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Sweeping the globe since its outbreak, the COVID-19 pan-
demic continues to impose harm and loss on human societies 
everywhere1. This has revealed and intensified disparities in 

the health conditions of different communities because of systemic 
inequities in COVID-19 exposure and access to health systems2–4. 
In the fight against the pandemic, vaccines are regarded as the most 
critical medical resources, but they still face prominent shortages in 
many countries and communities5,6. As a result, vaccine prioritiza-
tion has become a critical policy task in every public health system7–9, 
with well-considered strategies to balance multiple ethical values. 
Facing the pandemic as a shock to the whole society, we argue that 
all members should have an equal right and opportunity to attain 
the best protection from the pandemic. In this light, our aim is to 
achieve a desirable balance between social utility and equity, where 
social utility is defined as the prevention of mortality in the entire 
population, and equity is defined as the mitigation of mortality dis-
parities in disadvantaged demographic groups10–13. These two goals 
represent the most visible metrics considered by health authorities 
and organizations worldwide9,14–16, undergirded by the contrasting 
ethical values of utilitarianism and egalitarianism. As J. Bentham 
put it, “the well-being of a portion of individuals” can sometimes 
be sacrificed to achieve “the greatest happiness of the greatest num-
ber”17. Previous research has identified trade-offs between social 
utility and equity in the distribution of health-care resources rang-
ing from disease screening to treatment18–22. In COVID-19 vaccine 
distribution, the most recent studies have focused on the trade-off 
between minimizing the years of life lost and minimizing the  
number of lives lost23–27, both of which reflect social-utility-oriented 

values and neglect disparities across the population. In light of this 
gap, we aim to reveal the relationship between social utility and 
equity in COVID-19 vaccine distribution, with critical implications 
for designing vaccine prioritization.

Examining the social utility and equity of vaccine distribution 
strategies requires an epidemiological model that can capture the 
uneven risks faced by different communities26—for example, older 
persons and those with greater mobility have higher COVID-19  
risk3,28–30. However, standard epidemiological models (for example,  
susceptible–infectious–recovered (SIR)31,32 and susceptible–exposed 
–infectious–recovered (SEIR)33,34) are built on the assumption of 
homogeneous population mixing, which prohibits them from cap-
turing heterogeneity in the spread of coronavirus. Some recent 
work35–37 has aimed to augment standard epidemiological models 
with empirical mobility data, but these neglect inherent vulnerability 
differences embedded in demographic profiles28. Here we propose 
an epidemiological model that simultaneously captures heteroge-
neity in the mobility patterns and demographic profiles of differ-
ent communities. Calibrated with large-scale mobility and census 
data covering more than 75 million residents in the United States, 
our model automatically tunes the dynamics of coronavirus spread 
within each community on the basis of its demographic profile and 
traces dispersion among communities with time-varying empirical 
mobility flows. Our model can accurately predict the number of daily 
deaths and reconstruct its uneven distribution among communities, 
enabling the evaluation of equity among communities defined by 
different demographics—that is, older adult ratio, average house-
hold income, essential worker ratio and racial-ethnic minority ratio, 
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which have garnered considerable attention throughout the pan-
demic4,28–30,35,38,39. Accordingly, we examine four vaccine distribution 
strategies that prioritize communities on the basis of vulnerabilities 
defined by these four demographic features. We find that social util-
ity and equity can be simultaneously improved when prioritizing the 
most disadvantaged communities in each demographic dimension 
for vaccine access. Such a result holds even when low-income com-
munities show considerable vaccine hesitancy, which contrasts with 
the conventional view of inevitable trade-offs19–22. Nevertheless, ele-
vating the equity across one demographic dimension can degrade it 
across others, suggesting that demographic features alone are insuf-
ficient to guide vaccine distribution. To overcome this, we propose 
two demography-and-behaviour-aware indices, community risk 
and societal risk, designed to measure the effect of prioritizing each 
community for vaccination to reduce (1) its own mortality risks and 
(2) the mortality risks it imposes on society as a whole. On the basis 
of these two indices, we design a framework for vaccine prioriti-
zation that simultaneously improves social utility and equity in all 
dimensions across scenarios of different vaccination rates and tim-
ing. By providing a general framework to tease out utilitarian and 
egalitarian values in COVID-19 vaccine distribution, our findings 
carry broad implications for the design of vaccination strategies.

results
Behaviour- and demography-informed epidemic modelling. To 
capture the heterogeneity in health risk faced by different commu-
nities34–36, we propose an epidemic model that principally integrates 
two important factors in the spread of coronavirus—that is, demo-
graphic profiles and mobility behaviours (Fig. 1a). Specifically, 
demographic profile is found to be substantially correlated with 
the fatality rate of SARS-CoV-2 infection28,40, while mobility 
behaviour determines the likelihood of exposure to coronavi-
rus35,37,39,41. The proposed behaviour- and demography-informed 
epidemic model (BD model) therefore divides the studied popula-
tion on the basis of the minimum geographical units defined by 
the United States Census Bureau, known as census block groups 
(CBGs)42, and maintains a local SEIR model for each of them to 
characterize the dynamics of intra-CBG epidemic spread, where 
the infection-fatality rate (IFR) is adjusted on the basis of the 
demographic profile and age-specified risks estimated in previous 
medical research28 (Supplementary Table 1). To capture inter-CBG 
transmission resulting from urban mobility, the proposed BD 
model constructs a bipartite network linking CBGs and points of 
interest (POIs) with time-varying edges to track hourly movements 
extracted from the SafeGraph dataset43, where the edge weights 
reflect temporal mobility intensity. New infections occur in POIs 
and CBGs with different probabilities determined by environmen-
tal characteristics, and infected populations travel to other com-
munities proportional to their extracted movements (Methods, 
‘Epidemic model, calibration and preliminary analysis’).

We evaluate the proposed BD model in nine large metro statisti-
cal areas (MSAs) in the United States covering over 75 million peo-
ple and compare it with two baseline models: a standard SEIR model 
and a metapopulation model that only considers heterogeneous 
mobility among communities35. Results show that the proposed 
BD model consistently produces more accurate estimations of daily 
deaths in each MSA with growth patterns ranging from sub-linear 
to exponential (Fig. 1b). Specifically, the BD model outperforms the 
SEIR and metapopulation models by reducing 51.9% (95% confi-
dence interval (CI), 0.504–0.534; P < 0.001) and 35.7% (95% CI, 
0.332–0.382; P < 0.001) of the normalized root mean square error 
(NRMSE), respectively (Fig. 1c and Supplementary Fig. 1). The pro-
posed BD model also reveals higher mortality risks faced by com-
munities with higher older adult ratios, lower household income, 
higher essential worker ratios and higher minority ratios, consistent 
with real-world observations4,28–30,35,36,39,44 (Fig. 1d). In contrast, the 

metapopulation model predicts that communities with higher older 
adult ratios will face unreasonably lower mortality risk, probably 
due to its inability to model demographic profiles. Furthermore, the 
SEIR model cannot capture heterogeneous risks in different com-
munities due to its assumption of homogeneous population mixing.

We examine the correlations between demographic profiles 
and mobility behaviour to explain heterogeneity across communi-
ties predicted by the metapopulation model and our proposed BD 
model (Fig. 1e). We find that the older adult ratio negatively corre-
lates with per capita mobility (r = −0.29), indicating that neglect of 
demography-specific mortality risk will lead to inaccurate estima-
tions of risk for different age groups. By contrast, our proposed BD 
model finds that differences in mobility behaviours are outweighed 
by the change in IFRs due to age structure and predicts higher mor-
tality risk in communities with higher older adult ratios, consistent 
with previous research28,44. Moreover, communities with lower aver-
age household incomes, higher essential worker ratios and higher 
minority ratios are associated with higher levels of mobility, proba-
bly following from limitations in their ability to substantially reduce 
mobility during the pandemic30,35,36. Both the metapopulation 
model and the proposed BD model therefore reproduce higher risk 
associated with low-income communities, while the risk associated 
with essential worker ratios remains complicated due to the joint 
effect of demographic and mobility profiles (for example, essential 
workers generally have higher mobility but younger demographic 
profiles). In view of this, considering the joint effect of both mobil-
ity behaviours and demographic profiles should enable improved 
prediction of the heterogeneous risks facing different communi-
ties. By incorporating both into the epidemic model and utilizing 
large-scale real-world mobility data for calibration, the proposed 
BD model is effective in generating accurate daily predictions and 
capturing heterogeneous risks faced by distinctive communities and 
provides a framework from which we can analyse the impacts of 
differing vaccine distribution strategies on social utility and equity.

Consequences of alternative vaccine distribution strategies. 
Social utility and equity represent the two most important concerns 
considered by public health policy makers in the COVID-19 pan-
demic9,14–16. These account for the collective welfare of the entire 
society and disparities among individual communities. As a critical 
policy concern during the COVID-19 pandemic, discussions of vac-
cine distribution strategies have centred on the trade-off between 
social utility and equity45, but this has been inadequately evaluated 
or supported with empirical data. With the proposed BD model, we 
aim to reveal mechanisms behind social utility and equity in vac-
cine distribution with large-scale empirical data. In vaccine distri-
bution, we quantify social utility as a reduction in the overall fatality 
rate, and we quantify equity as a reduction in the Gini coefficient 
of fatality rates among communities (Methods, ‘Quantification of 
social utility and equity’). On the basis of previous analyses that 
reveal heterogeneous health risks faced by populations with differ-
ent demographic profiles (Fig. 1d), we focus on four dimensions 
of equity among communities: equity among age groups, income 
groups, occupational groups and racial/ethnic groups.

Prioritizing the least advantaged populations is acknowledged 
as a fundamental value in health-care resource allocation46–48. We 
therefore construct four vaccine distribution strategies that priori-
tize the most disadvantaged communities defined on four dimen-
sions of demographic profiles: older adult ratio (Prioritize by Age), 
average household income (Prioritize by Income), essential worker 
ratio (Prioritize by Occupation) and minority ratio (Prioritize by 
Race/Ethnicity). As a baseline for comparison, we also construct 
a Homogeneous strategy, which provides vaccine access to each 
community with uniform probability49. Our experiments show 
that strategies that prioritize the worst-off communities drastically 
improve the equity defined on the corresponding demographic 
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dimension (Fig. 2a). Specifically, equity defined on age, income, 
essential worker ratio or minority ratio can be improved by 26.2% 
(95% CI, 0.168–0.356; P < 0.001), 40.5% (95% CI, 0.269–0.541; 
P < 0.001), 43.1% (95% CI, 0.315–0.547; P < 0.001) or 31.8% (95% 
CI, 0.179–0.456; P < 0.001) compared with the Homogeneous 
baseline, respectively. Moreover, in most cases, all four strate-
gies also achieve improvement in social utility compared with the 
baseline (Fig. 2a), suggesting that overall social utility and equity 
defined on a specific demographic dimension are likely to be 
simultaneously improved by prioritizing the most disadvantaged 
communities within that dimension. This sharply contradicts the 

conventional view of an inevitable trade-off between social utility 
and equity19–22. Detailed analysis reveals that prioritizing commu-
nities under greater risk consistently results in larger improvements 
for both social utility and equity, which further highlights the 
effectiveness achieved by prioritizing the worst-off communities  
(Supplementary Table 2).

We further consider and incorporate the potential impacts of vac-
cine hesitancy and administration capability into our experiments, 
both of which can substantially undermine the benefit of distrib-
uted vaccines. Vaccine hesitancy refers to the phenomenon wherein 
people mistrust and refuse to take vaccines despite availability,  
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Fig. 1 | Behaviour- and demography-informed epidemic modelling (BD model). a, Overview of our BD model, where each CBG maintains its specific 
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demographic features and mobility. The older adult ratio and average household income negatively correlate with per capita mobility (r = −0.29 and 
r = −0.45, respectively), while the essential worker ratio and minority ratio positively correlate with per capita mobility (r = 0.39 and r = 0.35).
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especially in low-income communities50,51. Administration capabil-
ity refers to the limited capability of local facilities to roll out vac-
cines, which can be constrained by storage capacity, human force 
and other institutional factors52–54. First, we construct an Estimated 
Hesitancy scenario by setting vaccine hesitancy rates for different 
communities according to a population sample-based national 
assessment50. Second, we construct a Hesitancy + Capability sce-
nario by further superimposing administration capability onto 
communities, which is estimated from empirical vaccination data 
provided by the US Centers for Disease Control and Prevention 
(CDC)55. Specifically, administration capability is estimated as the 
difference between vaccine acceptance hesitancy derived from sur-
veys and the empirical vaccination rate. It captures the percentage of 
residents willing to take vaccines but who have not done so, probably 
due to limited administration capacity (for example, no nearby vac-
cine administration facility). To investigate how different patterns 
of vaccine hesitancy affect vaccination strategy results, we further 
design three hypothetical scenarios, where we set vaccine hesitancy 
rates from the bottom to top income groups at 0.4, 0.3, 0.2, 0.1 and 
0 (Hypothetical-1); 0.8, 0.6, 0.4, 0.2 and 0 (Hypothetical-2); and 0.9, 
0.7, 0.5, 0.3 and 0 (Hypothetical-3) (Methods, ‘Vaccination scenar-
ios’). These scenarios sequentially reflect larger differences across 

income groups and thus allow us to explore more extreme disparities 
in vaccine hesitancy than we currently observe. In general, improve-
ments in social utility diminish as differences in vaccine acceptance 
rates grow larger (Fig. 2b). Among the tested prioritization strate-
gies, Prioritize by Income is most sensitive to changes in vaccine 
hesitancy rates. Nevertheless, its improvement to social utility does 
not vanish until the vaccine hesitancy rate in the bottom income 
group rises to five times that in the top group, as in Hypothetical-2, 
explained by vastly disproportionate risks facing different income 
groups in the pandemic. This hypothetical hesitancy is far larger 
than what we observe from data. As expected, in all five scenarios, 
prioritizing the most disadvantaged communities consistently and 
significantly improves equity. By following the robust guideline to 
prioritize the most disadvantaged, social utility and equity can both 
be improved even if the most disadvantaged groups manifest the 
most vaccine hesitancy. This demonstrates the out-sized protective 
impact that would accrue to society from far greater investments in 
vaccination outreach, education and incentive for our most disad-
vantaged communities.

For each strategy, we also calculate its impact on equity defined 
along other demographic dimensions. We find that it is difficult  
to achieve a comprehensive improvement in all dimensions by 
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simply prioritizing the worst-off communities (Table 1). To reveal 
the relationships between disadvantages along different demo-
graphic dimensions, we analyse correlations among the older 
adult ratio, average household income, essential worker ratio and 
minority ratio for each CBG (Methods, ‘Correlation analysis of 
demographic features’). We observe a positive correlation between 
older adult ratio and average household income (r = 0.14), indicat-
ing that populations with older demographics tend to have higher 
incomes. Essential worker ratio negatively correlates with older 
adult ratio (r = −0.2) but positively correlates with average house-
hold income (r = 0.28), indicating that populations with larger 
proportions of essential workers tend to be younger with higher 
household incomes. Minority ratio negatively correlates with the 
other three demographic features, but to different extents (r = −0.31 
with older adult ratio, r = −0.59 with average household income and 
r = −0.16 with essential worker ratio; Supplementary Fig. 2). These 
correlations highlight the mismatch of disadvantaged populations 
across different demographic dimensions, which results in conflicts 
between equities that cannot be settled on the basis of demographic 
features alone. This suggests the need to explore more essential 
mechanisms underlying demographic features and health that can 
forecast vaccination outcomes and guide vaccine distribution.

Indices for estimating vaccine prioritization outcomes. To inform 
the design of vaccine distribution, it is critical to accurately estimate 
the outcomes that would result from prioritizing certain commu-
nities for vaccine distribution. Specifically, for optimal design we 
must be able to estimate changes in overall social utility and equity 
when vaccinating each community. Policy designers typically  
rely either on a single demographic feature56 or on indicators com-
puted solely on the basis of demographic data, such as the social 

vulnerability index (SVI) designed by the US CDC57. Nevertheless, 
Fig. 2 shows that such approaches will probably degrade equity 
along certain dimensions, due primarily to complex associations 
between distinct demographic profiles, infection-fatality risks and 
per capita mobility (Supplementary Fig. 3). We therefore design 
two vaccine outcome indices, community risk and societal risk, that 
capture the underlying mechanisms. To evaluate changes in equity 
when vaccinating a community, we design a community risk index 
as the expected mortality rate, calculated as the product of the esti-
mated contact frequency due to average community movement and 
the infection-fatality risk associated with community demographic 
profiles. To evaluate changes in risks to society when vaccinating a 
community, we design a societal risk index as the expected number 
of deaths caused by infection in that community and the second-
ary infections they impose on persons from other communities 
(Methods, ‘Quantification of community risk and societal risk’). 
Societal risk thus captures the number of lives saved in the whole 
population by vaccinating certain communities, providing a proxy 
for social utility. Our proposed community risk and societal risk 
indices capture different characteristics of communities that could 
result in trade-offs between social utility and equity. For example, 
older people with lower mobility face greater mortality risk once 
infected, but they are less likely to spread the disease than young 
people with high mobility. This is manifested by their high com-
munity risk and low societal risk indices.

We perform regression analysis to examine the power of these 
indices for estimating outcomes associated with alternative vac-
cination distribution strategies. Specifically, we generate numer-
ous vaccine distribution instances, each of which vaccinates a 
set of randomly selected communities covering 2% of the total 
population. We obtain the impact on social utility and equity 

Table 1 | Changes in four dimensions of equity quantified by the Gini index, compared with the Homogeneous baseline

Policy Dimension of 
equity

mSa

atlanta Chicago Dallas Houston Los angeles miami Philadelphia San 
Francisco

Washington, 
DC

Prioritize by 
age

Age 34.9%** 38.8%** 18.1%** 18.3%** 34.9%** 12.3%** 41.7%** 8.1%** 28.5%**

Income 18.0% 7.2%** 3.1% 3.1% (9.0%)* (6.9%) (0.9%)** 0.4% 2.8%

Occupation (10.0%)** 28.6%** 1.6% (7.1%) 4.4% 2.8% 1.6%** (13.3%) 31.4%**

Race/ethnicity 28.6%* (5.2%)** 14.9%** 17.1%* 10.6% 3.0%** (1.7%)** (6.4%) (39.6%)**

Prioritize by 
income

Age 5.0% 3.5%** 0.9% 0.9% (7.7%)** 2.4%* (15.7%)** (0.7%) (3.8%)**

Income 55.6% 38.5%** 30.8%** 51.8%** 63.9%** 38.9%** 14.3%** 15.8%** 55.0%**

Occupation 0.0% 46.3%** (2.9%) (0.1%) 33.8%** 17.5% 22.6%** 6.0% 22.8%**

Race/ethnicity (26.7%)** 29.3%** (4.4%) (26.7%)** (58.4%)** 7.5%** 19.2%** 11.7% 35.8%**

Prioritize by 
occupation

Age (5.1%)* 6.2%** (4.2%)* (1.3%) 0.5% 1.2% (12.9%)** (8.0%)** 6.9%**

Income 36.1% 14.3%** (6.5%) (3.6%) (1.0%) 4.0% 4.7%** 7.4%** 6.0%*

Occupation 46.7%** 51.6%** 35.4%** 28.5%** 65.4%** 50.7% 14.3%** 51.8%* 43.0%**

Race/ethnicity (15.6%)* 12.1%** (2.9%) (15.9%) 23.2%** 4.5% 4.9%** 0.5% (2.2%)

Prioritize 
by race/
ethnicity

Age 11.3%** (4.5%)** 5.3%** 1.5% 7.7%** 4.4%** (22.3%)** (5.3%) (5.8%)**

Income (29.2%) 17.8%** (0.8%) 0.1% (14.0%)** (13.6%)* 2.8%** 5.3%* 23.9%**

Occupation 0.7% 14.1%** (7.1%) (10.2%) (6.9%) 7.4% 0.4% 1.0% (12.4%)**

Race/ethnicity 45.7%** 28.8%** 18.3%** 27.5%** 66.8%** 25.2%** 8.6%** 18.6%** 46.6%**

Values with both parentheses and asterisks indicate significant degradation in the corresponding dimension of equity. Double-sided paired t-test: *P < 0.05; **P < 0.01. For detailed statistics, please refer to 
Supplementary Table 3.
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for each vaccine distribution through simulation, and we per-
form ordinary least-squares (OLS) regression to estimate changes 
with demographic features and the proposed indices (Methods, 
‘Quantification of community risk and societal risk’). Results show 
that demographic features alone explain only 38.7% (95% CI, 
0.365–0.409; P < 0.001) of the variance in fatality rate reduction on 
average, but the incorporation of our societal risk index raises that 
value to 67.5% (95% CI, 0.656–0.693; P < 0.001) (Fig. 3b). In addi-
tion, demographic features alone explain on average only 62.9% 
(95% CI, 0.614–0.643; P < 0.001), 46.0% (95% CI, 0.431–0.489; 
P < 0.001), 41.4% (95% CI, 0.391–0.437; P < 0.001) and 48.5% (95% 
CI, 0.465–0.505; P < 0.001) of the variances in equity defined on 
age, income, essential worker ratio and minority ratio, respec-
tively, but incorporating the community risk index raises those 
values to 70.4% (95% CI, 0.688–0.720; P < 0.001), 57.7% (95% CI, 
0.549–0.605; P < 0.001), 52.1% (95% CI, 0.493–0.548; P < 0.001) 
and 57.9% (95% CI, 0.558–0.599; P < 0.001), respectively (Fig. 3c;  
the detailed regression results are presented in Supplementary 
Tables 4–12). The indices of societal risk and community risk sig-
nificantly improve the estimation of changes in social utility and 
equity under any community prioritization scheme. These two 
indices also shed light on the simultaneous improvement of social 
utility and equity with vaccination. Specifically, we discover a posi-
tive correlation between community risk and societal risk (Fig. 3d),  

which indicates a non-negligible overlap between communities 
experiencing large community risk and those imposing large soci-
etal risk. Therefore, if a vaccine distribution strategy succeeds in 
targeting such overlapping communities, it can simultaneously 
achieve improvement in both social utility and equity.

Informing the design of vaccine distribution strategies. On the 
basis of the proposed indices, we design a flexible framework to 
generate well-rounded vaccine distribution strategies (that is, a 
Comprehensive strategy) that can improve both social utility and 
equity in all demographic dimensions. Our framework integrates 
community risk, societal risk and demographic profiles with 
learned weights to generate a comprehensive index of vaccine pri-
ority for each community, then distributes vaccines by community 
accordingly (Methods, ‘Design of vaccine distribution strategies’). 
Besides the Homogeneous baseline and the four strategies exam-
ined in Fig. 2, we construct two additional strategies for com-
parison. First, an SVI-Informed strategy is designed to prioritize 
vaccines to communities according to the SVI released by the US 
CDC57, which is recommended for use in vaccine prioritization56,58. 
Second, to further justify the necessity of community risk and soci-
etal risk, we construct a Comprehensive-Ablation strategy that uti-
lizes demographic features without our indices (Methods, ‘Design 
of vaccine distribution strategies’).
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Fig. 3 | Design and justification of community risk and societal risk. a, Illustration of community risk (CR) and societal risk (SR). Each node represents 
a community, the node size reflects the community’s vulnerability and the colour tint reflects the number of deaths in the community, quantified by the 
value of D. Each edge represents inter-community mobility connections, with thickness reflecting mobility intensity. For each community, CR equals the 
community’s own mortality risk (green boxes), and SR equals the sum of its own mortality risk and the mortality risk it potentially presents to others  
(red boxes). As two representative cases, community A of transmission chain I has large CR but small SR, while community B of transmission chain II has 
small CR but large SR. b, OLS regression of changes in social utility with and without societal risk (across 20 bootstrap samples). The bottom and top of 
each box indicate the 25th and 75th percentile values. The whiskers indicate 1.5× the interquartile range below and above the 25th and 75th percentile 
values. Regressions with only demographic features explain on average 38.7% of the variance, measured by adjusted R2 (grey boxes). The incorporation 
of societal risk raises the explained variance to an average of 67.5% (red boxes), greatly improving the goodness of fit of the regression model. c, OLS 
regression of changes in equity with and without community risk (across 20 bootstrap samples). The width of the violin indicates the probability density, 
and the line within the violin indicates the median value. Regressions with only demographic features explain on average 62.9%, 46.0%, 41.4% and 48.5% 
of the variance, respectively (grey shapes). The incorporation of community risk raises the explained variance to an average of 70.4%, 57.7%, 52.1% and 
57.9%, respectively (green shapes), greatly improving the goodness of fit of the regression model. d, Joint probability distribution of community risk and 
societal risk, where brighter colours indicate larger probability density. There is a non-negligible positive correlation (r = 0.29) between community risk 
and societal risk.
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Results show that the Comprehensive strategy yielded by our 
framework achieves greater improvements in social utility and all 
dimensions of equity (Fig. 4a–c). Visualizing the epidemic pat-
terns clearly illustrates that this strategy slows down the increase 
of deaths, flattening the daily death curve (Supplementary Fig. 4).  
Compared with the No-Vaccination scenario, distributing vac-
cines with the Homogeneous strategy reduces death rates by 
only 6.3% (95% CI, 0.049–0.077; P < 0.001) on average, while 
our Comprehensive strategy reduces death rates by 20.9% (95% 
CI, 0.167–0.252; P < 0.001) on average. As for impacts on equity 
by age, income, occupation and race/ethnicity, the Homogeneous 
strategy results in little improvement, if not deterioration (−0.1% 
(95% CI, −0.018 to 0.015; P = 0.343), −2.4% (95% CI, −0.072 to 
0.025; P = 0.004), −0.1% (95% CI, −0.035 to 0.032; P = 0.096), 1.8% 
(95% CI, −0.007 to 0.042; P = 0.104)), while our Comprehensive 
strategy improves these dimensions of equity by 22.5% (95% CI, 
0.159–0.292; P < 0.001), 33.8% (95% CI, 0.144–0.532; P < 0.001), 
48.3% (95% CI, 0.304–0.661; P < 0.001) and 39.3% (95% CI, 0.212–
0.574; P < 0.001), respectively. In contrast, all the other prioriti-
zation strategies, whether based on demographic features (older 
adult ratio, average household income, essential worker ratio or 
minority ratio) or indicators calculated solely from demographic 
data (SVI), degrade either social utility or certain dimensions of 
equity and thus fail to strike an optimal balance. Although the 
Comprehensive-Ablation strategy is informed by the same demo-
graphic features as the Comprehensive one, it is still unable to 
guarantee improvements in all health outcome measures because 
it does not incorporate the impact of mobility. Demographic fea-
tures are therefore inadequate to guide the design of vaccine dis-
tribution strategies alone, but our proposed vaccination outcome 
indices (community risk and societal risk) complete the framework 
and generate strategies that resolve the conflicts among utility and 
equity values.

To examine the generalizability of this framework, we further 
construct two sets of experimental scenarios that reflect different 
levels of vaccine supply and epidemic intensity. To estimate the 
overall performance of a vaccination strategy, we take the sum of 
relative changes in social utility and the four dimensions of equity, 
which approximates the calculation of an L1-norm for a vec-
tor, but taking sign into account. In the first set of scenarios, we 
vary the vaccination rate from 5% to 56% of the total population, 
reflecting different vaccine supply levels (Fig. 4d). Specifically, 
the vaccination rate of 56% reflects vaccination progress in the 
United States by October 2021. In this scenario, we construct 
an additional strategy, Real-World, which distributes vaccines 
proportional to the real-world distribution estimated by the US 
CDC55. In the second set of scenarios, we change the timing of 
vaccination by up to ten days to reflect different levels of epidemic 
spreading (Fig. 4e). Experiments of finer-grained changes in vac-
cination rate and timing can be found in the supplementary mate-
rials (Supplementary Figs. 5–19). In all variations, our framework 
successfully yields comprehensive strategies that simultaneously 
elevate social utility and the four dimensions of equity. We note 
that the Real-World strategy is highly limited in overall perfor-
mance, suggesting that there remains substantial space to improve 
real-world vaccine distribution strategies even with high vaccina-
tion rates. Projected improvement is more prominent with lower 
vaccination rates, which is reasonable because with increased vac-
cine supply, overlapping vaccinated populations will expand and 
eventually eliminate the differences between prioritization strate-
gies. Nevertheless, this trend highlights that in the face of greater 
vaccine shortages, more attention should be paid to coordinate the 
elevation of overall welfare and the mitigation of health disparities. 
In sum, our experiments demonstrate that our vaccine distribu-
tion framework is generalizable across different MSAs, epidemic 
burdens and vaccination timings.

Discussion
Coordination among multiple ethical values is of central concern 
when limited, critical health-care resources such as vaccines must be 
apportioned to people in the face of profound health crises. In this 
paper, we aim to strike an improved balance between two critical 
ethical values, social utility and equity. We note that there are mul-
tiple ways to conceptualize inequity in public health undergirded 
by different theories of distributive justice. To our knowledge, there 
are at least three distributive justice theories distinguished by their 
views on what subset of health inequalities should be considered 
inequity. Cause-oriented theory classifies health inequalities into 
those caused by nature versus those caused by society and regards 
only the latter as health inequity59. Action-oriented theory shifts 
focus to avoidability, proposing that health inequity includes health 
inequalities “amenable to positive human intervention”, regardless 
of cause12. This view emphasizes agency-people’s ability to shape the 
future—acknowledging that humans are able to reduce inequality in 
many dimensions, even if some result from nature or luck10,13,60. The 
absolute theory measures health inequity in ungrouped individuals 
to avoid imposing prejudice and regards virtually all health inequal-
ities as inequity20,61. While each of these theoretical approaches 
relies on a distinctive mixture of ideological foundations, meth-
odological limitations and pragmatic insights, we build our equity 
framework primarily on the basis of action-oriented theory. We 
define health inequity as those health inequalities that could have 
been mitigated by vaccination, regardless of whether the cause is 
social or pre-existing health. This research design echoes the frame-
work proposed by National Academies of Sciences, Engineering, 
and Medicine15, and it identifies age, income, occupation and race/
ethnicity as four critical dimensions of equity in our study.

Different from the traditional view of unavoidable trade-offs 
between social utility and equity, our BD model reveals that priori-
tizing the most disadvantaged communities for COVID-19 vaccine 
access can simultaneously improve social utility and equity. This 
outcome is driven by underlying community heterogeneity in both 
mobility behaviour and demographic profile. We resolve the tension 
of equity across different demographic features by designing two 
indices, community risk and societal risk, to estimate vaccination 
outcomes. The effectiveness of both indices reveals the necessity to 
jointly consider both demographic and behavioural heterogeneity 
in epidemic modelling and policy design.

The vaccine distribution framework we propose provides clear 
guidance to policymakers. Currently, the prioritization of vaccines 
is usually based on a rigid stratification of age or occupation38,56,62 
and set for the state or country as a whole. In contrast, our frame-
work enables the design of flexible distribution strategies aware of 
joint effects from mobility behaviours and demographic profiles, 
which can be tailored to local conditions. Moreover, our frame-
work possesses the following two benefits. First, our method pro-
vides meso-scale policy guidance by achieving a balance between 
effectiveness and ease of implementation. With awareness of het-
erogeneous risks faced by different CBGs, we can maximize the 
benefits to society with limited vaccination dosages. Meanwhile, 
because vaccine priorities are determined on the CBG level, peo-
ple within the same CBG are not discriminated against, providing 
local administrations with greater flexibility in the actual vaccine 
roll-out. Second, our method is privacy-preserving. For both demo-
graphic features and mobility records, we use only aggregate data 
on the CBG level, without revealing any individual information, 
presenting a minimal invasion of personal privacy. Our framework 
is therefore not only theoretically informative but also instructive 
for real-world practice. More broadly, equitable access to immuni-
zation is viewed by many as a critical part of the right to health, a 
fundamental human right endowing every person with the ability to 
pursue and claim their highest attainable health status63,64. Although 
it has been listed among the six principles of the Global Vaccine 
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Fig. 4 | Performance of the Comprehensive distribution strategy under various vaccination rates and timings. a, Changes in social utility and four 
dimensions of equity under eight vaccine distribution strategies. Values are normalized by the result of the Comprehensive strategy. The Comprehensive 
strategy (red) surpasses or is comparable to all other strategies in the five metrics, indicating its well-rounded effectiveness. In contrast, SVI-Informed 
(grey) and Comprehensive-Ablation (violet) result in degradation in certain dimensions of equity. b, Changes in social utility in each MSA. The bottom and 
top of each box indicate the 25th and 75th percentile values. Whiskers indicate 1.5× the interquartile range below and above the 25th and 75th percentile 
values. c, Changes in equity by age, income, occupation and race/ethnicity in each MSA. d, Overall performance of strategies under different vaccination 
rates. Overall performance is the sum of relative improvements in social utility and the four dimensions of equity compared with the Homogeneous 
baseline. The star shows overall performance if a vaccine is distributed proportionally to its real-world distribution, with a vaccination rate of 56% (that is, 
close to the current rate in the United States). e, Overall performance of strategies under different vaccination timings.
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Action Plan since 201165, there is still a long way to go before we 
reach this goal. Our research provides insights to settle concerns 
regarding ethical values in the global health crisis with experiments 
on large, real-world data. Our study has several limitations. First, 
because medical studies on the etiology and pathogenesis of coro-
navirus are still ongoing, we only consider the widely acknowledged 
heterogeneity in IFR associated with age. Second, we focus solely on 
vaccine distribution within a country, but as the COVID-19 pan-
demic is a global public health emergency, it is of equal necessity 
to quantitatively study how to coordinate social utility and equity 
at the international level16,48. Third, our study focuses solely on 
the demand side without investigating supply-side issues66. Future 
research should focus on the impact of vaccination on people’s daily 
movement and economic recovery; interactions between vaccine 
manufacturing, transportation and distribution; and vaccine utility 
and equity issues on a global scale. Nevertheless, our study provides 
powerful guidance for vaccine prioritization even under circum-
stances of extreme vaccine hesitancy, recommending far greater 
societal investments in vaccination outreach, education and incen-
tives for disadvantaged and undervaccinated communities than 
have hitherto been explored. Vaccinating those worst off represents 
the best step towards societal protection.

methods
Epidemic model, calibration and preliminary analysis. Our BD model 
principally combines demographic profiles and mobility behaviours to simulate 
epidemic spread in urban communities. First, to reflect the heterogeneity of 
demographic profiles across communities, we calculate CBG-specific IFRs 
according to their demographic structure. Here we specifically focus on age 
structure, as the quantitative influence of age on IFR is the most widely recognized. 
We divide the population of each CBG into 17 age groups (0–4, 5–9, 10–14, 
15–19, 20–24, 25–29, 30–34, 35–39, 40–44, 45–49, 50–54, 55–59, 60–64, 65–69, 
70–74, 75–79 and 80+), associated with different levels of infection-fatality 
risk. To evaluate vaccine distribution strategies, we set IFRs according to recent, 
well-established findings28. Because the infection–fatality transition for different 
individuals is independent, CBG-specific IFRs can be calculated as the weighted 
average of individual IFRs, where weights are determined by the proportion of  
each age group in the CBG.

Second, to reflect behavioural heterogeneity, populations from different 
communities do not homogeneously mix but connect via bipartite mobility 
networks representing visits from CBGs to POIs each hour, estimated from 
SafeGraph’s data in previous research35. Specifically, each hourly mobility network 
is represented by a two-dimensional matrix, whose columns correspond to CBGs 
and rows to POIs. In the simulation, S → E transitions take place in both POIs and 
CBGs, while E → I and I → R transitions occur only in CBGs. To account for the 
impacts of different physical environments on transmission characteristics, we use 
the following adjustable parameters. βhome represents the transmission rate within 
CBGs, which is shared among all CBGs located in the same MSA. βpoi represents 
the basic transmission rate within POIs in the same MSA. For each individual POI, 
the specific transmission rate βpoi(i) is further customized by multiplying βpoi by the 
median dwelling time of visitors (Ti) and the reciprocal of the squared area (S2i ):

βpoi(i) =

βpoi × Ti

S2i
. (1)

Our simulation period lasts 63 days, which provides us with enough time to 
simulate the impact of vaccination when the pandemic is at the stage of community 
transmission16. Mobility reduction is observed during the simulation period, which 
reflects the effect of both non-pharmaceutical interventions (such as shop closing) 
and citizen reactions (such as a reduction in loitering). As our main objective is to 
tease out the direct outcomes of vaccine distribution strategies, we have not made 
assumptions about how vaccination in turn impacts mobility.

To introduce flexibility in adapting to different MSAs, we use a vector of 
age-stratified IFRs to indicate relative risks, and we estimate the actual IFR by 
fitting a scaling factor specific to each MSA. Such a practice is justified by the 
consistency in how IFRs increase with age40. To calibrate the parameters, we use 
cumulative fatality records released by the New York Times based on reports 
from state and local health agencies67. We first transform cumulative deaths into 
daily deaths and smooth them with a sliding window of seven days to mitigate 
randomness. The parameters are optimized by minimizing the RMSE of daily 
deaths. To mitigate randomness, each experiment is performed in 30 stochastic 
simulations with different random seeds, the results of which are averaged to 
obtain the final predictions. To better characterize the distinctive epidemic 
situations in different MSAs, we do not assume a fixed reproduction number  

but instead fit an epidemic model for each. From the well-fitted models, we 
estimate that the effective reproduction numbers in all MSAs fall around 2,  
which lies within the plausible range estimated by previous research68–70.

To analyse how mortality risks associate with demographic features, we 
stratify the whole population into deciles according to their older adult ratio, 
average household income, essential worker ratio and minority ratio. The fatality 
rate in each decile is calculated as the total number of deaths divided by the total 
population in decile. According to the occupation data released by the US Bureau 
of Labor Statistics, it is estimated that in all states, the lowest essential worker ratio 
in the labour force is 39.3%71. Combined with the World Bank’s estimate in 2020 
that the labour force accounts for about half of the total population72, a reasonable 
essential worker ratio lies beyond 20%. Therefore, when analysing communities 
stratified by essential worker ratios, we filter those CBGs with a percentage below 
20% to mitigate the impact of outliers.

Vaccination scenarios. We assume that vaccines are administered at a single 
point in time, and we characterize various vaccination scenarios with different 
vaccination rates (how many vaccines are administered in total) and vaccination 
timings (when these vaccines are administered). In our first experimental scenario, 
the vaccination rate is 10%, corresponding to vaccines enough to cover 10% of the 
population, which is a typical amount of limited supply according to the WHO’s 
SAGE roadmap16. Vaccination is applied after one month of epidemic simulation 
(that is, on the 31st day), which reflects the reality in many countries that when 
vaccines come into use, the epidemic has already reached the stage of community 
transmission. We assume that all vaccines distributed to communities are effectively 
used without waste (Fully Accepted), although we alter this in later simulations to 
model varying levels of vaccine hesitancy.

Corresponding to Fig. 2b, we consider five additional vaccination scenarios 
to reflect the waste of distributed vaccines due to residents’ vaccine hesitancy 
and communities’ limited access to vaccines. In the Estimated Hesitancy and 
Hesitancy + Capability scenarios, we set vaccine acceptance rates according to 
a sample-based national assessment50. Communities with an average annual 
household income in the range of [0, 30,000], [30,001, 60,000], [60,001, 99,999] 
or [99,999, ∞] are associated with a vaccine acceptance rate of 72%, 74%, 81% or 
86%, respectively. In Hesitancy + Capability, we further combine our estimated 
vaccine acceptance rate with real vaccination data from the US CDC55, to calculate 
the vaccine accessibility in each community. The CDC provides the percentage of 
persons of different ages and ethnic groups that have been fully vaccinated. We take 
the vaccination data from 15 October 2021 (as shown in Supplementary Tables 13  
and 14), calculate the weighted average over CBGs’ age structure and ethnicity 
composition, and multiply the age-determined rates by the ethnicity-determined 
rates to obtain each CBG’s current vaccination rate. If a CBG’s vaccination rate is 
lower than its residents’ vaccine acceptance rate, this means that some residents are 
willing to take vaccines but remain hindered by vaccine accessibility in the CBG. 
We thus divide obtained vaccination rates by real-world vaccine acceptance rates50 
to obtain each CBG’s vaccine accessibility. In three hypothetical scenarios, we assign 
different vaccine acceptance rates to five income groups of CBGs to reflect the 
observed positive correlation between income and vaccine acceptance. Specifically, 
vaccine acceptance rates from the bottom to top income groups are set to be 0.6, 
0.7, 0.8, 0.9 and 1 (Hypothetical-1); 0.2, 0.4, 0.6, 0.8 and 1 (Hypothetical-2); and 0.1, 
0.3, 0.5, 0.7 and 1 (Hypothetical-3), sequentially reflecting larger differences across 
income groups.

Corresponding to Fig. 4d,e and Supplementary Figs. 6–19, we construct two 
series of vaccination scenarios by varying vaccination rates and vaccination timings 
to examine the generalizability of our Comprehensive strategy. First, we set the 
vaccination rate to 5%, 15%, 20%, 40% and 56% of the total population (Fig. 4d) 
and to 3%, 8%, 13% and 18% of the total population (Supplementary Figs. 6–8  
and 12–15). Second, we set the vaccination timing to the 26th, 36th and 41st days 
(Fig. 4e) and to the 24th, 29th, 34th and 39th days (Supplementary Figs. 9–11  
and 16–19).

In all scenarios, we assume that vaccination is fully effective—that is, people 
that have been vaccinated will not become infected or die from the disease during 
the remaining time in the simulation. Because we model vaccine distribution on 
the CBG level, we obtain each CBG’s transmission and fatality risks by multiplying 
their original values by the vaccination rate—that is, if the vaccination rate in a 
CBG is 50%, the transmission and induced fatality risks its residents experience 
will halve.

Correlation analysis of demographic features. With demographic data from 
SafeGraph and the American Community Survey covering more than 42,000 CBGs 
for nine large MSAs in the United States, we analyse the pairwise correlations 
among four demographic features: older adult ratio, average household income, 
essential worker ratio and minority ratio. To eliminate scale differences across 
demographic features as well as systematic differences across MSAs, we first 
transform the absolute values of demographic features into percentile ranks for 
each MSA to reflect their relative levels compared with other CBGs of the same 
MSA. Next, we aggregate data from different MSAs and calculate the Spearman 
correlation between each pair of demographic features. In visualizing association 
patterns between demographic features (Supplementary Fig. 2), the probability 
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distribution functions are estimated non-parametrically with Gaussian kernel 
density estimation.

Quantification of social utility and equity. We define metrics of social utility 
and equity in accordance with the fundamental ethical principles of maximum 
benefit and mitigation of health inequities in the National Academies of Sciences, 
Engineering, and Medicine’s proposal15. The maximum benefit principle aims 
at reducing the total damage of the pandemic. As loss of life represents severe 
and irreversible damage40, we quantify social utility as an overall reduction in 
the fatality rate. The mitigation of health inequities principle aims to address 
higher risks faced by certain disadvantaged demographic groups. Specifically, 
we consider health inequity as health inequalities that could have been mitigated 
with vaccines, regardless of whether the cause is pre-existing health conditions 
or social deprivation10–13. The COVID-19 pandemic has imposed substantially 
higher mortality risk on older adults, low-income households, essential workers 
and racial/ethnic minorities4,30,38,41,44. Unlike inevitable mortality due to incurable 
disease, COVID-19-induced mortality risk does not evade prevention and can 
be effectively reduced with vaccination. We therefore define equity on four 
demographic dimensions: age, income, occupation and race/ethnicity. First, 
equity by age is calculated among CBGs with different rates of older adults, where 
people over 70 years old are defined as ‘older adults’ in our case, because they face 
significantly higher risks of death upon infection. Second, equity by income is 
calculated among CBGs with different average household incomes. Third, equity 
by occupation is calculated among CBGs with different essential worker ratios. 
We calculate essential worker ratios by combining the essential occupation list 
released by Delaware and Minnesota73 with the CBG-level employment data from 
SafeGraph, following the practice of relevant studies41,74. Finally, equity by race/
ethnicity is calculated among CBGs with different rates of racial/ethnic minority 
population. Here we follow the widely adopted approach to estimate ‘racial/ethnic 
minority’ with the complementary percentage of non-Hispanic white residents75,76. 
More specifically, we adopt the widespread Gini coefficient77–80, which reflects the 
relative mean absolute difference between all pairs of objects. We take the negative 
of the Gini coefficient for fatality rates among demographic groups as the inequity 
in that dimension, calculated as follows: for each demographic dimension, we 
rank all CBGs according to the corresponding feature and then divide them into N 
groups covering populations of virtually identical sizes. We denote the fatality rate 
of the ith group as fi and the average fatality rate as ¯f . The CBG groups are first 
placed in ascending order of fatality rate. The Gini coefficient G is then calculated 
as follows:

G =

∑N
i=1(2i − N − 1)fi

N
∑N

i=1 fi
. (2)

Quantification of community risk and societal risk. The design of the 
community risk and societal risk indices integrates demography with empirical 
mobility data. First, the infection risk for each CBG (denoted Φ) is calculated as 
the sum of two parts: the within-CBG infection risk (Φhome) and the infection risk 
from POIs that the CBG’s residents visit (Φpoi). To obtain the average mobility 
level for each CBG, we perform calculations on the average CBG–POI visiting 
matrix over all hours. For each CBG, the average population staying at home is 
denoted as Nhome, while the average population visiting the i-th POI is denoted 
as Npoi(i). Because the effect of age on infection risk is not clearly understood81, 
we do not make assumptions about its relation with residents’ demography. For 
residents from any CBG, we denote the within-CBG transmission rate as βhome and 
POI-specific transmission rates as βpoi(i).

People staying in CBGs rather than visiting POIs are more likely to stay at 
home instead of interacting with all others present in the same CBG through 
uniform mixing. We therefore divide CBG populations by total households 
according to census data from the American Community Survey to estimate  
the average household size for each CBG (denoted as Phousehold), and we assume  
that each individual staying in the CBG makes contact with that average. To deal 
with outliers, the quotient is further clipped to be at most 10, in accordance with 
the distribution of household sizes in the United States82. The calculations are 
shown below:

Φ = Φhome + Φpoi (3)

Φhome = Nhome × Phousehold × βhome (4)

Φpoi =
∑

i
Npoi(i) × βpoi(i). (5)

The fatality rate specific to each CBG is denoted α, and the average fatality rate 
for all CBGs belonging to the same MSA is denoted α . For each CBG, community 
risk is equal to the expected number of deaths among its residents, and societal risk 
is equal to the expected deaths caused by this CBG across the whole MSA, which 
consists of two parts: deaths among its own residents and deaths of residents from 

other CBGs. In a population with a minority of infectious people but a majority 
of healthy, susceptible people, the probabilities of being infected and of infecting 
others are asymmetric, although they depend on the same mobility process. To 
account for this asymmetry, we further adjust the two terms with the proportion 
of infected population (denoted γ) and that of susceptible population (denoted δ) 
obtained by running our simulation until the examined time—that is, the 31st day 
(Supplementary Table 15). The calculations are shown below:

community risk = Φ × γ × α (6)

societal risk = Φ × γ × α + Φ × (Φ × δ) × α. (7)

To justify community risk and societal risk as indices of vaccination outcomes, 
we perform OLS regressions of the change in social utility and the four dimensions 
of equity in each MSA. In simulating various vaccination strategies, we randomly 
sample and vaccinate 2% of the total population to achieve a range of vaccination 
results and then compute health outcomes. To generate more diverse samples in 
the sampling phase, we first divide the CBGs into 36 = 729 groups, corresponding 
to their levels (high/median/low) in the four demographic features and the two 
indices. After merging groups with too few CBGs, we generate a fixed number of 
samples for each group. For each experiment, we perform 30 stochastic simulations 
and take the average as our final result.

To examine whether societal risk improves the prediction of the impact 
of vaccination on social utility, we regress change in social utility on (1) the 
average and standard deviation of each of the four demographic features (that 
is, eight independent variables) and (2) the average and standard deviation of 
each of the four demographic features plus societal risk (that is, ten independent 
variables). Next, to examine whether community risk improves the prediction 
of vaccination impact on equity, we regress changes in equity by age, equity by 
income, equity by occupation and equity by race/ethnicity, respectively, on (1) 
the average and standard deviation of the four demographic features and (2) the 
average and standard deviation of the four demographic features plus community 
risk. To estimate goodness of fit for different regression models, we compare the 
values of adjusted R2, which reflects the proportion of variance in the dependent 
variable explained by the independent variables, accounting for the number of 
independent variables.

Design of vaccine distribution strategies. General method of vaccine distribution. 
The central step in vaccine distribution is to generate a priority index for each 
community (CBG) and sequentially distribute vaccines to CBGs according to those 
priorities. A CBG will not receive vaccines unless those with higher priority are 
fully vaccinated, so as to prevent discrimination within the same CBG and to focus 
on CBG-level distribution free from additional hyper-parameters. Specifically, when 
constructing vaccine distribution priorities according to a single demographic 
feature (that is, Prioritize by Age, Prioritize by Income, Prioritize by Occupation or 
Prioritize by Race/Ethnicity), demographic groups are ranked in descending order 
of predicted fatality rate, and only CBGs belonging to the group with the largest 
average fatality rate are considered for vaccine access. Inside each demographic 
group, vaccines are sequentially distributed to CBGs ranked according to the 
corresponding demographic feature (for example, age). Additionally, an adaptive 
scheme is introduced to periodically adjust group priorities after a fixed number of 
vaccines are distributed (for example, 1% of the population).

SVI-Informed vaccine distribution strategy. The SVI is released and maintained 
by the US CDC / Agency for Toxic Substances and Disease Registry, which 
combines multiple socio-economic features to assess community resilience in the 
face of hazardous events, including epidemics57. We use this index to construct 
an SVI-Informed strategy, which distributes vaccines according to SVI ranking 
in each MSA. We use the current (2020) release of the SVI 2018 for census tracts, 
which represents the most up-to-date version of the data. Estimated at the level 
of census tracts, which are larger geographical units than CBGs, SVI does not 
distinguish CBGs from the same census tract. Accordingly, our SVI-Informed 
strategy associates CBGs of the same census tract with the same priority and 
assigns vaccines to them indistinguishably.

Real-World vaccine distribution strategy. Corresponding to Fig. 4d and the scenario 
with a vaccination rate of 56%, we construct an additional Real-World strategy 
that distributes vaccines proportionally to the real-world distribution estimated 
by the US CDC55. Following the same methodology as in Methods, ‘Vaccination 
scenarios’, we first use vaccination data retrieved in October 2021 to calculate 
age-and-ethnicity-determined vaccination rates for each CBG. Then, to ensure a 
fair comparison, we proportionally scale up vaccination rates in all CBGs so that 
the total number of vaccines is equal to that in other distribution strategies.

Framework for Comprehensive vaccine distribution strategies. Given the complex 
relationships not only among demographic features but also between demographic 
features and underlying mechanisms that determine epidemic impact, we 
must carefully devise strategies for vaccine distribution to obtain simultaneous 
improvement of social utility and equity along different demographic dimensions. 
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We therefore propose a flexible framework to automate the design of such a 
Comprehensive strategy via joint consideration of community risk, societal risk 
and multiple demographic features. To construct our Comprehensive strategy, 
we first rank the CBGs according to each of the four demographic features (older 
adult ratio, average household income, essential worker ratio and minority ratio) 
and the two indices (community risk and societal risk). We then use TOPSIS, a 
widely used multi-criteria ranking method83, to obtain a comprehensive index of 
vaccine priority via a weighted combination of the above six features. The initial 
weights of the six features are set to be equal. To adapt to the specific demographic 
and mobility patterns in different MSAs, optimal weights are determined through 
a greedy process to combine multiple features. Starting from an equally weighted 
combination, we perform simulations to estimate outcomes in social utility 
and the four dimensions of equity, and we then adjust the weights according to 
the following heuristic guidelines: (1) when improvement in any dimension of 
equity is unsatisfactory, the weight of the corresponding demographic feature will 
be increased; and (2) when improvement in social utility is unsatisfactory, the 
framework will require trials to increase the weight of either community risk or 
societal risk. Pseudocode describing the decision process is provided in Algorithm 1  
(Supplementary Note 1).

To justify the critical roles played by the proposed 
behaviour-and-demography-aware indices, we also construct an ablation of our 
Comprehensive strategy (Comprehensive-Ablation). In this version, the vaccine 
priorities of the CBGs are calculated only on the basis of a weighted combination 
of the four demographic features, removing their community risk and societal risk. 
We examine the generalizability of our Comprehensive strategy under scenarios 
with different vaccination rates and timings (see Methods, ‘Vaccination scenarios’ 
for the details).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
COVID-19 daily death data are available from the New York Times (https://github.
com/nytimes/covid-19-data). Mobile phone mobility data and demographic data 
for CBGs are freely available upon request for academic, non-profit use from 
SafeGraph (https://www.safegraph.com/academics), which is a data company 
that aggregates anonymized location data from numerous applications to 
provide insights about physical places, via the SafeGraph Community. Estimated 
mobility networks are retrieved from http://covid-mobility.stanford.edu. Social 
vulnerability indices for communities are available at the website of the US 
Agency for Toxic Substances and Disease Registry (https://www.atsdr.cdc.gov/
placeandhealth/svi/data_documentation_download.html). Vaccination data are 
available at the website of the US CDC (https://covid.cdc.gov/covid-data-tracker
/#vaccination-demographic). The processed data have been deposited in Zenodo 
(https://doi.org/10.5281/zenodo.6608362).

Code availability
The code used in this research has been deposited in Zenodo (https://doi.
org/10.5281/zenodo.6609393).

Received: 26 November 2021; Accepted: 12 July 2022;  
Published online: 25 August 2022

references
 1. WHO Coronavirus (COVID-19) Dashboard (WHO, accessed 22 August 2021); 

https://covid19.who.int/
 2. Wang, Z. & Tang, K. Combating COVID-19: health equity matters. Nat. Med. 

26, 458 (2020).
 3. Gray, D. M., Anyane-Yeboa, A., Balzora, S., Issaka, R. B. & May, F. P. 

COVID-19 and the other pandemic: populations made vulnerable by 
systemic inequity. Nat. Rev. Gastroenterol. Hepatol. 17, 520–522 (2020).

 4. Van Dorn, A., Cooney, R. E. & Sabin, M. L. COVID-19 exacerbating 
inequalities in the US. Lancet 395, 1243–1244 (2020).

 5. Padma, T. COVID vaccines to reach poorest countries in 2023—despite 
recent pledges. Nature 595, 342–343 (2021).

 6. Maxmen, A. COVID boosters for wealthy nations spark outrage. Nature 
https://doi.org/10.1038/d41586-021-02109-1 (2021).

 7. ECDC releases COVID-19 vaccination rollout strategies for EU/EEA (ECDC, 
2020); https://www.ecdc.europa.eu/en/news-events/
ecdc-releases-vaccination-rollout-strategies-eueea

 8. Vaccine Prioritization Dashboard (Johns Hopkins Disability Health Research 
Center, accessed 15 September 2021); https://disabilityhealth.jhu.edu/vaccine-2/

 9. Toner, E. et al. Interim Framework for COVID-19 Vaccine Allocation and 
Distribution in the United States (Johns Hopkins Center for Health Security, 
2020); https://www.centerforhealthsecurity.org/our-work/publications/
interim-framework-for-covid-19-vaccine-allocation-and-distribution-in-the-us

 10. Whitehead, M. The concepts and principles of equity and health. Health Promot. 
Int. 6, 217–228 (1991).

 11. WHO et al. Monitoring Equity in Health: A Policy-Oriented Approach in 
Low- and Middle-Income Countries Tech. Rep. (World Health Organization, 
1998).

 12. Norheim, O. F. & Asada, Y. The ideal of equal health revisited: definitions and 
measures of inequity in health should be better integrated with theories of 
distributive justice. Int. J. Equity Health 8, 40 (2009).

 13. Ruger, J. P. Health and social justice. Lancet 364, 1075–1080 (2004).
 14. McClung, N. et al. The Advisory Committee on Immunization Practices’ 

ethical principles for allocating initial supplies of COVID-19 vaccine-United 
States, 2020. Morb. Mortal. Wkly Rep. 69, 1782–1786 (2020).

 15. National Academies of Sciences, Engineering, and Medicine Framework for 
Equitable Allocation of COVID-19 Vaccine (National Academies Press, 2020).

 16. WHO SAGE Roadmap for Prioritizing the Use of COVID-19 Vaccines in the 
Context of Limited Supply: An Approach to Inform Planning and Subsequent 
Recommendations Based upon Epidemiologic Setting and Vaccine Supply 
Scenarios, 13 November 2020 Tech. Rep. (World Health Organization, 2020).

 17. Bentham, J. An Introduction to the Principles of Morals and Legislation (1781); 
McMaster University Archive for the History of Economic Thought https://
socialsciences.mcmaster.ca/econ/ugcm/3ll3/

 18. Sassi, F., Le Grand, J. & Titmuss, R. Equity versus efficiency: a dilemma for 
the NHS. BMJ (Int. Edn) 323, 762–763 (2001).

 19. Ottersen, T., Mbilinyi, D., Mæstad, O. & Norheim, O. F. Distribution matters: 
equity considerations among health planners in Tanzania. Health Policy 85, 
218–227 (2008).

 20. The World Health Report 2000: Health Systems—Improving Performance 
(World Health Organization, 2000).

 21. Lindholm, L., Rosen, M. & Emmelin, M. An epidemiological approach 
towards measuring the trade-off between equity and efficiency in health 
policy. Health Policy 35, 205–216 (1996).

 22. Dolan, P. The measurement of individual utility and social welfare. J. Health 
Econ. 17, 39–52 (1998).

 23. Goldstein, J. R., Cassidy, T. & Wachter, K. W. Vaccinating the oldest against 
COVID-19 saves both the most lives and most years of life. Proc. Natl Acad. 
Sci. USA 118, e2026322118 (2021).

 24. Castro, M. C. & Singer, B. Prioritizing COVID-19 vaccination by age. Proc. 
Natl Acad. Sci. USA 118, e2103700118 (2021).

 25. Dushoff, J., Colijn, C., Earn, D. J. & Bolker, B. M. Transmission dynamics are 
crucial to COVID-19 vaccination policy. Proc. Natl Acad. Sci. USA 118, 
e2105878118 (2021).

 26. Buckner, J. H., Chowell, G. & Springborn, M. R. Dynamic prioritization of 
COVID-19 vaccines when social distancing is limited for essential workers. 
Proc. Natl Acad. Sci. USA 118, e2025786118 (2021).

 27. Bubar, K. M. et al. Model-informed COVID-19 vaccine prioritization 
strategies by age and serostatus. Science 371, 916–921 (2021).

 28. O’Driscoll, M. et al. Age-specific mortality and immunity patterns of 
SARS-CoV-2. Nature 590, 140–145 (2021).

 29. Carrión, D. Neighborhood-level disparities and subway utilization during the 
COVID-19 pandemic in New York City. Nat. Commun. 12, 3692 (2021).

 30. Weill, J. A., Stigler, M., Deschenes, O. & Springborn, M. R. Social distancing 
responses to COVID-19 emergency declarations strongly differentiated by 
income. Proc. Natl Acad. Sci. USA 117, 19658–19660 (2020).

 31. Bailey, N. T. The Mathematical Theory of Infectious Diseases and Its 
Applications 2nd edn (Hafner/MacMillian, 1975).

 32. Nunn, C. & Altizer, S. Infectious Diseases in Primates: Behavior, Ecology and 
Evolution (Oxford Univ. Press, 2006).

 33. Li, M. Y. & Muldowney, J. S. Global stability for the SEIR model in 
epidemiology. Math. Biosci. 125, 155–164 (1995).

 34. Mwalili, S., Kimathi, M., Ojiambo, V., Gathungu, D. & Mbogo, R. SEIR model 
for COVID-19 dynamics incorporating the environment and social 
distancing. BMC Res. Notes 13, 352 (2020).

 35. Chang, S. et al. Mobility network models of COVID-19 explain inequities and 
inform reopening. Nature 589, 82–87 (2021).

 36. Gozzi, N. et al. Estimating the effect of social inequalities on the mitigation  
of COVID-19 across communities in Santiago de Chile. Nat. Commun. 12, 
2429 (2021).

 37. Lai, S. et al. Effect of non-pharmaceutical interventions to contain COVID-19 
in China. Nature 585, 410–413 (2020).

 38. Fitzpatrick, M. C. & Galvani, A. P. Optimizing age-specific vaccination. 
Science 371, 890–891 (2021).

 39. Mena, G. E. et al. Socioeconomic status determines COVID-19 incidence and 
related mortality in Santiago, Chile. Science 372, eabg5298 (2021).

 40. Goldstein, J. R. & Lee, R. D. Demographic perspectives on the mortality  
of COVID-19 and other epidemics. Proc. Natl Acad. Sci. USA 117, 
22035–22041 (2020).

 41. Glaeser, E. L., Gorback, C. & Redding, S. J. How much does COVID-19 
increase with mobility? Evidence from New York and four other US cities.  
J. Urban Econ. 127, 103292 (2022).

 42. Definition of census block group. Wikipedia (accessed 23 August 2021) 
https://en.wikipedia.org/wiki/Census_block_group

NaTurE HumaN BEHaVIOur | VOL 6 | NOVEMBER 2022 | 1503–1514 | www.nature.com/nathumbehav 1513

https://github.com/nytimes/covid-19-data
https://github.com/nytimes/covid-19-data
https://www.safegraph.com/academics
http://covid-mobility.stanford.edu
https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_download.html
https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_download.html
https://covid.cdc.gov/covid-data-tracker/#vaccination-demographic
https://covid.cdc.gov/covid-data-tracker/#vaccination-demographic
https://doi.org/10.5281/zenodo.6608362
https://doi.org/10.5281/zenodo.6609393
https://doi.org/10.5281/zenodo.6609393
https://covid19.who.int/
https://doi.org/10.1038/d41586-021-02109-1
https://www.ecdc.europa.eu/en/news-events/ecdc-releases-vaccination-rollout-strategies-eueea
https://www.ecdc.europa.eu/en/news-events/ecdc-releases-vaccination-rollout-strategies-eueea
https://disabilityhealth.jhu.edu/vaccine-2/
https://www.centerforhealthsecurity.org/our-work/publications/interim-framework-for-covid-19-vaccine-allocation-and-distribution-in-the-us
https://www.centerforhealthsecurity.org/our-work/publications/interim-framework-for-covid-19-vaccine-allocation-and-distribution-in-the-us
https://socialsciences.mcmaster.ca/econ/ugcm/3ll3/
https://socialsciences.mcmaster.ca/econ/ugcm/3ll3/
https://en.wikipedia.org/wiki/Census_block_group
http://www.nature.com/nathumbehav


Articles NaTUre HUmaN BeHaVIOUr

 43. SafeGraph Weekly Patterns (SafeGraph, accessed 17 August 2021);  
https://docs.safegraph.com/docs/weekly-patterns

 44. Davies, B. et al. Community factors and excess mortality in first wave of the 
COVID-19 pandemic in England. Nat. Commun. 12, 3755 (2021).

 45. Jean-Jacques, M. & Bauchner, H. Vaccine distribution—equity left behind? 
JAMA 325, 829–830 (2021).

 46. Persad, G., Wertheimer, A. & Emanuel, E. J. Principles for allocation of scarce 
medical interventions. Lancet 373, 423–431 (2009).

 47. Emanuel, E. J. et al. Fair allocation of scarce medical resources in the time of 
COVID-19. N. Engl. J. Med. 382, 2049–2055 (2020).

 48. Emanuel, E. J. et al. An ethical framework for global vaccine allocation. 
Science 369, 1309–1312 (2020).

 49. MacNaughton, G. Untangling equality and non-discrimination to promote 
the right to health care for all. Health Hum. Rights 11, 47–63 (2009).

 50. Khubchandani, J. et al. COVID-19 vaccination hesitancy in the United States: 
a rapid national assessment. J. Community Health 46, 270–277 (2021).

 51. Dror, A. A. et al. Vaccine hesitancy: the next challenge in the fight against 
COVID-19. Eur. J. Epidemiol. 35, 775–779 (2020).

 52. Carson, S. L. et al. COVID-19 vaccine decision-making factors in racial and 
ethnic minority communities in Los Angeles, California. JAMA Netw. Open 
4, e2127582 (2021).

 53. Bunch, L. A tale of two crises: addressing COVID-19 vaccine hesitancy as 
promoting racial justice. HEC Forum 33, 143–154 (2021).

 54. Hou, Z. et al. Assessing COVID-19 vaccine hesitancy, confidence, and  
public engagement: a global social listening study. J. Med. Internet Res. 23, 
e27632 (2021).

 55. COVID Data Tracker, Vaccination Demographics (CDC, accessed 15 October 
2021); https://covid.cdc.gov/covid-data-tracker/#vaccination-demographic

 56. Schmidt, H. et al. Equitable allocation of COVID-19 vaccines in the United 
States. Nat. Med. 27, 1298–1307 (2021).

 57. CDC/ATSDR Social Vulnerability Index 2018 (CDC, accessed 15 September 
2021); https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_
download.html

 58. Social Vulnerability & COVID-19 (Michigan Department of Health and Human 
Services, accessed 15 September 2021); https://www.michigan.gov/documents/
coronavirus/Social_Vulnerability_and_COVID-19-v4_715525_7.pdf

 59. Rawls, J. A Theory of Justice (Harvard Univ. Press, 2020).
 60. Handbook on Health Inequality Monitoring: With a Special Focus on Low- and 

Middle-Income Countries (World Health Organization, 2013).
 61. Braveman, P. Health disparities and health equity: concepts and 

measurement. Annu. Rev. Public Health 27, 167–194 (2006).
 62. Matrajt, L., Eaton, J., Leung, T. & Brown, E. R. Vaccine optimization for 

COVID-19: who to vaccinate first? Sci. Adv. 7, eabf1374 (2021).
 63. Backman, G. et al. Health systems and the right to health: an assessment of 

194 countries. Lancet 372, 2047–2085 (2008).
 64. Pillay, N. Right to health and the Universal Declaration of Human Rights. 

Lancet 372, 2005–2006 (2008).
 65. Global Vaccine Action Plan, 2011–2020 (WHO, 2013).
 66. Golan, M. S., Trump, B. D., Cegan J. C. & Linkov, I. The Vaccine Supply 

Chain: A Call for Resilience Analytics to Support COVID-19 Vaccine 
Production and Distribution (Springer International, 2021).

 67. Coronavirus (COVID-19) Data in the United States (New York Times, 
accessed 6 February 2021); https://github.com/nytimes/covid-19-data

 68. Wilasang, C. et al. Reduction in effective reproduction number of COVID-19 
is higher in countries employing active case detection with prompt isolation. 
J. Travel Med. 27, taaa095 (2020).

 69. Al-Raeei, M. The basic reproduction number of the new coronavirus 
pandemic with mortality for India, the Syrian Arab Republic, the United 
States, Yemen, China, France, Nigeria and Russia with different rate of cases. 
Clin. Epidemiol. Glob. Health 9, 147–149 (2021).

 70. Rowland, M. A. et al. COVID-19 infection data encode a dynamic 
reproduction number in response to policy decisions with secondary wave 
implications. Sci. Rep. 11, 10875 (2021).

 71. US States with the Most Essential Workers (United Way, accessed 23 August 
2021); https://unitedwaynca.org/stories/us-states-essential-workers/

 72. Labor Force in the United States (World Bank, accessed 23 August 2021); 
https://data.worldbank.org/indicator/SL.TLF.TOTL.IN?locations=US

 73. Delaware List of Essential and Non-essential Businesses (WPVI, 2020);  
https://dig.abclocal.go.com/wpvi/pdf/
Delaware-list-of-essential-and-nonessential-businesses-March-22-2020.pdf

 74. Sanchez, D. G., Parra, N. G., Ozden, C. & Rijkers, B. Which Jobs Are Most 
Vulnerable to COVID-19? What an Analysis of the European Union Reveals 
Res. and Policy Brief No. 148384 (World Bank, 2020).

 75. Van Voorhees, B. W., Walters, A. E., Prochaska, M. & Quinn, M. T. Reducing 
health disparities in depressive disorders outcomes between non-Hispanic 
whites and ethnic minorities. Med. Care Res. Rev. 64, 157S–194S (2007).

 76. Fujishiro, K. & Koessler, F. Comparing self-reported and O*NET-based 
assessments of job control as predictors of self-rated health for non-Hispanic 
whites and racial/ethnic minorities. PLoS ONE 15, e0237026 (2020).

 77. Illsley, R. & Le Grand, J. The Measurement of Inequality in Health (Palgrave 
Macmillan UK, 1987).

 78. Leclerc, A., Lert, F. & Fabien, C. Differential mortality: some comparisons 
between England and Wales, Finland and France, based on inequality 
measures. Int. J. Epidemiol. 19, 1001–1010 (1990).

 79. Berndt, D. J., Fisher, J. W., Rajendrababu, R. V. & Studnicki, J. Measuring 
healthcare inequities using the Gini index. In Proc. 36th Annual Hawaii 
International Conference on System Sciences (ed. Dennis, E.) https://doi.
org/10.1109/HICSS.2003.1174353 (IEEE, 2003).

 80. Dixon, P. M., Weiner, J., Mitchell-Olds, T. & Woodley, R. Bootstrapping the 
Gini coefficient of inequality. Ecology 68, 1548–1551 (1987).

 81. Dudley, J. P. & Lee, N. T. Disparities in age-specific morbidity and mortality 
from SARS-CoV-2 in China and the Republic of Korea. Clin. Infect. Dis. 71, 
863–865 (2020).

 82. Distribution of Households in the United States from 1970 to 2020, by 
Household Size (US Census Bureau, 2020); https://www.statista.com/
statistics/242189/disitribution-of-households-in-the-us-by-household-size/

 83. Tzeng, G.-H. & Huang, J.-J. Multiple Attribute Decision Making: Methods and 
Applications (CRC, 2011).

acknowledgements
This work was supported in part by the National Key Research and Development 
Program of China under grant no. 2020AAA0106000 to Y.L. and the National Natural 
Science Foundation of China under grant no. U1936217 to Y.L. The funders had no  
role in study design, data collection and analysis, decision to publish or preparation  
of the manuscript.

author contributions
F.X., P.H., Y.L. and J.E. jointly launched this research and provided the research outline. 
L.C., F.X. and Y.L. designed the research methods. L.C. performed the experiments  
and prepared the figures. F.X., Z.H., K.T., Y.L., P.H. and J.E. provided critical revisions. 
All authors jointly analysed the results and participated in writing the manuscript.

Competing interests
The authors declare no competing interests.

additional information
Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s41562-022-01429-0.

Correspondence and requests for materials should be addressed to 
Fengli Xu, Pan Hui, James Evans or Yong Li.

Peer review information Nature Human Behaviour thanks the anonymous reviewers for 
their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing 
agreement with the author(s) or other rightsholder(s); author self-archiving of the 
accepted manuscript version of this article is solely governed by the terms of such 
publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 2022

NaTurE HumaN BEHaVIOur | VOL 6 | NOVEMBER 2022 | 1503–1514 | www.nature.com/nathumbehav1514

https://docs.safegraph.com/docs/weekly-patterns
https://covid.cdc.gov/covid-data-tracker/#vaccination-demographic
https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_download.html
https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_download.html
https://www.michigan.gov/documents/coronavirus/Social_Vulnerability_and_COVID-19-v4_715525_7.pdf
https://www.michigan.gov/documents/coronavirus/Social_Vulnerability_and_COVID-19-v4_715525_7.pdf
https://github.com/nytimes/covid-19-data
https://unitedwaynca.org/stories/us-states-essential-workers/
https://data.worldbank.org/indicator/SL.TLF.TOTL.IN?locations=US
https://dig.abclocal.go.com/wpvi/pdf/Delaware-list-of-essential-and-nonessential-businesses-March-22-2020.pdf
https://dig.abclocal.go.com/wpvi/pdf/Delaware-list-of-essential-and-nonessential-businesses-March-22-2020.pdf
https://doi.org/10.1109/HICSS.2003.1174353
https://doi.org/10.1109/HICSS.2003.1174353
https://www.statista.com/statistics/242189/disitribution-of-households-in-the-us-by-household-size/
https://www.statista.com/statistics/242189/disitribution-of-households-in-the-us-by-household-size/
https://doi.org/10.1038/s41562-022-01429-0
http://www.nature.com/reprints
http://www.nature.com/nathumbehav


1

nature portfolio  |  reporting sum
m

ary
M

arch 2021

Corresponding author(s): James Allen Evans

Last updated by author(s): May 30, 2022

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis Data analysis was performed using Python (version 3.6.12). The data is available at https://doi.org/10.5281/zenodo.6608362. The source code 
is available at: https://doi.org/10.5281/zenodo.6609393.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

COVID-19 daily death data are available at the New York Times(https://github.com/nytimes/covid-19-data). Mobile phone mobility data and demographic data for 
census block groups are freely available upon request for academic, non-profit use from SafeGraph (https://www.safegraph.com/academics), which is a data 
company that aggregates anonymized location data from numerous applications in order to provide insights about physical places, via the SafeGraph Community. 
Estimated mobility networks are retrieved from http://covid-mobility.stanford.edu. 
Social vulnerability indices for communities are available at the website of U.S. Agency for Toxic Substances and Disease Registry (https://www.atsdr.cdc.gov/



2

nature portfolio  |  reporting sum
m

ary
M

arch 2021
placeandhealth/svi/data_documentation_download.html). Vaccination data are available at the website of U.S. CDC (https://covid.cdc.gov/covid-data-tracker/
##vaccination-demographic). Source data for Figures 1--4 are provided with the paper.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Based on mobility data and demographic data, we designed an epidemic model, and used it to analyze the outcomes of alternative 
vaccine distribution strategies on social utility and equity. We propose two indices to capture the impact from vaccinating a certain 
neighborhood. We propose a framework to design vaccine distribution strategies that can simultaneously improve social utility and 
equity.

Research sample We study existing data on nine of the largest American metropolitan statistical areas that have consistent death counting method 
during the period. COVID-19 daily death data are collected from the New York Times (https://github.com/nytimes/covid-19-data). 
Mobile phone mobility data and demographic data for census block groups are collected from SafeGraph (https://
www.safegraph.com/academics). Estimated mobility networks are collected from http://covid-mobility.stanford.edu. Social 
vulnerability indices for communities are collected from the website of U.S. Agency for Toxic Substances and Disease Registry 
(https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_download.html). Vaccination data are collected from the 
website of U.S. CDC (https://covid.cdc.gov/covid-data-tracker/##vaccination-demographic). We did not perform sampling as they 
were comprehensive. Safegraph mobility data have been shown to be representative of the population (https://docs.safegraph.com/
docs/faqs#section-what-is-the-breakdown-of-safe-graphs-mobility-device-panel-is-there-a-skew-toward-certain-demographics). 
Other data were designed to cover the entire population. The median age and median household income in MSA Atlanta, Chicago, 
Dallas, Houston, Los Angeles, Miami, Philadelphia, San Francisco, and Washington is 37, 37, 32, 32, 37, 42, 37, 37, 37 and 58820, 
62683.5, 60050, 56065, 67321, 52083, 65667, 93571, 96506, respectively. These statistics distribute around the national average of 
38.2 and 64324, suggesting the data collection is representative.

Sampling strategy  We did not perform sampling, but included all data. 

Data collection We did not collect data, but utilized existing datasets. 

Timing 2020-03-01 ~ 2020-05-02

Data exclusions No data were excluded from analysis.

Non-participation No participants were involved in the study.

Randomization This study does not include randomized controlled trials, and data were not organized into experimental groups.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging


	Strategic COVID-19 vaccine distribution can simultaneously elevate social utility and equity
	Results
	Behaviour- and demography-informed epidemic modelling. 
	Consequences of alternative vaccine distribution strategies. 
	Indices for estimating vaccine prioritization outcomes. 
	Informing the design of vaccine distribution strategies. 

	Discussion
	Methods
	Epidemic model, calibration and preliminary analysis
	Vaccination scenarios
	Correlation analysis of demographic features
	Quantification of social utility and equity
	Quantification of community risk and societal risk
	Design of vaccine distribution strategies
	General method of vaccine distribution
	SVI-Informed vaccine distribution strategy
	Real-World vaccine distribution strategy
	Framework for Comprehensive vaccine distribution strategies

	Reporting summary

	Acknowledgements
	Fig. 1 Behaviour- and demography-informed epidemic modelling (BD model).
	Fig. 2 Social utility and equity under different vaccine distribution strategies.
	Fig. 3 Design and justification of community risk and societal risk.
	Fig. 4 Performance of the Comprehensive distribution strategy under various vaccination rates and timings.
	Table 1 Changes in four dimensions of equity quantified by the Gini index, compared with the Homogeneous baseline.




