can 
achieve better prediction performance, they are helpless in 
the face of non-equidistant sampling data, such as nucleic 
acid sampling data. In our work, we use GNN to aggregate 
the epidemic information of the region itself and the inter-
action information between regions, to simulate the spread 
of the epidemic in the network, and use the characteristics 
of ordinary differential equations to predict the epidemic 
development situation at any node at any time to adapt to 
non-equidistant sampling sequentially.

2.3 � Continuous time series forecasting

Most existing time series methods (e.g., RNN) assume that 
the interval between these observations and latent variables 
is fixed, which often causes the estimated distribution to 
deviate from the population distribution. These issues are 
easily avoided by ODENet, which models the time series as 
a continually evolving trajectory, this allows it to make bet-
ter use of the data’s timestamp information and to generate 
predictions on the continuous time domain.

In recent years, some studies have combined ordinary dif-
ferential equation (ODE) with deep learning techniques, and 
proposed a knowledge-data joint-driven ODENet method. 
This method was first proposed in the literature (Chen et al. 
2018). Its core idea is to use deep learning neural network 
to fit the derivative in the differential equation, and at the 
same time combine the classical solution method of ODE 
to further complete the spatiotemporal situation modeling 
and forecasting of the epidemic spread on the irregular 
time interval sequence. At the same time, Xhonneux et al. 
(2020) combined ODENet with GCN to successfully model 
the temporal dynamic changes in graph structure, providing 
an important solution for modeling complex non-Euclidean 
spatial associations between different regions of the city. In 
our work, we use ODENet to realize the continuous GNN 
layers in mathematical sense, rather than using discrete 
superimposed GNN layers, which enables us to carry out 



284	 X. Yanqin et al.

continuous time prediction tasks and avoid the over smooth-
ing problem in the GNN model when there are too many 
layers.

3 � Proposed method

3.1 � Problem formulation

Definition 1  (the epidemic transmission network G ) In our 
study, we assume that there are N regions and each region 
can be regarded as a node, thus we can adopt a graph 
G = (V, E,A) to represent the epidemic spread network 
which consists of N nodes.

Definition 2  (the state X on the graph) In our study, 
we express the observation of node i at time t as 
x(t)i ∈ ℝ

Fd , where Fd is the length of an observa-
t i o n  v e c t o r .  X(ti) = (x(ti)

1, x(ti)
2, ..., x(ti)

N) ∈ ℝ
N×Fd 

denotes the observations of all nodes at time ti . 
X = (X(t0),X(t1),… ,X(tT )) ∈ ℝ

(T+1)×N×Fd denotes the state 
of all nodes within the time range of length T + 1 , and the 
unit of T is unlimited.

Definition 3  (the adjacency matrix Ag ) Assuming there are 
N nodes, which can be divided into two types of nodes: type 
C nodes, which refer to census block groups (CBGs) such as 
residential districts, and type P nodes, which refer to points 
of interest (POIs) such as shops, bars, gas stations, hospitals, 
and a series of places that provide people with daily services. 
It’s worth noting that the ′P′ and ′C′ labels simply provide a 
practical distinction between the two types of nodes, and that 
the nodes within each type are independent of each other. 
This is not a heterogeneous graph problem.

Assuming that the visit matrix representing the size of popu-
lation flow between type C nodes and type P nodes is U at 
time t, it can be represented as follows structure:

where uij represents the number of population flow from 
node i to node j, m and n are the number of type C nodes and 
type P nodes respectively, and N = n + m , the corresponding 
adjacency matrix Ag representing the interaction between all 
nodes is as follows:

P1 P2 ⋯ Pj ⋯ Pn

C1 u11 u12 ⋯ u1j ⋯ u1n
C2 u21 u22 ⋯ u2j ⋯ u2n
⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮

Ci ui1 ui2 ⋯ uij ⋯ uin
⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮

Cm um1 um2 ⋯ umj ⋯ umn

the adjacency matrix Ag will be used to aggregate informa-
tion in the follow-up work, and its normalized form is Ãg . 
Epidemic Prediction on Population Flow Graphs   The basic 
goal of epidemic prediction is to forecast the most likely 
epidemic measurements in the next L time steps based on 
the previous H epidemic observations. At each time step ti , 
the graph G is associated with a feature matrix X(ti) ∈ ℝ

N×Fd , 
the graph nodes are connected via an adjacency matrix 
Agti

∈ ℝ
N×N . The important notations are described in 

Table 1.

3.2 � Model

The proposed framework depicted in the Fig. 1 consists of 
five major parts: (1) a feature encoder block which maps the 
original signal to the hidden space, so that further increases 
the express ability of model; (2) a Transformer block, this 
block’s primary job is to infer the value of the initial hidden 
state based on the observable data for a future time period; 
(3) an aggregate block which mainly completes the fusion 
of static features and dynamic features, learnable parameter 
splicing, and high-dimensional mapping; (4) an ODENet 
block to integrate the output of the previous layer as an inte-
grator; (5) a feature decoder block to recovery signal. In 
order to optimize the model, we may add a dropout layer 
after the decoding layer, and the final output of the network 
which is the predicted value will be used to calculate the 
error with the real value, the gradient descent method is 

(1)
[
0 U

UT 0

]

Table 1   A list of commonly used notations

Notation Description

G The graph
T The set of time slots
V The set of all nodes whose number is N
E The set of all edges
U The population flow between regions
I Identity matrix whose dimension is determined by 

context
Ag ∈ RN×N The adjacency matrix

Â ∈ RN×N The fusion matrix
Fd The number of dynamic features
Fe The features dimensions of input encoded vector
C(t) ∈ RN×Fe The hidden state
Zd(t) ∈ RN×2Fe The dynamic features at time t
Zs ∈ RN×Fs The static features
Fs The number of dynamic features
L(Θ) Loss function of the model
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used to continuously optimize the model. We will elaborate 
details of each step tin the following sections.

Feature Encoding   Taking into account the evolution of 
the epidemic, it is difficult to accurately obtain hidden state 
(features) including potential infected cases and so on, how-
ever, these data are crucial to the epidemic’s spread, so we 
map the true input of network X(t) into a high-dimensional 
space Xe(t) to learn more abundant hidden state in the evolu-
tion of the epidemic. By using a feature encoding function 
fe , let Xe(t) ∈ ℝ

N×Fe represent the matrix of hidden states of 
node features X(t)) for N nodes.

where We ∈ ℝ
N×Fe , be ∈ ℝ

Fe are model parameters and � is 
activation function.

Transformer Block   During the development of the epi-
demic, individuals experience multiple hidden states, includ-
ing the latent state. In a region, there may be many individuals 
who are still in the incubation period, and the data of these 
individuals cannot be observed for the statistical indicators of 
the entire region (e.g., the cumulative number of infections). 

(2)fe ∶ Xe(t) = �(X(t)We + be) ∈ ℝ
N×Fe ,

However, from the perspective of time and epidemic dynam-
ics, there is a temporal correlation that allows us to infer the 
number of people in the incubation period in the past period 
from the number of new infections in the future. This inference 
can be achieved using temporal information and past-to-future 
correlations. To capture temporal dependencies and extract 
these hidden states, we use a Transformer model to estimate 
the hidden state value at initial time. These estimates help us to 
extrapolate backwards from initial time to complete the recon-
struction of the hidden state along the way.

Given its observable state Xe(t) for a period of time in the 
future, we employ the Transformer as a powerful translator 
to infer the hidden state C(t0) at the start:

where t0 are initial time, M denotes that we utilize a time 
series of observable states of length M to calculate the hid-
den state at time t0 . Among the many existing works, the 
state of the entire network during the training process is 
uniquely determined by X(t) , thus the status of the network 
cannot be memorized. Inspired by the LSTM  (Graves 2012) 

(3)
C(t0) = Transformer(Xe(t0),Xe(t1), ...,Xe(tM−1)) ∈ ℝ

N×Fe ,

Fig. 1   The overview of the problem and our proposed method
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model, we try to set two state variables including X(t) and 
C(t) , where C(t) is hidden state mentioned above. At this 
time, the network state is not only determined by X(t) , but 
also determined by C(t) , which means that when the same 
X(t) is input, if the corresponding C(t) is different, the state 
of the network is also different, X(t) can not completely 
determine the network state. Specifically, we concatenate 
the encoded X(t) , which is Xe(t) , and C(t) into a new vector 
Z(t) as follows:

where [*,*] means concatenate two vectors, and the Z(t) will 
be the true input of our model.

Fusion Matrix   Given adjacency matrix Ag ∈ ℝ
N×N , we 

generally normalize it to Ãg = I + D
−

1

2AgD
−

1

2 , where D is 
the degree matrix of Ag . Motivated by the Graph Neural 
Diffusion (GRAND)  (Chamberlain et al. 2021), the infor-
mation aggregation between core node and its neiborg-
hoods is modeled with an attention function a(Zi, Zj) , here 
we use the scaled dot product attention a(Zi, Zj) (Vaswani 
et al. 2017) which corresponding attention matrix is A , 
and its form is:

Considering that the information aggregation of the core 
node is affected by both the edge features and the neighbor 
node features, we use a novel attention function a(Zi, Zj, Ãgij) 
to combine edge features with node features, thus Equation 
(5) updates to:

where WK and WQ are learnable matrices, b and c are learn-
able parameters, dk is a hyperparameter determining the 
dimension of WK and WQ , Ãgij denotes the normalized num-
ber of visitors from region i to region j . We use the multi-
head attention which is useful to stabilise the learning by 
taking the expectation, Â(Z) = 1

h

∑
h Â

h(Z) , where the fusion 
attention weight matrix Â with Âij = a(Zi, Zj, Ãgij) , a more 
general form is

the fusion matrix Â will participate in the relevant operation 
of GNN model as the final adjacency matrix,

ODENet   In our study, we adopt the ODENet to achieve 
the continuous time prediction. ODENet extends time t 
from discrete to continuous, and assuming that its latent 
variable is X(t) , and the X(t) to t  transfer function can be 
expressed as follows:

(4)Z(t) = [Xe(t),C(t)] ∈ ℝ
N×2Fe ,

(5)a(Zi, Zj) = softmax(
(WKZi)

T (WQZj)

dk
).

(6)a(Zi, Zj, Ãgij) = softmax(
(WKZi)

T (WQZj)

dk
) + bÃgij + c,

(7)Â = A + bÃg + c,

Through the classical ODE solving method, it is possible 
to model or predict the value of X(t) and its correspond-
ing observed variable based on an irregular time series 
[t0, t1, ...tT ] . The process can be expressed by the following 
continuous-time(depth) model:

where f (X(�), �, �) will be parameterised by a neural net-
work to model the hidden dynamic, and without requiring 
any internal operations, we may backpropagate the process 
through an ODE solver, enabling us to construct it solely as 
a building block for the entire neural network.

Aggregation Information   The continuous-time dynam-
ics on a graph can be represented by an ODENet (Zang 
and Wang 2019), and Equation (8) can be converted into:

where G represents a graph composed of N nodes, 
X(t) ∈ ℝ

N×F represents the state of nodes on the graph at 
t ∈ [0, T] , W(t) controls the evolution direction of the entire 
system, the function f ∶ ℝ

N×F
→ ℝ

N×F regulates the instan-
taneous rate of change of the node state evolution on the 
graph.

In our study, we transform the regional-level epidemic 
forecasting problem into a graph-based spatial-temporal 
situational forecasting model on the continuous time 
domain. Therefore, the differential equation on the epi-
demic spreading network we defined can be defined as:

where Z(t) ∈ ℝ
N×2Fe represents the state of nodes on the 

graph at t ∈ [0, T] (including observed state and hidden 
state). The rest of the parameters have the same meanings 
as in Equation (10).

In the real process of epidemic transmission, in addition 
to the dynamic features such as the cumulative number 
of infected cases and the infection rate that change over 
time, the static features such as the population base and 
the average dwell time will also have a great impact on 
the epidemic spread, that is the larger the population base, 
the higher the number of infected people may be, and the 
longer the average dwell time, the higher the probability 
of being infected in a certain place will be Chinazzi et al. 
(2020); Kucharski et al. (2020) [43]. Therefore we use 
the following equation to combine the static features and 
dynamic features of nodes:

(8)
dX(t)

dt
= f (X(t), �, t).

(9)

X(tT ) = X(0) + ∫
tT

t0

dX(�)

d�
d� = X(0) + ∫

tT

t0

f (X(�), �, �)d�,

(10)
dX(t)

dt
= f (X(t),G,W(t), t),

(11)
dZ(t)

dt
= f (Z(t),G,W(t), t),
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where Zd(t) ∈ ℝ
N×2Fe denotes the dynamic features, that is, 

Z(t) in Equation , Zs ∈ ℝ
N×Fs denotes the static features, Fs 

denotes the dimension of the static features, � is the activa-
tion function and generally use the ReLU, Â ∈ ℝ

N×N repre-
sents the fusion matrix mentioned above, W1 ∈ ℝ

2Fe×y and 
W2 ∈ ℝ

Fs×y are the weights of the linear connection layer, y 
is the dimension of final output.

Feature Decoding   The model’s output, that is, the pre-
dicted value of the dynamic features Xe(tT ) , will be extracted 
from the output Z(tT ) of the previous layer, and the final pre-
dicted value X(tT ) is obtained through the decoding function 
fd:

where Wd ∈ ℝ
y×F , F is the feature dimension of the desired 

output. In summary, our model is as follows:

the first equation projects the original input X(t) (dynamic 
features) , which is mentioned in Definition 2, into the 
hidden space and convert Xe(t) ; the second equation, 
based on the Transformer, calculates the value of the 
hidden state C(t0) at the beginning based on the observ-
able data (Xe(t0),Xe(t1), ...,Xe(tM−1)) with a length of M 
in the future; the third equatio(t)n concatenates Xe(t) 

(12)Z(t) = 𝜎(ÂZd(t)W1 + ÂZsW2 + b),

(13)fd ∶ X(tT ) = �(Xe(tT )Wd + bd) ∈ ℝ
N×F,

(14)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Xe(t) = fe(X(t)),

C(t0) = Transformer(Xe(t0),Xe(t2), ...,Xe(tM−1)),

Z(t) = [Xe(t),C(t)],
dZ(t)
dt

= ReLU(Â(ReLU(ÂZd(t)W1 + ÂZsW2 + b))W3 + b), t ∈ [t0, tT ],

X(tT ) = fd(Xe(tT )).

and hidden state C(t) as Z(t) , which represents the state 
of networks, and then a GCN layer will be used to com-
bine the dynamic features Zd(t) ∈ ℝ

N×2Fe and static fea-
tures Zs ∈ ℝ

N×Fs mentioned above to form the ultimate 
input signal of GCN layer; the fourth equation will use 
dZ(t)
dt

= ReLU(Â(ReLU(ÂZd(t)W1 + ÂXsW2 + b))W3 + b) = f (Z(t),G,W(t), t)  t o 
control the hidden state in the high-dimensional space, and 
achieves the continuous-time dynamics prediction corre-
sponding to any time by the method of numerical integra-
tion; the last equation converts the signal from the high-
dimensional space back to the original low-dimensional 
space, and use a part of Z(tT ) to compare with ground truth 
and simulate the prediction error, where tT represents the 
predicted endpoint timestamp.

3.3 � Training

Optimization         We compare each node’s prediction 
value to the relevant ground truth and then using gradient 
descent to optimise a L1-norm loss:

where ̂X(t) ∈ ℝ
N×F is the ture value available at time stamp 

t ∈ [0, T] , the X(t) is the predicted value, and the |.| denotes 
value difference between X(t) and ̂X(t) at time t ∈ [0, T] , Θ 
represents all of the training parameters, and R(Θ) is the 
regularization term (e.g. L1-norm).

(15)L(Θ) = ∫
T

0

|||X(t) − ̂X(t)
|||dt + 𝜆R(Θ),

Algorithm 1   Graph Neural Ordinary Differential Equations
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4 � Experiments

In this section, we will describe in detail the datasets, 
experimental settings, performance metrics, the baseline 
methods and their parametric settings, and the comparable 
results.

Datasets   In this study, we focus on regional-level out-
break forecasting, including POIs and CBGs, and here we 
will introduce where the data used in the experiment was 
obtained from. 

1.	 SafeGraph Mobility Data:    The datasets used in our 
experiment are all from SafeGraph,2 including visit 
matrixs from origin CBGs to destination POIs, each 
CBG’s population, each POI’s average dwell time indi-
cating indicates how long the individual stays in the 
region on average, estimated area, longitud and latitud, 
where each visit matrix is used as the metric of inter 
region mobility flow.3 Here we mainly collect the rele-
vant data of San Francisco for the experiments. It should 
be noted that due to there are 28713 POIs and 2943 
CBGs, that is the each access matrix U between them is 
not a square matrix, and considering that the matrix is 
too large computer computing power does not support it, 
so we have moderately aggregated POIs based on postal 
code.

2.	 COVID-19 data:    We use the concepts presented in the 
article [43] to develop a fine-grained epidemic simu-
lator that simulates the state of epidemic spread from 
March 1, 2020 to May 2, 2020. The simulator superim-
poses an SEIR model on each CBG, taking into account 
information such as inter-regional visits, regional area, 
and regional population, and can fit the daily confirmed 
cases4 in cities observed within the proposed period 
accurately. This also implies that we will be able to 
conduct reliable research using relevant epidemic data 
simulated by the simulator. We would like to emphasize 
that our study considers strain characteristics, specifi-
cally the length of the incubation period, during both 
the early and late stages of the epidemic (Alpha variant 
strain period and Omicron variant strain period). Based 
on this consideration, we make adjustments to the rel-
evant parameters in our simulator to ensure the accuracy 
of our simulations. As a result, we obtain two distinct 
datasets, one for each variant strain.

Performance Metrics    The Mean Absolute Error (MAE), 
a measure of the absolute difference between two variables, 

the Root Mean Square Error (RMSE), a measure of the 
divergence between the observed value and the real value, 
and Mean Absolute Percentage Error (MAPE) are the met-
rics employed in our experiment to assess the forecasting 
ability. The smaller the value of MAE, RMSE and MAPE, 
the better the model performance. The Time Granularity 
(abbreviated as TG) of time series data refers to the time 
interval or size of the time unit between each data point.

Baselines   We use the following baseline methods for 
comparison, including the disease transmission model, 
the classic time series forecasting model, and its variants, 
as well as spatiotemporal prediction model: (1) infectious 
disease dynamics model: SIR, SEIR ; (2) recurrent neural 
network: RNN (Schuster and Paliwal 1997), LSTM (Graves 
2012), GRU​ (Cho et al. 2014), DCRNN (Li et al. 2017; 
3) graph neural network: GCN (Bruna et al. 2013), GAT​ 
(Veličković et al. 2017); spatiotemporal prediction model: 
STGCN (Yu et al. 2017), STGODE (Fang et al, 2021), STAN 
(Gao et al. 2021).

4.1 � Learning regularly sampled data

Settings and Implementation Details     We refer to exist-
ing research results and set the incubation period to 5 days 
(120 h) and 3.4 days (81.6 h) to simulate two data sets (Wu 
et al. 2022), which we call Raw Dataset and Omicron Data-
set. We perform epidemic prediction experiments at vari-
ous time granularities using statistical data from the total 
infected cases at 1512 h (24 h per day) from March 1, 2020 
to May 5, 2020, including hourly level (TG = 1 h), daily 
level (TG = 24 h), bi-daily level (TG = 48 h), and weekly 
level (TG = 168 h). Since the access between CBGs and 
POIs is 168 h periodic, here we take 168 access matrices 
U = (U1,U2, ...,UT ) , and use them to construct visit matrices 
Ag = (Ag1,Ag2, ...,AgT ) mentioned above.

In our model, F sets to 1, Fs sets to 4, the hidden dimen-
sions of encoder and decoder are set to 16, 16, and the length 
of observable data input to the Transformer module is set 
to 7. We split all datasets with a ratio 50:13 into training 
sets and test sets, batchsize is 16, random seed sets to 3407 
(Picard 2021). During the training process, a learning rate 
of 5−3 is employed for the Raw dataset, while a learning rate 
of 10−4 is utilized for the Omicron dataset, the optimizer 
is Adam, all experiments are conducted using the PyTorch 
framework and trained on a NVIDIA A100 GPU with 80 GB 
memory. It should be noted that during the training process 
of the model, the data used to deduce the initial value of the 
hidden state through the Transformer block will not appear 
in the test set, so it can be guaranteed that there will be no 
future information leakage in our experiments.

Forecasting Performance   We evaluated our approach in 
both short-term (TG = 1 h, 24 h) and long-term (TG = 48 h, 
168 h) settings based on Raw Dataset and Omicon Dataset. 

2  https://​www.​safeg​raph.​com.
3  https://​docs.​safeg​raph.​com/​docs/​places-​schema.
4  https://​github.​com/​nytim​es/​covid-​19-​data.

https://www.safegraph.com
https://docs.safegraph.com/docs/places-schema
https://github.com/nytimes/covid-19-data


289Graph neural ordinary differential equations for epidemic forecasting﻿	

Table 2 displays our model’s performance compared to a 
number of baselines.

We discover that our model has significant performance 
advantages at different time granularities, particularly in 
long-term prediction tasks. SIR and SEIR models have poor 
predictive performance compared to data-driven neural net-
work models. Epidemic spread is typically characterized by 
complex nonlinear relationships, such as contact networks, 
behavioral changes, and environmental factors, among oth-
ers, whereas SIR and SEIR models typically rely on a prior 
set parameters and are incapable of capturing these complex 
nonlinear relationships. Our model employs GNN to model 
the connection and interaction process between regions, and 
the results demonstrate the effectiveness of our design.

Based on the findings presented in rows 6–10 of Table 2, 
it is evident that conventional time series models exhibit 
suboptimal performance in either short-term forecasting 
(e.g., LSTM) or long-term forecasting (e.g., RNN, GRU), 
due to ignoring nonlinear relationships and complex interac-
tion patterns in the data. Classical GNN-based models (e.g., 

GCN, GAT), primarily emphasize local node connections 
and information propagation from neighboring nodes in pro-
cessing graph data, however, these models exhibit limited 
capability in capturing long-term dependencies, resulting 
in the absence of significant performance advantages. This 
observation emphasizes the significance of incorporating 
both temporal and spatial interdependencies when modeling 
epidemic propagation, as it plays a critical role in achieving 
superior predictive accuracy.

We focus on the performance differences between the 
three spatiotemporal convolution models, STAN, STGCN 
and STGODE, and our proposed model. Figure 3 compares 
the predicted values and true values of these four models on 
some nodes, Fig. 2 presents their prediction errors under dif-
ferent TG settings. The results show that our proposed model 
can learn potential patterns in the data more accurately. The 
traffic prediction models (e.g., STGCN, STGODE) focus pri-
marily on the spatiotemporal dependence of local neighbour-
hoods. For longer-term spatiotemporal data, these model 
may be limited by the local spatiotemporal relationship in a 

Fig. 2   Performance of MAE and RMSE computed across two datasets across various TG settings
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shorter time window and cannot fully consider the longer-
term spatiotemporal dynamics.

The fact that our model performs well across all met-
rics for all datasets implies that our approach to modeling 
spatial-temporal dependency is successful.

Ablation Study     We conduct the ablation studies based 
on the Raw Dataset and Omicron Dataset to assess the 

effects of each component in our framework. The results 
are presented in Table 3. By analyzing ablation models, we 
demonstrate that our model is the minimal model required 
for this task. We generate the following baselines while 
keeping the loss function constant.

Fig. 3   Prediction and Target for the Raw Dataset, consisting of total infected cases in 6 nodes base on different models f or the period from April 
20, 2020 to May 2, 2020 (312 h)

Table 2   Performance of 
different models in terms of 
key usability metrics on the 
two datasets for long-term 
prediction (TG = 168 h) and 
short-term prediction (TG = 
24 h)

All metrics are evaluated based on MAE and RMSE with lower values indicating better performance. In 
addition, the best result and the second-best result of each metric are marked with bold and italic, respec-
tively

Raw dataset Omicron dataset

TG=24 h TG=168 h TG=24 h TG=168 h

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

SIR 170.98 355.79 203.47 386.24 154.26 278.85 254.89 356.22
SEIR 120.31 290.67 239.13 417.54 139.76 211.53 217.36 424.59
RNN 81.31 143.39 66.12 190.76 70.03 198.64 67.32 152.75
GRU​ 42.13 84.63 46.27 125.79 60.52 131.29 47.49 151.26
LSTM 59.89 173.29 62.59 190.32 29.76 65.49 26.37 68.52
GCN 61.45 171.16 59.61 174.17 59.12 163.89 73.10 141.32
GAT​ 46.56 119.87 42.87 100.19 47.76 112.96 39.70 135.87
STGCN 11.54 28.81 16.14 32.01 13.73 27.54 14.01 31.16
STGODE 11.69 26.57 15.07 30.56 11.48 29.83 13.99 27.89
STAN 12.64 29.02 18.53 33.78 14.23 32.84 14.79 34.73
Ours 11.21 25.17 13.75 29.68 10.67 25.72 13.26 26.68
Percentages 2.86% 5.27% 2.12% 2.88% 7.06% 6.61% 5.22% 4.34%
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•	 Our model w/o ED: The model without encoding func-
tion fe and decoding function fd , which removes the first 
line and fifth line in Equation (14), and here we call the 
removed components as ED.

•	 Our model w/o FW: The model uses a normalized adja-
cency matrix Ãg rather than fusion weight Â (correspond-
ing Equation (7)), which means we replace Â with Ãg in 
Equation (14), and the removed components are referred 
to as FW.

•	 Our model w/o Transformer: The model uses a randomly 
initialized learnable hidden state C(t) instead of inverting 
it with the aid of a Transformer block.

We summarize the observation as follows: three main com-
ponents including encoding (decoding) function, fusion 
weight function, and Transformer block of our proposed 
model are to be effective. As shown in line 5, the adap-
tion of the fusion weight function improves model perfor-
mance on Raw Dataset and Omicron Dataset, it shows that 
the fusion weight constructed by us really well integrates 
the edge features and node features in the epidemic spread 
graph, and takes into account the interaction between edges 
and nodes, so as to improve the sensitivity and fitting ability 
of the model to epidemic data. By observing the line 6, we 
can find that Transformer block has a small impact on the 
performance of the model, and its role is mainly to deduce 
the value of unobservable data from the future observable 
data. It can also be seen from line 4 that encoding the input 
signal can improve the prediction accuracy of the model and 
improve the fitting ability of the model to a certain extent.

Verification Experiment   We can simulate the number 
of people in the incubation period because our simulator 
is based on the SEIR model. Here we add this verification 
experiment to demonstrate that our model can appropriately 
predict the number of people throughout the latent phase. 
The following are the specific experimental steps: we build 
a simple model consisting of three layers of Multilayer Per-
ceptron (MLP), and divide the previous stage experiment’s 
training set into a new training set and a test set in a 35:15 
ratio. At this point, C(t) is determined using the ODENet 
parameters from the previous stage. We utilize C(t) as the 
new experiment’s input, and the output is the expected num-
ber of infected people during the incubation period. The 
difference from previous experiments is that, in this study, 
instead of using C(t) as the target or ground truth value, the 
latent period population generated based on the simulator 
is used as the target value. Subsequently, the discrepancy 
between these target values and the output of the three-layer 
multilayer perceptron (MLP) is calculated to complete the 
backpropagation process. Table 4 shows the two data sets 
and experimental results for different TG, it can be con-
cluded that our model can accurately predict the number of 
people in the latent period.

4.2 � Learning irregularly sampled data

To validate that our model can achieve dynamic epidemic 
predictions based on irregularly sampled data, we enhanced 
the model training strategy building upon the experiments 
in Sect. 4.1. Subsequently, we conducted additional experi-
ments on two datasets.

Settings and Implementation Details   We employed a 
probability-based multi-scale training strategy in the follow-
ing experiments, to validate the capability of our model in 
addressing the challenge of irregularly sampled data in epi-
demic prediction. In particular, we partitioned the data into 
training and testing sets in a 50:13 ratio. During the model 
training process, we assigned probabilities to sampling 
instances at intervals of S1 = 24 , S2 = 48 , and S3 = 168 , 
denoted as P1 = 1∕6 , P2 = 1∕2 , and P3 = 1∕3 , respectively. 
These probabilities represent the likelihood of sampling epi-
demic data every Si hours in real life, for instance, sampling 
at S1 implies predicting the cumulative number of infections 
24 h later. In the model testing phase, we conducted experi-
ments to predict data 24 h and 168 h ahead.

Table 3   Performance of ablation model in terms of key usability met-
rics on the Raw Dataset and Omicron Dataset for long-term predic-
tion (TG = 168 h), the best result and the second-best result of each 
metric are marked with bold and italic, respectively

Raw dataset Omicron dataset

MAE RMSE MAE RMSE

Ours 14.75 33.68 13.76 24.68
Ours w/o ED 16.25 38.01 15.79 36.80
Ours w/o FW 25.14 66.01 24.34 59.32
Ours w/o transformer 14.79 34.93 13.81 25.49
Percentages 4.19% 3.58% 0.36% 3.18%

Table 4   Performance of 
verification experiment on 
the Raw Dataset and Omicron 
Dataset for different TG settings

Raw dataset Omicron dataset

Metrics MAE RMSE MAPE MAE RMSE MAPE

TG = 1 h 378.42 721.98 0.27 296.93 566.71 0.28
TG = 24 h 162.76 238.34 0.18 157.98 217.56 0.17
TG = 168 h 73.56 153.29 0.11 68.57 117.59 0.09
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Forecasting Performance   Based on the experiments 
in the previous section, this section adds the DCRNN (Li 
et al. 2017) as a benchmark model, and we focuse on the 
difference in performance between the models proposed 
in this section and a series of spatio-temporal prediction 
benchmark models. Table 5 presents our experimental 
results. In two sets of datasets, our model demonstrates a 
significant advantage in long-term forecasting compared 
to classical spatiotemporal prediction models. Figure 4 
illustrates the predicted cumulative infection numbers for 
numerous nodes based on our model. It can be observed 
that the epidemic development trends across nodes are 
highly diverse. Our model demonstrates the ability to 
accurately learn dynamic epidemic evolution patterns from 
non-uniformly sampled data, enabling precise predictions. 

During the experiment, we also noticed some unusual 
cases, such as the fact that the cumulative number of 
infected people in some nodes showed no discernible trend 
of change. We believe that this phenomenon is consistent 
with the fact that some areas of epidemic prevention and 
control work are performing admirably.

5 � Conclusion

In this study, we propose a novel graph neural ordinary 
differential equations approach which combines GNN and 
ODENet to make fine-grained epidemic predictions. We 
have conducted a large number of experiments to prove 
the effectiveness of our proposed model, and its prediction 

Table 5   Performance on 
irregularly sampled data, the 
best result and the second-
best result of each metric are 
marked with bold and italic, 
respectively

Raw dataset Omicron dataset

TG=24 h TG=168 h TG=24 h TG=168 h

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

STGCN 230.69 356.28 133.65 272.27 212.67 358.49 137.34 282.45
STGODE 136.31 267.37 138.21 275.32 144.25 256.64 136.23 273.55
STAN 238.62 470.45 146.67 264.61 235.56 367.38 130.67 266.52
DCRNN 144.56 195.43 152.25 207.64 139.86 376.33 150.99 312.67
Ours 127.90 254.24 130.66 190.32 135.54 268.43 127.17 255.37
Percentages 6.17% – 2.24% 8.34% 3.09% – 2.68% 4.18%

Fig. 4   Prediction and Target for the Raw Dataset, consisting of total infected cases in the different nodes base on our model for the period from 
April 20, 2020 to May 2, 2020 (312 h)
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performance is better than the benchmark model. In our 
work, Multilayer Perceptron (MLP) encoders, decoders, 
and nonlinear high-dimensional maps are used to simu-
late the highly complex process of epidemic evolution 
and propagation. We creatively express the state evolution 
rate on the epidemic transmission network in the form of 
GNN and ODENet, and use the strong expression abil-
ity and interpretability of ODENet to make more flexible 
and accurate predictions. In addition, we design an fusion 
matrix constructed by attention matrix and geographic 
adjacency matrix to fully aggregate information from the 
dimensions of nodes and edges and improve the perfor-
mance of the model, and we introduce a Transformer block 
to deduce the initial value of the hidden state based on the 
observed data in the future for a period of time, and use 
experiments to prove that our model can indeed obtain 
excellent performance under this task. We conducted 
experiments on two datasets, explored the short-term pre-
diction performance and long-term prediction performance 
of the model by setting different time granularity, and veri-
fied the feasibility and efficiency of our proposed model. 
In future work, we can deeply explore the interpretability 
of the proposed model, try to enhance the flexibility and 
universality of the model, and apply the results to the for-
mulation of epidemic prevention policies to provide refer-
ences for policymakers with vivid visual effects.
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