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ABSTRACT
Pick-up and delivery (PD) services such as online food ordering

are playing an increasingly important role in serving people’s daily

demands. Accurate PD route prediction (PDRP) is important for

service providers to efficiently schedule riders to improve service

quality. It is crucial to model the decision-making process behind

the route choice of riders for PDRP. Recent years have witnessed the

success of utilizing imitation learning (IL) to model user decision-

making process. Therefore, we propose to deploy an IL framework

to solve the PDRP problem. However, there still exist three main

challenges: (1) the rider’s route decision is affected by multi-source

and heterogeneous features and the complex relationships among

these features make it hard to explore how they influence the rider’s

route decision-making; (2) the large route decision-making space

make it easy to explore and predict unreasonable routes; (3) the

rider’s personalized preference is important in modeling the route

decision-making process but cannot be fully explored. To tackle

the above challenges, we propose ILRoute, a Graph-based imitation

learning method for PDRP. ILRoute utilizes a multi-graph neural

network (multi-GNN) to extract the multi-source and heteroge-

neous features and model their complex relationships. To address

the large route decision-making space, ILRoute introduces a mobil-

ity regularity-aware constraint as prior route choice knowledge to

reduce the exploration route decision-making space. To model the

personalized preferences of the rider, ILRoute utilizes a personalized
constraint mechanism to enhance the personalization of the rider’s

route decision-making process. Offline experiments conducted on
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three real-world datasets and online comparisons demonstrate the

superiority of our proposed model.
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1 INTRODUCTION
With the rapid development of internet and e-commerce, many

pick-up and delivery (PD) services such as online food ordering are

playing an increasingly important role in our daily life. According

to Meituan’s financial report
1
at the end of 2022, more than 687

million users use Meituan food delivery platform [4], covering tens

of thousands of counties and cities.

A typical food ordering, pick-up, and delivery process is shown

in Figure 1. Customers will first place orders on the online food

delivery platform. After receiving the order information, the plat-

form will push the information to the corresponding restaurant,

and meanwhile dispatch the order to the riders. After the rider

confirms the order, he/she will first go to the restaurant to pick

up the orders, and then finally deliver the orders to the customer.

In the food ordering and delivery process, customers hope their

1
https://meituan.todayir.com/html/ir_news.php
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Figure 1: Food ordering and PD procedure.

orders to be delivered on time, while riders usually want to choose

the routes with minimum cost (total driving distance, driving time,

etc.) to deliver the orders. To enhance customer satisfaction and

rider delivery experience, many PD services providers [6, 15] model

the riders’ routing strategy and predict the delivery routes, so as to

more reasonably dispatch the orders to riders. However, in reality,

they find that the predicted rider routes are much different from

the actual ones, leading to unreasonable order dispatch and route

planing [27]. Therefore, it is of great importance to develop PD

Route Prediction (PDRP) methods that can accurately unveil riders’

routing strategies for route prediction.

PDRP has been studied in the academic community in recent

years and can be mainly divided into two categories, i.e., rule-based

methods and data-driven methods. Rule-based methods such as

TimeRank and DisGreedy make route predictions based on distance

or time. These methods do not consider the multi-source features

and context information of the orders, thus failing to achieve good

results. Data-driven methods like machine learning models [10]

and deep learning models [6, 26, 27] design the neural network to

capture the order features and context and predict the rider’s future

routes step by step. Although the data-driven models have achieved

promising results, they ignore the decision-making process behind

rider’s routes. We take an example to illustrate it. As shown in

Figure 2, we observe the rider’s previous route decision will affect

the subsequent route choice, because the rider can only deliver

the order in the route after he/she has picked up the order in the

restaurant. It can also be observed that a certain section of the route

prediction deviation of the rider will affect the subsequent long-

term route prediction, e.g., the data-driven method predicts the

wrong route from 𝑙
𝑝
𝑜3 to 𝑙

𝑑
𝑜2
, resulting in the incorrect predictions

for the following routes.

Imitation learning (IL) is a powerful technology in modeling

user decision-making processes. Therefore, in our paper, we aim to

deploy an IL framework to solve the PDRP problem, which contains

a reinforcement learning-based generator to model the route choice

of the rider as a decision-making process and a discriminator to

distinguish the generated routes of the generator. However, there

still exist three main challenges in deploying IL.

• Complex features influencing rider route decision.
The rider’s route decision is affected by multi-source and

heterogeneous features, such as the features of the order,

and the context of the environment. Due to the complex

relationship between these features, it is difficult to explore

how they influence the rider’s route decision-making.

• Large route decision-making space. Since a rider may

have multiple orders with unfinished tasks at the same

Figure 2: The decision-making process of a rider. The green
line is the real PD route of rider and the orange line is the
PD route predicted by a data-driven method. The 𝑙𝑝𝑜𝑖 and 𝑙

𝑝
𝑜𝑖

are the 𝑖-th pick-up node and delivery node respectively.

time, his/her route decision-making space grows exponen-

tially with the number of route nodes. Meanwhile, there

exist complex relationships between different tasks, thus

it is easy to explore and predict unreasonable routes. How

to address such a large route decision-making space to

accurately infer the route is challenging.

• Rider personalized preference. The rider’s personalized
preference is important in modeling the route decision-

making process. For example, a rider prefers to pick up

the food for multiple orders due to the proximity in dis-

tance. However, existing deep learning-based methods

often learn the common features of all the riders, ignoring

the riders’ personalized features in the decision-making

process. How to learn the personalized preferences of rid-

ers is an open problem.

To tackle the above challenges, we propose ILRoute, a Graph-
based imitation learning method for RDPR. Specifically, to address

the first challenge, ILRoute proposes a multi-graph neural network

(multi-GNN) to extract themulti-source and heterogeneous features.

Multi-GNN contains a spatial GNN and a temporal GNN, which

model the distance and order time relationships among orders

respectively. In response to the second challenge, ILRoute introduces
a mobility regularity-aware constraint to inspire the discriminator

to distinguish the route sequences by considering the crucial spatial

continuity patterns [7]. To solve the third challenge, ILRoute utilizes
a personalized constraint mechanism to encourage the generator to

generate the rider’s routes with high mutual information with the

rider’s personalized features, thus enhancing the personalization

of the rider’s route decision-making process.

In summary, we make the following contributions in this study.

• This is the first work to investigate the PDRP task from the

imitation learning perspective to the best of our knowl-

edge. A graph-based imitation learning method ILRoute is
proposed to solve the RDPR problem, which models the

route choice of the rider as a decision-making process and

unveils riders’ routing strategies.

• We utilize a multi-GNN to extract the multi-source and het-

erogeneous features in the decision-making process of the

rider, which supports the generator to generate reasonable

routes. We also exploit a mobility regularity-aware con-

straint to reduce the rider’s route decision-making space

and a personalized constraint mechanism to enhance the

4025
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personalization in the route decision-making space, which

improves the effectiveness and rationality of the routes

generated by ILRoute.
• Offline experiments conducted on three real-world datasets

from the Meituan delivery platform demonstrate that IL-
Route significantly outperforms all the state-of-the-art

baselines by reducing the metric of concordancy rate by

over 7%. Moreover, compared with the online method in

the Meituan food delivery platform, ILRoute improves the

routes mean absolute error (MAE) metric by 4%.

2 PRELIMINARIES
2.1 Actor Critic (AC) Algorithm
TheACmethods [13] leverage advantages from both value-based [16]

and policy-based [23] methods. The AC methods include two esti-

mators: a critic𝑉𝜋𝜃 and an actor 𝜋𝜃 . The critic𝑉𝜋𝜃 plays the role of

the value-based method by estimating the value of the current state

during training. It aims to minimize the TD 𝛿𝑡 error to precisely

estimate the value of the current state:

𝛿𝑡 = (𝑟 (𝑠𝑡 , 𝑎𝑡 ) +𝑉𝜋𝜃 (𝑠𝑡+1) −𝑉𝜋𝜃 (𝑠𝑡 ))2 . (1)

The actor 𝜋𝜃 plays the role of the policy-based method via

interacting with the environment and generating actions according

to the current policy. It utilizes an advantage function 𝐴𝜋𝜃 to make

𝜋𝜃 update more stable than policy gradient methods [28]:

𝐴𝜋𝜃 (𝑠𝑡 , 𝑎𝑡 ) = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) +𝑉𝜋𝜃 (𝑠𝑡+1) −𝑉𝜋𝜃 (𝑠𝑡 ) . (2)

Then the actor 𝜋𝜃 is updated through 𝐽 (𝜃 ):
∇𝐽 (𝜃 ) = 𝐸 (∇𝜃 𝑙𝑜𝑔𝜋𝜃 (𝑠𝑡 , 𝑎𝑡 )𝐴𝜋𝜃 (𝑠𝑡 , 𝑎𝑡 )), (3)

where 𝐸 denotes the expectation value. In this work, we mainly

combine our proposed ILRoute method with the AC algorithm to

solve the PDRP problem.

2.2 Problem Formulation
Definition 1 (Order). A set of orders 𝑂 = {𝑜1, 𝑜2, · · ·𝑜𝑛} is

to be delivered by one rider 𝑢 ∈ 𝑈 with his/her personalized features
𝑑𝑢 . The orders can be divided into two categories. The orders in the
first category have already been picked up from the restaurants by
the rider and only have the delivery locations, which is denoted as
𝑂1 =

{
𝑜1
1
, 𝑜1

2
, · · ·𝑜1𝑛

}
. The second category represents the orders that

have both pickup and delivery locations, which is denoted as 𝑂2 ={
𝑜2
1
, 𝑜2

2
, · · ·𝑜2𝑛

}
. Therefore, we have 𝑂 = 𝑂1 ∪𝑂2 and 𝑛 = 𝑛1 + 𝑛2. In

addition, each order 𝑜 ∈ 𝑂 is associated with order features 𝐸 and
context features 𝑉 .

Definition 2 (Pick-up and Delivery Route). The set of

pick-up and delivery locations are defined as 𝑃 =

{
𝑙
𝑝
𝑜 |𝑜 ∈ 𝑂1

}
and

𝐷 =

{
𝑙𝑑𝑜 |𝑜 ∈ 𝑂2

}
respectively. The pick-up and delivery route is the

permutation of all the locations in 𝑙0 ∪ 𝑃 ∪ 𝐷 , where 𝑙0 denotes the
rider’s starting route node.

Definition 3 (Pick-up and Delivery Route Prediction

Problem). Given a set of orders 𝑂 , a set of riders 𝑈 , the order fea-
tures 𝐸, personalized features 𝑈𝑑 , the context features 𝑉 , and the
label routes 𝑇𝑟 , the goal of this problem is to train an effective route
prediction model to predict the rider’s future service routes.

3 METHODOLOGY
3.1 System Overview
Figure 3 illustrates the proposed ILRoute, which is equipped with a

graph-based route generator and a sequential discriminator. The

graph-based route generator takes the rider features, route history,

context features, and order features as input and converts them

into the route choice of the rider. The sequential discriminator dis-

tinguishes the routes generated by the graph-based route generator

and returns the reward to the generator to revise its policy.

3.2 Riders’ Routing Choice as a Markov
Decision Process

We transform the PDRP problem into a sequential decision-making

problem, with the goal to maximize the accuracy of route prediction.

Thus, we propose to formulate the problem using Markov Decision

Process (MDP) [19] in an RL setting, which exists five parts:

• Agent: We consider the rider 𝑢 ∈ 𝑈 as the RL agent,

who observes the rider’s personalized features 𝑑𝑢 , a set

of orders 𝑂 , order features 𝐸, context features 𝑉 , route

history 𝐻 , pick-up locations 𝑃 and delivery locations 𝐷 .

• State: Since the agent is the rider 𝑢 ∈ 𝑈 , we define state
at time interval 𝑡 as 𝑠𝑡 = (𝑑𝑢 , 𝐸𝑡 ,𝑉𝑡 , 𝐻𝑡 ), which contains

the rider’s personalized features, order features, context

features and route history.

• Action: The action 𝑎𝑡 at time interval 𝑡 is selecting the

next location that the rider will move to, which is also

the output of the graph-based route generator and will be

described in Sec 3.3.

• Transition: This component describes the process that

the current state 𝑠𝑡 will transit to the next state 𝑠𝑡+1 after
an action 𝑎𝑡 is taken. Specifically, in our state setting, the

rider’s personalized features will remain unchanged. The

order features, context features, and route history will

change from 𝑠𝑡 to 𝑠𝑡+1 due to new route node choice and

time changes.

• Reward: This reward function is to measure how similar

the route generated by the graph-based route generator

compared with the real rider’s routes, which is the output

of the sequential discriminator and will be discussed in

Sec 3.4.

3.3 Graph-based Route Generator
As presented in Figure 3, the graph-based route generator G de-

noted as 𝜋𝜃 consists of two components: a multi-graph encoder and

a pointer network-based route decoder. The multi-graph encoder

is designed for extracting multi-source and heterogeneous features

as spatio-temporal embedding and modeling the complex relation-

ships among features influencing rider route decisions. The pointer

network-based route decoder is to convert the spatio-temporal

embedding into the action step by step.

3.3.1 Multi-Graph Encoder. The multi-graph encoder first embeds

the rider features 𝑑𝑢 , route history𝐻𝑡 , context features𝑉𝑡 and order

features 𝐸𝑡 at time interval 𝑡 . It then concatenates the embeddings
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Figure 3: The framework of our system.

into a dense representation vector 𝑥𝑐 , which can be derived by

𝑥𝑐𝑡 = 𝑅𝑒𝑙𝑢 ( [𝑑𝑢𝑊𝑢 , 𝐻𝑡𝑊ℎ,𝑉𝑡𝑊𝑣, 𝐸𝑡𝑊𝑒 ]), (4)

where𝑊𝑢 ,𝑊ℎ,𝑊𝑣,𝑊𝑒 are learnable parameters of embedding table,

𝑥𝑐𝑡 is the vector representation of 𝑡-th time interval.

Inspired by GCN [12], multi-view graph representation [34]

and GraphSAGE [8], we introduce a multi-GNN to extract the

multi-source and heterogeneous features via a spatial-GNN and a

temporal-GNN. The spatial-GNN models the spatial relationships

among features through the distance between the order locations,

denoted as 𝐴𝑠 . And the temporal-GNN utilizes the due time of the

orders to find the orders with similar time, so as to build the tem-

poral relationship between the orders, denoted as 𝐴𝑚 . What’ more,

the node feature in the two GNNs is vector representation 𝑥𝑐𝑡 and

the detailed layer-calculation of multi-GNN is as follows.

First, the spatial-GNN and the temporal-GNN convert 𝑥𝑐𝑡 into

two embeddings 𝑥𝑠𝑡 and 𝑥
𝑚
𝑡 with 𝐴𝑠 and 𝐴𝑚 ,

𝑥𝑠𝑡 = 𝜎 (𝐴𝑠𝑥𝑐𝑡𝑊𝑠 + 𝐵𝑠 ), (5)

𝑥𝑚𝑡 = 𝜎 (𝐴𝑚𝑥𝑐𝑡𝑊𝑚 + 𝐵𝑚), (6)

where 𝜎 denotes the activation function,𝑊𝑠 , 𝐵𝑠 ,𝑊𝑚 and 𝐵𝑚 are

trainable parameters.

Then we concatenate them to obtain the hidden embedding

𝑥𝑎𝑡 ,

𝑥𝑎𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑥𝑠𝑡 , 𝑥𝑚𝑡 ) . (7)

3.3.2 Pointer Network-based Route Decoder. Based on the hidden

embedding 𝑥𝑎𝑡 extracted by multi-GNN, we first exploit a LSTM to

convert the hidden embedding sequences (𝑥𝑎
1
, 𝑥𝑎

2
, · · · , 𝑥𝑎𝑡 ) before

time interval 𝑡 into a hidden embedding vector 𝑥𝑞 ,

𝑥𝑞 = 𝐿𝑆𝑇𝑀 (𝑥𝑎
1
, 𝑥𝑎

2
, · · · , 𝑥𝑎𝑡 ) . (8)

Further, in order to obtain the route choice of the rider at each

time interval 𝑡 , we introduce a pointer network-based route decoder

[24] to output the action. The detailed calculation of the decoder is

as follows,

𝑢𝑡 = 𝑣
𝑇 𝑡𝑎𝑛ℎ(𝑊𝑞𝑥𝑞 +𝑊𝑎𝑥𝑎𝑡 ), (9)

𝑎𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑢𝑡 ) (10)

where 𝑣𝑇 ,𝑊𝑞 and𝑊𝑎 are trainable parameters, 𝑡𝑎𝑛ℎ and 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

are activation functions.

3.4 Sequential Discriminator
The sequential discriminator is to distinguish the generation quality

of the graph-based route generator compared with the real riders’

routes. It also introduces a mobility regularity-aware constraint to

Em
bedding

LSTM

Figure 4: The personalized constraint mechanism in discrim-
inator.

reduce the route choice exploration with prior spatial continuity

knowledge and a personalized constraint mechanism to enhance

the personalization of the rider’s route decision-making process.

As shown in Figure 3, the discriminator takes the whole route as

input and utilizes an LSTM and a sigmoid function to convert the

input into the long-term reward 𝑟𝑙 , which is calculated as follows

𝑟𝑙 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝐿𝑆𝑇𝑀 (𝑠1, 𝑠2, · · · , 𝑠𝑇 )), (11)

where 𝑇 is the length of the routes.

Mobility Regularity-Aware Constraint. While the standard

discriminator generates learning signals for the generator by dis-

tinguishing the real and generated routes, it fails to capture the

regularity and constraints of the rider route choice, which is the key

point of high-quality route prediction. Rider’s route choice shows

a high degree of temporal and spatial regularity [7, 22], such as

the significant probability to pick up or delivery the order in the

nearby locations on the route sequence. Such mechanisms assist the

discriminator to give a more effective signal, thus speeding up the

generator to generate better rider routes. Specifically, we introduce

a mobility regularity-aware constraint to add an auxiliary reward

𝑟𝑚 , which assumes that riders will pick up or deliver the nearby

orders first. The calculation of 𝑟𝑚 is like this,

𝑟𝑚 = −
𝑇−1∑︁
𝑡=0

𝑑𝑖𝑠 (𝑙𝑡 , 𝑙𝑡+1), (12)

where 𝑙𝑡 denotes the location of the order accessed by the rider at

time interval 𝑡 , 𝑑𝑖𝑠 denotes the Manhattan distance between two

locations.

Personalized Constraint Mechanism. Personalized preference

modeling is important inmany fields such as trafficmanagement [14]

and courier order assignment [26]. Traditional discriminators often

use a uniform model for all riders. This approach often models the

rider’s common route selection while ignoring the rider’s personal-

ization, which damages the prediction performance of the model.

The InfoGAN [3] and InfoGAIL [3] that can generate personalized
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sequences by adding the mutual regulation between the condition

variable 𝑐 and the generated sequences. Inspired by this, we propose

a personalized constraint mechanism to add the mutual regulation

between our generated routes sequences 𝑇𝑟 and the rider’s person-

alized features 𝑑𝑢 . To achieve this goal, we aim to maximize the

mutual information 𝐼 (𝑇𝑟 ;𝑑𝑢 ), which can be calculated as follows:

𝐼 (𝑇𝑟 ;𝑑𝑢 ) = 𝐻 (𝑑𝑢 ) − 𝐻 (𝑑𝑢 |𝑇𝑟 ) = 𝐻 (𝑑𝑢 ) + 𝐸𝑇𝑟𝐸𝑑𝑢 |𝑇𝑟 𝑙𝑜𝑔𝑝 (𝑑𝑢 |𝑇𝑟 ),
(13)

where𝐻 denotes the entropy value, 𝐸 denotes the expectation value

and 𝑝 denotes the probability.

Without access to the posterior 𝑝 (𝑑𝑢 |𝑇𝑟 ), we cannot maximize

the 𝐼 (𝑇𝑟 ;𝑑𝑢 ) directly. Here, we introduce 𝑞(𝑑𝑢 |𝑇𝑟 ) to approximate

the true posterior 𝑝 (𝑑𝑢 |𝑇𝑟 ),

𝑙𝑜𝑔𝑝 (𝑑𝑢 |𝑇𝑟 ) = 𝑙𝑜𝑔𝑞(𝑑𝑢 |𝑇𝑟 ) + 𝑙𝑜𝑔
𝑝 (𝑑𝑢 |𝑇𝑟 )
𝑞(𝑑𝑢 |𝑇𝑟 )

. (14)

Take equation (15) into equation (14), we can further observe

that 𝐸𝑑𝑢 |𝑇𝑟 𝑙𝑜𝑔
𝑝 (𝑑𝑢 |𝑇𝑟 )
𝑞 (𝑑𝑢 |𝑇𝑟 ) is always larger than 0 for denotes the KL

divergence conditioned on 𝑇𝑟 . Following previous work [3], we

calculate the left part of equation (15) via the reparametrization

trick, which can be expressed as follows:

𝐼 (𝑇𝑟 ;𝑑𝑢 ) ≥
∫

𝑝 (𝑑𝑢 )𝑙𝑜𝑔𝑞(𝑑𝑢 |𝑇𝑟 )𝑑𝑑𝑢 + 𝐻 (𝑑𝑢 ) ≡ 𝐷𝐾𝐿 (𝑝 (𝑑𝑢 ) | |𝑞(𝑑𝑢 |𝑇𝑟 )) .
(15)

Therefore, we maximize 𝐼 (𝑇𝑟 ;𝑑𝑢 ) by maximizing 𝐷𝐾𝐿 (𝑝 (𝑑𝑢 )
| |𝑞(𝑑𝑢 |𝑇𝑟 ). Based on this, we add a personalized constraint reward

𝑟𝑝 = 𝐷𝐾𝐿 (𝑝 (𝑑𝑢 ) | |𝑞(𝑑𝑢 |𝑇𝑟 ) to enhance the personalization of the

rider’s route decision-making process. Therefore, for the discrimi-

nator, we can obtain its reward 𝑟𝐷 ,

𝑟𝐷 = 𝑟𝑙 + 𝛽𝑟𝑚 + 𝛾𝑟𝑝 , (16)

where 𝛽 and 𝛾 are hyperparameters.

Figure 4 shows the specific implementation process. The𝑞(𝑑𝑢 |𝑇𝑟 )
is a head of the discriminator trained by maximum likelihood and

the 𝑝 (𝑑𝑢 ) is calculated from generated routes. Further, we denote

the discriminator as 𝐷𝜙 , which is parameterized by 𝜙 and is opti-

mized based on the following loss function

L𝐷 (𝜙𝑛) = −E𝜋𝑇𝑟
[log𝐷𝜙 (𝑇𝑟 )]−E𝜋𝜃 [log(1−𝐷𝜙 (𝑇𝑟 )]−E𝜋𝜃 [log𝑞(𝑑𝑢 |𝑇𝑟 )],

(17)

where E𝜋𝜃 represents the expectation with respect to the routes

generated by generator 𝜋𝜃 . In addition, E𝜋𝑇𝑟
represents the expec-

tation with respect to the real riders’ routes.

3.5 Model Training
We summarize details of the training process of ILRoute in Algo-

rithm 1 of Appendix A.1. From the algorithm, we can first observe

that a batch of generated route sequences and real-world route se-

quences are sampled to train the discriminator (lines 6-8). The gen-

erated sequences are regarded as negative samples and real-world

sequences are regarded as positive samples to train discriminator

via an Adam Optimizer [20] (line 8). Then, we calculate a batch of

rewards for the generated routes (line 5). Finally, we train the gener-

ator by maximizing the expectation of reward via a reinforcement

learning algorithm called actor-critic (AC) (line 12).

Table 1: Statistic of Datasets.

Datasets Beijing Fuzhou Guiyang
Location Beijing Fuzhou Guiyang

Time Span 08/15/2022-09/30/2022 09/15/2022-10/30/2022 10/15/2022-11/15/2022

Number of Riders 7000 60000 5000

Table 2: The features one sample contains.

Feature Description
Driver info Start location, Average speed, Punctuality

Context info Period of a day, Day of a week, Index of city

Order info
Due time, Earliest pickup time, Pickup location,

Drop-off duration, Delivery locations

Label Actual delivery route

4 EVALUATION

Order={1,2} Order={3,4}

padding

Driver's real
route:

Split into two
samples and
pad:

Figure 5: An example to split the driver’s real route into
samples and pad.

In this section, we conduct both online and offline experiments

to verify the effectiveness of ILRoute framework. We aim to answer

the following Research Questions (RQs) through experimental stud-

ies.

• RQ1: Compared with the state-of-the-art route prediction

techniques, can ILRoute achieve comparable results across

different cities?

• RQ2: How is the performance of ILRoute’S variants with
different combinations of its key components?

• RQ3: How do the hyper-parameter settings affect the per-

formance of our ILRoute?
• RQ4: Compared with the online route prediction tech-

niques in the Meituan food delivery platform, can ILRoute
achieve comparable results?

4.1 Offline Experiments
4.1.1 Datasets.

Descriptions. To show the generality of our model, we conduct

experiments on three real-world route datasets of three cities from

the Meituan food delivery platform, whose descriptions are sum-

marized in Table 1. The details of each dataset are as follows:

• Beijing Dataset. The dataset contains the pick-up and de-

livery records of 7000 riders from 45 days in Beijing, China.

This dataset is to verify the generalization of ILRoute in
developed cities.

• Fuzhou Dataset. The dataset contains the pick-up and

delivery records of 5000 riders from 30 days in Fuzhou,
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Table 3: Performance comparison over all baselines in five scenarios Bold denotes best results and underline denotes the
second-best results.

City Beijing Fuzhou Guiyang
Method DMAE SR@1 SR@200 KRC BR@500 BR@1000 DMAE SR@1 SR@200 KRC BR@500 BR@1000 DMAE SR@1 SR@200 KRC BR@500 BR@1000

TimeRank 1855.58 0.086 0.15 0.14 0.53 0.33 1698.45 0.098 0.16 0.13 0.53 0.30 1645.91 0.098 0.18 0.14 0.50 0.29

DisGreedy 1338.74 0.11 0.21 0.63 0.52 0.30 1206.56 0.12 0.22 0.64 0.49 0.25 1354.27 0.10 0.21 0.60 0.53 0.30

OSquare 575.45 0.58 0.68 0.84 0.15 0.099 563.54 0.59 0.71 0.85 0.13 0.068 512.35 0.62 0.73 0.87 0.12 0.062

DeepRoute 550.76 0.62 0.73 0.88 0.11 0.033 524.12 0.64 0.75 0.89 0.11 0.030 470.88 0.67 0.78 0.90 0.087 0.028

FDNet 505.34 0.64 0.75 0.89 0.13 0.066 496.42 0.65 0.76 0.89 0.14 0.058 450.28 0.68 0.79 0.91 0.103 0.065

Graph2Route 473.82 0.66 0.79 0.90 0.096 0.052 405.36 0.67 0.78 0.89 0.088 0.027 412.78 0.70 0.80 0.91 0.092 0.045

IRL 565.36 0.60 0.69 0.86 0.14 0.074 554.29 0.61 0.72 0.84 0.12 0.059 492.33 0.64 0.74 0.88 0.14 0.079

GAIL 500.13 0.65 0.76 0.89 0.11 0.059 468.96 0.66 0.76 0.89 0.095 0.047 438.48 0.69 0.79 0.89 0.101 0.059

ILRoute (Ours) 404.63 0.70 0.82 0.92 0.059 0.015 346.68 0.71 0.82 0.92 0.053 0.011 357.95 0.73 0.83 0.93 0.054 0.014

China. This dataset is to verify the effectiveness of ILRoute
in quasi-developed cities.

• Guiyang Dataset. The dataset contains the pick-up and

delivery records of 6000 riders from Sept. 15, 2022 to Oct.

15, 2022 (30 days) in Guiyang, China. This dataset aims to

the generalization of ILRoute in underdeveloped cities.

Preprocessing. We first filter out outliers in the data, such as data

points where the driver’s driving speed is greater than a threshold.

Then, since the driver may receive new orders during the delivery

process which will affect his/her subsequent delivery choice, we

split the delivery route of one driver into samples following previous

work [27]. Taking Figure 5 as an example, the driver receives new

orders 𝑜3, 𝑜4 after delivering order 𝑜1, then he/she chooses to fetch

order 𝑜3 affected by the dispatching of new order and continues to

deliver the other unfinished orders. In this situation, we split the

driver’s delivery route into two samples from the route node where

the new orders arrive. The first sample takes {𝑜1, 𝑜2} as input and
the corresponding label is

{
𝑙0, 𝑙

𝑝
𝑜1 , 𝑙

𝑝
𝑜2 , 𝑙

𝑑
𝑜1

}
. The input of the second

sample is {𝑜2, 𝑜3, 𝑜4} and its label is

{
𝑙
′
0
, 𝑙
𝑝
𝑜3 , 𝑙

𝑝
𝑜4 , 𝑙

𝑑
𝑜2
, 𝑙𝑑𝑜3 , 𝑙

𝑑
𝑜4

}
. What’s

more, for the convenience of training, we also pad the samples to

the same length. Note that the route splitting and padding data

is utilized for training and evaluating in the offline environment.

When we exploit ILRoute for prediction, it will generate the com-

plete delivery route. In addition, we also summarize the features

included in each sample shown in Table 2, which contain driver

info, context info, order info, and label.

4.1.2 Experimental Setup.

Baseline Methods. To make a comprehensive comparison, eight

baseline methods are adopted in performance evaluation.

First, we compare ILRoute with two rule-based baselines, in-

cluding:

• TimeRank [26]. It predicts the route by selecting the

route node with the least remaining time each time.

• DisGreedy [26]. It predicts the route by choosing the

route node with the nearest distance each time.

Second, we adopt four route prediction methods based on

machine learning or deep learning, including:

• OSquare [37]. It is a node-wise rankingmethod that trains

the prediction model based on classical machine learning

methods like LightGBM [10]. It generates the whole route

sequences step by step.

• DeepRoute [27]. It is a deep learning-based model with

a Transformer encoder and an attention-based decoder

to select the next route node the rider should go. Note

that DeepRoute itself cannot handle the pick-up then de-

livery route prediction problem. Therefore, we add the

action mask mechanism to its decoder to guarantee that

its generated route sequences meet the constraints of our

datasets.

• FDNet [6]. It is also a deep learning-based model utilizing

an LSTM encoder and a Pointer Network decoder to deter-

mine the next route nodes of riders. In order to improve

the route prediction performance, it introduces the arrival

time prediction as the auxiliary task into its model.

• Graph2Route [26]. It is the state-of-art method based on

a dynamic spatial-temporal graph neural network, which

is equipped with a graph-based encoder and a graph-based

personalized route decoder.

At last, two representative imitation learning baselines are

compared, including:

• IRL [5]. It models the riders’ route choice as a decision-

making process and generates the route based on a re-

inforcement learning-based generator, which is trained

by maximizing the entropy. Note that here it implements

inverse reinforcement learning based on deep neural net-

works.

• GAIL [9]. This model generates riders’ route choices by

modeling the sequence generation as a human decision-

making process. In general, a GAIL model includes a dis-

criminator module and a policy module. The policy is to

generate the route sequences and the discriminator is to

train the policy module by judging the quality of generated

route sequences.

Evaluation Metrics. We compare the performance of different

models based on the following six metrics of three categories.

First, we adopt the following metric to measure the route

accuracy:

• DMAE [29]. It denotes the mean absolute error of the

distance differences between generated routes and real

routes. It measures how far the generated routes deviate

from the real routes in terms of spatial distance.

Second, we choose the following three metrics to calculate the

concordancy of the generated routes:

• SR@k. It represents the relaxed concordancy rate of gen-

erated routes compared with real routes. It first compares
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the route nodes of the generated routes and the real routes

and calculates the distance between them. If the distance is

less than 𝑘 meters, the two route nodes are considered to

be consistent. Then count the number of such consistent

nodes in the routes and divide it by the length of the routes

to obtain this metric. It is to relax the distance in consider-

ation of the statistical error in the case of riders picking-up

at the same store. In our experiments, we choose SR@1

and SR@200 as our metrics.

• KRC [26]. Kendall Rank Correlation (KRC) [11] is a sta-

tistical metric to measure the ordinal association between

two sequences. In this paper, we utilize it to quantify the

difference between two route ranks. Let (𝑔1, 𝑜1, 𝑜1), (𝑔2, 𝑜2, 𝑜2),
· · · , (𝑔𝑛, 𝑜𝑛, 𝑜𝑛) be a set of observation sequences, i.e.,𝑔𝑖 is
the 𝑖-th unfinished pick-up or delivery node of the driver,

𝑜𝑖 is the order of 𝑔𝑖 in the predicted route and 𝑜𝑖 is the

order of 𝑔𝑖 in the real route. For any pair of (𝑔𝑖 , 𝑜𝑖 , 𝑜𝑖 ) and
(𝑔 𝑗 , 𝑜 𝑗 , 𝑜 𝑗 ), if both 𝑜𝑖 > 𝑜 𝑗 and 𝑜𝑖 > 𝑜 𝑗 or both 𝑜𝑖 < 𝑜 𝑗 and
𝑜𝑖 < 𝑜 𝑗 , the pair can be regarded as concordant. Otherwise,

it is regarded as a discordant pair. Then the KRC is defined

as:

𝐾𝑅𝐶 =
𝑛𝑐 − 𝑛𝑑
𝑛𝑐 + 𝑛𝑑

, (18)

where 𝑛𝑐 is the number of concordant pairs, and 𝑛𝑑 is the

number of discordant pairs.

Last, we utilize the following metric to measure how far the

generated routes deviate from the real routes in terms of route

concordancy:

• BR@k. It first calculates the distances between the gener-

ated route nodes and the real route nodes. Then we count

the number of node pairs whose distance exceeds 𝑘 meters

and finally divide the number of these node pairs by the

route length to get this metric. In our experiments, we

choose BR@500 and BR@1000 as our metrics.

In summary, DMAE measures the distance similarity of the

predicted route and the real route, while SR@k, KRC, and BR@k

calculate their similarity from the perspective of route concordancy.

Higher DMAE, SR@k, KRC, and lower BR@k mean better perfor-

mance of the algorithm.

4.1.3 Evaluation Results (RQ1). We conduct rider’s route prediction

experiments in three cities with different development levels to

verify the effectiveness and generalization ability of the ILRoute
method. Each experimental result is the average value over 5 runs

with different seeds. Table 3 summarizes the overall performance

comparison, where ILRoute significantly outperforms all baseline

methods. On Beijing dataset, it improves the performance of the

best baseline by 19.2% at DMAE, by 7.7% at SR@1, and by 46.3% at

BR@500.

Specifically, in comparison with two rule-based baselines, IL-
Route takes into account themulti-source information of the rider as

well as the context information into the generator, and thus achieves

much better results. Compared to four route prediction methods

based on machine learning or deep learning, ILRoute models the

rider’s decision-making process and considers the cumulative er-

ror of the rider’s generated routes based on the reward function.

Compared with two representative imitation learning baselines,

ILRoute takes the rider personalization mechanism into the route

generation model, so as to generate routes that are more in line

with the real riders’ behaviors. In the four route prediction methods

based on machine learning or deep learning, Graph2Route performs

best because it models the graph neural network into the decoder,

which can greatly reduce the rider’s route selection space and gen-

erate more reasonable routes. OSquare has the worst performance

because it does not model the sequence information of the rider’s

choice well. In the two representative imitation learning baselines,

GAIL performs much better than IRL because the restriction that

the reward function is a linear relationship with rider’s features

limits the ability of IRL.

4.1.4 Ablation Study (RQ2). To provide a comprehensive under-

standing of the key components of ILRoute, we conduct a series of
experiments to investigate the effect of different components.

• w/o d-loss: This view evaluates the effectiveness of adding

mobility regularity-aware mechanism to constrain the

strategy space of route prediction. It removes the mobil-

ity regularity-aware mechanism from the framework of

ILRoute.
• w/o c-loss: It evaluates the effectiveness of utilizing per-
sonalized constraint to model the personalized features

of riders in route prediction. It removes personalized con-

straint mechanism from the framework of ILRoute.
• w/o multi-GNN: This view aims to evaluates the effec-

tiveness of extracting Rrider’s multi-source features and

contexts via multi-GNN. It removes muti-GNN from the

framework of ILRoute.

We report the evaluation results on Beijing dataset in Figure 6.

It can be observed that removing mobility regularity-aware mecha-

nism will make ILRoute easy to explore many unreasonable routes,

thus degrading the performance. Removing personalized constraint

makes the generated rider route selection behavior loss of diversity„

which damages the performance of ILRoute. We can also observe

that removing multi-GNN makes it difficult for ILRoute to extract

Rrider’s multi-source features and contexts, therefore achieving

a worse performance. In a nutshell, each component of ILRoute
improves the route prediction gradually and finally the full version

achieves the best performance.

4.1.5 Hyper-parameters Study (RQ3). To investigate the robust-

ness of our framework, we examine how key parameters affect the

performance of ILRoute in the route prediction performance and

report the results in Figure 7. The results is performed on SR@1

since it is the most important metric to evaluate the precision of

generated routes. Figure 7(a) and 7(b) show the effect of the hyper-

parameter 𝛽 on two datasets. In ILRoute, 𝛽 denotes the weight of
𝑟𝑚 in equation (16). It is an important parameter, since it balances

the personalization and commonality of the generated routes. As

we can observe, in both two datasets, SR@1 first increases and

then decreases when 𝛽 increases from 0 to 1. To achieve the best

performance, we choose 𝛽 = 0.4 and 𝛽 = 0.6 for Beijing and Fuzhou

datasets respectively. Fig. 7(c) and 7(d) show the effect of 𝛾 , a weight

of 𝑟𝑝 in the equation (16). By adjusting this parameter, we can con-

trol the exploration scope of the generator to avoid generating
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Figure 6: Ablation study of six metrics on Beijing dataset.
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(c) Effect of hyper-parameter 𝛾 on Beijing

dataset.
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Figure 7: Effects of hyper-parameters 𝛽 and 𝛾 to metric SR@1
on Beijing and Fuzhou datasets.

extreme routes. We determine 𝛾 = 0.4 and 𝛾 = 0.6 on two datasets

respectively when maximum SR@1 is achieved.

4.2 Online Comparison (RQ4)
Motivated by the encouraging offline evaluation results, we carry

out a lot of feature engineering and parameter experiments to

compare ILRoute with the online methods applied in the Meituan

food delivery platform. The experiment results show that ILRoute
improves the DMAE by 4%. Since ILRoute aims to serve millions of

riders and billions of customers, a small increase in the value of the

metrics means a huge improvement of the model, and can generate

enormous economic benefits.

4.3 Case Study (RQ1)
To analyze the performance of ILRoute more intuitively, we conduct

an empirical case study shown in Figure 8. We analyze cases to

illustrate the advantages of ILRoute over Graph2Route algorithm
(best baseline), which can direct further improvements.

Case #1. Figure 8(a), 8(b) and 8(c) show three routes generated by

the real case, ILRoute and Graph2Route respectively. In this case, we
can observe that both ILRoute and Graph2Route predict the wrong

route from 𝑙3 to 𝑙4 by comparing with the real route. However, IL-
Route adjusts the deviation in time in the generation of subsequent

route segments (from 𝑙4 to 𝑙6), so that the subsequent route segment

predictions do not deviate too much from the real route segments.

In contrast to this, Graph2Route is affected by the prediction de-

viation of previous route segments, resulting in increasingly large

deviations in subsequently generated route segments. The reason

for the above observation is that ILRoute models the rider’s route

selection via RL andmodels the cumulative error of route prediction

based on the long-term reward function. Therefore, when there

is a previous route prediction deviation, ILRoute will consider its
cumulative impact and correct these errors in subsequent route

generation.

Case #2. Figure 8(d), 8(e) and 8(f) show three routes generated by

the real case, ILRoute and Graph2Route respectively. In this case,

it can be observed that the routes generated by ILRoute are the

same as real routes while Graph2Route generates different routes.

We can also observe that the routes generated by Graph2Route

seem to be more convenient and reasonable and can save a lot

of time for the rider. After checking the local traffic conditions,

we found that the red dotted line area in Figure 8(d) is a location

with a high incidence of accidents. What’s more, by analyzing the

personalized features of this rider, such as historical average speed

and historical average punctuality, we can infer that this rider does

not completely pursue efficiency but pays more attention to safety.

The reason for the above observation is that ILRoute introduces the
personalized constraint mechanism into the model and generates

personalized routes for the rider. In contrast to this, Graph2Route

does not specifically model the personalization of riders, therefore

the generated routes are convenient and fast paths that most riders

will take.

5 RELATEDWORKS
Imitation Learning. The goal of imitation learning is to learn

the generator, which gives the action to be executed based on the

current state [1, 2, 38, 39, 39]. The most success imitation learn-

ing method is the inverse reinforcement learning, which can be

regarded as a special case of reinforcement learning with the un-

known reward function to be learned from expert data [9, 39]. With

the emergence of deep learning techniques, generative adversar-

ial imitation learning (GAIL) is proposed to utilize the non-linear

neural network to model the reward function and policy function

to solve the imitation learning problem, which has been adopted

in numerous practical applications, including dynamic treatment

regimes [25], traffic signal control [31], and human drive behavior

analysis [17, 18, 21, 30, 32, 33, 35, 36], etc. In this paper, we utilize

imitation learning techniques to solve the PDRP problem, which

models the rider’s route choice as a decision-making process.
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(a) The real route of rider in Case #1.
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(c) The route generated by Graph2Route in Case #1.
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(d) The real route of rider in Case #2. Note that the location of the red dotted

line is the road section with a high incidence of accidents.
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(e) The route generated by ILRoute in Case #2.
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(f) The route generated by Graph2Route in Case #2.

Figure 8: Case Study. The orange lines, blue lines and green lines are real routes, routes generated by ILRoute and routes
generated by Graph2Route respectively. 𝑙 means the visit location of the rider.

Pick-up and Delivery Route Prediction. Pick-up and Delivery

Route Prediction (PDRP) has been studied in the academic commu-

nity in recent years and can be mainly divided into two categories,

i.e., rule-based methods and data-driven methods. Rule-based meth-

ods such as TimeRank and DisGreedy make route predictions based

on distance or time. These methods do not consider the multi-

source features and context information of the orders, thus failing

to achieve good results. Data-driven methods like machine learning

models [10] and deep learning models [6, 26, 27] design the neural

network to capture the order features and context and predict the

rider’s future routes step by step. Although the data-driven models

have achieved promising results, they ignore the decision-making

process behind rider’s routes. Imitation learning (IL) is a powerful

technology in modeling user decision-making processes. Therefore,

in our paper, we aim to deploy an IL framework to solve the PDRP

problem.

6 CONCLUSION
In this paper, we proposed to predict the rider’s routes via a graph-

based imitation learning method called ILRoute, which contains a

reinforcement learning-based generator to model the route choice

of the rider as a decision-making process and a discriminator to

distinguish the generated routes of the generator. We first utilize a

multi-GNN to extract the multi-source and heterogeneous features

in the decision-making process of the rider. Then we exploit a

mobility regularity-aware constraint to reduce the rider’s route

decision-making space and a personalized constraint mechanism

to enhance the personalization in the route decision-making space.

Offline experiments conducted on three real-world datasets and

online comparison demonstrate the superiority of our proposed

model.
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A APPENDIX
A.1 Algorithm
We summarize details of the training process of ILRoute in Algo-

rithm 1. From the algorithm, we can first observe that a batch of

generated route sequences and real-world route sequences are sam-

pled to train the discriminator (lines 6-8). The generated sequences

are regarded as negative samples and real-world sequences are

regarded as positive samples to train discriminator via an Adam

Optimizer [20] (line 8). Then, we calculate a batch of rewards for

the generated routes (line 5). Finally, we train the generator by

maximizing the expectation of reward via a reinforcement learning

algorithm called actor-critic (AC) (line 12).

Algorithm 1: ILRoute

Input: Real-world rider’s route sequences 𝑇 𝑟 .

1: Initialize 𝜋𝜃 , 𝐷𝜙 with random weights for generator and

discriminator;

2: for 𝑖=0,1,2... do
3: Generate a batch of sequences 𝑇

𝑔

𝑖
∼𝜋𝜃 ;

4: for 𝑘 = 0, 1, 2... do
5: Calculate a batch of rewards 𝑟𝐷 based on (17) for each

state-action pair in sequences 𝑇
𝑔

𝑖
;

6: Sample generated sequences 𝑇
𝑔

𝑘𝑖
based on 𝜋𝜃 ;

7: Sample real-world sequences𝑇 𝑟
𝑘
from𝑇 𝑟 with same batch

size;

8: Update 𝐷𝜙 based on (18) Adam Optimizer with the

positive samples 𝑇 𝑟
𝑘
and negative samples 𝑇

𝑔

𝑘𝑖
.

9: end for
10: Update 𝜋𝜃 by maximizing the expectation of reward

E𝜋𝜃 (𝑟𝐷 ) via the AC method;

11: end for
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