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ABSTRACT KEYWORDS

Modern personalized recommendation services often rely on user
feedback, either explicit or implicit, to improve the quality of ser-
vices. Explicit feedback refers to behaviors like ratings, while im-
plicit feedback refers to behaviors like user clicks. However, in
the scenario of full-screen video viewing experiences like Tiktok
and Reels, the click action is absent, resulting in unclear feedback
from users, hence introducing noises in modeling training. Ex-
isting approaches on de-noising recommendation mainly focus
on positive instances while ignoring the noise in a large amount
of sampled negative feedback. In this paper, we propose a meta-
learning method to annotate the unlabeled data from loss and gra-
dient perspectives, which considers the noises in both positive and
negative instances. Specifically, we first propose an Inverse Dual
Loss (IDL) to boost the true label learning and prevent the false
label learning. Then we further propose an Inverse Gradient (IG)
method to explore the correct updating gradient and adjust the
updating based on meta-learning. Finally, we conduct extensive
experiments on both benchmark and industrial datasets where our
proposed method can significantly improve AUC by 9.25% against
state-of-the-art methods. Further analysis verifies the proposed
inverse learning framework is model-agnostic and can improve
a variety of recommendation backbones. The source code, along
with the best hyper-parameter settings, is available at this link:
https://github.com/tsinghua-fib-lab/WSDM24-InverseLearning.
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1 INTRODUCTION

Recommender systems [23, 26, 30] aim to capture users’ prefer-
ences based on their historical behaviors, with a focus on either
explicit or implicit feedback. Explicit feedback, such as user ratings,
provides direct indications of user preferences but is challenging to
collect due to the need for active user participation [15, 21, 33]. In
contrast, implicit feedback, including user clicks, purchases, and
views, offers richer information and is more commonly utilized
in modern recommender systems [4, 20]. In certain contexts like
Micro-video platforms, users passively receive recommended items
without actively engaging through actions like clicking or rating.
Consequently, we encounter a scenario where the labeled feed-
back is extremely sparse, comprising predominantly quick-skip,
long-stay, and a considerable number of slow-skip or short-stay
videos with unclear feedback. Effectively leveraging this unlabeled
feedback poses a significant challenge for recommendation systems.

The challenge of dealing with unclear feedback in recommender
systems has led to various approaches that randomly sample un-
labeled data and consider it as negative feedback, resulting in in-
evitable noise [3, 12, 14]. Typically, user-clicked data is treated as
positive feedback, while unclicked data is sampled as negative feed-
back [3, 14]. However, this sampling strategy may include positive
instances in the unlabeled data, leading to false-negative cases.
Additionally, some studies have explored hard negative sampling
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techniques, which reduce false-positive instances but increase false-
negative instances [7, 8, 34]. Nevertheless, these methods often
underperform when evaluated on true positive and negative data
instead of the sampled negative data alone. Notably, a recent work
called DenoisingRec [28] focuses on denoising positive feedback
by manipulating the loss of false-positive instances but does not
adequately address the issue of noisy negative feedback. Overall, ex-
isting approaches tend to concentrate solely on either the positive or
negative perspective, without effectively tackling both aspects. Our
early experimental analysis reveals two key observations emerge,
serving as the motivation behind our proposed method: (1) Full
use of unlabeled data can boost the performance, (2) Labeled
data can guide the learning on unlabeled data.

To simultaneously tackle the unclear feedback problem from pos-
itive and negative perspectives, we propose a novel learning-based
approach that employs Inverse Dual Loss (IDL) and Inverse Gradient
(IG). Our method automatically annotates the unlabeled data and
subsequently adjusts the falsely annotated labels. Formally speak-
ing, we introduce IDL for unsupervised training on unlabeled data
and leverage IG to guide the unlabeled data. Specifically, the IDL
employs a well-designed loss function that leverages both positive
and negative feedback, which can automatically annotate unlabeled
data with unsupervised learning. We exploit the property that the
loss associated with a false positive/negative instance exceeds that
of a true positive/negative instance [28]. By assigning different
weights to the positive and negative labels of unlabeled instances,
calculated using the inverse dual loss, we effectively utilize true pos-
itive/negative instances while mitigating the noise introduced by
false positive/negative instances. This approach allows us to fully
capitalize on valuable information and enhance the quality of anno-
tation. In addition, to adjust the false annotated labels and improve
the robustness of IDL, we further propose an Inverse Gradient (IG)
method. Here we build a meta-learning process [10, 18] and split
the training data into training-train and training-test data. We first
exploit training-train data to pre-train the model. Then we further
use training-test data to validate the correctness of classification by
IDL. In other words, supervising the proposed unsupervised IDL
method via training-test data. Specifically, we calculate the gradient
for the inverse dual loss of sampled instances as well as the additive
inverse of the gradient. The model is optimized by either the direct
gradient or the additive inverse of gradient, determined by the split
training-test data. Experimental results illustrate that inverse gradi-
ent can truly improve the inverse dual loss. In summary, the main
contributions of this paper are as follows:

o We take the pioneering step to address the unclear passive feed-
back in video feed recommendation, which is far more chal-
lenging than existing works that are either based on explicit or
implicit active feedback.

e We propose Inverse Dual Loss (IDL) to annotate the labels for
sampled instances in an unsupervised learning manner. Besides,
we further propose Inverse Gradient to guide the unsupervised
learning on unlabeled data and improve the robustness of IDL.

e We experiment on two real-world datasets, verifying the superi-
ority of our method compared with state-of-the-art approaches.
Further studies sustain the effectiveness of our proposed method
in label annotation and convergence.
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2 PROBLEM DEFINITION

We will formulate the problem here. The recommendation task
aims to model relevance score ﬁgi = f(u,i|0) of user u towards
item i under parameters 6. The LogLoss function [35, 36] function
to learn ideal parameters 6™ is as:

2,

(u,i,y:‘“.)ED*

where £ (ggi’ y;i) =- (y;i log (931‘) +(1-y;;) log (1 - ggi))’ Yui €
{0, 1} is the feedback of user u towards item i. Z)*={(u, i, y;i)} s
u € U,i € T is the reliable interaction data between all user-
item pairs. Indeed, due to the limited collected feedback, the model
training is truly formalized as follows: @ = argming L (6) +
Lpu(0), where D! ~ D* is the collected labeled data, and D* =
{(w,i,gui) |u € U,i € T} is the sampled unlabeled data where
Jui = 0 is often assumed in existing recommenders for negative
sampling. However, such a strategy will inevitably introduce noise
because there are some positive unlabeled instances in the sam-
pled data. As a consequence, a model (i.e., §) trained with noisy
data tends to exhibit suboptimal performance. Thus, our goal is
to construct a denoising recommender approximating to the ideal
recommender 0* as:

Lp+(0) =

1 A0 %
|D*| ¢ (yui’ yui) ’ (1)

0" = arg m;n Lpi(0) + L%Ease(e), (2)
where L%{}Oise(e) indicates the loss on unlabeled data with all
samples annotated correctly, i.e. denoising sampling.

3 METHODOLOGY

In this section, we will first perform an in-depth analysis of existing
solutions and their limitations. Then we will propose inverse dual
loss to address the limitations of existing works for easy samples.
Finally, we further propose inverse gradient to address the limi-
tation of inverse dual loss and make it capable of not only easy
samples but also hard samples that are misclassified.

3.1 Inverse Dual Loss

In this section, we first analyze the characteristics of existing so-
lutions on the sampled unlabeled data. Then we introduce the
proposed inverse dual loss solution to denoise sampled data.

3.1.1 Analysis of Existing Approach. We first explain the data
sparsity problem in recommender systems from the perspective of
classification boundary, based on which we will introduce the ex-
isting solutions. As shown in Figure 1 (a), in recommender systems,
labeled data tends to be extremely sparse compared with a large
number of unlabeled data. A recommendation model is prone to
overfitting if it is only trained based on the sparsely labeled data,
compared with the ground-truth in Figure 1 (h).

In practice, existing recommenders often sample from unlabeled
data and treat all the sampled data as negative feedback. Such an
approach introduces false negative, which fails to retrieve items that
users may be interested in, as shown by the classification boundary
in Figure 1 (b). That is, there exists noise in the sampled negative
data. However, existing denoising approaches mainly focus on the
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Figure 1: Illustrations of existing solutions and our inverse dual loss’s effectiveness and limitation. (a)-(d) are the illustrations of
existing solutions: (a) illustrates there are a lot of unlabeled data; (b) illustrates the traditional negative sampling approach; (c)
illustrates the reweighted loss of DenoisingRec; (d) illustrates the truncated loss of DenoisingRec adapted on the false-negative
instance. (e)-(f) are the illustrations of our inverse dual loss’s effectiveness with easy sampling: (e) illustrates the easy negative
instances are sampled; (f) illustrates labeling the sampled instances as true negative; (g) illustrates the easy positive instances
are sampled; (h) illustrates labeling the sampled instances as true positive and approximate to ground-truth. (i)-(1) are the
illustrations of our inverse dual loss’s limitation with hard sampling: (i) illustrates the hard negative instances are sampled; (j)
illustrates labeling part of the sampled instances as false positive; (k) illustrates the hard positive instances are sampled; (1)
illustrates labeling part of the sampled instances as false negative.

noise in positive samples (false positive). For example, DenoisingRec To sum up, existing solutions either introduce noise or perform
[28] attempts to achieve denoising for false positive instances as: incomplete denoising, which motivates us to further propose a de-
noising solution for unlabeled data from both positive and negative
. perspectives.
6" = argmin LI, .. (0) + Lpu(6) ®)
o DVD 3.1.2 Labeling with Inverse Dual Loss. As an existing attempt

in DenoisingRec, we have discovered that the false positive in-
stances are with a greater loss. It is also an apparent phenomenon
in machine learning. For example, if we have a positive instance and
a well-trained model, the loss of classifying it as negative will be
greater than that of classifying it as positive. Otherwise, if we have
a negative instance and a well-trained model, the loss of classifying
it as positive will be greater. Hence, we can assume the sampled
unlabeled instances are both possibly positive and negative and
then exploit this inherent characteristic to automatically weigh
more on the true positive or negative instances while weighing less
on the false ones.

where Dmoise = {(u, L) |uel,iel, y:;l. = 0} is the noisy false
positive data they introduce in experiments. For example, R-CE
(Reweight Cross-Entropy) of DenoisingRec assigns lower weight
on false-positive instances with large loss (Figure 1 (c)), and T-CE
(Truncated Cross-Entropy) of DenoisingRec discards those false
positive instances with large loss (Figure 1 (d)). Though achieving
denoising for false-positive instances, they ignore false-negative
instances and fail to address the noise of negative sampling.

In fact, the collected labeled data is much cleaner than sampled
unlabeled data, and the number of false-positive instances is limited

in real-world recommender systems. On the contrary, the noise DEFINITION 1. (Inverse Dual Loss) The inverse dual loss is defined
brought by negative sampling is far more harmful. In other words, as denoising loss to automatically classify the unlabeled data as:
the noise level of positive unlabeled data incorrectly sampled as 1

. . . . dual 1, (A0 0, (0
negative feedback is much higher than that of negative samples LGE(0) = D] Z wt (ym-, 1) +wit (yui’ 0) . (4

wrongly regarded as positive feedback. (w,i, Gur) € DY
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Figure 2: Illustrations of inverse gradient adaption.

stopgrad(f(gzi,o)) 0 _ stopgrad(t’(gzi,l))
zwstopgrad(f(ggi,l))’w " z.wstopgrad(¢(92,,0))
the weights for positive loss and negative loss, respectively. z,, =
stapgrad([(ﬁgi,o)) stopgrad(t’(g}zi,l))
stopgrad(¢(99,,1)) ~ stopgrad(¢(4°,0))
ter. DY is the sampled unlabeled data and 0 is the model parameters
to be learned. Here stopgrad is a stop-gradient operation.

1

where w are

is the normalization parame-

The pros of inverse dual loss are as shown in (e)-(h) of Figure 1: (e)
when the easy negative instances are sampled, the loss of classifying
them as positive will be greater than that of classifying them as
negative, and thus inverse dual loss will assign more weights on the
negative loss; (f) gradually assigning more and more weights on the
negative loss, the negative unlabeled instances will eventually be
classified as negative; (g) likewise, when the easy positive instances
are sampled, the inverse dual loss will assign more weights on the
positive loss; (h) the positive unlabeled instances will eventually be
classified as positive and approximate to the ground-truth.

3.1.3 Limitation of Inverse Dual Loss. When sampling the easy
positive or negative instances, our inverse dual loss can boost learn-
ing by correctly labeling the sampled instances. However, it may be
an obstacle when there are some hard positive or negative instances.
As shown in (i)-(l) of Figure 1, given some hard positive or negative
instances, the classification boundary will be prevented from the
ground-truth: (i) the hard negative instances are sampled; (j) half of
the negative unlabeled instances will be classified as positive and
become noise; (k) the hard positive instances are sampled; (1) half
of the positive unlabeled instances will be classified as negative and
become noise. That is to say, our inverse dual loss relies heavily on
the current training classification boundary and the difficulty of
sampled data, requiring us to further improve its robustness.

3.2 Inverse Gradient

To improve the robustness of Inverse Dual Loss on the hard sampled
data towards the current training model, in this section, we further
propose inverse gradient to adjust the gradient of false annotated
data, inspired by the meta-learning framework [10, 18]. Then we
analyze the convergence of the proposed Inverse Gradient.

3.2.1 Learning to Label with Inverse Gradient. In this part,
we introduce our solution for tackling the false annotated instances
of Inverse Dual Loss.
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DEFINITION 2. (Inverse Gradient) We define the gradient and
additive inverse of gradient calculated by (4) w.r‘t‘V.L%‘fl(O) and

—V.E%‘,f‘l(G) as direct gradient and inverse gradient, respectively, of
the loss for unlabeled data D*.

THEOREM 1. Given learning rate « € R,a # 0, assume the
temporal model parameters updated by the direct gradient and in-
verse gradient, respectively, are as 04 =0-ao VL%‘,?I(G) and
0 =0+ao VL%‘,?I(O). Then, the relationship between the loss

of them and the model with parameter @ on data D! will be ei-
ther Ly1(89) > Lpi1(0) > Lyi(6") or Li(67) < Lyi(6) <
LDI(Ol).

Based on this theorem, we can have the following gradient up-
dating strategies. Generally, we will first split the training data into
training-train data and training-test data, where we pre-train the
model on the training-train data. Then we will calculate the direct
gradient of inverse dual loss on the sampled unlabeled data, which
can further result in the following three cases:

e When the sampled data is easy, we can exploit the direct gradient
to update the model, and it will gain a smaller test loss on the
training-test data, as shown in Figure 2 (a);

e When the sampled data is hard, exploiting the inverse gradient
to update the model will gain a smaller test loss on the training-
test data, and thus we exploit inverse gradient here as shown in
Figure 2 (b);

e When the model is approximately optimal, either direct gradient
or inverse gradient will prevent it from ground-truth, and we
discard this batch of unlabeled data as shown in Figure 2 (c);

3.2.2 Algorithm. We present the procedure of exploring these
three cases as Algorithm 1. The algorithm first pre-trains the model
using the split training-train data. Then the model will update with
direct gradient or inverse gradient or even not update, determined
by the validation on the split training-test data.

More specifically, the inputs of our proposed algorithm are la-
beled data Z)l, unlabeled data DY, and learning rate y, . The first
iteration aims to pre-train the model using the split training-train
data. The second iteration aims to explore the direct gradient and
inverse gradient on the loss for sampled unlabeled data, where
three strategies are explored here as lines 13-15 of Algorithm 1 with
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Algorithm 1: Inverse Gradient Adaptation

input :Labeled data D! unlabeled data DY, learning rate y, «
output: 0

1 Initialize 6, split D' into training-train data train (Dl) and

training-test data test (Z)l);

2 while not done do
3 fort=1to T do

4 Sample batch of training labeled data train(Dg) ~ ol

> Ltrain(Di) (9) =
1 ¢ A9_) 0 :
|train(Z)£)| Z:(u,i,yf“.)Etrain(Z)f) (y“‘ yu’)

6 L 0=0-yo V-Ltrain(Dt) (0);

7 fort=1to T do

8 Sample batch of training unlabeled data train(D}) ~ D¥;
dual —

® Ltrain(l);‘) (6) =

1 1p( 26
[train(D¥) | Z(u,i,gui)etram(o;‘) wit (yui’ 1) +

wof(ggi,o);

10 9d:9—aong;¢;’(Dm(9);
1 Bi:9+a0V.£t‘f;‘iZl(D?)(9);
12 Sample batch of test labeled data test(D!) ~ D;

~0d .
13 Ltest(i)f) (6) = ’test(ng)‘ Z(u,i,yzi)etest(og) ¢ (yzi > yui);
1 Ltest(Df) (69 = )test(lz)i)} Z(u,i,y:ii)etest(@f) ¢ (93;’ y;,—);
» Ltest(i)tl) (0) = test(li)g)‘ Z(u,i,y;i)etest(ﬂg) ¢ (?/Zi’ y:;i);

16 6=
arg min{Qdﬂ,ei} {Ltest(.@f) (Gd)’ Ltest(@f) (9)’ Ltest(i)g) (91) };

h Ltest(l)tl)<9) =
min{Ltest(Dﬁ) (Gd)’ Ltest(Df) (0)’ Ltest(@f) (91) };
18 B:G—yoV.Ctest(Dg)(e);

6%, 6" and 0 as the model parameters updated by the direct gradient,
inverse gradient and without being updated by the gradient on the
loss for sampled unlabeled data, respectively. Finally, the explored
updated direction with minimal test loss on the training-test data
will be selected to update the model for this iteration.

3.23 Convergence Analysis. As shown in Figure 2 (d), the first
case illustrates when the unlabeled data is ideally sampled, the up-
dating with direct gradient will lead to a smaller loss and better con-
vergence on the training-test data, while the third case with poorly
sampled data supposes to update with inverse gradient. However,
when the model approximates convergence on the training-test
data, updating with either direct gradient or inverse gradient may
be poorer than no updating, as shown in stage 2 of Figure 2 (d).
To avoid the gradient ascent problem for the second case, we can
set the learning rate for the inverse dual loss to be smaller than that
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Table 1: Data statistics for processed Micro Video dataset and
ML1M dataset.

Dataset Micro Video ML1IM
Users 37,692 6,041
Items 131,690 3,953
Positive 4,915,745 836,478
Feedback Negative 4,546,747 163,731
Total 9,462,492 1,000,209
Density 0.19% 4.19%

for the test loss, i.e., « < y in Algorithm 1. In this way, the scale of
updating by the gradient for inverse dual loss will be within the
scale of updating by the gradient for test loss. That is to say, the
gradient ascent problem is less likely to occur on the inverse dual
loss for unlabeled data than the loss for labeled data.

4 EXPERIMENTS

In this section, we perform experiments on two real-world datasets,
targeting four research questions (RQs):

e RQ1: How does the proposed method perform compared with the
state-of-the-art denoising recommenders? What is the effect of
two proposed components, i.e., Inverse Gradient (IG) and Inverse
Dual Loss (IDL)?

e RQ2: How does our proposed inverse dual loss identify the unla-
beled data?

o RQ3: What is the effect of the inverse gradient on convergence?

e RQ4: What is the optimal ratio between the learning rates for
inverse dual loss and training-test?

4.1 Experimental Setup

4.1.1 Datasets. To practice and verify the effectiveness of our
proposed method, we conduct experiments on an industrial Micro
Video dataset and a public benchmark ML1M dataset, which is
widely used in existing work for recommender systems [6, 19].
Micro Video is an extremely sparse dataset where users are passive
in receiving the feed videos and have rare active feedback. The
details of them are as Table 1.

4.1.2 Baselines and Evaluation Metrics. To demonstrate the
effectiveness of our proposed inverse learning on unlabeled data,
we compared the performance of recommenders trained by our
inverse gradient (IG) with recommenders trained by inverse dual
loss (IDL) and normal training by standard loss or negative sam-
pling (NS) [3, 14, 25]. Besides we also compare our inverse learning
method with the state-of-the-art methods for denoising recom-
mender systems. Specifically, we also compare two adaptive de-
noising training strategies, T-CE and R-CE, of DenoisingRec [28].
Following DenoisingRec [28], we select GMF and NeuMF [14] as
backbones, which are neural Collaborative Filtering models.

We adopt widely-used AUC and GAUC as accuracy metrics [13].
Besides, two widely-used ranking metrics [2], MRR and NDCG@10,
are also adopted for evaluation.



WSDM °24, March 4-8, 2024, Merida, Mexico

GMF GMF
20.00 20.00
= 2
£ =
C C
& 10.00 & 10.00
0.00 0.55 0.60 000020 0.45
Postive Weight Negative Weight
GMF GMF
7.50 7.50
2 2
@ 5.00 @ 5.00
[ [
0550 /\—/—/\ O 550 /\\/\
0.00 0.00
0 1 0 1
Positive Weight Negative Weight

Figure 3: Positive and negative

GMF GMF
400.00 400.00
2 2
‘D ‘D
B 200.00  200.00
o ’ o ’
000 =0 26250 46500 4675 008 53250.53500.5375
Postive Weight Negative Weight
GMF GMF
3.00 3.00
=2 2
£2.00 £2.00
c c
)] )]
0O 1.00 M O 1.00 /\J\
0.00~—¢ " 0.00 =7 "
Positive Weight Negative Weight

Guanyu Lin et al.

NeuMF NeuMF
15.00 15.00
> >
£710.00 £710.00
C e
[ [
O 500 /\—/\ O 500 /\/\
0.00 0.00
050 075  1.00 0.00 025 0.50
Postive Weight Negative Weight
NeuMF NeuMF
15.00 15.00
210.00 210,00
[2] [2]
C e
[ [
0O 5.00 0O 5.00
0.00 "/\ 0.00 /L
0 1 0 1
Positive Weight Negative Weight

weight distributions for dual loss on ML1M at first (up) and final (bottom) epochs.

NeuMF NeuMF
3.00 3.00
22.00 22.00
(2] [2]
c ey
() [0
0 1.00 0 1.00
0.00 5 ; 0.00 5 :
Postive Weight Negative Weight
NeuMF NeuMF
3.00 3.00
2 2
‘@ 2.00 ‘® 2.00
c ey
(o) [0
2 100 2 100
0.00~— : 0.00 =~ :
Positive Weight Negative Weight

Figure 4: Positive and negative weight distributions for dual loss on Micro Video at first (up) and final (bottom) epochs.

4.1.3 Hyper-parameter Settings. For the two denoising strate-
gies [28], we followed their default settings and verified the effec-
tiveness of our methods under the same conditions. The embedding
size and batch size of all models are set as 32 and 1,024, respectively.
Besides, we adopt Adam [17] to optimize all the model parameters
with the learning rate y initialized as 0.0001 and 0.00001 for labeled
data on ML1M and Micro Video datasets, respectively, while the
learning rate for sampled data is set as @ = 0.1y. As for the inverse
gradient, we split 90% of the training data as training-train data,
and the left is used as training-test data. The sampling rate is set as
1. The provided code has included the best hyper-parameters.
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4.2 Overall Performance (RQ1)

The performance comparison is shown in Table 2, from which we
have the following observations.

e Our inverse gradient performs best. Our inverse gradient
(IG) method achieves the best performance compared with four
baselines and our inverse dual loss (IDL) for three metrics. Specif-
ically, our IG improves the backbone sharply, which shows the
ability of our proposed method to well classify the unlabeled data
and achieve effective data augmentation to resolve the data spar-
sity problem of existing recommenders. Note that on apart from
IDL and IG, GMF is better than NeuMF in general. But NeuMF
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Table 2: Performance comparisons with GMF and NeuMF
backbones on two datasets. Bold and underline refer to the
best and second best results, respectively. Here IG includes
the IDL method.

ML1M Micro Video
Model Method or-=—1 6 GAUC NDCG AUC GAUC
None 09285 0.7671 0.6919 0.7365 0.8024 0.7558
NS 0.9400 0.7639 0.7200 0.7049 0.7802 0.7247
omp _TCE_ 09349 07612 0.7163 06994 06486 0.6956
R-CE 09391 07632 0.7192 0.7069 0.7820 0.7260
IDL 08996 0.7304 0.6400 0.7272 0.7858 0.7335
IG  0.9521 0.8318 0.7642 0.7773 0.8033 0.7593
None 009214 07524 0.6856 0.6649 0.7504 0.6916
NS 09298 0.7495 0.7088 0.6350 0.7191 0.6689
NeuMp _T"CE_ 09351 07587 0.7158 0.6725 0.7469 06911
R-CE 09349 07521 0.7117 0.6288 0.7038 0.6563
IDL 09212 0.7962 0.6984 0.6466 0.7174 0.6647
IG  0.9449 0.8253 0.7569 0.7809 0.8198 0.7689

with IG can significantly improve the performance, which is even
better than GMF with IG. This is because NeuMF is a deep-based
model, which will overfit when data is less or noise. Besides, IG
outperforms the existing negative sampling (NS) method, which
means there is truly a large number of positive unlabeled data,
and directly treating them all as negative feedback will confuse
the model. Finally, IG also outperforms existing state-of-art de-
noising methods, T-CE and R-CE, showing the importance of
tackling the noise from both positive and negative feedback.

e Inverse gradient can improve inverse dual loss to be more
robust. Inverse dual loss (IDL) only outperforms the NeuMF on
ML1M dataset for AUC and GAUC, which shows the inferior
robustness of IDL since it depends heavily on the training model
and sampled data. Besides, it is even outperformed by GMF on
ML1M and NeuMF on Micro Video, which means the poor sam-
pling of unlabeled data will have a negative impact on the model
training. These results show the significance of improving the
robustness of IDL and confirm that it is necessary to exploit IG
to adjust IDL.

4.3 Annotation on Unlabeled Data (RQ2)

To study the ability of our proposed method to annotate the unla-
beled data, we visualize the distribution of weights for positive loss
and negative loss in the ML1M and Micro Video datasets, respec-
tively, as Figure 3 and 4. In specific, the upper part represents the
weights at the first epoch after pre-training on the training-train
data, and the bottom part represents the weights at the convergence
epoch. From the figure, we can observe that:

e Both deep and linear models are improved maximumly by
our method. After convergence, both GMF and NeuMF can well
classify the unlabeled data and capture similar patterns. In the
MLI1M dataset, most sampled instances are labeled as positive
with more positive weights. In the Micro Video dataset, sampled
instances are labeled in a more balanced manner. It means the
deep model and linear model have the same upper bound on these
two datasets, which is also consistent with the results of IG in
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Figure 5: The loss on training-test data with the adapted
gradient from the dual loss of unlabeled data. Each point of
the loss curve is marked by its updated gradient direction.

overall performance where these two methods have competitive
performance. This also shows the robustness of our proposed IG
for improving both linear and deep models to their upper bound.
e Deep model annotates the unlabeled data faster than the
linear model. It is obvious that at the beginning, the linear GMF
model fails to well classify the unlabeled data but the deep NeuMF
model has well captured the pattern of unlabeled data, which
shows the generalization ability of deep learning model [5].

4.4 Convergence Analysis (RQ3)

To investigate the convergence of our proposed inverse gradient,
we also plot the loss curve of training-test data for the ML1M and
Micro Video datasets on the upper and bottom parts in Figure 5,
respectively. Based on the results, we can discover that:

e Inverse Gradient can promote convergence. For the ML1M
dataset, at the early stage, GMF model is updated with direct
gradient, then with a hybrid of direct and inverse gradients, and
finally with inverse gradient. In NeuMF model, we can discover
more hybrid gradients in the valley of the loss curve. This is
because the test gradient is more likely to ascent at the valley
where our Inverse Gradient inverses the gradient for dual loss to
adjust its direction for better convergence.

e Proper learning rate can prevent gradient ascent. For the
Micro Video dataset, the models are always updated with direct
gradient. This is because the learning rate is relatively low here
(as analyzed in the Section 4.5), leading to almost no gradient
ascent problem. Most importantly, we can discover that there
is no case of passing gradient in the descent procedures, which
supports our analysis at Section 3.2.3 that setting a smaller value
of learning rate « can avoid the gradient ascent problem for
inverse dual loss.

4.5 Hyper-parameter Study (RQ4)

As discussed in Section 3.2.3, we can avoid the gradient ascent
problem by setting the learning rate for inverse dual loss smaller
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Figure 6: The loss of GMF model on training-test data with dif-
ferent learning rates. Each point of the loss curve is marked
by its updated gradient direction.

than that for test loss, i.e., @ < y in Algorithm 1. To experimentally
study this convergence analysis at Section 3.2.3 and investigate the
impact of the learning rate for convergence, we vary the learning
rate for inverse dual loss with 1, 10, 50, and 100 times the learning
rate for test loss. Here we study the loss curve of GMF on Micro
Video as Figure 6, where we can discover that:

e Smaller learning rate for inverse dual loss can avoid gradi-
ent ascent. When « is smaller than 10 times y, the gradients are
often direct gradients. However, when a grows up to 50 times y,
the inverse gradients appear. Moreover, when a grows up to 100
times y, there even appear pass gradients which means the oc-
currence of gradient ascent. Thus it is consistent to our analysis
at Section 3.2.3 that we can avoid the gradient ascent problem by
limiting the learning rate for inverse dual loss according to the
learning rate for test loss.

e Greater learning rate for inverse dual loss can speed up
the convergence but more fluctuation. With the growth of
learning rate «, the loss convergence becomes faster. However, it
also results in fluctuation as there appear more inverse gradients
and pass gradients. This observation is consistent to our analysis
of Section 3.2.3 for convergence.

5 RELATED WORK

Implicit Feedback with Negative Sampling. Existing recom-
menders are generally based on implicit feedback data, where the
collected data is often treated as positive feedback, and negative
sampling [3, 14, 25] is exploited to balance the lack of negative
instances. However, the negative sampling strategy will introduce
noise because there are some positive unlabeled [1, 9, 27] data in the
sampled instances. To improve existing implicit feedback recom-
mendation, the identification of negative experiences [11, 16] has
grabbed the researchers’ attention. However, these methods collect
either the various user feedback (e.g., dwell time [16] and skip [29])
or the item characteristics [24], requiring additional feedback and
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manual labeling, e.g., users are supposed to actively provide their
satisfaction. Besides, the evaluation of items relies heavily on man-
ual labeling and professional knowledge [24]. Thus in practice,
these methods are too expensive to implement in real-world recom-
menders. In addition, hard negative sampling is adopted to improve
the negative sampling [7, 8, 34]. However, with fewer false positive
samples, the hard negative instances also bring more false-negative
samples. Our meta-learning method elegantly annotates the unla-
beled instances based on the sparsely labeled instances.

Denoising Recommender Systems. One intuitive approach to
reduce noise is to directly include more accurate feedback [22, 31],
such as dwell time [32] and skip [29]). However, forcefully requir-
ing additional feedback from users may harm user experiences. To
address this problem, DenoisingRec [28] achieves denoising rec-
ommendation for implicit feedback without any additional data.
More specifically, they perform denoising on the false positive in-
stances via truncating or reweighting the samples with larger loss.
However, they only consider the positive feedback without fur-
ther addressing the noise brought by negative sampling. Our work
considers the sampled instances as possibly positive and negative,
then achieve denoising data augmentation from both positive and
negative perspectives.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel method that automatically an-
notated the unlabeled data and adjusted the false annotated labels.
Such exploration not only addressed the unavoidable noise brought
by widely used negative sampling but also improved the current
denoising recommenders. Specifically, we proposed inverse learn-
ing from both loss and gradient perspectives. The first one was
the Inverse Dual Loss that assumed the sampled data to be possi-
bly positive or negative and automatically annotated them. If the
positive loss was greater than the negative loss (difficult to label
the data as positive), the Inverse Dual Loss would inversely assign
more weights to the negative loss and vice versa. Since the Inverse
Dual Loss depended heavily on the current training model and
the quality of sampled data, we further proposed Inverse Gradi-
ent which made Inverse Dual Loss more robust by adjusting the
gradient for those falsely annotated instances. Here we designed
a meta-learning method splitting the training data into training-
train data and training-test data, which pre-trained the model and
determined the updated gradient, respectively.

As for future work, we plan to apply our inverse learning with
more recommendation models as the backbones to further verify
the generalization of our proposed methods.
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