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Abstract

Developing a practical model for predicting the dynamics of epidemic spread is critical, the results of which can be used
to evaluate the effectiveness of prevention and control measures as well as the allocation of medical and health resources.
However, accurate prediction is challenging because epidemic spread is closely associated with population mobility, which
is nonlinear and complex, making reliable prediction difficult. Furthermore, the epidemic observed data is sparse and
irregularly sampled, rendering the traditional time series models ineffective. Under these circumstances, this paper designs a
graph neural ordinary differential equations approach, which combines Ordinary Differential Equation Networks (ODENet)
and Graph Neural Networks (GNNs). This approach adopts a new attention mechanism taking into account the interaction
between regional epidemic information and interaction between regions, achieving the precise continuous-time epidemic
prediction based on non-Euclidean data. In addition, we use Transformer to deduce the value of the initial hidden state via
future observable data in an innovative way, reconstructing the hidden state successfully. We conduct a lot of experiments
based on the contact matrix and simulated epidemic data in San Francisco from March 2020 to May 2020, results show that
our method can not only forecast the dynamics of epidemic spread, but also mine hidden patterns in observable data and
extract hidden states.
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1 Introduction lives and social stability. Taking the current COVID-19
outbreak as an example, the World Health Organization
(WHO) received reports of over 772 million confirmed cases
of COVID-19 as of 17 December 2023, including nearly
seven million deaths [1]. This epidemic has put existing
medical resources and systems to the test. Accurately pre-
dicting the dynamics of epidemic spreading can assist health
departments and medical institutions in making effective
responses, such as resource allocation, prevention and con-
trol measures, and medical preparations to protect people’s
lives and health.

In recent years, a number of large-scale respiratory diseases,
such as COVID-19, HIN1, and SARS, have erupted on a
global scale, exerting a significant influence on both people’s
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challenging: on the one hand, the spread of large-scale
human infectious diseases is closely linked to the mobil-
ity behavior of populations, which is highly non-linear and
complex. In terms of epidemic transmission at the regional
level, due to different occupations, ages, genders, living
habits, and other factors, the travel destinations and spe-
cific travel routes of residents in different regions will be
quite different(Kleczkowski and Grenfell 1999). On the
other hand, epidemic data is typically irregularly sampled,
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the time period for nucleic acid sampling usually fluctuates
flexibly with the intensity of the epidemic. As a result, the
sampling time of epidemic data may be one day, one week,
or one month. However, the time series prediction models
that are now in use, such as the Long Short Term Memory
(LSTM), Gated Recurrent Unit (GRU), and Temporal Con-
volutional Network (TCN) (Graves 2012; Cho et al. 2014;
Bai et al. 2018), are based on regularly sampled data.

The capacity of graph neural networks (GNNs) to process
non-Euclidean data well has made them a popular choice for
tasks involving epidemic prediction in recent years, there
has been a lot of interest in using GNN to simulate the geo-
graphic characteristics of epidemic transmission networks,
representative works include causal-GNN (Wang et al.
2022), cola-GNN (Deng et al. 2020) and STAN (Gao et al.
2021), etc. Other studies aim to jointly capture the temporal
and spatial properties of the epidemic transmission process
by combining GNN with conventional time series processing
models (such as Recurrent Neural Network (RNN)) (Sesti
et al. 2021). Nevertheless, there are some issues that have
consistently gone unattended. On the one hand, for the GNN
model, when the number of layers stacked is too much, it
will suffer from over smoothing, which will lead to poor per-
formance of the model (Li et al. 2018; Zhou et al. 2020). On
the other hand, most of the existing time series processing
tools can only achieve the prediction task under the condi-
tion of equal interval sampling data and discrete time. The
existing research shows that the adoption of Neural Ordi-
nary Differential Equation Networks (ODENet) in GNN
models can avoid or solve the above problems (Poli et al.
2019; Huang et al. 2021). Last but not least, the interaction
between regional epidemic information and interregional
population mobility is an important aspect that has been
largely overlooked in current research.

In this paper, we propose a novel graph neural ordinary
differential equations approach which combines GNN and
ODENet to address the aforementioned issues. This method
tries to integrate the epidemic information of the region itself
and the interaction information between regions through a
well-designed fusion matrix, and model differential equa-
tion systems employing GNNSs on the graph to accurately
represent the instantaneous rate of change of nodes’ states.
Transformer (Vaswani et al. 2017) is used to realize the
reconstruction of the hidden state during the evolution of the
epidemic. Our contributions can be summarized as follows:

e We propose to combine GNN and ODENet to make fine-
grained epidemic forecasting. Thanks to the character-
istics of ordinary differential equations (ODEs), we can
predict the dynamics of epidemic spread on continuous
time domain on the graph structure.

e We investigate a fusion attention matrix that takes into
account the correlation between epidemic across regions
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and the influence of population movement on the spread
of epidemic. By incorporating these factors, our approach
achieves a more comprehensive and accurate analysis and
prediction of epidemic.

e We incorporate the Transformer model in a novel way
into our approach, taking advantage of its ability to
globally model the input sequence via the self-attention
mechanism. As a result, the Transformer model captures
the sequence’s underlying patterns and regularities (Voita
et al. 2019), allowing us to infer the initial hidden state
from the observed time series data, realising the recon-
struction of the hidden state throughout the entire obser-
vation period.

e Extensive comparison experiments are performed on
two COVID-19 datasets with different modeling settings.
The results demonstrate that our proposed model' out-
performs the baseline models and achieves up to 7.06%
performance improvement in long-term prediction tasks.
To confirm the efficacy of each component of our model,
we also created a set of ablation studies. The verifica-
tion experiment confirmed that our model can predict the
number of people in the latent period. The experiments
based on the multi-scale sampling training strategy also
demonstrated the capability of our model to accurately
predict epidemics using irregularly sampled data.

2 Related work
2.1 Spatial-temporal prediction

Spatial-temporal prediction refers to the prediction of the
unknown system state in time and space. In the past few
decades, spatial-temporal prediction has been widely used
in traffic forecasting (Yu et al. 2017; Fang et al, 2021; Yang
et al. 2021), weather forecasting (Shi et al. 2015), earth-
quake forecasting (Bhatia et al. 2018), etc. Liu et al. (2017)
propose to use the Conv-LSTM and Bi-LSTM modules to
concentrate the spatial-temporal feature and period feature
to predict the traffic flow. Li et al. (2017) introduce a dif-
fusion convolutional recurrent neural network (DCRNN),
which models spatial dynamics and temporal dynamics
using two-way random walks and recurrent neural networks,
respectively.

With the rise of graph neural networks, many research-
ers have attempted to developed spatio-temporal graph
neural networks (STGNNSs) to solve spatiotemporal pre-
diction problems. Spatio-Temporal Graph Convolutional
Networks(STGCN) (Yu et al. 2017) uses a spatio-temporal

' A repository with our source code can be found at: https://github.
com/xiongzhangxyq/GNNODENet.
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blocks to integrate graph convolution and gated temporal
convolution for traffic prediction. Spatial-Temporal Graph
Ordinary Differential Equation Networks(STGODE) (Fang
et al, 2021) is a new continuous representation of Graph
Convolutional Network (GCN) to increase the depth of
GCN, expand the spatial receptive field, and capture deeper
spatial-temporal dependence. STAN (Gao et al. 2021) cap-
tures geographic and temporal trends using attention-based
graph convolutional networks, and designs a loss term based
on physical laws, improving the long-term prediction perfor-
mance. In addition, some studies have focused on complex
local and global spatiotemporal dependencies (Zhang et al.
2021; Liu et al. 2023), recognizing the value of multivariate
time series (Jin et al. 2022) and proposing more sophisti-
cated predictive models.

In view of the strong correlation between the epidemic’s
spread and the contact of the population in the city, epicemic
prediction can be regarded as a spatial-temporal prediction
problem here. However, different from traffic flow forecast
and weather forecast, whose datas can be collected regu-
larly, epidemic data collection usually shows more diversi-
fied granularity (e.g., days, weeks) with a delay and even
missing, and epidemic outbreaks also exhibit abruptness.
The introduction of an efficient epidemic prediction model
for long-term predictions of epidemics on the continuous
time domain based on limited data is extremely important.
Here we adopt ODENet to solve the question, and achieve
epidemic prediction on continuous time domain.

2.2 Epidemic modeling

According to the characteristics of different infectious dis-
eases, mathematicians and epidemiologists have developed
different models to predict epidemic. Some studies model
epidemics based on differential equations, the two classical
models of this category are the susceptible-infected-suscep-
tible (SIS) model and the susceptible-infected-recovered
(SIR) model. Some follow-up studies have expanded the
SIS model and SIR model to further consider complex evo-
lution process (Maier and Brockmann 2020; Zhang et al.
2020). In addition to establishing traditional dynamic equa-
tion models, many researchers have developed probability-
based models (Balcan et al. 2009; Chang et al. 2021), due to
their great abilities for modeling nonlinear properties. These
approaches, while their excellent effectiveness, have some
drawbacks, including numerous idealistic assumptions that
cannot be guaranteed to be accurate.

Given the severity of the pandemic and the need for accu-
rate forecasting of the epidemic’s spread, machine learning
approaches have recently started to emerge as a promising
methodology to combat epidemic (Xie et al. 2022; Wang
et al. 2020; Zhu et al. 2019). Wu et al. (2018) separately
employ convolutional neural networks (CNNs) for spatial

correlations and Recurrent Neural Networks (RNNs) for
temporal correlations to make epidemic predictions.

However, it is obvious that non-Euclidean network struc-
ture data does not adapt itself to traditional convolution for
regular grids. GNNs come into being, and have been widely
used in epidemic forecasting. Some studies combine GNNs
and time series forecasting models to capture spatial corre-
lation and temporal correlation (Panagopoulos et al. 2021;
Sesti et al. 2021; Kargas et al. 2021). Wang et al. (2022) pro-
posed Causal-based Graph Neural Network (CausalGNN)
which is a GNN-based model taking causal computations
into account when making spatio-temporal epidemic fore-
casting. Deng et al. (2020) proposed a brand-new graphic
messaging framework based on the idea of fusing the graph
structure and time series features in the dynamic propaga-
tion process. Even though most of the above models can
achieve better prediction performance, they are helpless in
the face of non-equidistant sampling data, such as nucleic
acid sampling data. In our work, we use GNN to aggregate
the epidemic information of the region itself and the inter-
action information between regions, to simulate the spread
of the epidemic in the network, and use the characteristics
of ordinary differential equations to predict the epidemic
development situation at any node at any time to adapt to
non-equidistant sampling sequentially.

2.3 Continuous time series forecasting

Most existing time series methods (e.g., RNN) assume that
the interval between these observations and latent variables
is fixed, which often causes the estimated distribution to
deviate from the population distribution. These issues are
easily avoided by ODENet, which models the time series as
a continually evolving trajectory, this allows it to make bet-
ter use of the data’s timestamp information and to generate
predictions on the continuous time domain.

In recent years, some studies have combined ordinary dif-
ferential equation (ODE) with deep learning techniques, and
proposed a knowledge-data joint-driven ODENet method.
This method was first proposed in the literature (Chen et al.
2018). Its core idea is to use deep learning neural network
to fit the derivative in the differential equation, and at the
same time combine the classical solution method of ODE
to further complete the spatiotemporal situation modeling
and forecasting of the epidemic spread on the irregular
time interval sequence. At the same time, Xhonneux et al.
(2020) combined ODENet with GCN to successfully model
the temporal dynamic changes in graph structure, providing
an important solution for modeling complex non-Euclidean
spatial associations between different regions of the city. In
our work, we use ODENet to realize the continuous GNN
layers in mathematical sense, rather than using discrete
superimposed GNN layers, which enables us to carry out
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continuous time prediction tasks and avoid the over smooth-
ing problem in the GNN model when there are too many
layers.

3 Proposed method

3.1 Problem formulation

Definition 1 (the epidemic transmission network G) In our
study, we assume that there are N regions and each region
can be regarded as a node, thus we can adopt a graph
G=W,E, A) to represent the epidemic spread network
which consists of N nodes.

Definition 2 (the state X on the graph) In our study,
we express the observation of node i at time ¢ as
x()' € Rfe, where F, is the length of an observa-
tion vector. X(t,) = (x(t)", x(t;)%, ..., x(5;)V) € RV¥Fu
denotes the observations of all nodes at time ¢.
X = (X(ty), X(2)), ... , X(t7)) € RITDNXFa denotes the state
of all nodes within the time range of length 7 + 1, and the
unit of 7 is unlimited.

Definition 3 (the adjacency matrix A,) Assuming there are
N nodes, which can be divided into two types of nodes: type
C nodes, which refer to census block groups (CBGs) such as
residential districts, and type P nodes, which refer to points
of interest (POIs) such as shops, bars, gas stations, hospitals,
and a series of places that provide people with daily services.
It’s worth noting that the ' P’ and ' C’ labels simply provide a
practical distinction between the two types of nodes, and that
the nodes within each type are independent of each other.
This is not a heterogeneous graph problem.

Assuming that the visit matrix representing the size of popu-
lation flow between type C nodes and type P nodes is U at
time ¢, it can be represented as follows structure:

P, Py - P, - P

J n
Cioupy up - Uy e Uy
Cy uyy uy - Upj ==+ Uy
Ciouy up - Ui o0 Uy
Cm Upp Upp umj v Uy

where u; represents the number of population flow from
node i to node j, m and n are the number of type C nodes and
type P nodes respectively, and N = n + m, the corresponding
adjacency matrix A, representing the interaction between all
nodes is as follows:
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Table 1 A list of commonly used notations

Notation Description
g The graph
T The set of time slots
1% The set of all nodes whose number is N
& The set of all edges
u The population flow between regions
A Identity matrix whose dimension is determined by
context
A, € RN The adjacency matrix
A € RNV The fusion matrix
F, The number of dynamic features
F, The features dimensions of input encoded vector
C(t) € RV¥F. The hidden state
Z,(t) € R¥V?F.  The dynamic features at time
Z, € RN*F, The static features
F, The number of dynamic features
L(O) Loss function of the model
0U
[ UT 0 ] ( 1 )

the adjacency matrix A, will be used to aggregate informa-
tion in the follow-up work, and its normalized form is A,.
Epidemic Prediction on Population Flow Graphs The basic
goal of epidemic prediction is to forecast the most likely
epidemic measurements in the next L time steps based on
the previous H epidemic observations. At each time step z;,
the graph G is associated with a feature matrix X(z;) € R¥*q,
the graph nodes are connected via an adjacency matrix
A, € R"™N. The important notations are described in
Table 1.

3.2 Model

The proposed framework depicted in the Fig. 1 consists of
five major parts: (1) a feature encoder block which maps the
original signal to the hidden space, so that further increases
the express ability of model; (2) a Transformer block, this
block’s primary job is to infer the value of the initial hidden
state based on the observable data for a future time period;
(3) an aggregate block which mainly completes the fusion
of static features and dynamic features, learnable parameter
splicing, and high-dimensional mapping; (4) an ODENet
block to integrate the output of the previous layer as an inte-
grator; (5) a feature decoder block to recovery signal. In
order to optimize the model, we may add a dropout layer
after the decoding layer, and the final output of the network
which is the predicted value will be used to calculate the
error with the real value, the gradient descent method is
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Fig. 1 The overview of the problem and our proposed method

used to continuously optimize the model. We will elaborate
details of each step tin the following sections.

Feature Encoding Taking into account the evolution of
the epidemic, it is difficult to accurately obtain hidden state
(features) including potential infected cases and so on, how-
ever, these data are crucial to the epidemic’s spread, so we
map the true input of network X(z) into a high-dimensional
space X, (f) to learn more abundant hidden state in the evolu-
tion of the epidemic. By using a feature encoding function
f., let X, () € R¥*%. represent the matrix of hidden states of
node features X(¢)) for N nodes.

£, X,(t) = c(X(OW, + b,) € RVFe, 2

where W, € RV*Fe, b, € RF* are model parameters and o is
activation function.

Transformer Block During the development of the epi-
demic, individuals experience multiple hidden states, includ-
ing the latent state. In a region, there may be many individuals
who are still in the incubation period, and the data of these
individuals cannot be observed for the statistical indicators of
the entire region (e.g., the cumulative number of infections).

- ——

However, from the perspective of time and epidemic dynam-
ics, there is a temporal correlation that allows us to infer the
number of people in the incubation period in the past period
from the number of new infections in the future. This inference
can be achieved using temporal information and past-to-future
correlations. To capture temporal dependencies and extract
these hidden states, we use a Transformer model to estimate
the hidden state value at initial time. These estimates help us to
extrapolate backwards from initial time to complete the recon-
struction of the hidden state along the way.

Given its observable state X, (¢) for a period of time in the
future, we employ the Transformer as a powerful translator
to infer the hidden state C(#,) at the start:

C(ty) = Transformer(X,(ty), X, (t,); ..., X, (tyy_1)) € RV¥Fe,
3)
where ¢, are initial time, M denotes that we utilize a time
series of observable states of length M to calculate the hid-
den state at time #,. Among the many existing works, the
state of the entire network during the training process is
uniquely determined by X(¢), thus the status of the network
cannot be memorized. Inspired by the LSTM (Graves 2012)

@ Springer



286

X.Yangin et al.

model, we try to set two state variables including X(¢) and
C(1), where C(¢) is hidden state mentioned above. At this
time, the network state is not only determined by X(), but
also determined by C(#), which means that when the same
X(t) is input, if the corresponding C(¢) is different, the state
of the network is also different, X(#) can not completely
determine the network state. Specifically, we concatenate
the encoded X(f), which is X, (¢), and C(¢) into a new vector
Z(t) as follows:

Z@t) = [X,(), C(H)] € RV, @)

where [*,*] means concatenate two vectors, and the Z(r) will
be the true input of our model.
Fusion Matrix Given adjacency matrix A, € RV, we

generally normalize it to ANg =1+ D_%AgD_%, where D is
the degree matrix of A,. Motivated by the Graph Neural
Diffusion (GRAND) (Chamberlain et al. 2021), the infor-
mation aggregation between core node and its neiborg-
hoods is modeled with an attention function a(Z;, Z;), here

we use the scaled dot product attention a(Z;, Z;) (Vaswani
et al. 2017) which corresponding attention matrix is A,

and its form is:

(WKZi)T(WQZj))

a(Z;, Z;) = softmax( p
k

&)

Considering that the information aggregation of the core
node is affected by both the edge features and the neighbor
node features, we use a novel attention function a(Z;, Zj,;\ gl-j)
to combine edge features with node features, thus Equation
(5) updates to:

(WiZ) (WyZ)

a(Z,,Z., A

i Zj, gij) = softmax(

, )+ bA+c,  (6)

where Wy and W, are learnable matrices, b and c are learn-
able parameters, d, is a hyperparameter determining the
dimension of Wy and WQ, A gii denotes the normalized num-
ber of visitors from region i to region j. We use the multi-
head attention which is useful to stabilise the learning by

taking the expectation, A@Z) = % o Ah(Z), where the fusion

attention weight matrix A with Al_-/- =a(Z;,Z,,A,;), a more
general form is
A=A+bA, +c, 7

the fusion matrix A will participate in the relevant operation
of GNN model as the final adjacency matrix,

ODENet In our study, we adopt the ODENet to achieve
the continuous time prediction. ODENet extends time ¢
from discrete to continuous, and assuming that its latent
variable is X(¢), and the X(¢) to ¢ transfer function can be
expressed as follows:
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dx(

o S &@.0.0). ®)

Through the classical ODE solving method, it is possible
to model or predict the value of X(¢) and its correspond-
ing observed variable based on an irregular time series
[Zy. 1, ...t7]. The process can be expressed by the following
continuous-time(depth) model:

X(ty) = X(0) + / " aX()

t.
dr = X(0) + / Tf(X(r), 0,7)dr,

A T 1
®
where f(X(7), 0, 7) will be parameterised by a neural net-
work to model the hidden dynamic, and without requiring
any internal operations, we may backpropagate the process
through an ODE solver, enabling us to construct it solely as

a building block for the entire neural network.

Aggregation Information The continuous-time dynam-
ics on a graph can be represented by an ODENet (Zang
and Wang 2019), and Equation (8) can be converted into:

dx(z)

o =fX(®), G, W), 1), (10)

where G represents a graph composed of N nodes,
X(t) € RM*F represents the state of nodes on the graph at
t € [0, T], W(¢) controls the evolution direction of the entire
system, the function f : RVF — RN¥*F regulates the instan-
taneous rate of change of the node state evolution on the
graph.

In our study, we transform the regional-level epidemic
forecasting problem into a graph-based spatial-temporal
situational forecasting model on the continuous time
domain. Therefore, the differential equation on the epi-
demic spreading network we defined can be defined as:

% =fZ1),G, W@, 0, an
where Z(f) € RV*?F. represents the state of nodes on the
graph at ¢t € [0, T] (including observed state and hidden
state). The rest of the parameters have the same meanings
as in Equation (10).

In the real process of epidemic transmission, in addition
to the dynamic features such as the cumulative number
of infected cases and the infection rate that change over
time, the static features such as the population base and
the average dwell time will also have a great impact on
the epidemic spread, that is the larger the population base,
the higher the number of infected people may be, and the
longer the average dwell time, the higher the probability
of being infected in a certain place will be Chinazzi et al.
(2020); Kucharski et al. (2020) [43]. Therefore we use
the following equation to combine the static features and
dynamic features of nodes:
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Z(t) = 6(AZ(OW, + AZW, + b), (12)

where Z,(1) € RV<?F« denotes the dynamic features, that is,
Z(t) in Equation , Z, € RM*F: denotes the static features, F
denotes the dimension of the static features, o is the activa-
tion function and generally use the ReLU, A € RV repre-
sents the fusion matrix mentioned above, W, € R2FXY and
W, € RF> are the weights of the linear connection layer, y
is the dimension of final output.

Feature Decoding The model’s output, that is, the pre-
dicted value of the dynamic features X, (¢;), will be extracted
from the output Z(¢;) of the previous layer, and the final pre-
dicted value X(¢#;) is obtained through the decoding function

Ja

fy 2 X(tr) = o(X,(tp)Wy + by) € RV, (13)

where W, € R™| F is the feature dimension of the desired
output. In summary, our model is as follows:

X, =£X@),
C(ty) = Transformer(X,(ty), X, (t,), ...,
20 =X0.C0l

0 = ReLUAReLUGAZ (0W, +AZW, + bYW, +b).1 € 1,171,
X(tp) = [iX ().

X (ty-1),
(14)

the first equation projects the original input X () (dynamic
features) , which is mentioned in Definition 2, into the
hidden space and convert X,(f); the second equation,
based on the Transformer, calculates the value of the
hidden state C(#,) at the beginning based on the observ-
able data (X,(t)), X, (t)), ..., X,(#};_;)) with a length of M
in the future; the third equatio(t)n concatenates X,(¢)

Algorithm 1 Graph Neural Ordinary Differential Equations

and hidden state C(¢) as Z(t), which represents the state
of networks, and then a GCN layer will be used to com-
bine the dynamic features Z,(r) € RV?F« and static fea-
tures Z, € RV mentioned above to form the ultimate
input signal of GCN layer; the fourth equation will use
"Z“’ = ReLUA(ReLU(AZ, ()W, + AX, W, + b)W; + b) = f(Z(1), G, W(),1) ~ LO
control the hidden state in the high-dimensional space, and
achieves the continuous-time dynamics prediction corre-
sponding to any time by the method of numerical integra-
tion; the last equation converts the signal from the high-
dimensional space back to the original low-dimensional
space, and use a part of Z(#;) to compare with ground truth
and simulate the prediction error, where #; represents the
predicted endpoint timestamp.

3.3 Training

Optimization We compare each node’s prediction
value to the relevant ground truth and then using gradient
descent to optimise a L1-norm loss:

T
L©) = / (X(z) . xtr)’dt + AR(©), (15)
0

where X(r) € RV is the ture value available at time stamp
t € [0, T, the X(¢) is the predicted value, and the |.| denotes
value difference between X(7) and sz) attimer € [0,T], ®
represents all of the training parameters, and R(®) is the
regularization term (e.g. L1-norm).

Input: Node dynamic feature sequences X4(t), Node static features sequences

X, Normalized visit matrix sequences A

Output: Optimum 6
for Each sampled mini batch do
for iin 0,1,...,T do

Xe ( i) < Je(X(t:))

N o=

t:)

Z(t;) « [Xe(ts), C(ti)] _
f(0) <+ GCN(Zy(t:), Zs, As)
Z(tis1) <—ODESolve( 9),
X(ti+1)<—fd( e( z+1))

a for each node pair (Z;,Z;) do

7 \/—\/\

i) < Transformer(X.(t;), Xe(tiz1), . -

= (A1, A, ..., Ayr)

y Xe(tivnr—1))

Z(t;), (tirtiv1))

L &ij — FUSZOTLWGZght(ZZ, Zj, Agij);

6 Update the parameters © by optimizing £ loss in equation (15);
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4 Experiments

In this section, we will describe in detail the datasets,
experimental settings, performance metrics, the baseline
methods and their parametric settings, and the comparable
results.

Datasets In this study, we focus on regional-level out-
break forecasting, including POIs and CBGs, and here we
will introduce where the data used in the experiment was
obtained from.

1. SafeGraph Mobility Data: The datasets used in our
experiment are all from SafeGraph,” including visit
matrixs from origin CBGs to destination POIs, each
CBG’s population, each POI’s average dwell time indi-
cating indicates how long the individual stays in the
region on average, estimated area, longitud and latitud,
where each visit matrix is used as the metric of inter
region mobility flow.? Here we mainly collect the rele-
vant data of San Francisco for the experiments. It should
be noted that due to there are 28713 POIs and 2943
CBGs, that is the each access matrix U between them is
not a square matrix, and considering that the matrix is
too large computer computing power does not support it,
so we have moderately aggregated POIs based on postal
code.

2. COVID-19 data: We use the concepts presented in the
article [43] to develop a fine-grained epidemic simu-
lator that simulates the state of epidemic spread from
March 1, 2020 to May 2, 2020. The simulator superim-
poses an SEIR model on each CBG, taking into account
information such as inter-regional visits, regional area,
and regional population, and can fit the daily confirmed
cases® in cities observed within the proposed period
accurately. This also implies that we will be able to
conduct reliable research using relevant epidemic data
simulated by the simulator. We would like to emphasize
that our study considers strain characteristics, specifi-
cally the length of the incubation period, during both
the early and late stages of the epidemic (Alpha variant
strain period and Omicron variant strain period). Based
on this consideration, we make adjustments to the rel-
evant parameters in our simulator to ensure the accuracy
of our simulations. As a result, we obtain two distinct
datasets, one for each variant strain.

Performance Metrics The Mean Absolute Error (MAE),
a measure of the absolute difference between two variables,

2 https://www.safegraph.com.
3 https://docs.safegraph.com/docs/places-schema.
4 nhttps://github.com/nytimes/covid-19-data.
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the Root Mean Square Error (RMSE), a measure of the
divergence between the observed value and the real value,
and Mean Absolute Percentage Error (MAPE) are the met-
rics employed in our experiment to assess the forecasting
ability. The smaller the value of MAE, RMSE and MAPE,
the better the model performance. The Time Granularity
(abbreviated as TG) of time series data refers to the time
interval or size of the time unit between each data point.

Baselines We use the following baseline methods for
comparison, including the disease transmission model,
the classic time series forecasting model, and its variants,
as well as spatiotemporal prediction model: (1) infectious
disease dynamics model: SIR, SEIR ; (2) recurrent neural
network: RNN (Schuster and Paliwal 1997), LSTM (Graves
2012), GRU (Cho et al. 2014), DCRNN (Li et al. 2017;
3) graph neural network: GCN (Bruna et al. 2013), GAT
(Velickovi€ et al. 2017); spatiotemporal prediction model:
STGCN (Yuetal. 2017), STGODE (Fang et al, 2021), STAN
(Gao et al. 2021).

4.1 Learning regularly sampled data

Settings and Implementation Details We refer to exist-
ing research results and set the incubation period to 5 days
(120 h) and 3.4 days (81.6 h) to simulate two data sets (Wu
et al. 2022), which we call Raw Dataset and Omicron Data-
set. We perform epidemic prediction experiments at vari-
ous time granularities using statistical data from the total
infected cases at 1512 h (24 h per day) from March 1, 2020
to May 5, 2020, including hourly level (TG = 1 h), daily
level (TG = 24 h), bi-daily level (TG = 48 h), and weekly
level (TG = 168 h). Since the access between CBGs and
POIs is 168 h periodic, here we take 168 access matrices
U=(U,,U,,..,Uy), and use them to construct visit matrices
A, = (A, Ags - Ayr) mentioned above.

In our model, F sets to 1, F sets to 4, the hidden dimen-
sions of encoder and decoder are set to 16, 16, and the length
of observable data input to the Transformer module is set
to 7. We split all datasets with a ratio 50:13 into training
sets and test sets, batchsize is 16, random seed sets to 3407
(Picard 2021). During the training process, a learning rate
of 573 is employed for the Raw dataset, while a learning rate
of 10~ is utilized for the Omicron dataset, the optimizer
is Adam, all experiments are conducted using the PyTorch
framework and trained on a NVIDIA A100 GPU with 80 GB
memory. It should be noted that during the training process
of the model, the data used to deduce the initial value of the
hidden state through the Transformer block will not appear
in the test set, so it can be guaranteed that there will be no
future information leakage in our experiments.

Forecasting Performance We evaluated our approach in
both short-term (TG = 1 h, 24 h) and long-term (TG =48 h,
168 h) settings based on Raw Dataset and Omicon Dataset.
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Fig.2 Performance of MAE and RMSE computed across two datasets across various TG settings

Table 2 displays our model’s performance compared to a
number of baselines.

We discover that our model has significant performance
advantages at different time granularities, particularly in
long-term prediction tasks. SIR and SEIR models have poor
predictive performance compared to data-driven neural net-
work models. Epidemic spread is typically characterized by
complex nonlinear relationships, such as contact networks,
behavioral changes, and environmental factors, among oth-
ers, whereas SIR and SEIR models typically rely on a prior
set parameters and are incapable of capturing these complex
nonlinear relationships. Our model employs GNN to model
the connection and interaction process between regions, and
the results demonstrate the effectiveness of our design.

Based on the findings presented in rows 6—10 of Table 2,
it is evident that conventional time series models exhibit
suboptimal performance in either short-term forecasting
(e.g., LSTM) or long-term forecasting (e.g., RNN, GRU),
due to ignoring nonlinear relationships and complex interac-
tion patterns in the data. Classical GNN-based models (e.g.,

GCN, GAT), primarily emphasize local node connections
and information propagation from neighboring nodes in pro-
cessing graph data, however, these models exhibit limited
capability in capturing long-term dependencies, resulting
in the absence of significant performance advantages. This
observation emphasizes the significance of incorporating
both temporal and spatial interdependencies when modeling
epidemic propagation, as it plays a critical role in achieving
superior predictive accuracy.

We focus on the performance differences between the
three spatiotemporal convolution models, STAN, STGCN
and STGODE, and our proposed model. Figure 3 compares
the predicted values and true values of these four models on
some nodes, Fig. 2 presents their prediction errors under dif-
ferent TG settings. The results show that our proposed model
can learn potential patterns in the data more accurately. The
traffic prediction models (e.g., STGCN, STGODE) focus pri-
marily on the spatiotemporal dependence of local neighbour-
hoods. For longer-term spatiotemporal data, these model
may be limited by the local spatiotemporal relationship in a
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Fig. 3 Prediction and Target for the Raw Dataset, consisting of total infected cases in 6 nodes base on different models f or the period from April
20, 2020 to May 2, 2020 (312 h)

Table 2 Performance of
different models in terms of
key usability metrics on the

Raw dataset Omicron dataset

TG=24h

TG=168 h TG=24 h TG=168 h

two datasets for long-term

prediction (TG = 168 h) and MAE RMSE MAE RMSE MAE RMSE MAE  RMSE

;2";;"‘”“‘ prediction (TG = SIR 17098 35579 20347 38624 15426 27885  254.89  356.22
SEIR 12031 290.67  239.13 41754 13976 21153 217.36  424.59
RNN 81.31 14339 66.12 19076 70.03 198.64  67.32 15275
GRU 42.13 84.63 4627 12579 60.52 13129 47.49 151.26
LSTM 59.89 17329 62.59 19032 2976 6549 2637  68.52
GCN 61.45 17116 59.61 17417 59.12 16389 73.10 141.32
GAT 46.56 11987  42.87 100.19  47.76 11296 39.70 135.87
STGCN 11.54 2881 1614 3201 1373 27.54 14.01 31.16
STGODE 1169 2657 1507 3056 1148  29.83 13.99  27.89
STAN 1264 29.02 18.53 33.78 14.23 32.84 1479 3473
Ours 1121 2517 1375 29.68 1067 2572 1326 26.68
Percentages 2.86% 5.27% 2.12% 2.88% 7.06% 6.61% 5.22% 4.34%

All metrics are evaluated based on MAE and RMSE with lower values indicating better performance. In

addition, the best result and the second-best result of each metric are marked with bold and italic, respec-
tively

shorter time window and cannot fully consider the longer-  effects of each component in our framework. The results

term spatiotemporal dynamics.

The fact that our model performs well across all met-
rics for all datasets implies that our approach to modeling
spatial-temporal dependency is successful.

Ablation Study We conduct the ablation studies based
on the Raw Dataset and Omicron Dataset to assess the

@ Springer

are presented in Table 3. By analyzing ablation models, we
demonstrate that our model is the minimal model required
for this task. We generate the following baselines while
keeping the loss function constant.
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Table 3 Performance of ablation model in terms of key usability met-
rics on the Raw Dataset and Omicron Dataset for long-term predic-
tion (TG = 168 h), the best result and the second-best result of each
metric are marked with bold and italic, respectively

Raw dataset Omicron dataset

MAE RMSE MAE RMSE
Ours 14.75 33.68 13.76 24.68
Ours w/o ED 16.25 38.01 15.79 36.80
Ours w/o FW 25.14 66.01 24.34 59.32
Ours w/o transformer 14.79 34.93 13.81 25.49
Percentages 4.19% 3.58% 0.36% 3.18%

e Our model w/o ED: The model without encoding func-
tion f, and decoding function f;, which removes the first
line and fifth line in Equation (14), and here we call the
removed components as ED.

e  Our model w/o FW: The model uses a normalized adja-
cency matrix A o rather than fusion weight A (Sorrespond—
ing Equation (7)), which means we replace A with A, in
Equation (14), and the removed components are referred
to as FW.

e Our model w/o Transformer: The model uses a randomly
initialized learnable hidden state C(¢) instead of inverting
it with the aid of a Transformer block.

We summarize the observation as follows: three main com-
ponents including encoding (decoding) function, fusion
weight function, and Transformer block of our proposed
model are to be effective. As shown in line 5, the adap-
tion of the fusion weight function improves model perfor-
mance on Raw Dataset and Omicron Dataset, it shows that
the fusion weight constructed by us really well integrates
the edge features and node features in the epidemic spread
graph, and takes into account the interaction between edges
and nodes, so as to improve the sensitivity and fitting ability
of the model to epidemic data. By observing the line 6, we
can find that Transformer block has a small impact on the
performance of the model, and its role is mainly to deduce
the value of unobservable data from the future observable
data. It can also be seen from line 4 that encoding the input
signal can improve the prediction accuracy of the model and
improve the fitting ability of the model to a certain extent.

Verification Experiment We can simulate the number
of people in the incubation period because our simulator
is based on the SEIR model. Here we add this verification
experiment to demonstrate that our model can appropriately
predict the number of people throughout the latent phase.
The following are the specific experimental steps: we build
a simple model consisting of three layers of Multilayer Per-
ceptron (MLP), and divide the previous stage experiment’s
training set into a new training set and a test set in a 35:15
ratio. At this point, C(¢) is determined using the ODENet
parameters from the previous stage. We utilize C(¢) as the
new experiment’s input, and the output is the expected num-
ber of infected people during the incubation period. The
difference from previous experiments is that, in this study,
instead of using C(¢) as the target or ground truth value, the
latent period population generated based on the simulator
is used as the target value. Subsequently, the discrepancy
between these target values and the output of the three-layer
multilayer perceptron (MLP) is calculated to complete the
backpropagation process. Table 4 shows the two data sets
and experimental results for different TG, it can be con-
cluded that our model can accurately predict the number of
people in the latent period.

4.2 Learningirregularly sampled data

To validate that our model can achieve dynamic epidemic
predictions based on irregularly sampled data, we enhanced
the model training strategy building upon the experiments
in Sect. 4.1. Subsequently, we conducted additional experi-
ments on two datasets.

Settings and Implementation Details We employed a
probability-based multi-scale training strategy in the follow-
ing experiments, to validate the capability of our model in
addressing the challenge of irregularly sampled data in epi-
demic prediction. In particular, we partitioned the data into
training and testing sets in a 50:13 ratio. During the model
training process, we assigned probabilities to sampling
instances at intervals of §; =24, S, =48, and §; = 168,
denotedas P, = 1/6, P, = 1/2, and P; = 1/3, respectively.
These probabilities represent the likelihood of sampling epi-
demic data every S, hours in real life, for instance, sampling
at S, implies predicting the cumulative number of infections
24 h later. In the model testing phase, we conducted experi-
ments to predict data 24 h and 168 h ahead.

Table 4 Performance of
verification experiment on

Raw dataset

Omicron dataset

the Raw Dataset and Omicron Metrics MAE RMSE MAPE MAE RMSE MAPE
Dataset for different TG settings
TG=1h 378.42 721.98 0.27 296.93 566.71 0.28
TG=24h 162.76 238.34 0.18 157.98 217.56 0.17
TG=168h 73.56 153.29 0.11 68.57 117.59 0.09
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Table 5 Performance on Raw dataset Omicron dataset

irregularly sampled data, the

best result and the second- TG=24h TG=168 h TG=24h TG=168 h

best result of each metric are
marked with bold and italic,

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

respectively STGCN 23069 35628  133.65 27227 21267 35849 13734  282.45
STGODE 136.31 267.37 138.21 275.32 144.25 256.64 136.23 273.55
STAN 238.62 470.45 146.67 264.61 235.56 367.38 130.67 266.52
DCRNN 144.56 195.43 152.25 207.64 139.86 376.33 150.99 312.67
Ours 127.90 254.24 130.66 190.32 135.54 268.43 127.17 255.37
Percentages 6.17% - 2.24% 8.34% 3.09% - 2.68% 4.18%
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Fig.4 Prediction and Target for the Raw Dataset, consisting of total infected cases in the different nodes base on our model for the period from

April 20, 2020 to May 2, 2020 (312 h)

Forecasting Performance Based on the experiments
in the previous section, this section adds the DCRNN (Li
et al. 2017) as a benchmark model, and we focuse on the
difference in performance between the models proposed
in this section and a series of spatio-temporal prediction
benchmark models. Table 5 presents our experimental
results. In two sets of datasets, our model demonstrates a
significant advantage in long-term forecasting compared
to classical spatiotemporal prediction models. Figure 4
illustrates the predicted cumulative infection numbers for
numerous nodes based on our model. It can be observed
that the epidemic development trends across nodes are
highly diverse. Our model demonstrates the ability to
accurately learn dynamic epidemic evolution patterns from
non-uniformly sampled data, enabling precise predictions.

@ Springer

During the experiment, we also noticed some unusual
cases, such as the fact that the cumulative number of
infected people in some nodes showed no discernible trend
of change. We believe that this phenomenon is consistent
with the fact that some areas of epidemic prevention and
control work are performing admirably.

5 Conclusion

In this study, we propose a novel graph neural ordinary
differential equations approach which combines GNN and
ODENet to make fine-grained epidemic predictions. We
have conducted a large number of experiments to prove
the effectiveness of our proposed model, and its prediction
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performance is better than the benchmark model. In our
work, Multilayer Perceptron (MLP) encoders, decoders,
and nonlinear high-dimensional maps are used to simu-
late the highly complex process of epidemic evolution
and propagation. We creatively express the state evolution
rate on the epidemic transmission network in the form of
GNN and ODENet, and use the strong expression abil-
ity and interpretability of ODENet to make more flexible
and accurate predictions. In addition, we design an fusion
matrix constructed by attention matrix and geographic
adjacency matrix to fully aggregate information from the
dimensions of nodes and edges and improve the perfor-
mance of the model, and we introduce a Transformer block
to deduce the initial value of the hidden state based on the
observed data in the future for a period of time, and use
experiments to prove that our model can indeed obtain
excellent performance under this task. We conducted
experiments on two datasets, explored the short-term pre-
diction performance and long-term prediction performance
of the model by setting different time granularity, and veri-
fied the feasibility and efficiency of our proposed model.
In future work, we can deeply explore the interpretability
of the proposed model, try to enhance the flexibility and
universality of the model, and apply the results to the for-
mulation of epidemic prevention policies to provide refer-
ences for policymakers with vivid visual effects.
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