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ABSTRACT
Modern personalized recommendation services often rely on user

feedback, either explicit or implicit, to improve the quality of ser-

vices. Explicit feedback refers to behaviors like ratings, while im-

plicit feedback refers to behaviors like user clicks. However, in

the scenario of full-screen video viewing experiences like Tiktok

and Reels, the click action is absent, resulting in unclear feedback

from users, hence introducing noises in modeling training. Ex-

isting approaches on de-noising recommendation mainly focus

on positive instances while ignoring the noise in a large amount

of sampled negative feedback. In this paper, we propose a meta-

learning method to annotate the unlabeled data from loss and gra-

dient perspectives, which considers the noises in both positive and

negative instances. Specifically, we first propose an Inverse Dual
Loss (IDL) to boost the true label learning and prevent the false

label learning. Then we further propose an Inverse Gradient (IG)
method to explore the correct updating gradient and adjust the

updating based on meta-learning. Finally, we conduct extensive

experiments on both benchmark and industrial datasets where our

proposed method can significantly improve AUC by 9.25% against

state-of-the-art methods. Further analysis verifies the proposed

inverse learning framework is model-agnostic and can improve

a variety of recommendation backbones. The source code, along

with the best hyper-parameter settings, is available at this link:

https://github.com/tsinghua-fib-lab/WSDM24-InverseLearning.

†Chen Gao is the corresponding author (chgao96@gmail.com).
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1 INTRODUCTION
Recommender systems [23, 26, 30] aim to capture users’ prefer-

ences based on their historical behaviors, with a focus on either

explicit or implicit feedback. Explicit feedback, such as user ratings,

provides direct indications of user preferences but is challenging to

collect due to the need for active user participation [15, 21, 33]. In

contrast, implicit feedback, including user clicks, purchases, and

views, offers richer information and is more commonly utilized

in modern recommender systems [4, 20]. In certain contexts like

Micro-video platforms, users passively receive recommended items

without actively engaging through actions like clicking or rating.

Consequently, we encounter a scenario where the labeled feed-

back is extremely sparse, comprising predominantly quick-skip,

long-stay, and a considerable number of slow-skip or short-stay

videos with unclear feedback. Effectively leveraging this unlabeled

feedback poses a significant challenge for recommendation systems.

The challenge of dealing with unclear feedback in recommender

systems has led to various approaches that randomly sample un-

labeled data and consider it as negative feedback, resulting in in-

evitable noise [3, 12, 14]. Typically, user-clicked data is treated as

positive feedback, while unclicked data is sampled as negative feed-

back [3, 14]. However, this sampling strategy may include positive

instances in the unlabeled data, leading to false-negative cases.

Additionally, some studies have explored hard negative sampling
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techniques, which reduce false-positive instances but increase false-

negative instances [7, 8, 34]. Nevertheless, these methods often

underperform when evaluated on true positive and negative data

instead of the sampled negative data alone. Notably, a recent work

called DenoisingRec [28] focuses on denoising positive feedback

by manipulating the loss of false-positive instances but does not

adequately address the issue of noisy negative feedback. Overall, ex-

isting approaches tend to concentrate solely on either the positive or

negative perspective, without effectively tackling both aspects. Our

early experimental analysis reveals two key observations emerge,

serving as the motivation behind our proposed method: (1) Full
use of unlabeled data can boost the performance, (2) Labeled
data can guide the learning on unlabeled data.

To simultaneously tackle the unclear feedback problem from pos-

itive and negative perspectives, we propose a novel learning-based

approach that employs Inverse Dual Loss (IDL) and Inverse Gradient

(IG). Our method automatically annotates the unlabeled data and

subsequently adjusts the falsely annotated labels. Formally speak-

ing, we introduce IDL for unsupervised training on unlabeled data

and leverage IG to guide the unlabeled data. Specifically, the IDL

employs a well-designed loss function that leverages both positive

and negative feedback, which can automatically annotate unlabeled

data with unsupervised learning. We exploit the property that the

loss associated with a false positive/negative instance exceeds that

of a true positive/negative instance [28]. By assigning different

weights to the positive and negative labels of unlabeled instances,

calculated using the inverse dual loss, we effectively utilize true pos-

itive/negative instances while mitigating the noise introduced by

false positive/negative instances. This approach allows us to fully

capitalize on valuable information and enhance the quality of anno-

tation. In addition, to adjust the false annotated labels and improve

the robustness of IDL, we further propose an Inverse Gradient (IG)

method. Here we build a meta-learning process [10, 18] and split

the training data into training-train and training-test data. We first

exploit training-train data to pre-train the model. Then we further

use training-test data to validate the correctness of classification by

IDL. In other words, supervising the proposed unsupervised IDL

method via training-test data. Specifically, we calculate the gradient

for the inverse dual loss of sampled instances as well as the additive

inverse of the gradient. The model is optimized by either the direct

gradient or the additive inverse of gradient, determined by the split

training-test data. Experimental results illustrate that inverse gradi-

ent can truly improve the inverse dual loss. In summary, the main

contributions of this paper are as follows:

• We take the pioneering step to address the unclear passive feed-

back in video feed recommendation, which is far more chal-

lenging than existing works that are either based on explicit or

implicit active feedback.

• We propose Inverse Dual Loss (IDL) to annotate the labels for

sampled instances in an unsupervised learning manner. Besides,

we further propose Inverse Gradient to guide the unsupervised

learning on unlabeled data and improve the robustness of IDL.

• We experiment on two real-world datasets, verifying the superi-

ority of our method compared with state-of-the-art approaches.

Further studies sustain the effectiveness of our proposed method

in label annotation and convergence.

2 PROBLEM DEFINITION
We will formulate the problem here. The recommendation task

aims to model relevance score 𝑦𝜽
𝑢𝑖

= 𝑓 (𝑢, 𝑖 |𝜽 ) of user 𝑢 towards

item 𝑖 under parameters 𝜽 . The LogLoss function [35, 36] function

to learn ideal parameters 𝜽 ∗ is as:

LD∗ (𝜽 ) = 1

|D∗ |
∑︁

(𝑢,𝑖,𝑦∗
𝑢𝑖 )∈D∗

ℓ

(
𝑦𝜽𝑢𝑖 , 𝑦

∗
𝑢𝑖

)
, (1)

where ℓ

(
𝑦𝜽
𝑢𝑖
, 𝑦∗

𝑢𝑖

)
= −

(
𝑦∗
𝑢𝑖

log

(
𝑦𝜽
𝑢𝑖

)
+
(
1 − 𝑦∗

𝑢𝑖

)
log

(
1 − 𝑦𝜽

𝑢𝑖

))
,𝑦∗
𝑢𝑖

∈
{0, 1} is the feedback of user 𝑢 towards item 𝑖 . D∗

=

{(
𝑢, 𝑖,𝑦∗

𝑢𝑖

)}
,

𝑢 ∈ U, 𝑖 ∈ I is the reliable interaction data between all user-

item pairs. Indeed, due to the limited collected feedback, the model

training is truly formalized as follows:
¯𝜽 = arg min𝜽 LD𝑙 (𝜽 ) +

LD𝑢 (𝜽 ), where D𝑙 ∼ D∗
is the collected labeled data, and D𝑢 =

{(𝑢, 𝑖,𝑦𝑢𝑖 ) | 𝑢 ∈ U, 𝑖 ∈ I} is the sampled unlabeled data where

𝑦𝑢𝑖 = 0 is often assumed in existing recommenders for negative

sampling. However, such a strategy will inevitably introduce noise

because there are some positive unlabeled instances in the sam-

pled data. As a consequence, a model (i.e.,
¯𝜽 ) trained with noisy

data tends to exhibit suboptimal performance. Thus, our goal is

to construct a denoising recommender approximating to the ideal

recommender 𝜽 ∗ as:

𝜽 ∗ = arg min

𝜽
LD𝑙 (𝜽 ) + Ldenoise

D𝑢 (𝜽 ), (2)

where Ldenoise

D𝑢 (𝜽 ) indicates the loss on unlabeled data with all

samples annotated correctly, i.e. denoising sampling.

3 METHODOLOGY
In this section, we will first perform an in-depth analysis of existing

solutions and their limitations. Then we will propose inverse dual

loss to address the limitations of existing works for easy samples.

Finally, we further propose inverse gradient to address the limi-

tation of inverse dual loss and make it capable of not only easy

samples but also hard samples that are misclassified.

3.1 Inverse Dual Loss
In this section, we first analyze the characteristics of existing so-

lutions on the sampled unlabeled data. Then we introduce the

proposed inverse dual loss solution to denoise sampled data.

3.1.1 Analysis of Existing Approach. We first explain the data

sparsity problem in recommender systems from the perspective of

classification boundary, based on which we will introduce the ex-

isting solutions. As shown in Figure 1 (a), in recommender systems,

labeled data tends to be extremely sparse compared with a large

number of unlabeled data. A recommendation model is prone to

overfitting if it is only trained based on the sparsely labeled data,

compared with the ground-truth in Figure 1 (h).

In practice, existing recommenders often sample from unlabeled

data and treat all the sampled data as negative feedback. Such an

approach introduces false negative, which fails to retrieve items that

users may be interested in, as shown by the classification boundary

in Figure 1 (b). That is, there exists noise in the sampled negative

data. However, existing denoising approaches mainly focus on the
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Unlabeled data Positive data Negative data

(a) Unlabeled data (b) Negative sampling (c) Reweight loss (d) Truncated loss

(e) Easy negatives (f) True-negative label (g) Easy positives (h) True-positive label

(i) Hard negatives (j) False-positive label (k) Hard positives (l) False-negative label

Figure 1: Illustrations of existing solutions and our inverse dual loss’s effectiveness and limitation. (a)-(d) are the illustrations of
existing solutions: (a) illustrates there are a lot of unlabeled data; (b) illustrates the traditional negative sampling approach; (c)
illustrates the reweighted loss of DenoisingRec; (d) illustrates the truncated loss of DenoisingRec adapted on the false-negative
instance. (e)-(f) are the illustrations of our inverse dual loss’s effectiveness with easy sampling: (e) illustrates the easy negative
instances are sampled; (f) illustrates labeling the sampled instances as true negative; (g) illustrates the easy positive instances
are sampled; (h) illustrates labeling the sampled instances as true positive and approximate to ground-truth. (i)-(l) are the
illustrations of our inverse dual loss’s limitation with hard sampling: (i) illustrates the hard negative instances are sampled; (j)
illustrates labeling part of the sampled instances as false positive; (k) illustrates the hard positive instances are sampled; (l)
illustrates labeling part of the sampled instances as false negative.

noise in positive samples (false positive). For example, DenoisingRec

[28] attempts to achieve denoising for false positive instances as:

𝜽 ∗ = arg min

𝜽
Ldenoise

D𝑙∪D𝑛𝑜𝑖𝑠𝑒 (𝜽 ) + LD𝑢 (𝜽 ) (3)

where D𝑛𝑜𝑖𝑠𝑒 =
{
(𝑢, 𝑖, 1) | 𝑢 ∈ U, 𝑖 ∈ I, 𝑦∗

𝑢𝑖
= 0

}
is the noisy false

positive data they introduce in experiments. For example, R-CE

(Reweight Cross-Entropy) of DenoisingRec assigns lower weight

on false-positive instances with large loss (Figure 1 (c)), and T-CE

(Truncated Cross-Entropy) of DenoisingRec discards those false

positive instances with large loss (Figure 1 (d)). Though achieving

denoising for false-positive instances, they ignore false-negative

instances and fail to address the noise of negative sampling.

In fact, the collected labeled data is much cleaner than sampled

unlabeled data, and the number of false-positive instances is limited

in real-world recommender systems. On the contrary, the noise

brought by negative sampling is far more harmful. In other words,

the noise level of positive unlabeled data incorrectly sampled as

negative feedback is much higher than that of negative samples

wrongly regarded as positive feedback.

To sum up, existing solutions either introduce noise or perform

incomplete denoising, which motivates us to further propose a de-

noising solution for unlabeled data from both positive and negative

perspectives.

3.1.2 Labeling with Inverse Dual Loss. As an existing attempt

in DenoisingRec, we have discovered that the false positive in-

stances are with a greater loss. It is also an apparent phenomenon

in machine learning. For example, if we have a positive instance and

a well-trained model, the loss of classifying it as negative will be

greater than that of classifying it as positive. Otherwise, if we have

a negative instance and a well-trained model, the loss of classifying

it as positive will be greater. Hence, we can assume the sampled

unlabeled instances are both possibly positive and negative and

then exploit this inherent characteristic to automatically weigh

more on the true positive or negative instances while weighing less

on the false ones.

Definition 1. (Inverse Dual Loss) The inverse dual loss is defined
as denoising loss to automatically classify the unlabeled data as:

L𝑑𝑢𝑎𝑙
D𝑢 (𝜽 ) = 1

|D𝑢 |
∑︁

(𝑢,𝑖,𝑦𝑢𝑖 ) ∈D𝑢

𝑤1ℓ

(
𝑦𝜽𝑢𝑖 , 1

)
+𝑤0ℓ

(
𝑦𝜽𝑢𝑖 , 0

)
, (4)
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Training model Optimal model Direct gradient Inverse gradient Test gradient

1 2 1 2

(a) Update with direct gradient (b) Update with inverse gradient

1 2 3

1 2 3

(c) Pass this batch of unlabeled data (d) Convergence analysis

Figure 2: Illustrations of inverse gradient adaption.

where 𝑤1 =
stopgrad

(
ℓ
(
𝑦̂𝜽
𝑢𝑖
,0
) )

𝑧𝑤stopgrad(ℓ (𝑦̂𝜽𝑢𝑖 ,1))
,𝑤0 =

stopgrad
(
ℓ
(
𝑦̂𝜽
𝑢𝑖
,1
) )

𝑧𝑤stopgrad(ℓ (𝑦̂𝜽𝑢𝑖 ,0))
are

the weights for positive loss and negative loss, respectively. 𝑧𝑤 =
stopgrad

(
ℓ
(
𝑦̂𝜽
𝑢𝑖
,0
) )

stopgrad(ℓ (𝑦̂𝜽𝑢𝑖 ,1))
+ stopgrad

(
ℓ
(
𝑦̂𝜽
𝑢𝑖
,1
) )

stopgrad(ℓ (𝑦̂𝜽𝑢𝑖 ,0))
is the normalization parame-

ter. D𝑢 is the sampled unlabeled data and 𝜽 is the model parameters
to be learned. Here stopgrad is a stop-gradient operation.

The pros of inverse dual loss are as shown in (e)-(h) of Figure 1: (e)

when the easy negative instances are sampled, the loss of classifying

them as positive will be greater than that of classifying them as

negative, and thus inverse dual loss will assign more weights on the

negative loss; (f) gradually assigning more and more weights on the

negative loss, the negative unlabeled instances will eventually be

classified as negative; (g) likewise, when the easy positive instances

are sampled, the inverse dual loss will assign more weights on the

positive loss; (h) the positive unlabeled instances will eventually be

classified as positive and approximate to the ground-truth.

3.1.3 Limitation of Inverse Dual Loss. When sampling the easy

positive or negative instances, our inverse dual loss can boost learn-

ing by correctly labeling the sampled instances. However, it may be

an obstacle when there are some hard positive or negative instances.

As shown in (i)-(l) of Figure 1, given some hard positive or negative

instances, the classification boundary will be prevented from the

ground-truth: (i) the hard negative instances are sampled; (j) half of

the negative unlabeled instances will be classified as positive and

become noise; (k) the hard positive instances are sampled; (l) half

of the positive unlabeled instances will be classified as negative and

become noise. That is to say, our inverse dual loss relies heavily on

the current training classification boundary and the difficulty of

sampled data, requiring us to further improve its robustness.

3.2 Inverse Gradient
To improve the robustness of Inverse Dual Loss on the hard sampled

data towards the current training model, in this section, we further

propose inverse gradient to adjust the gradient of false annotated

data, inspired by the meta-learning framework [10, 18]. Then we

analyze the convergence of the proposed Inverse Gradient.

3.2.1 Learning to Label with Inverse Gradient. In this part,

we introduce our solution for tackling the false annotated instances

of Inverse Dual Loss.

Definition 2. (Inverse Gradient) We define the gradient and
additive inverse of gradient calculated by (4) w.r.t.∇L𝑑𝑢𝑎𝑙

D𝑢 (𝜽 ) and
−∇L𝑑𝑢𝑎𝑙

D𝑢 (𝜽 ) as direct gradient and inverse gradient, respectively, of
the loss for unlabeled data D𝑢 .

Theorem 1. Given learning rate 𝛼 ∈ R, 𝛼 ≠ 0, assume the
temporal model parameters updated by the direct gradient and in-
verse gradient, respectively, are as 𝜽𝑑 = 𝜽 − 𝛼 ◦ ∇L𝑑𝑢𝑎𝑙

D𝑢 (𝜽 ) and
𝜽 𝑖 = 𝜽 + 𝛼 ◦ ∇L𝑑𝑢𝑎𝑙

D𝑢 (𝜽 ). Then, the relationship between the loss
of them and the model with parameter 𝜽 on data D𝑙 will be ei-
ther LD𝑙 (𝜽𝑑 ) > LD𝑙 (𝜽 ) > LD𝑙 (𝜽 𝑖 ) or LD𝑙 (𝜽𝑑 ) < LD𝑙 (𝜽 ) <

LD𝑙 (𝜽 𝑖 ).

Based on this theorem, we can have the following gradient up-

dating strategies. Generally, we will first split the training data into

training-train data and training-test data, where we pre-train the

model on the training-train data. Then we will calculate the direct

gradient of inverse dual loss on the sampled unlabeled data, which

can further result in the following three cases:

• When the sampled data is easy, we can exploit the direct gradient

to update the model, and it will gain a smaller test loss on the

training-test data, as shown in Figure 2 (a);

• When the sampled data is hard, exploiting the inverse gradient

to update the model will gain a smaller test loss on the training-

test data, and thus we exploit inverse gradient here as shown in

Figure 2 (b);

• When the model is approximately optimal, either direct gradient

or inverse gradient will prevent it from ground-truth, and we

discard this batch of unlabeled data as shown in Figure 2 (c);

3.2.2 Algorithm. We present the procedure of exploring these

three cases as Algorithm 1. The algorithm first pre-trains the model

using the split training-train data. Then the model will update with

direct gradient or inverse gradient or even not update, determined

by the validation on the split training-test data.

More specifically, the inputs of our proposed algorithm are la-

beled data D𝑙
, unlabeled data D𝑢

, and learning rate 𝛾 , 𝛼 . The first

iteration aims to pre-train the model using the split training-train

data. The second iteration aims to explore the direct gradient and

inverse gradient on the loss for sampled unlabeled data, where

three strategies are explored here as lines 13-15 of Algorithm 1 with
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Algorithm 1: Inverse Gradient Adaptation
input :Labeled data D𝑙

, unlabeled data D𝑢
, learning rate 𝛾 , 𝛼

output :𝜽

1 Initialize 𝜽 , split D𝑙 into training-train data train

(
D𝑙

)
and

training-test data test

(
D𝑙

)
;

2 while not done do
3 for 𝑡 = 1 to𝑇 do
4 Sample batch of training labeled data train(D𝑙

𝑡 ) ∼ D𝑙
;

5 L
train

(
D𝑙
𝑡

) (𝜽 ) =
1���train

(
D𝑙
𝑡

)��� ∑(𝑢,𝑖,𝑦∗
𝑢𝑖

) ∈train

(
D𝑙
𝑡

) ℓ (𝑦̂𝜽
𝑢𝑖
, 𝑦̂∗

𝑢𝑖

)
;

6 𝜽 = 𝜽 − 𝛾 ◦ ∇L
train(D𝑡 ) (𝜽 ) ;

7 for 𝑡 = 1 to𝑇 do
8 Sample batch of training unlabeled data train(D𝑢

𝑡 ) ∼ D𝑢
;

9 L𝑑𝑢𝑎𝑙

train(D𝑢
𝑡 )

(𝜽 ) =
1

|train(D𝑢
𝑡 ) |

∑
(𝑢,𝑖,𝑦̄𝑢𝑖 ) ∈train(D𝑢

𝑡 ) 𝑤
1ℓ

(
𝑦̂𝜽
𝑢𝑖
, 1

)
+

𝑤0ℓ

(
𝑦̂𝜽
𝑢𝑖
, 0

)
;

10 𝜽𝑑 = 𝜽 − 𝛼 ◦ ∇L𝑑𝑢𝑎𝑙

train(D𝑢
𝑡 )

(𝜽 ) ;

11 𝜽 𝑖 = 𝜽 + 𝛼 ◦ ∇L𝑑𝑢𝑎𝑙

train(D𝑢
𝑡 )

(𝜽 ) ;

12 Sample batch of test labeled data test(D𝑙
𝑡 ) ∼ D𝑙

;

13 L
test

(
D𝑙
𝑡

) (𝜽𝑑 ) = 1���test

(
D𝑙
𝑡

)��� ∑(
𝑢,𝑖,𝑦∗

𝑢𝑖

)
∈test

(
D𝑙
𝑡

) ℓ (𝑦̂𝜽𝑑
𝑢𝑖

, 𝑦∗
𝑢𝑖

)
;

14 L
test

(
D𝑙
𝑡

) (𝜽 𝑖 ) = 1���test

(
D𝑙
𝑡

)��� ∑(
𝑢,𝑖,𝑦∗

𝑢𝑖

)
∈test

(
D𝑙
𝑡

) ℓ (𝑦̂𝜽𝑖
𝑢𝑖
, 𝑦∗

𝑢𝑖

)
;

15 L
test

(
D𝑙
𝑡

) (𝜽 ) = 1���test

(
D𝑙
𝑡

)��� ∑(
𝑢,𝑖,𝑦∗

𝑢𝑖

)
∈test

(
D𝑙
𝑡

) ℓ (𝑦̂𝜽
𝑢𝑖
, 𝑦∗

𝑢𝑖

)
;

16 𝜽 =

arg min{𝜽𝑑 ,𝜽 ,𝜽𝑖 } {Ltest

(
D𝑙
𝑡

) (𝜽𝑑 ), L
test

(
D𝑙
𝑡

) (𝜽 ), L
test

(
D𝑙
𝑡

) (𝜽 𝑖 ) };
17 L

test

(
D𝑙
𝑡

) (𝜽 ) =
min{L

test

(
D𝑙
𝑡

) (𝜽𝑑 ), L
test

(
D𝑙
𝑡

) (𝜽 ), L
test

(
D𝑙
𝑡

) (𝜽 𝑖 ) };
18 𝜽 = 𝜽 − 𝛾 ◦ ∇L

test

(
D𝑙
𝑡

) (𝜽 ) ;

𝜽𝑑 , 𝜽 𝑖 and 𝜽 as the model parameters updated by the direct gradient,

inverse gradient and without being updated by the gradient on the

loss for sampled unlabeled data, respectively. Finally, the explored

updated direction with minimal test loss on the training-test data

will be selected to update the model for this iteration.

3.2.3 Convergence Analysis. As shown in Figure 2 (d), the first

case illustrates when the unlabeled data is ideally sampled, the up-

dating with direct gradient will lead to a smaller loss and better con-

vergence on the training-test data, while the third case with poorly

sampled data supposes to update with inverse gradient. However,

when the model approximates convergence on the training-test

data, updating with either direct gradient or inverse gradient may

be poorer than no updating, as shown in stage 2 of Figure 2 (d).

To avoid the gradient ascent problem for the second case, we can

set the learning rate for the inverse dual loss to be smaller than that

Table 1: Data statistics for processed Micro Video dataset and
ML1M dataset.

Dataset Micro Video ML1M
Users 37,692 6,041

Items 131,690 3,953

Feedback
Positive 4,915,745 836,478

Negative 4,546,747 163,731

Total 9,462,492 1,000,209

Density 0.19% 4.19%

for the test loss, i.e., 𝛼 < 𝛾 in Algorithm 1. In this way, the scale of

updating by the gradient for inverse dual loss will be within the

scale of updating by the gradient for test loss. That is to say, the

gradient ascent problem is less likely to occur on the inverse dual

loss for unlabeled data than the loss for labeled data.

4 EXPERIMENTS
In this section, we perform experiments on two real-world datasets,

targeting four research questions (RQs):

• RQ1:How does the proposedmethod perform comparedwith the

state-of-the-art denoising recommenders? What is the effect of

two proposed components, i.e., Inverse Gradient (IG) and Inverse

Dual Loss (IDL)?

• RQ2: How does our proposed inverse dual loss identify the unla-

beled data?

• RQ3: What is the effect of the inverse gradient on convergence?

• RQ4: What is the optimal ratio between the learning rates for

inverse dual loss and training-test?

4.1 Experimental Setup
4.1.1 Datasets. To practice and verify the effectiveness of our

proposed method, we conduct experiments on an industrial Micro

Video dataset and a public benchmark ML1M dataset, which is

widely used in existing work for recommender systems [6, 19].

Micro Video is an extremely sparse dataset where users are passive

in receiving the feed videos and have rare active feedback. The

details of them are as Table 1.

4.1.2 Baselines and Evaluation Metrics. To demonstrate the

effectiveness of our proposed inverse learning on unlabeled data,

we compared the performance of recommenders trained by our

inverse gradient (IG) with recommenders trained by inverse dual

loss (IDL) and normal training by standard loss or negative sam-

pling (NS) [3, 14, 25]. Besides we also compare our inverse learning

method with the state-of-the-art methods for denoising recom-

mender systems. Specifically, we also compare two adaptive de-

noising training strategies, T-CE and R-CE, of DenoisingRec [28].

Following DenoisingRec [28], we select GMF and NeuMF [14] as

backbones, which are neural Collaborative Filtering models.

We adopt widely-used AUC and GAUC as accuracy metrics [13].

Besides, two widely-used ranking metrics [2], MRR and NDCG@10,

are also adopted for evaluation.
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Figure 3: Positive and negative weight distributions for dual loss on ML1M at first (up) and final (bottom) epochs.
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Figure 4: Positive and negative weight distributions for dual loss on Micro Video at first (up) and final (bottom) epochs.

4.1.3 Hyper-parameter Settings. For the two denoising strate-

gies [28], we followed their default settings and verified the effec-

tiveness of our methods under the same conditions. The embedding

size and batch size of all models are set as 32 and 1,024, respectively.

Besides, we adopt Adam [17] to optimize all the model parameters

with the learning rate 𝛾 initialized as 0.0001 and 0.00001 for labeled

data on ML1M and Micro Video datasets, respectively, while the

learning rate for sampled data is set as 𝛼 = 0.1𝛾 . As for the inverse

gradient, we split 90% of the training data as training-train data,

and the left is used as training-test data. The sampling rate is set as

1. The provided code has included the best hyper-parameters.

4.2 Overall Performance (RQ1)
The performance comparison is shown in Table 2, from which we

have the following observations.

• Our inverse gradient performs best. Our inverse gradient

(IG) method achieves the best performance compared with four

baselines and our inverse dual loss (IDL) for three metrics. Specif-

ically, our IG improves the backbone sharply, which shows the

ability of our proposed method to well classify the unlabeled data

and achieve effective data augmentation to resolve the data spar-

sity problem of existing recommenders. Note that on apart from

IDL and IG, GMF is better than NeuMF in general. But NeuMF
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Table 2: Performance comparisons with GMF and NeuMF
backbones on two datasets. Bold and underline refer to the
best and second best results, respectively. Here IG includes
the IDL method.

Model Method ML1M Micro Video
NDCG AUC GAUC NDCG AUC GAUC

GMF

None 0.9285 0.7671 0.6919 0.7365 0.8024 0.7558

NS 0.9400 0.7639 0.7200 0.7049 0.7802 0.7247

T-CE 0.9349 0.7612 0.7163 0.6994 0.6486 0.6956

R-CE 0.9391 0.7632 0.7192 0.7069 0.7820 0.7260

IDL 0.8996 0.7304 0.6400 0.7272 0.7858 0.7335

IG 0.9521 0.8318 0.7642 0.7773 0.8033 0.7593

NeuMF

None 0.9214 0.7524 0.6856 0.6649 0.7504 0.6916

NS 0.9298 0.7495 0.7088 0.6350 0.7191 0.6689

T-CE 0.9351 0.7587 0.7158 0.6725 0.7469 0.6911

R-CE 0.9349 0.7521 0.7117 0.6288 0.7038 0.6568

IDL 0.9212 0.7962 0.6984 0.6466 0.7174 0.6647

IG 0.9449 0.8253 0.7569 0.7809 0.8198 0.7689

with IG can significantly improve the performance, which is even

better than GMF with IG. This is because NeuMF is a deep-based

model, which will overfit when data is less or noise. Besides, IG

outperforms the existing negative sampling (NS) method, which

means there is truly a large number of positive unlabeled data,

and directly treating them all as negative feedback will confuse

the model. Finally, IG also outperforms existing state-of-art de-

noising methods, T-CE and R-CE, showing the importance of

tackling the noise from both positive and negative feedback.

• Inverse gradient can improve inverse dual loss to be more
robust. Inverse dual loss (IDL) only outperforms the NeuMF on

ML1M dataset for AUC and GAUC, which shows the inferior

robustness of IDL since it depends heavily on the training model

and sampled data. Besides, it is even outperformed by GMF on

ML1M and NeuMF on Micro Video, which means the poor sam-

pling of unlabeled data will have a negative impact on the model

training. These results show the significance of improving the

robustness of IDL and confirm that it is necessary to exploit IG

to adjust IDL.

4.3 Annotation on Unlabeled Data (RQ2)
To study the ability of our proposed method to annotate the unla-

beled data, we visualize the distribution of weights for positive loss

and negative loss in the ML1M and Micro Video datasets, respec-

tively, as Figure 3 and 4. In specific, the upper part represents the

weights at the first epoch after pre-training on the training-train

data, and the bottom part represents the weights at the convergence

epoch. From the figure, we can observe that:

• Both deep and linear models are improved maximumly by
our method. After convergence, both GMF and NeuMF can well

classify the unlabeled data and capture similar patterns. In the

ML1M dataset, most sampled instances are labeled as positive

with more positive weights. In the Micro Video dataset, sampled

instances are labeled in a more balanced manner. It means the

deepmodel and linear model have the same upper bound on these

two datasets, which is also consistent with the results of IG in
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Figure 5: The loss on training-test data with the adapted
gradient from the dual loss of unlabeled data. Each point of
the loss curve is marked by its updated gradient direction.

overall performance where these two methods have competitive

performance. This also shows the robustness of our proposed IG

for improving both linear and deep models to their upper bound.

• Deep model annotates the unlabeled data faster than the
linear model. It is obvious that at the beginning, the linear GMF

model fails to well classify the unlabeled data but the deep NeuMF

model has well captured the pattern of unlabeled data, which

shows the generalization ability of deep learning model [5].

4.4 Convergence Analysis (RQ3)
To investigate the convergence of our proposed inverse gradient,

we also plot the loss curve of training-test data for the ML1M and

Micro Video datasets on the upper and bottom parts in Figure 5,

respectively. Based on the results, we can discover that:

• Inverse Gradient can promote convergence. For the ML1M

dataset, at the early stage, GMF model is updated with direct

gradient, then with a hybrid of direct and inverse gradients, and

finally with inverse gradient. In NeuMF model, we can discover

more hybrid gradients in the valley of the loss curve. This is

because the test gradient is more likely to ascent at the valley

where our Inverse Gradient inverses the gradient for dual loss to

adjust its direction for better convergence.

• Proper learning rate can prevent gradient ascent. For the
Micro Video dataset, the models are always updated with direct

gradient. This is because the learning rate is relatively low here

(as analyzed in the Section 4.5), leading to almost no gradient

ascent problem. Most importantly, we can discover that there

is no case of passing gradient in the descent procedures, which

supports our analysis at Section 3.2.3 that setting a smaller value

of learning rate 𝛼 can avoid the gradient ascent problem for

inverse dual loss.

4.5 Hyper-parameter Study (RQ4)
As discussed in Section 3.2.3, we can avoid the gradient ascent

problem by setting the learning rate for inverse dual loss smaller
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Figure 6: The loss ofGMFmodel on training-test datawith dif-
ferent learning rates. Each point of the loss curve is marked
by its updated gradient direction.

than that for test loss, i.e., 𝛼 < 𝛾 in Algorithm 1. To experimentally

study this convergence analysis at Section 3.2.3 and investigate the

impact of the learning rate for convergence, we vary the learning

rate for inverse dual loss with 1, 10, 50, and 100 times the learning

rate for test loss. Here we study the loss curve of GMF on Micro

Video as Figure 6, where we can discover that:

• Smaller learning rate for inverse dual loss can avoid gradi-
ent ascent. When 𝛼 is smaller than 10 times 𝛾 , the gradients are

often direct gradients. However, when 𝛼 grows up to 50 times 𝛾 ,

the inverse gradients appear. Moreover, when 𝛼 grows up to 100

times 𝛾 , there even appear pass gradients which means the oc-

currence of gradient ascent. Thus it is consistent to our analysis

at Section 3.2.3 that we can avoid the gradient ascent problem by

limiting the learning rate for inverse dual loss according to the

learning rate for test loss.

• Greater learning rate for inverse dual loss can speed up
the convergence but more fluctuation.With the growth of

learning rate 𝛼 , the loss convergence becomes faster. However, it

also results in fluctuation as there appear more inverse gradients

and pass gradients. This observation is consistent to our analysis

of Section 3.2.3 for convergence.

5 RELATEDWORK
Implicit Feedback with Negative Sampling. Existing recom-

menders are generally based on implicit feedback data, where the

collected data is often treated as positive feedback, and negative

sampling [3, 14, 25] is exploited to balance the lack of negative

instances. However, the negative sampling strategy will introduce

noise because there are some positive unlabeled [1, 9, 27] data in the

sampled instances. To improve existing implicit feedback recom-

mendation, the identification of negative experiences [11, 16] has

grabbed the researchers’ attention. However, these methods collect

either the various user feedback (e.g., dwell time [16] and skip [29])

or the item characteristics [24], requiring additional feedback and

manual labeling, e.g., users are supposed to actively provide their

satisfaction. Besides, the evaluation of items relies heavily on man-

ual labeling and professional knowledge [24]. Thus in practice,

these methods are too expensive to implement in real-world recom-

menders. In addition, hard negative sampling is adopted to improve

the negative sampling [7, 8, 34]. However, with fewer false positive

samples, the hard negative instances also bring more false-negative

samples. Our meta-learning method elegantly annotates the unla-

beled instances based on the sparsely labeled instances.

Denoising Recommender Systems. One intuitive approach to

reduce noise is to directly include more accurate feedback [22, 31],

such as dwell time [32] and skip [29]). However, forcefully requir-

ing additional feedback from users may harm user experiences. To

address this problem, DenoisingRec [28] achieves denoising rec-

ommendation for implicit feedback without any additional data.

More specifically, they perform denoising on the false positive in-

stances via truncating or reweighting the samples with larger loss.

However, they only consider the positive feedback without fur-

ther addressing the noise brought by negative sampling. Our work

considers the sampled instances as possibly positive and negative,

then achieve denoising data augmentation from both positive and

negative perspectives.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we proposed a novel method that automatically an-

notated the unlabeled data and adjusted the false annotated labels.

Such exploration not only addressed the unavoidable noise brought

by widely used negative sampling but also improved the current

denoising recommenders. Specifically, we proposed inverse learn-

ing from both loss and gradient perspectives. The first one was

the Inverse Dual Loss that assumed the sampled data to be possi-

bly positive or negative and automatically annotated them. If the

positive loss was greater than the negative loss (difficult to label

the data as positive), the Inverse Dual Loss would inversely assign

more weights to the negative loss and vice versa. Since the Inverse

Dual Loss depended heavily on the current training model and

the quality of sampled data, we further proposed Inverse Gradi-

ent which made Inverse Dual Loss more robust by adjusting the

gradient for those falsely annotated instances. Here we designed

a meta-learning method splitting the training data into training-

train data and training-test data, which pre-trained the model and

determined the updated gradient, respectively.

As for future work, we plan to apply our inverse learning with

more recommendation models as the backbones to further verify

the generalization of our proposed methods.
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