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Semantic-aware Spatio-temporal App Usage Representation via
Graph Convolutional Network

YUE YU∗, TONG XIA∗, HUANDONGWANG, JIE FENG, and YONG LI, Beijing National Research
Center for Information Science and Technology, Department of Electronic Engineering, Tsinghua University,
China
Recent years have witnessed a rapid proliferation of personalized mobile Apps, which poses a pressing need for user experience
improvement. A promising solution is to model App usage by learning semantic-aware App usage representations which
can capture the relation among time, locations and Apps. However, it is non-trivial due to the complexity, dynamics, and
heterogeneity characteristics of App usage. To smooth over these obstacles and achieve the goal, we propose SA-GCN,
a novel representation learning model to map Apps, location, and time units into dense embedding vectors considering
spatio-temporal characteristics and unit properties simultaneously. To handle complexity and dynamics, we build an App
usage graph by regarding App, time, and location units as nodes and their co-occurrence relations as edges. For heterogeneity,
we develop a Graph Convolutional Network with meta path-based objective function to combine the structure of the graph
and the attribute of units into the semantic-aware representations. We evaluate the performance of SA-GCN via a large-scale
real-world dataset. In-depth analysis shows that SA-GCN characterizes the complex relationships among different units and
recover meaningful spatio-temporal patterns. Moreover, we make use of the learned representations in App usage prediction
task without post-training and achieve 8.3% of the performance gain compared with state-of-the-art baselines.
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1 INTRODUCTION
With the prevalence of smartphones as well as the Internet services, the past few years have witnessed the
tremendous expansion of the mobile application (Abbr. Apps). For the first quarter of 2019, there are around
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2.1 million Apps in Google’s Android market and 1.8 million available Apps in Apple’s App Store1. With such
a huge number of widely-used Apps, it becomes increasingly important to model users’ spatio-temporal App
usage behaviors, i.e., when and where to use which Apps [36], for both App developers and service providers
to improve user experience by context-aware recommendations [65], personalized resource allocation [36], etc.
Under this circumstance, we aim to learn semantic-aware App usage representation, which can reveal intrinsic
relationships among App, location and time, to facilitate extensive downstream application tasks.

Although learning semantic-aware representation for App usage modeling is crucial, it is not trivial due to the
following challenges. First, App usage is dynamic and complex, as users may use various Apps in different time
and locations. For example, a civil servant is more likely to use productivity Apps during the daytime of weekdays
in the office but prefers entertaining Apps during the night of weekdays and daytime of weekends at home.
Modeling such dynamics requests us to take spatio-temporal context into consideration. Second, spatio-temporal
App usage information is heterogeneous as different kinds of units (e.g. Apps, times and locations) have different
attributes. Apps can be divided into several categories (e.g., Entertainment, Office) and they are generally used in
different spatio-temporal scenarios. Meanwhile, time units would be working time or non-working time, and
location units would have different functions with unique PoI (Points of Interest) distribution. These all make App
usage diverse, while existing works, which learn the representation by end-to-end prediction tasks [20, 32, 64] or
extract the relation among each two kinds of units separately [5], fail to deal with the complexity, dynamics, and
heterogeneity of App usage simultaneously.

To solve these challenges, we propose SA-GCN2 to project App, location, and time units into the same and low-
dimensional embedding vectors where their semantic similarities remain. For the complexity and dynamics, we
build an App usage graph by regarding App, time and location units as nodes and their co-occurrence relations as
edges. Based on this graph, we learn the representation for each node. Specifically, to tackle the second challenge of
heterogeneity, we adopt Graph Convolutional Network (GCN) [16] to generate the node representation. Different
from traditional graph embedding methods [4, 8, 12, 39], GCN is able to generate the embedding of one node from
its neighbors with its attributes. It allows to model graph structure and node property simultaneously. To learn the
parameter of GCN, we design a non-task specific objective function, which is presented by the likelihood function
of different units co-occurring in the App-location-time meta-path. By maximizing this function, we are about to
obtain semantic-aware App, location, and time embeddings automatically. With the learned representations, we
carry out in-depth analysis to showcase how the embedding vectors preserve the semantics in App, location and
time domain. In addition, we adopt these embeddings in App usage prediction tasks to further demonstrate their
superiority on downstream applications. In summary, our paper makes the following contributions:
(1) To the best of our knowledge, we are the first to build a heterogeneous graph with App, location, and

time units as nodes with their attributes as node features for App usage representation. By combining the
attributes and the co-occurrence relation of different units, we are able to learn semantic-aware embedding
vectors for App, location, and time, respectively and simultaneously, which achieve better result.

(2) We develop a novel GCN-based model SA-GCN with non-task specific objective function to learn the repre-
sentation, which captures the signal in spatio-temporal App usage patterns and the semantic information
of Apps and locations, and can facilitate a wide range of downstream applications.

(3) We evaluate our proposed SA-GCN via a large-scale real-world App usage dataset. Through the in-depth
analysis, we showcase the proposed model reveals intrinsic complex relationships among App, location
and time units. Moreover, we adopt the learned embedding vectors in App usage prediction tasks, through
which, we demonstrate the superiority of the proposed model in terms of achieving significant performance
gain of 8.3% against the state-of-the-art baselines.

1https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
2short for Semantic-Aware representation learning model based on Graph Convolutional Network.
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2 PRELIMINARIES

2.1 Background
Our work is motivated by the recent advancement of App representation learning. Till now, there are several
works along this line [5, 20, 23, 64]. However, most of them [20, 23, 64] are mainly based on App usage sequences
without considering rich contextual information. As demonstrated in [26, 55], such information would provide
complementary semantics to improve the quality of the prediction. Although Chen et al. [5] proposed CAP
model to learn context-aware representation for App usage prediction, they use three bipartite graphs to encode
App-location, App-time, and App-App co-occurrence relations separately and then design an embedding learning
method to jointly optimize on three graphs. However, we find that such method cannot aggregate the contextual
information well due to the following reasons. First, it only model similarities between different node pairs
and fail to model spatio-temporal co-occurrence simultaneously, which leads to suboptimal results. Second,
they are unable to consider the node attributes, i.e., App categories and location functions. Node attributes
are another kind of features indicating specific usage patterns and are different from the edge attributes, i.e.,
co-occurrence. Neglecting such attribute information will reduce the semantics of these presentations and worsen
the performance for downstream tasks.
Enlightened by the recent method on graph representation learning [16], we aim to model spatio-temporal

correlations simultaneously for better App usage presentation by using graph convolutional networks (GCN).
Graph convolutional networks have been adopted in location-based social network (LBSN) analysis [49] and
semantic recommendation [48] with promising results, which justify the strong ability for GCN in combining the
rich structural information and node attributes. However, these methods mainly consider user-location [49] or
user-item relationships [48], but in App representation learning, there are more types of units which makes it more
challenging. To address this, we designed a meta-path guided learning scheme to maximize the co-occurrence
probability from the observation, which can guide the model to learn more semantic-aware relations from raw
records. The detailed description of the methodology can be found in section 3.3.

2.2 Problem Definition
Inspired by the phenomenal success of representation learning, we are dedicated to designing a novel embedding
algorithm to learn semantic-aware App usage representation. In our paper, representations are dense embedding
vectors for location, time and App units. Semantics are the patterns that reflect the attribute information for
different units on App usage [33, 61]. Specifically, location attribute refers to PoI distribution, i.e., the proportion
of each Point of Interest category within the location unit. Time attribute indicates whether it is a working
or non-working day. For App unit, the attribute is its App category. A qualified App usage representation is
of low-dimension but can provide insightful knowledge about the intrinsic relation among App, location and
time. Consequently, these semantic-aware App usage representations can promote a wide range of downstream
applications such as prediction and recommendation.

Motivated by this, we formulate the investigated problem as follows: Let D = {(𝑢𝑖 , 𝑡𝑖 , 𝑙𝑖 , 𝑎𝑖 )} |D |
𝑖=1 be a corpus of

the App usage records where: (1) 𝑢𝑖 is the user ID, (2) 𝑡𝑖 is the timestamp in hour, (3) 𝑙𝑖 is the location ID with its
PoI distribution, and (4) 𝑎𝑖 is App ID with its category. Our problem is: given D, we aim to generate embedding
vectors for those App, time, and location units in a latent space to preserve their co-occurrence relations as well
as attribute information.

3 METHOD
To deal with the dynamic and complex App usage behaviors, we transform App usage with side information
into a heterogeneous graph. Based on the graph, we adopt GCN to learn semantic-aware representations, and
these learned embedding vectors can be used in downstream applications such as App usage prediction directly.
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Fig. 1. The overall framework of our method. The input of the model includes App usage traces and contextual information
described in section 3.2. Then, the heterogeneous graph is constructed based on the method in section 3.1. Then we use
GCN to learn the representations for differnt units (section 3.3) to generate embeddings for different units. Then we use the
embeddings for App usage prediction as downstream application (section 3.4).

The framework of our model is shown in Fig. 1. With the input of App usage traces and contextual information,
the graph construction module builds the heterogeneous graph based on the App usage records. For each node
in the graph, we connect them to its neighbors based on App usage records and set the weight of edge based
on the co-occurrence frequency, which is able to preserve the co-occurrence relationship within the records.
Then, the feature extraction module assigns a feature vector for each node, which enables machine learning tools
to fully characterize the semantic-rich side information (e.g., App categories and PoI distributions) for nodes
with different modalities and ensure the richness of information for training. After constructing the attributed
graph, a GCN-based method is proposed to map the units from different modalities into the same latent space by
utilizing both the co-occurrence relationships and semantic attributes. To learn the model parameters, we define
a non-task specific objective function to present the co-occurrence of each existing App-location-time meta-path.
Finally, in Application module, we leverage the learned embedding vectors in App usage prediction, which shows
the superiority of our model to benefit downstream applications.

3.1 Graph Construction
In order to map the location, time, and App units into a low-dimension latent space and figure out the interior
relation between them, we construct a graph to encode the connections between these units. We define the App
usage graph as G = (𝑉 , 𝐸, 𝑋 ), where 𝑉 = {𝑣1, 𝑣2, . . .} and 𝐸 = {𝑒1, 𝑒2, . . .}(𝑒𝑖 ∈ 𝑉 ×𝑉 ) stand for the set of nodes
and edges respectively and 𝑋 = (𝑥𝑥𝑥1,𝑥𝑥𝑥2, . . . ,𝑥𝑥𝑥 |𝑉 |) represents the feature vector of each nodes. We construct it as
the three steps:
Node Construction. In the graph, each node stands for one location, time or App unit. We denote the set of

apps asA = {𝑎1, 𝑎2, ..., 𝑎𝑀 }, the set of locations asL = {𝑙1, 𝑙2, ..., 𝑙𝐿} and the set of time slots as T = {𝑡1, 𝑡2, ..., 𝑡2𝑁 }3.
Then, the total number of nodes |𝑉 | = 𝑀 + 2𝑁 + 𝐿 and each node 𝑣 has a type with ’app’, ’location’ or ’time’.

Edge Construction. As each record consists of one location unit, one time unit, and one App unit, the co-
occurrence relationship between different units can be induced as three edge types in the graph: (1) Time-Location
edge. (2) App-Time edge; (3) App-Location edge. Specifically, to preserve the direct co-occurrence relationship
among time unit 𝑡 , location unit 𝑙 and App unit 𝑎 in the same record (𝑢, 𝑡, 𝑙, 𝑎), there will be three edges between
(𝑙 , 𝑡 ), (𝑎, 𝑡 ) and (𝑙 , 𝑎) in the graph respectively.

Edge Weight Normalization. To effectively model the strength of different connections among units, each
edge is assigned with a weight. Here we employ min-max normalization to calculate weights between nodes. We
first denote the co-occurrence matrix for node 𝑖 and 𝑗 as 𝐶𝑖 𝑗 . For each type of edges, we denote the maximum
weight for Time-Location edge as 𝐶𝑡𝑙𝑚 , App-Time edge as 𝐶𝑎𝑡𝑚 , and App-Location edge as 𝐶𝑎𝑙𝑚 respectively. Then, the
3We describe how to discretize the location and time slots in section 4.1.1.
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normalized weight of edge between node 𝑖 and 𝑗 is defined as:

𝐴𝑖 𝑗 =


𝐶𝑖 𝑗/𝐶𝑡𝑙𝑚 (𝑖, 𝑗) is Time-Location edge,
𝐶𝑖 𝑗/𝐶𝑎𝑡𝑚 (𝑖, 𝑗) is App-Time edge,
𝐶𝑖 𝑗/𝐶𝑎𝑙𝑚 (𝑖, 𝑗) is App-Location edge,
1 𝑖 = 𝑗,

0 otherwise.

(1)

3.2 Feature Extraction
To capture the semantic-rich attribute information, each node 𝑣 ∈ 𝑉 is assigned with feature vector 𝒙 . The feature
vector 𝒙 consists of three types of vector: App feature vector 𝒂, location feature vector 𝒍 , and time feature vector
𝒕 . For Apps, the feature information is indicated by the type of the app, as apps within the same type tend to
share similar usage patterns [5]. For locations, since each location covers the base station and its neighborhood,
the PoI distribution within this region reflects its socioeconomic function [58], thus representing the attributes
of this region. For times, we categorize the time slots as working days and non-working days since people’s
lifestyles differ a lot between these two types of days. Then we discretize the time in one day into 𝑁 units for
better modeling. Since each node possesses only one type (time/App/location), for types which are different from
the node type, the corresponding feature is set to be zero vectors. The derivation of feature vectors is described
as follows.
For node 𝑣𝑖 with type App, let the number of App types be𝑀 . The feature vector 𝒂𝑖 ∈ R1×𝑀 is expressed as:

𝑎𝑖 𝑗 =

{
1 if 𝑣𝑖 .𝑡𝑦𝑝𝑒 == 𝐴𝑝𝑝 and 𝐶𝑎

𝑖
== 𝑗,

0 else, (2)

where 𝐶𝑎𝑖 is the category of that App which node 𝑖 belongs to. For nodes that are not App units, the App
feature vector is just zero vector with the same size (1 × 𝑀). For a node with type Location, we consider the
category and density of nearby POIs of that location. Suppose the number of PoI types is 𝑃 . Due to some types of
POIs (e.g. restaurants) are more popular than others (e.g. tourist spots), we first normalize the PoI distribution
to eliminate the influence of the population in different regions via computing the term frequency-inverse
document frequency weights (i.e., TF-IDF ) [24], a classical approach to reflect how important a word is to a
given document for the PoI in each location. We denote the count for a location 𝑖 as 𝒒𝑖 = [𝑞𝑖1, 𝑞𝑖2, . . . , 𝑞𝑖𝑃 ]
with 𝑞𝑖𝑝 =

𝑞𝑖𝑝∑𝑙
𝑝=1 𝑞𝑖𝑝

× log |{𝒒𝑖}|
|{𝒒𝑖 : 𝑞𝑖𝑝>0}| , (∀𝑖 = 1, 2, ..., 𝐿, 𝑝 = 1, 2, ..., 𝑃). For each location, we also take the spatial

neighborhood relationship into account, since two near locations should be considered as correlated rather than
independent. To build the spatial adjacency matrix𝑊 , we compute the pairwise connection between locations
and the weight is calculated using thresholded Gaussian kernel [37] as:

𝑊𝑖 𝑗 =

{
exp

(
− dist(𝑣𝑖 ,𝑣𝑗 )2

𝜎2

)
if dist

(
𝑣𝑖 , 𝑣 𝑗

)
≤ 𝜅 ,

0 else .
(3)

Then, for location 𝑖 , the neighborhood PoI distribution 𝒓𝑖 is calculated as 𝒓𝑖 =
∑𝐿

𝑗=1𝑊𝑖 𝑗 ·𝒒𝑖∑𝐿
𝑗=1𝑊𝑖 𝑗

.

To sum up, for node 𝑣𝑖 , the location attribute vector 𝒍𝑖 ∈ R1×(2𝑃 ) is ultimately derived as:

𝒍𝑖 =

{
CONCAT [�̂�𝒋 , 𝒓 𝑗 ] if 𝑣 .𝑡𝑦𝑝𝑒 == 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 and 𝐶𝑙

𝑖
== 𝑗,

0 else, (4)

where𝐶𝑙𝑖 is the ID of the location which node 𝑖 belongs to. For node with type Time, since we classify them to the
working and non-working day, we use index [1, 𝑁 ] for the former and [𝑁 + 1, 2𝑁 ] for the latter. Then, for node
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Fig. 2. Diagram of our representation learning model SA-GCN, where (a) is the input to our model, (b) is the co-occurrence
graph constructed after Section 3.1, (c) is the representation learning process, where each node’s embedding is updated by
the weighted sum of itself and its neighbors, and (d) is the output of our model, which will be adopted to further tasks.

𝑣𝑖 , the feature vector 𝒕𝑖 ∈ R1×(2𝑁 ) is a one-hot vector that represents the time slot information, which can be
expressed as

𝑡𝑖 =

{
1 if 𝑣 .𝑡𝑦𝑝𝑒 == 𝑇𝑖𝑚𝑒 and 𝐶𝑡

𝑖
== 𝑗,

0 else, (5)

where 𝐶𝑡𝑖 is the time slot the node 𝑖 belongs to. To ensure all nodes have the same dimension of the feature
vector, we concatenate Eqn. 2, 4, 5 and obtain the overall feature vector 𝒙 ∈ R1×𝐷𝑖 for each node as Eqn. 6 shows,
where 𝐷𝑖 = 𝑀 + 2 × 𝑃 + 2 × 𝑁 .

𝒙 = CONCAT [𝒂, 𝒍, 𝒕] . (6)
Take all nodes in G for consideration, the feature matrix 𝑋 in our model has the shape of (𝑀 + 𝐿 + 2𝑁 ) × 𝐷𝑖 .

3.3 Representation Learning
Based on the built graph, the representation learning method is confronted with several challenges: (𝑎) How to
preserve the semantic relations among multimodal units i.e. time, location and App units. For example, there is a
record with a time unit 𝑡 , a location unit 𝑙 and an App unit 𝑎, their co-occurrences would imply the intrinsic
relationship among them. (𝑏) How to capture the similarities and differences for units with the same type. For
example, apps with the same category tend to have a similar embedding since their usage time and location are
likely to be similar, while apps that belong to different categories tend to have different usage patterns. To this end,
we proposed our SA-GCN model, short for Semantic-Aware representation learning via Graph Convolutional
Network, which is illustrated in Fig. 2.

3.3.1 Propagation via Graph Convolutional Network. Graph Convolutional Network (GCN) [16] is a kind of deep
learning models over the graph data, which is based on a first-order Approximation of spectral convolutions on
graphs. Let Θ(𝑘) = (𝜃𝜃𝜃 (𝑘)1 ,𝜃𝜃𝜃

(𝑘)
2 , . . . ,𝜃𝜃𝜃

(𝑘)
|𝑉 |) be the matrix of all node embedding vectors at step 𝑘 , the aggregation

function is calculated as:
Θ(𝑘) = 𝜎

(
�̃�− 1

2 �̃��̃�− 1
2Θ(𝑘−1)𝑊 (𝑘) ), (7)

where �̃� = 𝐴 + 𝐼𝑁 , and 𝐴 is the adjacency matrix with 𝐼𝑁 the identity matrix. 𝐷 is a diagonal matrix with
𝐷𝑖𝑖 =

∑
𝑗 �̃�𝑖 𝑗 , 𝜎 represents the non-linear activation function. Input node features 𝑋𝑢 serves as the initial

embedding Θ(0)
𝑢 .𝑊 (𝑘) is the trainable parameters in the 𝑘-th layer. In this way, for each node, the embedding is
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updated to the weighted average of itself and its neighbors in the graph. In our problem, since the neighboorhood
relationship in the graph indicates co-occurrence in records, from fig. 2 we can find that GCN model can address
the challenge (b) above via aggregating the high-order neighborhood information for each node, which is able to
utilize the contextualized information for each unit in records.

Similar to the setting in [16] where two layers of convolution are adopted, we set 𝑘 = 2 in our SA-GCN model.
In this way, the output embedding Θ for all units can be written as:

Θ = 𝐴𝜎 (𝐴𝑋𝑊 (1) )𝑊 (2) , (8)

where𝑊 (1) ∈ R𝐷𝑖×𝐷𝑜 ,𝑊 (2) ∈ R𝐷𝑜×𝐷𝑜 are parameters for training, 𝐴 = �̃�− 1
2 �̃��̃�− 1

2 is the normalized adjacency
matrix, 𝐷𝑖 is the dimension of feature vector and 𝐷𝑜 is the dimension of output embeddings.4

3.3.2 Objective Function. Unlike existing GCN models which are trained for a regression or classification task
[16], our problem is not a typical supervised task. Under this circumstance, inspired by [39] which adopted
unsupervised training approaches to well preserve the second-order proximity, we design a learning method to
encode the co-occurrence relationship for units on graphs with different modalities to address the challenge (a).
Specifically, we design a meta path-guided learning strategy to preserve the similarity of multi-modal units. Meta
path is a kind of path consisting of a sequence of relations defined between different object types [38], which
is a common method to enhance the representations of different nodes in heterogeneous graphs and capture
the structural and intrinsic semantic relation between different units. In our problem, we consider the meta
path "Location - Time - App", which is a simple aggregation of all types of units. Then, for each meta path, if
the elements (i.e. Location 𝑙 , Time 𝑡 and App 𝑎) co-occur in a record 𝑟 ∈ D, we maximize the likelihood if the
occurrence probability of each unit 𝑒 given its context 𝑐−𝑒 = {𝑜 |𝑜 ∈ 𝑟, 𝑜 ∉ {𝑒,𝑢}} as:

𝑝 (𝑒 |𝑐−𝑒 ) =
exp (𝑠 (𝑒, 𝑐−𝑒 ))∑

𝑜∈X exp (𝑠 (𝑜, 𝑐−𝑒 ))
, (9)

where X is the entire set of candidate units, and 𝑠 (·) is a score function reflecting the similarity between the unit
𝑒 and its context 𝑐−𝑒 as 𝑠 (𝑒, 𝑐−𝑒 ) = 𝜽𝑒 ·

(
1

|𝑐−𝑒 |
∑
𝑜∈𝑐−𝑒 𝜽𝑜

)
with 𝜽𝑒 ∈ R𝐷𝑜 denoting 𝐷𝑜 -dimensional embedding of

unit 𝑒 . In this way, the meta path can reflect the intrinsic similarities between different information units within
the same record. For example, if there are many users using camera apps at a scenery spot in the morning of
weekends, we can infer that these units have similar semantics, and their embeddings would be close with our
meta path-guided learning method.

Ultimately, the objective function of our learning model is to maximize the log-likelihood of observing all the
units 𝑒 given their contexts 𝑐𝑒 in all sampled meta paths L in training set D:

𝑂 = −
∑
𝑟 ∈𝑅

∑
𝑒∈𝑟

log 𝑃 (𝑒 |𝑐−𝑒 ) . (10)

Optimizing the objective function in Eqn. 10 requires a summation over the entire set of units 𝑋 , which leads to
high computational complexity. In order to improve the computation efficiency, we adopt the negative sampling
approach [22] which is a standard approach for both recommendation systems and GCNs [7, 56] to sample
multiple negative pairs from a noise distribution to estimate one true pair. In this way, we can learn the similarity
between units in the true pair and the discrepancy between units in the negative pairs . In practice, for each unit
𝑒 , we sample 𝐾 negative units which share the same type with 𝑒 but do not appear in the record 𝑟 . Hence the loss
function can be approximated as:

𝐿 = − log𝜎 (𝑠 (𝑒, 𝑐−𝑒 )) −
𝐾∑
𝑘=1

𝐸𝑜𝑘∼𝑃𝑛 (𝑜) [log𝜎 (−𝑠 (𝑜𝑘 , 𝑐−𝑒 ))] , (11)

4For detailed derivation of propagation rules for Graph Convolution Networks, please refer to Appendix I for more information.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 3, Article 101. Publication date: September 2020.



101:8 • Yu and Xia, et al.

where 𝜎 (·) is the sigmoid function, 𝑜𝑘 is the 𝑘-th negative sample and 𝑃𝑛 (𝑜) is the noise distribution and is set to
𝑃𝑛 (𝑜) ∝ 𝑑3/4𝑜 as [22] suggested, where 𝑑𝑜 is the degree for node 𝑜 in graph G. We use stochastic gradient descent
(SGD) to optimize Eqn. 11 and the updating rule for parameters in Graph Convolutional Networks can be easily
obtained via autograd mechanisms in advanced deep learning tools [27].

3.3.3 Complexity Analysis. In SA-GCN algorithm, the layer-wise propagation is the main operation. In our
problem, recall that 𝐷𝑖 , 𝐷𝑜 represent the dimension of feature vector and output embeddings respectively. Since
we adopt a 2-layer GCN model, the sparse matrix multiplication has computational complexity as 𝑂 ( |𝐴+ |𝐷𝑖𝐷𝑜 )
and𝑂 ( |𝐴+ |𝐷𝑜𝐷𝑜 ) for two layers respectively, where |𝐴+ | denotes the number of nonzero entries in the normalized
adjacency matrix 𝐴 and it is linear to the total number of edges in the multimodal graph G. For optimization, the
computation of Eqn. 11 only involves dot product and the time complexity is𝑂 ((𝐾 +1)𝐷𝑜 ), where𝐾 is the number
of negative samples. To sum up, the overall complexity for SA-GCN is 𝑂 ( |𝐴+ |𝐷𝑖𝐷𝑜 + |𝐴+ |𝐷𝑜𝐷𝑜 + (𝐾 + 1)𝐷𝑜 ).

3.4 Applications
To show the effectiveness of our learned representations, we apply the embedding vectors in App usage prediction
directly, i.e., to predict the App a user will use give a further timestamp. To achieve this goal, we need to consider
both the embedding information from different modalities and their past App usage traces. Therefore, we first
generate an embedding for each user to encode the above information, and then compare this with App embedding
vectors for prediction. This procedure can be divided into two steps as,

Step 1: User embedding generation. To model the feature of App and locations with the consideration of
the dynamic usage pattern for users, we follow the generation method in [5] described as follows: given a time
𝜏 and a user 𝑢, we first extract her previous App usage records (i.e., all records of user 𝑢 with 𝑇 < 𝜏). The set
for these records is denoted as D𝑢 = {(𝑢𝑖 , 𝑡𝑖 , 𝑙𝑖 , 𝑎𝑖 )} |D𝑢 |

𝑖=1 , where (𝑢, 𝑡𝑖 , 𝑙𝑖 , 𝑎𝑖 ) is the tuple for 𝑖-th record in D𝑢 . We
denote the profile of user at time 𝜏 as

𝒖𝜏 = 𝛽
∑

(𝑢,𝑡𝑖 ,𝑙𝑖 ,𝑎𝑖 ) ∈D𝑢

𝑒−(𝜏−𝜏𝑖 )/𝑇𝜽 (𝑙𝑖 ) + (1 − 𝛽)
∑

(𝑢,𝑡𝑖 ,𝑙𝑖 ,𝑎𝑖 ) ∈D𝑢

𝑒−(𝜏−𝜏𝑖 )/𝑇𝜽 (𝑎𝑖 ), (12)

where 𝜽 (𝑎𝑖 ) and 𝜽 (𝑙𝑖 ) denote the embedding for App 𝑎𝑖 and location 𝑙𝑖 derived from section 3.3 respectively.
𝑒−(𝜏−𝜏𝑖 ) models the time decay influence as we believe that the influence of older records are smaller. 𝛽 ∈ [0, 1]
balances the influence of the usage trajectory information and the App information.
Step 2: Prediction. We compute the scores for different mobile Apps 𝑎 𝑗 as5:

𝑠 𝑗 =
𝒖𝑎𝜏 · 𝒂 𝑗

| |𝒖𝑎𝜏 | | · | |𝒂 𝑗 | |
. (13)

This score not only captures the App usage preference, but also captures the user’s history trajectory. In practice,
we take the Apps with maximum scores as prediction.

4 EXPERIMENTS

4.1 Dataset
4.1.1 Dataset Collection. We leverage a large-scale real-world mobility trace released by a recent study [41].
Specifically, it was collected by one of the largest Internet service provider (ISP) in Shanghai, China, from April
20th to 26th, 2016. It contains more than ten thousand mobile users’ accessing logs to the cellular network.
Through deep packet inspection, each access record is characterized by an anonymized user ID, timestamp,
cellular base station with GPS location and the metadata of the networking communication. For App information,

5Here we use the normalized score to reduce the effect of vector norm.
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(a) CDF of the number of records for each
App.

(b) CDF of locations and Apps. (c) Normalized count of App usage.

Fig. 3. The statistics of dataset.

we identify more than 2000 Apps from the networking metadata by applying SAMPLES [57]. For location
information, we take the cellular base stations as the basic location units and utilize the widely used Voronoi
diagrams [1] to partition the city based on stations’ coordinates. Then for each location, it can be mapped to a
unique cellular base station, and the corresponding ID are used to represent the location of App usage. For time
information, we discretize the time in a day into 24 units and use these 24 units to record the App usage time.

4.1.2 Data Preprocessing and Cleaning. Since the usage of the most frequent Apps can easily occur hundreds of
millions of times. Such Apps provide less information value than rare Apps. To counter the imbalance between
the rare and frequent Apps, we used a simple sub-sampling Approach [22]: for each record with App 𝑎 ∈ 𝐴 in
the dataset, it is discarded with probability of 𝑃 (𝑎) = max

(
1 −

√
𝑓𝑡ℎ/𝑓𝑎, 0

)
, where 𝐴 is set of all Apps, 𝑓𝑎 is the

frequency of App 𝑎, 𝑓𝑡ℎ is the chosen threshold, which is set as 2/|𝐴| by default. This Approach sub-samples
Apps whose frequency is greater than 𝑓𝑡ℎ while preserving the ranking of the frequencies. After sub-sampling,
we filter the user with less than 10 records, App with less than 5 records, location with less than 5 records as they
do not have enough records to reveal meaningful temporal or spatial patterns. After preprocessing, there are
11,170 users, 1792 Apps, and 9,330 locations used for the following experiments.

4.1.3 Ethics. We are very aware of the privacy implications of using ISP dataset for research and have taken
active steps to protect mobile users privacy. First, the App usage traces do not contain any personally identifiable
information. The userID has been anonymized (as a bit string) by the ISP, and we never have access to the true
userID. Second, all the researchers are regulated by a strict non-disclosure agreement. This work has received
approval from both the ISP and our local institution. Third, we store all the data in a secure off-line server, and
only the authorized core researchers can access the data.

4.1.4 Basic Statistics. To provide a comprehensive understanding on the utilized dataset, we display several
distributions in Fig. 3. The cumulative distribution of the number of records for each user is shown in Fig. 3(a). It
shows that more than 20% of the App are frequently used with than more 1,200 records during the week. The
distribution for the number of accessing different Apps and locations of mobile users is shown in Fig. 3(b), which
shows that 20% of the users are recorded in more than 27 locations, and 20% of the users use more than 31 unique
Apps, indicting a diversified user preference w.r.t. Apps and locations. In is also worth noting that the average
number of used Apps per user is 23.16. In addition, we explore how App usages vary per hour for weekdays
and the weekends in Fig. 3(c). From the results, we observe that users’ activities are at the highest peak during
the daytime while reduces over the night period. When at about 4 AM, the number of Application usages is the
smallest since most people are sleeping and their devices are inactive. Also, during the daytime, the App usage
frequency on weekdays is higher than weekends.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 3, Article 101. Publication date: September 2020.



101:10 • Yu and Xia, et al.

Table 1. App categories and example Apps.

No. Category Example Apps No. Category Example Apps
1 Utilities Safari, Clock 11 Education YouDaoDict, ICiBa
2 Games QQGame, SimpleGame 12 Health/Fitness GuDong, Keep
3 Entertainment iMovie, Livestream 13 Infant&Mom BeiBeiWang, MuYingHome
4 News QQNews, SohuNews 14 Navigation AppleMap, GaoDeMap
5 Social/Networking Wechat, Linkedin 15 Weather MoJiTianQi, 360TianQi
6 Shopping Taobao, JD 16 Music QQMusic, NetEase Music
7 Finance AliPay, MobileBanking 17 References Baidu, Wikipedia
8 Business QQMail, 163mail 18 Books BaiduRead, iBooks
9 Travel QuNaEr, XieChengTravel 19 Photo&Video BaiduVideo, YouKu
10 Lifestyle Dianping, Meituan 20 Sports SinaSports, HuPu

Considering that Apps in the same category work as similar function, we obtain this side information from
Apple Store and Google Play. There are totally 20 App categories. The detailed divisions with examples are given
in Table 1.

For locations, we leverage the Point of Interests (PoI) to describe the specific urban and economic functions of
a base station [58]. We collect the PoI information of Shanghai from BaiduMap6. There are 17 categories of PoIs
in total including Food, Hotel, Shopping, Life Service, Beauty, Tourism, Entertainment, Sports, Education, Media,
Medical Care, Automotive Service, Traffic Facilities, Finance, Real Estate, Company and Government. For each base
station, we could collect the PoI distribution within that region to represent its semantics information.

4.2 Experiment Setup
4.2.1 Baseline Methods. We compare our SA-GCN with the following latest representation learning models,
among which Grarep, Node2vec, Metapath2vec, ReconEmbed, and GCN are based on the same graph with
our model constructed in Section 3.1, while GraphEmbed and CAP build their own graphs.

• Grarep [4]: It is a matrix factorization-based method, which learns node representations on weighted
graphs via integrating global structural into the learning process.

• Node2vec [12]: It first samples random-walks from the graph. Then, it treats the random-walk as a sentence,
and thus learns node embedding by skip-gram.

• Metapath2vec [8]: It samples meta paths as randomwalks and leverages a heterogeneous skip-grammodel
to obtain node embedding. We use the meta path as ’App-location-time’ to consider the type information of
nodes in the graph and ensure three types of units appear alternately in the path.

• ReconEmbed [61]: It samples random-walks from the graph and takes Eqn. 9-11 as objective function
directly to learn embedding vectors by gradient descent.

• GraphEmbed [61]: It adds spatial and temporal neighborhood edges to the co-occurrence graph, and
learns low-dimensional representations by preserving first and second-order proximities in the graph.

• CAP [5], short for Context-Aware App Prediction, is the state-of-the-art representation learning-based
method for App usage prediction. It builds three bipartite graphs by considering three types of relationships
(App-location, App-time, and App-App type) and proposes a heterogeneous graph embedding algorithm to
map them into a common latent space jointly.

• GCN [16]: It is a variation of our method which applies GCN on the graph without node attributes. Instead,
the feature for each node is a one-hot vector to encode its information.

6https://map.baidu.com/
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In particular, Grarep and Node2vec are unaware of the node type. Even though Metapath2vec samples
meta path, its objective function is weak to capture spatio-temporal characters. Compared with ReconEm-
bed, GraphEmbed, CAPwhich also consider to reinforce co-occurrence, SA-GCN can better model the complex
relationships among different units via deep node attribute propagation in Graph Convolution layers.
Besides these representation learning-based baselines, we also implement six classic methods to serve as

benchmarks for the App prediction tasks described as follows:
• MRU [36]: This method takes the most recently used Apps, i.e., the Apps used in last timestamp, as
prediction. It assumes that most App are used across several time slots continually.

• MFU [36]: It counts the users’ App usage history and selects themost frequently used Apps. This is the
straightforward method for prediction, which does not use time and location context.

• Falcon [55]: It uses contexts such as user location and temporal access patterns to predict app launches
before they occur.

• APPM [26]: Similar to [55], this method integrate spatio-temporal information as contexts. Moreover, it
also adapts to usage dynamics to predict personal app usage.

• MFApp [54]: It incorporates robust similarity estimation between users, and incorporates this measure
into prediction with a relatively simple voting scheme.

• Bayesian [13]: It designs a Bayesian network to use the contextual information, such as time, location,
user profile, and latest used App, to predict the mobile App usage.

4.2.2 Evaluation Protocol. To learn the representation of App, location and time unit, we first need to build the
graph as in Section 3.1. While in order to evaluate the performance of App usage prediction without post-learning
process, we hold out some data for testing. Specifically, we sort the data by time, then use the first 80% of it on
both weekdays and weekends of each user to build the graph, and use the last 20% as the testing set for prediction.
For time, we discretize one day into 24 time slots with each hour as a time unit. As such, we build the App usage
graph with 11,170 nodes and 1,014,904 edges in total. Since there are 𝑀 = 20 App categories, 𝑃 = 17(𝐿 = 34)
PoI categories and 2𝑁 = 48 temporal units, the feature vector for each unit is a 1×102 (𝐷𝑖 = 𝑀 + 𝐿 + 2𝑁 = 102)
dimension vector.

Our evaluation for the learning representations can be divided into two aspects: On the one hand, we conduct
in-depth analysis on the learned embedding vectors to gain some insights of App usage from the empirical data.
On the other hand, we present some quantitative comparisons by adopting the embedding vectors in App usage
prediction. Specifically, there are 332,255 records held out for testing, with 2.99 records per user on average. For
each record, we predict the App used by ranking all Apps according to the score as Eqn. 13. It is worth noting that
all 2000 Apps are candidates because we don’t know which App is pre-installed and users may install new Apps.

For the quantitative evaluation, we adopt two metrics, Accuracy and MRR. For App prediction, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@𝑘 is
the statistical result of all test predictions, which is calculated withℎ𝑖𝑡@𝑘 . It is calculated as the average over all test
cases: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@𝑘 =

#ℎ𝑖𝑡@𝑘
|𝑅test | , where #ℎ𝑖𝑡@𝑘 and |𝑅test | represent the number of hits in the whole test set and the

number of test sets respectively.𝑀𝑅𝑅, short for (Mean Reciprocal Rank), complements 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@𝑘 by assigning
higher scores to the hits at higher positions of the ranking list. It is calculated as𝑀𝑅𝑅 = 1

|𝑅test |

(∑ |𝑅test |
𝑖=1

1
𝑟𝑖

)
, where

𝑟𝑖 represents the reciprocal of the rank for the 𝑖-th prediction. For both the two metrics, the higher, the better of
the performance.

4.2.3 Implementation Details and Parameter Settings. We implement all the representation-based models in
Pytorch. To be more specific, we train them using Adam optimizer [15] for 200 epochs. For each method, we set
the size of mini-batch to 256. Then we tune its learning rate 𝜇 in [0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01,
0.02, 0.05, 0.1] and L2-regularization term 𝜆 in [0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.1, 0.2, 0.5, 1] and report
the best performance. Moreover, for Node2vec and Metapath2vec model, we use Gensim to learn the embedding
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(a) Grarep (b) Node2vec (c) Metapath2vec

(d) ReconEmbed (e) GraphEmbed (f) CAP

(g) GCN (h) SA-GCN (Ours)

Fig. 4. Visualization for embedding of time units, where the number near each point stands for the time in hour.

for nodes after gathering random walks. We tune the length of the walk 𝑙 in [40, 60, 80, 100] as well as search
bias 𝑝 , 𝑞 in [0.5, 1, 2, 4] to report the best performance. For Grarep model, we train it with sklearn toolkit [28]
after obtaining the weighted adjacency matrix. Also, there are some crucial settings in the experiments such as
the threshold 𝜎 and 𝜅 in feature vector generation and the dimension of embedding 𝐷𝑜 for different units. In our
method, we set 𝜎 to 0.5km, 𝜅 to 1km, which is reasonable in urban settings [19]. Also, we fix the dimension 𝐷𝑜 to
64 and the number of negative samples 𝐾 to 5 for fair comparison over different models.

4.3 Result Analysis
To look into the quality of learned representation directly, we map the obtained embedding vectors into 2-
dimensional space with their closeness in high-dimensional space preserved by t-SNE [21], and conduct in-depth
analysis from time, App, location perspectives, respectively and simultaneously.

4.3.1 Time Representation. Fig. 4 shows the overall representation of 48 time units. Firstly we can observe that
compared with the methods of Node2vec, Metapath2vec, GraphEmbed and CAP, both GCN and our SA-GCN
model can well differentiate the time units in both weekdays and weekends, which indicates that the App usage
patterns are different between the weekends and weekdays. Then, taking a closer look at the time unit within
the weekday, we find that time units are embedded into several clusters with a smaller radius by SA-GCN:
midnight (12PM-4AM), morning (6AM-8AM), daytime (9AM-4PM) and evening (6PM-8PM). Moreover, units
belong to different clusters are far from each other implying that within these clusters, the App usages of the
corresponding time units are similar. While for time units in different clusters, the App usage are quite different.
On the other hand, baselines including Node2vec, Metapath2vec, GraphEmbed and CAP fail to characterize such
temporal regularities for App usage. For time units in weekends, the App usage patterns can also be grouped
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Table 2. Characteristics on App Usage for Different Time Clustering Units.

Cluster Descriptions Time Units
Average App Usage
Counts Per Hour

Characteristic App
Usage Categories

C1 Midnight
12AM-5AM

(Both Weekdays
and Weekends)

357.74 Social/Networking (13.16%), Lifestyle (11.33%),
Entertainment (9.53%), Games (9.04%), Music (8.24%)

C2 Morning
6AM-8AM

(Both Weekdays
and Weekends)

1475.35 Lifestyle (13.50%), Music (12.48%), Social/ Networking
(11.70%), News (10.83%), Navigation (10.27%)

C3 Daytime
(Weekdays)

9AM-4PM
(Weekdays) 3380.61 Social/Networking (13.47%), Finance (12.48%),

Lifestyle (11.78%), Navigation (10.11%), News (8.18%)

C4 Daytime
(Weekends)

10AM-7PM
(Weekends) 2278.37 Lifestyle (14.75%), Social/Networking (13.12%),

Navigation (12.82%), Music (9.11%), Entertainment (7.27%)

C5 Evening 6PM-8PM (Weekdays)
8PM-9PM (Weekends) 1991.72 Social/Networking (14.44%), Lifestyle (13.22%)

Music (10.11%), Navigation (9.78%), News (8.28%)

into several clusters by SA-GCN as midnight (12PM-5AM), morning (6AM-8AM), daytime (10AM-7PM) and
evening (8PM-9PM). Comparing the clusters with those for weekdays, we find that the embedding of daytime
cluster for weekdays and weekends are well separated, indicating that the App usage patterns are diverse
during that time. This is interpretable since office-related Apps might be more frequently used during weekdays
while recreational/social Apps are more popular on weekends. Moreover, for other time units like morning and
midnight, the weekday and the weekend share similar embeddings, which indicates that App usage patterns in
those time are similar between weekdays and weekends. All these results along with the analysis clearly show
that our proposed SA-GCN can understand temporal patterns of App usages thoroughly while the baselines fail
to appropriately model the similarities and differences of the patterns between different time units on weekdays
and weekends.
To delve deeper into temporal App usage, we manually cluster these units into five-time parts as shown in

Fig. 4(h), where we use an ellipse to outline the shape of the cluster. It is worth noting that we omit some time
units, as we consider those time slots (e.g., 10 PM on Weekday) as the transition between different time clusters.
Besides, we calculate several statistics of the usage of App in Table 2 for those clusters, from which we can obtain
several interesting observations:

(1) Different temporal clusters have diverse App usage frequency. From the Average App Usage Counts
Per Hour, we can observe that during the daytime on weekdays, the App usage per hour is largest, which
indicates that Apps are used more frequently during working hours, as there are numerous Apps are related
to the work. However, for the time slots in midnight, the App usage is much smaller, which is only about
10% of the daytime usage.

(2) Some categories of App are frequently used in all of the times such as Social/Networking and
Lifestyle Apps. We think it is also reasonable since App would have different functions at different times.
For social/Networking Apps as an example, they are used for working collaboration during the working
time and family communication during the weekends and nights.

(3) TheAppUsage can reveal the rhythmof lifewithin these clusters. For instance, the usage proportion
for Entertainment Apps reaches the maximum at midnight and weekends. Moreover, Finance Apps are
mainly used during the daytime on weekdays, when is the working time for Banks and Stock Markets in
China.

To sum up, embedding vectors for time units learned by our proposed SA-GCN can well represent the temporal
characters of App usage.
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(a) Grarep (b) Node2vec (c) Metapath2vec

(d) ReconEmbed (e) GraphEmbed (f) CAP

(g) GCN (h) SA-GCN

Fig. 5. Visualization for embedding of App units, where different color stands for different categories.

(a) Embedding of Finance apps with time units (b) Embedding of News apps with time units

Fig. 6. Visualization for embedding of App units and time units.

4.3.2 App Representation. To analyze the representation of Apps, we use the category information to check
whether the learned embedding vector remaining such properties. Specifically, we show the visualized embedding
vectors of Apps of the most representative App categories in Fig. 5. As we can observe from Fig. 5(h), four
categories of Apps are well separated as each ellipse encircles one category. On the contrary, those baselines
cannot sufficiently distinguish different App categories via representation learning, as the embedding vectors
of these units are mixed. It is mainly due to our SA-GCN model takes the attribute information of apps into
consideration. Compared with CAP which also considers the App side information, SA-GCN is capable of
preserving the attribute information during the representation learning.
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(a) CDF of the correlation between location representa-
tion and PoI distribution.

(b) CDF of the correlation between location representa-
tion and App/time representation.

Fig. 7. The statistical correlation for location representation.

In addition, we investigate the relation of App representation with temporal units. We visualize the embedding
vectors of Apps with the category of Finance and News together with embedding vectors of clustered time units
in Table 2. From Fig. 6(a) and 6(b), we can find out that embedding of Finance Apps are concentrated and close
to the embedding of time units in C3, i.e., hours at weekday, which coincides with their semantics in our prior
knowledge that economic events happen most at office hours. What’s more, embedding vectors of News Apps are
close to that of times in C1, C3, and C5, which is consistent with the statistics shown in Fig. 2, i.e., the News is
one of the most popular App categories during those periods.

4.3.3 Location Representation. Now we inspect the representations for location units. To demonstrate that these
embedding vectors contain semantic information, we analyze the statistical correlation location representation
and its PoI distribution as well as spatial App usage [40, 58].
Firstly, we find that representation and PoI distribution are correlated significantly. In specific, embedding

similarity vector 𝑷 𝑖 = {𝑝𝑖 𝑗 } denotes the similarity between location 𝑖 and others, with 𝑝𝑖 𝑗 representing cosine
similarity between the embedding of location 𝑖 and 𝑗 . So as the PoI similarity vector 𝑸𝑖 = {𝑞𝑖 𝑗 }, where 𝑞𝑖 𝑗
representing cosine similarity between the PoI distribution vector of location 𝑖 and 𝑗 calculated by Eqn. 4. To
further quantify the relationship between location embeddings and PoIs, we still use Cosine Similarity to compute
the correlation between embedding similarity vector 𝑃𝑖 and PoI similarity vector𝑄𝑖 for user 𝑖 . The correlation 𝑪𝑝

𝑖

of 𝑷 𝑖 and 𝑸𝑖 is computed as 𝑪𝑝
𝑖
= cos(𝑷 𝑖 ,𝑸𝑖 ), with 𝑁 representing the total number of locations. Fig. 7(a) shows

the Cumulative Distribution Function (CDF) of the correlation 𝐶𝑝 = {𝐶𝑝
𝑖
}. From the result, we can observe that

for nearly all the location (i.e. above 80%), the correlation between the location embedding and PoI distribution is
strong (more than 0.8). Therefore, our learned representations can reflect PoI semantic for locations.
Moreover, to reveal the correlation between location units and App/time units, we compute the correlation

between location embedding similarity vector 𝑷 𝑖 and App similarity vector 𝑺𝑖 as well as time similarity vector
𝑻 𝑖 respectively. For location 𝑖 , we denote the App usage vector 𝒖𝑖 as the weighted sum of the App embedding.
Similarly, the time usage vector 𝒗𝑖 is also the weighted sum of the time embedding. Here the weight is the total time
of App/time units and location unit 𝑖 appear simultaneously in a same record. Then, we calculate the correlation
for location embedding and time embedding with cosine similarity [58]. Fig. 7(b) shows the corresponding CDF,
from which we find that for more than 90% of the location, the correlation between location and both time and
App representation are more than 0.98. This demonstrates that the learned location representations have a strong
relationship with time and App representation, which indicates that the representation of location units contain
rich semantics of App usage patterns.
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Fig. 8. Representation visualization for all units, where edge thickness indicates the normalized weight of the edge. We only
plot edges with highest weights for the clarity.

4.3.4 Representation of All Units. After analyzing the embedding vectors for each type of the units, we consider
them together and visualize them in Fig. 8. To consider the co-occurrence relationship of different nodes, we
also plot several edges on the graph with the highest weight, where edge thickness indicates the normalized
weight of the edge and can be regarded as the strength of the co-occurrence relationship. We can observe that
the embedding vectors of App, location, time are generally separated, as most of the time units are located in
the top left corner of the figure and most of the App units are located in the lower right corner, which indicates
that our model is able to identify different type of units. Moreover, we find that those nodes with high weight
edges tend to have a closer representations to their neighbors. For example, the time units with many edges
connected to location units in Fig. 8 have a embedding closer to that of the locations. Also, the Apps with many
edges connected to location units are embedded into the cluster for the embedding of locations. These results
suggest that the representations learned via SA-GCN can well capture co-occurrence relation.

To sum up, our SA-GCN can address spatio-temporal context information as well as cross-modal correlations
simultaneously, thus being capable of capturing the semantic patterns within each type as well as modeling the
relationships between different type of units.

4.4 Application Performance
Table 3 shows the overall performance compared with baselines when adopting the learned embedding in App
usage prediction task. From the experiment results, we have the following observations and conclusions:

1) The majority of the representation learning-based methods, including Metapath2vec, Node2vec, and
GraphEmbed, consistently achieve notable performance gains of 22.4% in terms of Accuracy over counting-
based benchmarks, which suggests the importance of learning expressive representations. On the other
hand, MFU outperforms MRU by 33.6% and 37.4% in term of Accuracy@1 and MRR. The reason is that
there are some Apps which user interact with more frequently than others, such as WeChat. But the App
usage is rather dynamic, and thus the most recently engaged Apps could be no longer used.

2) Our proposed SA-GCN model significantly outperforms all baseline models. Compared to MFU, i.e., the
best counting-based baseline, it provides relative performance gain of 32.6%, 8.3% in terms of Accuracy@1,
and MRR, respectively. Besides, it also significantly outperforms the state-of-art representation learning
method, GraphEmbed, by 8.3% in Accuracy@1. Moreover, compared with the state-of-the art graph-based
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Table 3. App usage prediction performance comparison.

Metrics Accuracy@1 Accuracy@10 MRR
Method \ Value Result Relative Gain Δ Result Relative Gain Δ Result Relative Gain Δ

MRU 0.110 77.27% 0.539 11.50% 0.211 44.70%
MFU 0.147 32.65% 0.590 1.86% 0.290 8.27%
Falcon 0.171 14.03% 0.566 6.18% 0.281 10.32%
APPM 0.179 8.93% 0.597 0.67% 0.298 4.02%
MFApp 0.175 11.43% 0.594 1.17% 0.299 3.67%
Bayesian 0.161 21.87% 0.523 14.91% 0.266 17.42%
Grarep 0.112 74.10% 0.274 119.34% 0.167 88.02%

Node2vec 0.153 27.45% 0.505 19.00% 0.261 20.30%
Metapath2vec 0.164 18.90% 0.518 16.02% 0.275 14.18%
ReconEmbed 0.125 56.00% 0.354 69.77% 0.173 81.50%
GraphEmbed 0.180 8.33% 0.545 10.27% 0.272 15.44%

CAP 0.127 53.54% 0.363 65.56% 0.181 73.48%
GCN 0.168 16.07% 0.555 8.29% 0.286 9.79%

SA-GCN 0.195 - 0.601 - 0.314 -

App prediction baseline CAP, our method achieves a huge gain (53.54% - 73.48%) on three metrics. These
results show that SA-GCN model consistently outperforms against state-of-art baselines and demonstrate
the advantage of our GCN-based model.

3) By comparing the performance of the SA-GCN model with the App prediction algorithms, we can find that
though most of these non-graph prediction methods can outperform the basic counting-based methods
MRU and MFU, as they are designed for context-aware App prediction. But their performance gains are
rather marginal, which indicates that such methods are insufficient in modeling complex spatial-temporal
relationship for App usage. In contrast, our SA-GCN model can outperform all of them by 8.93%-21.87% for
Accuracy@1 and 3.67%-17.42% for MRR, which further justifies the merit of our representation-learning
approach can better model the relationships among different units. Moreover, at prediction stage, some
non-graph prediction methods (e.g. [54]) need to calculate the similarity among different users and features,
which is time-consuming. While for our method, we can predict the App usage directly from our pre-trained
embeddings, which do not require extra computation compared with other baselines.

4) By comparing the performance of the SA-GCN model with its degraded version GCN, we can observe the
consistent performance gains, since the attribute information like PoI distribution and App category are
integrated into the framework. These comparisons indicate that the function of location and App play their
role in improving the App usage prediction.

To conclude, our SA-GCN model consistently achieves preferable results compared with benchmarks and
the state-of-art graph embedding methods. In addition, incorporating attribute information leads to significant
performance gain. These results justify SA-GCN’s effectiveness in simultaneously capturing the feature of App
usage patterns and semantic similarity, therefore it is promising to be applied for downstream applications.

4.5 Parameter Study
For SA-GCN method, we examine several key hyper-parameter including balance coefficient 𝛽 , embedding
dimension 𝐷𝑜 , negative sampling size 𝐾 and the radius of Gaussian kernel 𝜎 for location feature and present the
impact by the prediction performance.
The influence of 𝛽 . Fig. 9(a) illustrates how 𝛽 in Eqn. 12 affects our algorithm performance. All metrics except
Acc@10 reach a maximum when 𝛽 = 0.2 and Acc@10 (short for Accuracy@10) reach a maximum when 𝛽 = 0.3,
which means that combining the App embedding with the location embedding to generate users’ profile is a
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(a) Impact on weight 𝛽 . (b) Impact on embedding dimension 𝐷𝑜 . (c) Impact on negative sample size 𝐾 .
Fig. 9. The performance of prediction with different parameter settings.

reasonable way to promote predictive performance. Moreover, it implies that our SA-GCN model captures the
correlations between spatial and App units.
The influence of 𝐷𝑜 . Fig. 9(b) explores how 𝐷𝑜 affects the overall prediction performance. We find that for
dimension in [8, 16, 32, 64, 128], the prediction result increases as the embedding dim increases and the prediction
result of 64-dimensional embedding outperforms baseline by 6.00% - 29.14%. However, for dimension greater
than 64, sometimes the result even becomes worse with the increase of the dimension (e.g. the MRR value for
dimension 256 is worse than that of 128). Therefore, considering the trade-off between prediction accuracy and
computing complexity, we adopt 64 embedding dimensions as the default setting.
The influence of 𝐾 . Fig. 9(c) explore the effect of the negative sample size 𝐾 . We find that with the increase of
𝐾 , the overall performance first increases then decreases. We explain the result in two folds: when 𝐾 is small,
then improving the size of the negative examples will encourage the model to better learn the decision boundary
during training. However, when 𝐾 is large, then the increase of the𝐾 will make the model tend to predict negative
samples since the size of negative samples in training set is much more than positive samples.
The influence of TF-IDF reweighting. Fig. 10(a) shows the result comparison of App prediction of our model
and our model without TF-IDF reweighting. From the result, we find that the predictive result declines by 10.98%
to 27.69% on three metrics when we remove TF-IDF reweighting. This is mainly due to that simply using PoI
occurrence as location features will lead to a bias of feature towards those popular PoI types, which will lead to
inaccurate predictions. By adding TF-IDF, our model will be more balanced for modeling different types of PoI.
As a result, the location features are more representative, which facilitate the performance of prediction.
The influence of radius 𝜎 . Fig. 10(b) illustrates the effect of the radius 𝜎 in Eq. 3. It is clear that the result first
increases with 𝜎 then decreases. Here we argue that with a low 𝜎 (i.e. 𝜎 = 0.05km), then for the neighbor locations,
the weight𝑊 = exp(−𝑑𝑖𝑠𝑡2/𝜎2) in Eq. 3 will be close to zero, which will eliminate the effect of neighborhood
PoIs. As the result, the prediction performance drops, since the characteristic of each location is also relevant to
its neighbor PoIs. For high 𝜎 (i.e. 𝜎 = 5km), then since 𝜅 ≪ 𝜎 , the weight𝑊 will be close to constant 1, which
indicates that the for each location, its PoI features will be close to the mean of its neighborhood PoI distribution
regardless of the distance factor. In this case, it will be less powerful to model the neighbor information. From the
result, we can see 𝜎 = 0.5km reaches best performance, therefore we set 𝜎 = 0.5km as default.

5 RELATED WORK AND DISCUSSION

5.1 Related Work
In this paper, we focus on leveraging the mobility data to learn App usage representation, which is a crucial task
to dissect spatio-temporal App usage behaviours and has wide-range application scenarios at the same time.
Now, we review the most relevant related works, and summarize them into the following three aspects.

5.1.1 App Usage Behaviour Modeling. With the increasing popularity of mobile network and mobile Apps, recent
years have witnessed a large amount of researches on App usage pattern analysis, App prediction as well as
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(a) Impact on TF-IDF reweighting. (b) Impact on radius 𝜎 .
Fig. 10. The performance of prediction with different parameter settings.

App recommendation [6, 10, 13, 18, 26, 32, 45, 46, 54, 55]. Most of them highlight the importance of utilizing
spatio-temporal context for App usage modeling. [14, 47] utilized location as an implicit feature to improve
App recommendation. As for App usage prediction, Qiao et al. [29] demonstrated the combination of different
spatial and temporal features achieves high App forecast accuracy. Xu et al. [54] developed a multi-faceted
approach to predict App usage patterns with time and location as context. Yan et al. [55] proposed FALCON
to perform context-aware usage prediction with user location and temporal access patterns. Besides, Parate et
al. [26] further considered the user dynamics and combine it with the spatio-temporal contexts to improve the
prediction performance, and Huang et al. [13] designed a Bayesian network to jointly model different type of
context information together. Recently, Fan et al. [9] proposed a tensor-decomposition method to predict App
usage of a given spatial-temporal context. They leverages the ideas of collaborative filtering, but used more
additional context such as social check-ins to improve the performance.

Different from existing work mentioned above, we build a heterogeneous graph with App, location, and time
units as nodes and their co-occurrence relationship as edges to encode spatio-temporal information simultaneously
for better App usage presentation. App usage is spatio-temporal co-correlated so that learning the spatial and
temporal context in one heterogeneous graph simultaneously is better than treating them separately as previous
work, i.e., learning representation from location-App and time-App bipartite graphs [5].

5.1.2 Semantics-aware Representation Learning for Human Spatio-temporal Behaviours. Recently, representation
learning methods have been applied to discover knowledge from spatial and temporal units. For example, Cao
et al. proposed habit2vec [3] to represent user trajectories and recognize typical living patterns in metropolis,
[61] modeled the embedding of spatio-temporal units based on their co-occurrence with texts in social media
check-ins.Moreover, there are various applications with the semantic embeddings of spatio-temporal points, as
Shi et al. [33, 35] adopted Hidden Markov Model to capture patterns of human mobility based on the embeddings
of different user, location, time and activity units and [60] used the embedding for online local event detection.
Different from these works, we introduce a graph neural network to learn representation for App usage behaviors,
which resembles location representation learning but have not been explicitly tackled previously. Consequently,
we extend the idea of semantic-aware representation from footprint (i.e., the location, POI, etc.) to fingerprint
(i.e., online App usage), which deepens our understanding of human activity in both physical and cyber-space.

5.1.3 Graph Representative Learning Methods. Graph is a powerful tool to represent the complex relation-
ship among different entities, thus graph representation learning has received growing attention. As a result,
many techniques have been proposed to learn low-dimensional representations of different elements including
Node2vec [12], Grarep [4], LINE [39] and Metapath2vec [8]. Recently, massive advanced models including Graph
Convolutional Networks (GCN) [16], Graph Attentional Networks (GAT) [42] have been proposed for graph
representation learning, which is able to aggregate the information on graphs and achieve competitive results.
Moreover, graph neural networks are able to combine both the structure of the graph and the attributes of the
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nodes, and have been widely adopted in various domains including traffic flow prediction [19, 34], knowledge
completion [59] and recommender systems [48, 52]. In our study, we seek to utilize the embedding techniques in
a different semantic-rich dataset, i.e., App usage datasets, of which the hidden semantics have not been fully
revealed before. Compare with the existing methods which learn the embedding based on the App usage se-
quences [20] or App-install sequences [30] , our approach is novel in two folds: First, We propose attribute-aware
GCN for semantics modeling, which can model co-occurrence relation and node attributes simultaneously. Apart
from the co-occurrence relation in the graph, where spatio-temporal context can be modeled by existing graph
embedding methods [8, 12], we equip each node with their attributes, i.e., App categories and location functions.
Node attributes are another kind of semantics indicating specific usage and are different from the edge attributes,
i.e., co-occurrence. In this way, we make GCN more powerful to learn semantic representations as it is both
graph structure-aware and node attribute-aware. Second, we propose mate-path guided learning scheme to
allow GCN to capture multi-modal relationship. Although existing method [23] have adopted GCN to learn
the embeddings of mobile Apps, they do not identify the app-location or app-time relationships, which is not
adequate to model the relation among App, location and time units. In our problem, we further consider the
triple-unit, i.e., App-location-time co-occurrence, therefore we use meta path-guided learning, which is training
strategy to sample such triple-units from raw records to learn model parameters. Such method can better learn
the relationships among App, location and time units and generate a new set of embedding vectors.

5.2 Discussion
5.2.1 Applications. Our non-task specific App usage representation learning algorithm can promote extensive
applications. First, for network operators, it is crucial to analyze and predict the App usage, which could help
them understand the geographical context of mobile traffic patterns [44] as well as model the traffic dynamics of
cellular devices efficiently [31], thus optimizing the allocation of existing network resources. Second, for App
developers and App platform administrators, our model could incorporate location and time context to build a
more comprehensive model for mobile App usage modeling, which could be further utilized for context-aware
App usage prediction [32, 43, 64] and App recommendation [14, 58], which can probably elevate the App usage
and improve user satisfaction. Last but not the least, our work can be applied to various urban planning and city
management problems. Our learned multimodal embeddings can be adopted to recover urban rhythms [50, 51],
understand the living patterns of citizens [2, 53], and analyze crowd mobilities [6, 62, 63], which will definitely
benefit the city planners to make better land-use planning. To sum up, our work sheds light on various areas in
real life, which contributes to solving many social issues.

5.2.2 Limitations. This study is the first step to utilize the Graph Convolutional Network to describe the App
usage behaviors. Our work has the following limitations. First, the length of our App usage dataset is only one
week, and we aggregate it to one working day and one non-working day. Thus, we only exhibit the regular
dynamics of working and non-working day. Second, similar to [58], we assume that in this paper, "App usage"
means that the App exists on a user’s phone, and is running. However, this definition does not preclude the
condition when the App is running in the background and make network requests automatically, which indicates
that we are unable to tell whether the user is explicitly interacting with the app, thus the dataset may be noisy
and inaccurate. Third, since we extracted App usage records through deep packet inspection, those apps which
make no network requests were not captured. Last but not the least, we do not include users as nodes when
constructing the App usage graph due to the complexity of GCN model and the limitation of computational
resource. Although we can generate user embedding from the learned App, time, and location embedding, this
non end-to-end method may degrade the personalized character of a user.
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5.2.3 Future Work. To tackle these problems mentioned above, we plan to do the following work in the future.
First, we are going to find App usage datasets with a longer period to analyze the long-term App usage patterns,
and investigate evolution of App usage. Second, we will apply the App trace data with traffic flow information
(i.e. number of packets or overall packet size) generated from the App for better overall performance. Moreover,
there are various work adopted advanced techniques for privacy protection (such as federated learning [17],
differential privacy [11], blockchain techniques [25]), which illustrates that it is plausible to protect the privacy
during learning process. One important future work is to adopt these schemes to our model, which will ameliorate
the risk of information leakage.

6 CONCLUSION
In this paper, we study the problem of using large-scale App usage records to learn representation for multimodal
units including time, location and App. Towards this end, we propose SA-GCN, a novel representation learning
model to embed Apps, location, and time units into the same low-dimensional latent space. We build an App
usage graph by regarding app, time, and location units as nodes, their property as node features, and their
co-occurrence relation as edges. Based on this graph, we develop a graph convolutional network with a meta
path-guided objective function to learn semantic-aware representation. We also apply these learned embedding
vectors to the personal App usage prediction task and achieve more than 8% performance gain compared with
baselines. This study deepens our understanding of time and location-varied App usage, and paves the way for
extensive downstream applications including App usage prediction, App recommendation, and App services
optimization.

APPENDIX I: THE FUNDAMENTALS FOR GRAPH NEURAL NETWORKS
For a given graph G = (𝑽 , 𝑬 ,𝑿 ), where 𝑽 , 𝑬 stand for the set of vertices and edges respectively and 𝑿 represents
the feature vector of each vertices. Graph Neural Networks (GNNs) is a class of deep learning models over
the graph data 𝐺 . A GNN based model calculates an embedding vector 𝜃𝜃𝜃𝑢 of each node 𝑢 ∈ 𝑉 via iteratively
aggregating information of itself and its neighbours as 𝜃𝜃𝜃 (𝑘)𝑢 = 𝑓

(
𝑥𝑥𝑥𝑢,𝜃𝜃𝜃

(𝑘−1)
𝑢 , {𝑥𝑥𝑥 𝑣,𝜃𝜃𝜃 (𝑘−1)𝑣 }𝑣∈N(𝑢)

)
, where N(𝑢)

denotes the neighbours of node 𝑢 in the graph, and node features 𝑥𝑥𝑥𝑢 serves as the initial embedding 𝜃𝜃𝜃 (0)𝑢 .
Graph Convolutional Network (GCN) [16] is one of the most well-known GNN model based on a first-order

approximation of spectral convolutions on graphs. The propagation rule for GCN on each node can be written as:

𝜃𝜃𝜃
(𝑘)
𝑢 = 𝑓

(
𝜃𝜃𝜃
(𝑘−1)
𝑢 , {𝜃𝜃𝜃 (𝑘−1)𝑣 }𝑣∈N(𝑢)

)
= 𝜎

©«
∑

𝑣∈N(𝑢)

1
√
𝑑𝑢𝑑𝑣

𝜃𝜃𝜃
(𝑘−1)
𝑣 𝑊 𝑘ª®¬ , (14)

where 𝑑𝑢 , 𝑑𝑣 is the degree for node 𝑢 and 𝑣 respectively, and𝑊 (𝑘) is the trainable parameters in the 𝑘-th layer.
To put Eqn. 14 into vectorized form, let Θ(𝑘) = (𝜃𝜃𝜃 (𝑘)1 ,𝜃𝜃𝜃

(𝑘)
2 , . . . ,𝜃𝜃𝜃

(𝑘)
|𝑉 |) be the matrix of all node embedding vectors

at step 𝑘 , the aggregation function is calculated as:

Θ(𝑘) = 𝜎
(
�̃�− 1

2 �̃��̃�− 1
2Θ(𝑘−1)𝑊 (𝑘) ), (15)

where �̃� = 𝐴 + 𝐼𝑁 , and 𝐴 is the adjacency matrix with 𝐼𝑁 the identity matrix. 𝐷 is a diagonal matrix with
𝐷𝑖𝑖 =

∑
𝑗 �̃�𝑖 𝑗 , 𝜎 represents the non-linear activation function.𝑊 (𝑘) is the trainable parameters in the 𝑘-th layer.
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