
Zero-Shot Forecasting of Network Dynamics through Weight
Flow Matching

Shihe Zhou
∗

zhoush23@mails.tsinghua.edu.cn

Xingjian College

Tsinghua University

Beijing, China

Ruikun Li
∗

lrk23@mails.tsinghua.edu.cn

Shenzhen International Graduate School

Tsinghua University

Shenzhen, China

Huandong Wang
†

wanghuandong@tsinghua.edu.cn

Department of Electronic Engineering BNRist

Tsinghua University

Beijing, China

Yong Li

liyong07@tsinghua.edu.cn

Department of Electronic Engineering BNRist

Tsinghua University

Beijing, China

Abstract
Forecasting state evolution of network systems, such as the spread

of information on social networks, is significant for effective pol-

icy interventions and resource management. However, the under-

lying propagation dynamics constantly shift with new topics or

events, which are modeled as changing coefficients of the under-

lying dynamics. Deep learning models struggle to adapt to these

out-of-distribution shifts without extensive new data and retrain-

ing. To address this, we present Zero-Shot Forecasting of Network

Dynamics through Weight Flow Matching (FNFM), a generative,

coefficient-conditioned framework that generates dynamic model

weights for an unseen target coefficient, enabling zero-shot fore-

casting. Our framework utilizes a Variational Encoder to summarize

the forecaster weights trained in observed environments into com-

pact latent tokens. A Conditional Flow Matching (CFM) module

then learns a continuous transport from a simple Gaussian distri-

bution to the empirical distribution of these weights, conditioned

on the dynamical coefficients. This process is instantaneous at

test time and requires no gradient-based optimization. Across var-

ied dynamical coefficients, empirical results indicate that FNFM

yields more reliable zero-shot accuracy than baseline methods,

particularly under pronounced coefficient shift. Code is available:

https://github.com/tsinghua-fib-lab/FNFM.

CCS Concepts
• Networks→ Network dynamics; Network performance mod-
eling; Network simulations; • Applied computing→ Law, social
and behavioral sciences; Physical sciences and engineering.

Keywords
Network dynamics, Multi-environment learning, Flow matching

∗
Both authors contributed equally to this research.

†
Corresponding authors

This work is licensed under a Creative Commons Attribution 4.0 International License.

WWW ’26, Dubai, United Arab Emirates
© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2307-0/2026/04

https://doi.org/10.1145/3774904.3792722

ACM Reference Format:
Shihe Zhou, Ruikun Li, Huandong Wang, and Yong Li. 2026. Zero-Shot

Forecasting of Network Dynamics through Weight Flow Matching. In

Proceedings of the ACM Web Conference 2026 (WWW ’26), April 13–17,
2026, Dubai, United Arab Emirates. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3774904.3792722

1 Introduction
The propagation of behaviors, evolution of cultural norms, and

even the formation of consensus on social networks can all be mod-

eled as spatiotemporal dynamic processes among individuals on

complex networks [18, 24, 50]. Recent advances in artificial intelli-

gence have further expanded our capacity to represent and control

these empirical networked systems across diverse domains, from

social media to urban environments [4]. Accurately forecasting

the evolution of these dynamics is crucial for understanding so-

ciophysical phenomena and for key applications such as curbing

the spread of misinformation [2, 17, 32]. However, such tasks often

involve cross-scale interactions where unknown mechanisms and

high computational costs necessitate the integration of domain

knowledge with data-driven simulation [41]. The complexity of

network dynamics stems from the intricate interplay between net-

work topology and the parameters of the underlying dynamics.

Even with identical topologies and governing equations, subtle

shifts in dynamic parameters can push a system toward entirely

different critical regimes, fundamentally altering its propagation

behavior [9, 14, 29, 40].

As we demonstrate on a social media information propagation

model (Figure 1a), a mere difference in popularity coefficients (de-

fine as
𝛽
𝛾) leads two propagation trajectories toward starkly differ-

ent outcomes: rapid decay versus viral spread. This phenomenon

precisely captures the disparity in how opinions on different topics

propagate through cyberspace, while also posing a stringent chal-

lenge to the generalization capability of predictive models: they

must be able to accurately forecast dynamic evolution in new envi-

ronments.

To train generalizable models from a limited set of observed

environments, existing work predominantly follows two paths. The

first path involves building "one-for-all" spatio-temporal foundation

models, attempting to train a universal predictor by aggregating

https://orcid.org/0009-0009-6635-9626
https://orcid.org/0009-0002-5495-3272
https://orcid.org/0000-0002-6382-0861
https://orcid.org/0000-0001-5617-1659
https://github.com/tsinghua-fib-lab/FNFM
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3774904.3792722
https://doi.org/10.1145/3774904.3792722

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Shihe Zhou, Ruikun Li, Huandong Wang, and Yong Li

Train on 𝑒𝐴 Train on 𝑒𝐴&𝑒𝐵 Train on 𝑒𝐵

T
e
s
t
o
n

 𝑒
𝐵

T
e
s
t
o
n

 𝑒
𝐴

Changing coefficient 𝑒

Train on 𝑒𝐴& 𝑒𝐵

F
o
re

c
a
s
t
a
c
c
u

ra
c
y

Network

topology

Train on 𝑒𝐵

Train on 𝑒𝐴

ሶ𝑥𝑖 𝑡 = −𝛾𝑥𝑖 𝑡

+𝛽 1 − 𝑥𝑖 𝑡 σ𝑗=1
𝑛 𝐴𝑖𝑗 𝑥𝑗 𝑡

a b

Dynamics

equation

✅

✅

❌

❌ ❌

❌

Declining process

Growing process

Figure 1: The generalization trap in network dynamics. (a) A generalist model trained on mixed data struggles to outperform
specialized expert models. Network dynamics adopts the classic information dissemination model [40], in which the dynamic
behavior is governed by the popularity coefficient. (b) Training and testing performance on cross-environment propagation
dynamics, where 𝑒𝐴 and 𝑒𝐵 are propagation processes with different coefficients.

data from all environments [11, 25, 26, 46]. However, these mono-

lithic models, guided by the principle of empirical risk minimization,

often achieve generalization at the expense of specialized perfor-

mance, leading to performance on specific tasks that can be inferior

to that of much smaller expert models (as shown in Figure 1b). The

second path is based on meta-learning approaches, which rapidly

adapt a model to new environments, thereby reducing data depen-

dency [33–35, 44]. Nonetheless, meta-learning frameworks still rely

on the availability of at least a small amount of historical trajectory

data from the target environment for finetuning. In practice, this

precondition does not hold in many high-value predictive scenarios

[5, 8, 13, 21]. In such scenarios, a decision-maker might need to

predict the potential consequences of a hypothetical environmen-

tal coefficient (e.g., the adoption rate of a new policy). Therefore,

how to perform reliable zero-shot prediction for network dynam-

ics under new environmental coefficients remains a critical open

question.

In this paper, we introduce Forecasting of Network Dynamics

through Weight Flow Matching (FNFM), a novel generative frame-

work that addresses the challenge of zero-shot prediction for net-

work dynamics across varying environments. Instead of predicting

trajectories directly, FNFM learns to generate the complete weights
of a specialized forecaster model tailored to any given environmen-

tal coefficients. FNFM first collects a diverse set of expert weights

from various seen environments. It then employs a Variational

Autoencoder (VAE) to learn a compact and smooth latent mani-

fold of these weights. Finally, a Conditional Flow Matching (CFM)

model is trained to map environmental coefficients to this manifold,

enabling the conditional synthesis of new latent vectors. When in-

ferencing, this process is instantaneous and requires no finetuning,

making FNFM a powerful tool for forecasting for novel scenarios

on demand.

Our main contributions are summarized as follows:

• We propose a new paradigm for zero-shot forecasting of

network dynamics, shifting the objective from trajectory

prediction to the direct generation of model weights.

• We introduce FNFM, a novel framework that operationalizes

this paradigm by synergistically combining a VAE and a Con-

ditional Flow Matching model to learn the complex mapping

from dynamic coefficients to optimal model weights.

• We conduct extensive experiments demonstrating that FNFM

significantly outperforms state-of-the-art baselines by an av-

erage of 8.30% in zero-shot forecasting scenarios, showcasing

its superior generalization.

2 Preliminary
2.1 Problem Definition
We consider a dynamic process evolving over a network of 𝑛 nodes,

where each node possesses a 𝑑-dimensional feature vector. A core

challenge in forecasting such dynamics is that while different envi-

ronments may share the same underlying network topology and

governing equations, they are distinguished by a set of dynamic

coefficients. These coefficients, denoted by an environmental vector

𝑒 ∈ 𝐸, critically alter the system’s behavior, leading to fundamen-

tally different temporal evolution patterns.

Formally, given an adjacency matrix 𝐴 ∈ R𝑛×𝑛 and the environ-

mental coefficient vector 𝑒 , the network dynamics can be described

by a system of ordinary differential equations (ODEs):

𝑑X(𝑡)
𝑑𝑡

= 𝐹 (X(𝑡), 𝐴, 𝑒)

Zero-Shot Forecasting of Network Dynamics through Weight Flow Matching WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

where X(𝑡) = (𝑥1 (𝑡), . . . , 𝑥𝑛 (𝑡))𝑇 represents the state of all nodes

at time 𝑡 , and the nonlinear function 𝐹 is parameterized by the

environment 𝑒 .

Our task is zero-shot forecasting. We assume access to a set of

historical trajectories collected from a number of seen environments,

𝐸𝑠𝑒𝑒𝑛 ⊂ 𝐸. The objective is to train a model that can accurately

predict the future trajectory for a previously unseen environment

𝑒𝑢𝑛𝑠𝑒𝑒𝑛 ∈ 𝐸𝑢𝑛𝑠𝑒𝑒𝑛 , where the seen and unseen environment sets are

disjoint (𝐸𝑠𝑒𝑒𝑛∩𝐸𝑢𝑛𝑠𝑒𝑒𝑛 = ∅). Specifically, for a given trajectory, the
forecasting task is defined as predicting a future window of states

X𝑡+1:𝑡+𝑁 given an observed historical window X𝑡−𝐻+1:𝑡 , where 𝐻
is the look-back window size and 𝑁 is the prediction horizon.

2.2 Conditional Flow Matching
Flow Matching is a powerful and recently developed generative

modeling framework designed to learn a transformation from a

simple prior distribution, 𝑝0, to a complex data distribution, 𝑝1
[27, 28, 31]. This is achieved by training a parameterized, time-

dependent vector field, 𝑣𝜉 (𝑥, 𝑡), that learns to match a target veloc-

ity field guiding the transformation. Conditional Flow Matching

(CFM) extends this concept by allowing the transformation to be

dependent on a conditioning variable, 𝑐 . The goal is thus to learn a

map from 𝑝0 to a conditional target distribution 𝑝1 (𝑥 |𝑐).
While various path definitions are possible, a common and effec-

tive approach is to use a straight-line path between samples from

the source and target distributions [39]. Specifically, for a pair of

samples 𝑥0 ∼ 𝑝0 and 𝑥1 ∼ 𝑝1 (·|𝑐), the probability path 𝑝𝑡 (𝑥 |𝑥0, 𝑥1)
is defined as a Gaussian bridge:

𝑝𝑡 (𝑥 |𝑥0, 𝑥1) = N(𝑥 | (1 − 𝑡)𝑥0 + 𝑡𝑥1, 𝜎2), (1)

where 𝑡 ∈ [0, 1] and 𝜎2 is a small variance. A key advantage of this

formulation is that the corresponding target velocity field simplifies

to a constant vector:

𝑢𝑡 (𝑥 |𝑥0, 𝑥1) = 𝑥1 − 𝑥0 . (2)

This provides a direct and stable regression target for the con-

ditional neural network 𝑣𝜉 (𝑥, 𝑡, 𝑐). The network’s weights 𝜉 are

optimized by minimizing the following loss function:

L𝐶𝐹𝑀 (𝜉) = E𝑡,𝑐,𝑥0,𝑥1
[

𝑣𝜉 ((1 − 𝑡)𝑥0 + 𝑡𝑥1, 𝑡, 𝑐) − (𝑥1 − 𝑥0)

2] ,

(3)

where the expectation is taken over time 𝑡 ∼ U(0, 1), the con-

ditioning variable 𝑐 , prior samples 𝑥0 ∼ 𝑝0, and target samples

𝑥1 ∼ 𝑝1 (𝑥 |𝑐). To further improve efficiency, modern implementa-

tions often pair samples 𝑥0 and 𝑥1 using mini-batch optimal trans-

port (OT) plans, resulting in shorter and more direct flows [39].

3 Methodology
To address the challenge of zero-shot forecasting, we introduce

Forecasting of Network Dynamics through Weight Flow Matching

(FNFM), a novel generative framework. The core paradigm of FNFM

shifts from directly predicting dynamic trajectories to generating

the weights of a specialized forecaster model tailored to any given

environmental condition. As illustrated in Figure 2, our method-

ology accomplishes this through a three-fold pipeline. FNFM first

collects weights from expert models, then uses a variational au-

toencoder to map them into a latent space, and finally trains a

conditional flow matching model to generate latent vectors for the

zero-shot synthesis of new models.

3.1 Collecting Expert Model Weights
We conceptualize the optimized weights of an expert forecaster

trained on a single environment as a high-dimensional vector that

captures the essence of that environment’s unique network dynam-

ics. Our FNFM framework is designed to learn the joint distribution

of these weights and their corresponding environmental coeffi-

cients in a data-driven manner. Therefore, the foundational step of

our methodology is to construct a dataset of these expert weights

for all seen environments.

To achieve this, for each seen environment 𝑒 ∈ 𝐸𝑠𝑒𝑒𝑛 and its

associated trajectory data 𝑋 (𝑒) , we train a dedicated forecaster to

parameterize the dynamical function 𝐹𝜃 (·, 𝐴). While our framework

is agnostic to the specific forecaster architecture, we employ a

Spatio-Temporal Graph Convolutional Network (STGCN) [45] in

our implementation. The weights 𝜃 (𝑒) for each expert are optimized

by minimizing a multi-step forecasting loss over sliding windows

of length 𝐻 with a prediction horizon of 𝑁 :

𝜃 (𝑒) = argmin

𝜃

𝑇−𝐻−𝑁∑︁
𝑡=𝐻

𝐹𝜃 (𝑋 (𝑒)𝑡−𝐻+1:𝑡 , 𝐴) − 𝑋
(𝑒)
𝑡+1:𝑡+𝑁

2 , (4)

where 𝜃 (𝑒) denotes the resulting weights of the expert model tai-

lored to environment 𝑒 .

Each expert model is trained to converge on its specific environ-

mental data using the Adam optimizer [19]. The final collection of

optimized weights, {𝜃 (𝑒) | 𝑒 ∈ 𝐸𝑠𝑒𝑒𝑛}, serves as the target data for
the subsequent generative learning stages of our framework.

3.2 Weight Sequence Tokenizer
We treat the weights of a neural network as a novel data modality.

Fundamentally, these weights constitute a complex, structured rep-

resentation, not merely a flat vector of numbers. To make this data

compatible with powerful sequence-based models (like Transform-

ers) while preserving the network’s inherent architectural inductive

biases, we introduce a tokenization scheme guided by the data flow

through the network’s computational units.

Our process operates on the fundamental building blocks of most

neural networks: convolutional and linear layers [20, 22, 23]. For

each expert model’s weights, we decompose them layer by layer

into a sequence of meaningful tokens.

Convolutional Layers. For a convolutional layer ℓ with kernel

tensor Ωℓ ∈ R𝐶out×𝐶in×ℎ×𝑤
, we form one token for each output

channel. Each token aggregates all the weights responsible for

producing that single output channel’s feature map. Concretely, the

token for the 𝑜-th output channel is:

w(ℓ)𝑜 = flatten

(
Ωℓ,𝑜,:,:,:

)
∈ R𝐶in ·ℎ ·𝑤 , for 𝑜 = 1, . . . ,𝐶out .

Linear Layers. Similarly, for a linear layer ℓ with weight matrix

Wℓ ∈ R𝐷out×𝐷in
and bias vector bℓ ∈ R𝐷out

, we define one token

per output unit (neuron). This token includes all incoming weights

and the bias for that unit:

w(ℓ)𝑜 = [Wℓ,𝑜,:; bℓ,𝑜] ∈ R𝐷in+1, for 𝑜 = 1, . . . , 𝐷out .

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Shihe Zhou, Ruikun Li, Huandong Wang, and Yong Li

Collecting expert model weights

𝐸

𝑢 𝑡 =
𝑧 𝑡 − 𝑧0

𝑡

Weights

Tokens
Latent

tensor 𝑧

𝑧 𝑡 − 𝑧0

Multi-Head
Attention

Ada-LN

Feed
Forward

Ada-LN

𝐴𝑖𝑗 𝑓𝜃(⋅, 𝐴)

𝐷

Encode weights to

latent vectors

Weight tensors 𝜃

I(0,1) Latent vector 𝑧

N×

𝑋𝑇…𝑇+𝑡

𝐿𝑘𝑙 + 𝐿𝑟𝑒𝑐𝑜𝑛

Conditional

Flow Matching

𝐿𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
𝑣 𝑡

v 𝑡Transformer

e

e Latent tensor 𝑧I(0,1)

𝐷

b.Testing

𝑙𝑎𝑦𝑒𝑟1𝑀𝐿𝑃

𝑙𝑎𝑦𝑒𝑟𝑛𝑀𝐿𝑃

……

Different layers
a.Training

Shared
Transformers

Figure 2: Overview of the Model Architecture. The framework comprises collecting expert model weights, tokenizing and
encoding the model weight to latent vectors and conditional flow matching, working synergistically for zero-shot weight
generation and dynamics forecasting.

This procedure losslessly transforms the entire weights 𝜃 of a 𝐿-

layer neural network into an ordered sequence of tokens:

{w(1)
1

, . . . ,w(1)
𝐶𝑜𝑢𝑡

, . . . ,w(𝐿)
1

, . . . ,w(𝐿)
𝐷𝑜𝑢𝑡
}.

Each token represents a self-contained computational unit, and

the sequence preserves the layer-wise structure of the original

model. This tokenized sequence serves as the direct input for our

subsequent generative modeling stage.

3.3 Weight Variational Autoencoder
To facilitate stable and effective generative learning, we first com-

press the high-dimensional weight token sequence into a smooth

and compact low-dimensional latent space [3]. We achieve this

using a purpose-built Variational Autoencoder (VAE) featuring a

Transformer-based architecture.

3.3.1 Model Architecture. The VAE consists of an encoder 𝐸 that

maps a sequence of weight tokens to a latent vector 𝑧, and a decoder

𝐷 that reconstructs the token sequence from that vector.

Layer-wise Token Embedding. The raw tokens {w(ℓ)𝑜 } from
different layers possess varying dimensionalities, which is incom-

patible with a standard Transformer. To handle this, we first employ

a set of layer-wise projection networks (MLPs), 𝑓ℓ , to map each raw

token into a fixed-dimensional embedding space:

h(ℓ)𝑜 = 𝑓ℓ (w(ℓ)𝑜) ∈ R𝑑𝑚𝑜𝑑𝑒𝑙 . (5)

Transformer Encoder. The resulting uniform-sized embeddings

are fed into a multi-block Transformer encoder. Each block applies

multi-head self-attention followed by a position-wise feed-forward

network with residual connections and layer normalization:

A = Concat(head1, . . . , head𝑘)W𝑂 , (6)

where head𝑖 = Attention(HW𝑄

𝑖
,HW𝐾

𝑖 ,HW
𝑉
𝑖), (7)

H′ = LayerNorm(H + A), (8)

H𝑜𝑢𝑡 = LayerNorm(H′ + FFN(H′)). (9)

The final representation of each token is then passed through two

separate linear layers to parameterize the mean 𝜇 and log-variance

log𝜎2 of the approximate posterior distribution 𝑞𝜙 (z|w). A latent

vector z is then sampled using the reparameterization trick.

Transformer Decoder. The decoder mirrors the encoder’s archi-

tecture. It takes the latent vector z as a global conditioning input
and reconstructs the sequence of embeddings. Finally, a set of layer-

wise output networks, 𝑔ℓ , project the decoder’s output embeddings

from R𝑑𝑚𝑜𝑑𝑒𝑙
back to their original, layer-specific token dimensions

to produce the reconstructed weights ŵ.

3.3.2 Training Objective. Let 𝜙 and𝜓 represent the learnable pa-

rameters of encoder 𝐸 and decoder 𝐷 . The entire VAE is trained

end-to-end by maximizing the Evidence Lower Bound (ELBO) on

the log-likelihood of the weights:

LELBO (w;𝜙,𝜓) = E𝑞𝜙 (z |w)
[
log 𝑝𝜓 (w|z)

]
−𝛽 ·KL

[
𝑞𝜙 (z|w) ∥ 𝑝 (z)

]
.

(10)

The objective consists of two key terms. The first is the reconstruc-

tion loss, which measures the fidelity between the original and

reconstructed weights, implemented as the negative mean squared

error. The second is the Kullback-Leibler (KL) regularizer, which

encourages the learned latent distribution 𝑞𝜙 (z|w) to align with

Zero-Shot Forecasting of Network Dynamics through Weight Flow Matching WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

a simple prior 𝑝 (z), typically a standard Gaussian N(0, 𝐼). This
regularization ensures that the latent space is smooth and well-

structured, which is crucial for the subsequent generative process.

Upon convergence, the trained encoder 𝐸𝜙 provides a robust

mapping from any set of high-dimensional expert weights w to

a compact latent representation z. This collection of latent vec-

tors, {z(𝑒) | 𝑒 ∈ 𝐸𝑠𝑒𝑒𝑛}, forms the target data manifold for our

conditional flow matching module.

3.4 Conditional Flow Matching
With the VAE encoder providing a mapping to a structured latent

space, the final stage of our framework is to learn a conditional

generative model within this space. The goal is to synthesize a novel

latent vector z𝑛𝑒𝑤 that corresponds to a previously unseen environ-

mental coefficient 𝑒𝑛𝑒𝑤 . We achieve this by training and deploying a

conditional vector field using the flow matching principles outlined

in the preliminaries.

3.4.1 Training the Conditional Vector Field. We train a time-dependent

conditional vector field, parameterized by a neural network 𝑣𝜉 (z, 𝑡, 𝑒),
to approximate the target velocity field (z(𝑒) − z0) defined in Equa-

tion 2. The network’s parameters 𝜉 are optimized by minimizing

the following objective:

L𝐶𝐹𝑀 (𝜉) = E𝑡,𝑒,z0,z(𝑒)

[

𝑣𝜉 ((1 − 𝑡)z0 + 𝑡z(𝑒) , 𝑡, 𝑒) − (z(𝑒) − z0)

2] ,
(11)

where the expectation is over time 𝑡 ∼ U(0, 1), seen environments

𝑒 ∼ 𝐸𝑠𝑒𝑒𝑛 , prior samples z0 ∼ N(0, 𝐼), and their corresponding

target latent codes z(𝑒) = 𝐸𝜙 (w(𝑒)).
The vector field 𝑣𝜉 is implemented using a Transformer architec-

ture. To inject the environmental information 𝑒 effectively, we em-

ploy an Adaptive Layer Normalization (AdaLN) mechanism. Within

each Transformer block, the input sequence𝐻𝑛 is modulated before

the self-attention layer:

AdaLN(𝐻𝑛, 𝑒) = 𝛾 (𝑒) ⊙ LayerNorm(𝐻𝑛) + 𝛽 (𝑒), (12)

where the scale 𝛾 (𝑒) and shift 𝛽 (𝑒) are vectors produced from the

environmental coefficient 𝑒 by small multi-layer perceptrons. This

allows the network’s behavior to be dynamically controlled by the

target environment.

3.4.2 Zero-Shot Weight Generation via Inference. At inference time,

FNFM generates a specialized set of weights for any unseen envi-

ronment 𝑒𝑛𝑒𝑤 in a zero-shot fashion. This generation process is

framed as solving an ordinary differential equation (ODE) initial

value problem. Starting with a random sample z0 ∼ N(0, 𝐼), we
integrate the learned vector field 𝑣𝜉 from 𝑡 = 0 to 𝑡 = 1:

𝑑z𝑡
𝑑𝑡

= 𝑣𝜉 (z𝑡 , 𝑡, 𝑒𝑛𝑒𝑤), with initial value z0 . (13)

This ODE is solved numerically using a standard solver such as

forward Euler. For 𝑁 integration steps, the update rule is:

z𝑘+1 = z𝑘 +
1

𝑁
𝑣𝜉 (z𝑘 ,

𝑘

𝑁
, 𝑒𝑛𝑒𝑤), for 𝑘 = 0, . . . , 𝑁 − 1. (14)

The resulting vector at the final step, z𝑁 ≈ z1, is the synthesized
latent representation for the new environment. This vector is then

passed through the pre-trained VAE decoder𝐷 to generate the final,

ready-to-use forecaster weights ŵ𝑛𝑒𝑤 = 𝐷 (z𝑁). The full training
and inference procedure is provided in Algorithm 1 in Appendix A.

4 Experiment
4.1 Evaluation Protocol
We evaluate our method on the task of forecasting networked dy-

namical systems under distribution shifts. We regard an environ-
ment as the combination of a specific network’s trajectory data and

its associated dynamic coefficients. For each dataset, we partition

the available environments into training, validation, and testing

sets, ensuring no overlap. The core of our evaluation lies in the test

set, which is further divided into two distinct regions to rigorously

assess generalization:

• In-Domain: Test environments whose dynamic coefficients

are interpolated from within the range of coefficients ob-

served during training.

• Out-of-Domain: Test environments whose dynamic coef-

ficients are extrapolated beyond the range of the training

set coefficients. This presents a more challenging test of a

model’s generalization capabilities.

4.2 Implementation Details
We report multi-step forecasting performance using Root Mean

Squared Error (RMSE) computed on the non-standardized trajecto-

ries. Across all experiments, we set the historical look-back window

to 𝐻 = 50 and the prediction horizon to 𝑁 = 50. All model hyper-

parameters, for both our method and the baselines, are tuned on a

dedicated validation set of environments. To ensure robust results,

all reported metrics are the average of 5 independent runs using

different random seeds but identical environment splits.

4.3 Datasets
We evaluate FNFM on five datasets covering both synthetic and

real-world network topologies with heterogeneous dynamics. The

synthetic datasets include Hill, which is generated on Barabási–

Albert networks, while the datasets on real-world topology consist

of Epidemic (European road network), Twitter (social propaga-
tion), and Collab (scientific collaboration). Each dataset contains

multiple environments defined by distinct dynamic coefficients,

with strictly non-overlapping training, validation, and test splits.

Full details on governing equations, simulations, and OOD settings

are provided in Appendix C.

4.4 Baselines
To assess the effectiveness of our approach, we compare FNFM

against a comprehensive set of baselines ranging from standard

forecasting models to advanced adaptive frameworks. The baselines

include:

• Standard spatiotemporalmodels: STGCN [45] and STEP [37].

• Few-shot and generative approaches: STGFSL [30] andGPD [47].

• Adaptive and expert models:Paragon [38] and an oracle-like

One-per-Env STGCN.

Please refer to Appendix D for descriptions of each baseline model.

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Shihe Zhou, Ruikun Li, Huandong Wang, and Yong Li

Table 1: Average RMSE (± std from 5 runs) in various environments (split shown in the first row). Best in bold, underlined for
suboptimal. STGFSL adopts a parameter-free meta learning strategy, so it has no additional parameters

Methods Params

Hill Epidemic Twitter Collab

In-domain Out-domain In-domain Out-domain In-domain Out-domain In-domain Out-domain

STGCN[45] 13M 14.4060±2.3449 8.2359±0.8919 0.3797± 0.0166 0.2437±0.0189 0.4402 ±0.0400 0.3156± 0.0112 0.9153 ±0.0613 0.8945±0.0618
STEP [37] 11M 15.4436 ±0.6322 13.6226±0.5231 0.0639±0.0021 0.0609±0.0042 0.0612± 0.0014 0.0593 ±0.0013 0.0556±0.0033 0.0303±0.0041
STGFSL[30] - 53.2770 ±5.5370 38.7490 ±5.3160 0.1875±0.0005 0.3710 ±0.0008 0.3040 ±0.0010 0.4820 ±0.0010 0.0660 ±0.0007 0.0330 ±0.0012
Paragon [38] 11M 54.2730± 1.8253 47.9000±1.7484 0.2367±0.0284 0.1333±0.0319 0.1333±0.0113 0.1584±0.0204 0.0755±0.1448 0.0326±0.0492
GPD [47] 12M 98.1748±0.0963 9.92475±1.315 0.1888 ± 0.0002 0.0708 ± 0.0021 0.1336 ±0.0004 0.0676 ±0.0020 0.0722 ± 0.0001 0.0280±0.0004
Ours 11M 13.8942 ±2.4240 8.5595 ± 0.4594 0.0562 ±0.0071 0.0561±0.0059 0.0579 ± 0.0081 0.0512±0.0048 0.0475 ± 0.0036 0.0244±0.0021
Percentage 3.55% -3.93% 12.05% 7.89% 5.39% 13.66% 14.57% 12.86%

One-per-Env STGCN 11.2409 8.5127 0.0496 0.0538 0.0364 0.0326 0.0461 0.0229

Weight Component 1

W
ei

gh
t C

om
po

ne
nt

 2

(a) Epidemic

Weight Component 1

W
ei

gh
t C

om
po

ne
nt

 2

Start
End

0.0

0.2

0.4

0.6

0.8

Environm
ent

(b) Collab

Figure 3: The process of FNFM generating weights for a pre-
dictive model under different environmental conditions.

4.5 Main Results
Table 1 presents the comparative results on four datasets. Our pro-

posed method, FNFM, consistently achieves state-of-the-art perfor-

mance, outperforming all baselines across nearly every in-domain

and out-of-domain scenario. Notably, FNFM’s accuracy is highly

competitive with the One-per-Env STGCN, an oracle-like expert

model trained with full access to data from the target environment.

FNFM’s effectiveness is attributable to its ability to explicitly

learn the low-dimensional manifold of the expert model weights.

While monolithic baselines seek a single compromise model and

meta-learning requires target data to navigate this space, FNFM

learns the global structure of the manifold itself. By using a VAE to

identify this structure and a CFM to learn the direct map from any

environmental coefficient to a point upon it, our framework can

instantly generate a specialized, near-optimal model.

4.6 Explainability
To gain deeper insight into the internal workings of FNFM, we

visualize its weight generation process on two datasets in Figure 3.

We use principal component analysis to project the latent space

learned by the VAE onto a two-dimensional plane. The visualization

clearly reveals three key elements of our framework’s success.

First, the latent vectors of the expert models (the End points) are

not scattered randomly; instead, they converge to form a smooth,

well-structured, low-dimensional manifold. This indicates that the

space of effective model weights possesses a strong intrinsic struc-

ture, which our VAE successfully captures.

Second, this manifold is meaningfully organized by the environ-

mental coefficients, as illustrated by the color gradient. We observe

a continuous color transition along the manifold’s structure, signi-

fying that similar environments correspond to proximate locations

in the latent space. This confirms that our framework has learned a

semantic mapping from dynamic environments to model weights.

Finally, the trajectories connecting the start points (from the

Gaussian prior) to the end points (the target weights) visualize the

conditional flow matching process. These trajectories follow direct,

nearly-straight paths from the simple prior to their target locations

on the manifold. This reveals that our CFM model has learned a

stable and efficient transport map, ensuring high-quality zero-shot

generation.

In summary, this visualization provides compelling evidence

for FNFM’s success: it learns not only a semantically organized

manifold of expert models but also an effective conditional path to

navigate it.

4.7 Case Study
To further investigate FNFM’s ability to generalize, we conduct a

case study on the Collab dataset, which models an SIS-like informa-

tion propagation process on a network of scientific collaborations

(Figure 4a). This system exhibits a critical phenomenon known as

a phase transition, where the long-term outcome of the dynamics

is acutely sensitive to the environmental coefficient, which in this

context represents the information’s stickiness [40].

As illustrated in Figure 4b, the system’s final propagation scale

displays three distinct regimes based on the environmental co-

efficient. When the coefficient is below a critical threshold (the

Declining region), activity eventually dies out. Conversely, above

a higher threshold (the Active region), the information becomes

endemic, reaching a high, stable level of activity. Between these

extremes lies a highly non-linear Transition region, where small

changes in the coefficient lead to dramatic shifts in the outcome.

For this experiment, we deliberately trained FNFM only on data

from the two extreme regimes (Declining and Active), leaving the

entire critical Transition region as a challenging, unseen test bed.

The results demonstrate a remarkable generalization capability.

Figure 4c shows that FNFM’s zero-shot predictions for the prop-

agation scale in this unseen region align closely with the ground

truth, indicating that our model successfully learned the underlying

non-linear function governing the phase transition. Furthermore,

Figure 4d displays two example trajectory forecasts, confirming

Zero-Shot Forecasting of Network Dynamics through Weight Flow Matching WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

Declining Highly ActiveTransition

ba

ሶ𝑥𝑖 𝑡 = −𝛾𝑥𝑖 𝑡

+𝛽 1 − 𝑥𝑖 𝑡 ෍
𝑗=1

𝑛

𝐴𝑖𝑗 𝑥𝑗 𝑡

dc

Figure 4: Case study on the Collab dataset. (a) Illustration of the network topology and governing equation. (b) The information
propagation scale (network activity at the final time step) as a function of the environmental coefficient (popularity). (c) FNFM’s
generalized prediction of the propagation scale within the phase transition region closely matches the ground truth. (d) FNFM’s
predicted trajectories for two extreme scenarios: a declining case and an active case.

10% 30% 50% 100%
Data Ratio

10 1

100

101

102

RM
SE

GPD
STGCN
Ours

(a) Data Ratio

0% 4% 8%12%16%20%
Noise Intensity

0%

20%

40%

60%

80%

100%

In
cr

ea
se

 in
 R

M
SE

 (%
)

(b) Noise

Figure 5: Robustness results on the Collab dataset.

that our generated models can accurately predict the full temporal

evolution of the system’s network-wide activity.

This case study provides strong evidence that FNFM learns more

than simple input-output mappings; it captures the fundamental

principles of a complex system’s critical behavior. The ability to

accurately interpolate within a phase transition showcases its po-

tential as a powerful tool for reliable forecasts for systems with

novel parameters near critical tipping points.

4.8 Robustness
We conduct two additional experiments on the Collab dataset to as-

sess the robustness of FNFM under challenging conditions: limited

data availability and noisy environmental coefficients.

Robustness to Limited Data. In this experiment, we evaluate

model performance when trained on a reduced number of available

environments (from 100% down to 10%). As shown in Figure 5a,

FNFM maintains its superior performance and low RMSE even

when trained with only 10% of the environments. In contrast, the

competing generative model, GPD, suffers a catastrophic perfor-

mance degradation under data scarcity, indicating its heavy reliance

on a large number of training examples. This highlights FNFM’s

excellent data efficiency, suggesting that our framework can effec-

tively learn the underlying manifold of expert weights from a very

limited sample of environments.

Robustness to Noisy Coefficients. This experiment tests the

model’s stability when the provided environmental coefficients at

inference time are inaccurate. We add zero-mean Gaussian noise

(standard deviation is setting to the coefficient’s total range) to

the true coefficients, with the noise intensity varying from 0% to

20%. Figure 5b shows that the RMSE of FNFM increases gracefully

and smoothly as the noise intensity grows, with less than a 16%

increase in error even at 20% noise. This smooth degradation, rather

than a sudden breakdown, provides strong evidence that FNFM has

learned a continuous and well-behaved mapping from the coeffi-

cient space to the latent space of model weights. This property is

crucial for practical applications, as it ensures that small estimation

errors in the environmental coefficients will only lead to small and

predictable errors in the final forecast.

4.9 Ablation Study
To validate the effectiveness of our key design choices, we conduct

an ablation study on the Hill and Collab datasets, with results shown

in Table 2, including a backbone comparison with DDPM.

Weight Sequence Tokenizer This experiment assesses the

importance of our structure-preserving tokenizer. In the “w/o Tok-

enizer” variant, we simply flatten all model weights into a single

vector and then reshape it into a token sequence, disrupting the

network’s architectural inductive biases. The results show that this

naive approach leads to a notable performance degradation on the

Collab dataset, particularly in the out-of-domain split. This vali-

dates our hypothesis that preserving the computational structure of

the weights is crucial for the generative model to learn a meaningful

and generalizable representation.

Environmental Coefficients This experiment evaluates the

necessity of the conditional generation mechanism. In the “w/o

Condition” variant, the CFM model is trained unconditionally to

generate an "average" expert model. The results show a severe

drop in performance across all datasets and splits. This confirms

that the environmental coefficient is the essential guiding signal

for synthesizing the correct, specialized model weights. Without

this conditioning, the model fails to adapt to the specific dynamics

of any given environment, underscoring the critical role of our

conditional framework.

Necessity ofVAETo justify the use of a Variational Autoencoder

(VAE) for weight compression, we tested a variant “w/o VAE” where

flattened weights are fed directly into the CFM model. As shown in

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Shihe Zhou, Ruikun Li, Huandong Wang, and Yong Li

Table 2: Ablation studies on Hill and Collab datasets. ‘w/o’
stands for ‘without’. Lower RMSE indicates better perfor-
mance.

Hill (RMSE) Collab (RMSE)

Variant In Out In Out

w/o VAE 118.9763 142.2945 0.0495 0.0340

w/o Tokenizer 17.3381 11.1205 0.05134 0.0359

w/o Condition 27.6437 17.5250 0.0670 0.0306

Ours (CFM) 13.8942 8.5595 0.0475 0.0244

DDPM (50 steps) 18.5735 11.4027 0.1021 0.0529

CFM (50 steps) 14.9386 8.7411 0.0483 0.0247

Table 2, removing the VAE causes severe degradation, particularly

on the Hill dataset (RMSE increases from 13.89 to 118.97). This

confirms that raw weight spaces are too high-dimensional and

sparse for efficient direct generation. Compressing weights into

a compact, regularized latent space is essential for effective flow

matching and stable training.

CFM vs. Diffusion (DDPM)We further compare our chosen

Continuous Flow Matching (CFM) backbone against a standard

Denoising Diffusion Probabilistic Model (DDPM). We replaced CFM

with DDPM while keeping other components unchanged. Both

models were evaluated using a fixed budget of 50 sampling steps to

reflect a computationally efficient inference scenario. As shown in

Table 2, CFM consistently achieves lower RMSE across both datasets

and splits under this constraint. Theoretically, CFM learns straighter

optimal transport trajectories in the latent space compared to the

stochastic paths of diffusion models. This property enables faster

convergence and more accurate weight generation even with fewer

sampling steps (50 steps).

5 Related work
5.1 Modeling of Network Dynamics
Data-driven modeling of complex network dynamics, particularly

with Graph Neural Networks (GNNs), has become a prominent re-

search direction. Foundational models like STGCN [45] and Graph

WaveNet [43] established effective frameworks for spatio-temporal

forecasting by integrating graph convolutions with temporal mod-

eling. Subsequent research has advanced this field by incorporating

more sophisticated mechanisms, such as using Neural Ordinary

Differential Equations (ODEs) to capture continuous-time dynamics

[48], or designing specific encoders to handle dynamic topologies

and generalize across different environments [15, 16].

However, a fundamental challenge for these models is gener-

alizing to unseen dynamic regimes. To address this, one line of

work focuses on building large-scale, "one-for-all" foundation mod-

els that train on diverse data [24, 37]. While powerful, they often

sacrifice the specialized accuracy required for specific dynamic

conditions. Another prominent approach leverages meta-learning

to quickly adapt a base model to new environments [6, 30]. Despite

their adaptability, these methods typically require at least a small

amount of trajectory data from the target environment for fine-

tuning, precluding their use in true zero-shot scenarios. Our work

targets this critical gap.

5.2 Generative Models for Network Weights
Generating neural network weights is an emerging paradigm with

significant potential for generalization [42]. This area has evolved

along several fronts. One initial line of work focused on generat-

ing weights to accelerate or improve the training process itself,

effectively replacing hand-crafted initializations [10, 36].

More recent studies, closer to our own, leverage conditional gen-

erative models like diffusion to produce weights tailored for general-

ization. For instance, Yuan et al. [47] use an urban knowledge graph

as a prompt to generate spatio-temporal models for unseen cities.

Others have integrated weight generation into the meta-learning

loop, replacing gradient-based inner-loop [49] , or proposed con-

trollable frameworks like Paragon [38] , which employs parameter

diffusion for test-time adaptation . While these methods represent

significant progress, their zero-shot performance is often limited,

as many still necessitate post-generation finetuning.

A potential reason for this limitation lies in the representation of

the weights themselves. Most existing methods treat the weights as

a simple flat vector, disrupting the network’s inherent architectural

inductive biases and making the distribution harder for a generative

model to learn. To address this Deep Weight Flow [12] applies re-

basing techniqueswithin a FlowMatching framework to account for

permutation symmetries, generating high- accuracy weights that do

not require fine-turning. In contrast, our work introduces two key

innovations: 1) We employ a novel weight sequence tokenizer that

preserves the computational structure of the network, providing

a more meaningful representation for the generative model. 2) By

synergistically combining a VAE and conditional flow matching,

we directly learn a smooth manifold of expert weights, enabling

truly zero-shot, single-pass generation of high-performance models

without any subsequent tuning.

6 Conclusion
This work introduced FNFM, a novel generative framework that

successfully addresses the critical challenge of zero-shot prediction

for network dynamics. Recognizing that dynamics are highly sensi-

tive to their governing coefficients, we proposed a paradigm shift:

from directly predicting trajectories to generating the complete

weights of a specialized forecaster model itself. Our methodology

operationalizes this concept through a synergistic combination of

a variational autoencoder and a conditional flow matching model.

The VAE first learns a compact and smooth latent manifold of expert

model weights, after which the CFM framework learns to map any

environmental coefficient to a specific location on this manifold.

This mechanism enables the instantaneous, single-pass generation

of tailored models for unseen environments, demonstrating robust

generalization without any need for finetuning.

A current limitation of FNFM is that our current framework

assumes a static network topology; extending FNFM to handle

dynamic graphs where nodes and edges evolve over time is a critical

next step.

Zero-Shot Forecasting of Network Dynamics through Weight Flow Matching WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

Acknowledgments
This workwas supported by the Science and Technology Innovation

Program of Xiongan New Area under Grant No. 2025XAGG0041;

and the National Natural Science Foundation of China under Grant

No. U23B2030.

References
[1] Linda JS Allen. 1994. Some discrete-time SI, SIR, and SIS epidemic models.

Mathematical biosciences 124, 1 (1994), 83–105.
[2] Alexandre Bovet and Hernán A Makse. 2019. Influence of fake news in Twitter

during the 2016 US presidential election. Nature communications 10, 1 (2019), 7.
[3] Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. 2023. Flow matching in

latent space. arXiv preprint arXiv:2307.08698 (2023).
[4] Jingtao Ding, Yu Zheng, Huandong Wang, Carlo Vittorio Cannistraci, Jianxi

Gao, Yong Li, and Chuan Shi. 2025. Artificial Intelligence for Complex Network:

Potential, Methodology and Application. In Companion Proceedings of the ACM
on Web Conference 2025 (Sydney NSW, Australia) (WWW ’25). Association for

Computing Machinery, New York, NY, USA, 5–8. doi:10.1145/3701716.3715857

[5] Neil M Ferguson, Daniel Laydon, Gemma Nedjati-Gilani, Natsuko Imai, Kylie

Ainslie, Marc Baguelin, Sangeeta Bhatia, Adhiratha Boonyasiri, Zulma Cucunubá,

Gina Cuomo-Dannenburg, et al. 2020. Report 9: Impact of non-pharmaceutical
interventions (NPIs) to reduce COVID19 mortality and healthcare demand. Vol. 16.
Imperial College London London.

[6] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-

Learning for Fast Adaptation of Deep Networks. In Proceedings of the 34th In-
ternational Conference on Machine Learning - Volume 70 (ICML’17). JMLR.org,

Sydney, NSW, Australia, 1126–1135.

[7] Richard FitzHugh. 1961. Impulses and Physiological States in Theoretical Models

of Nerve Membrane. Biophysical Journal 1, 6 (1961), 445–466. doi:10.1016/S0006-
3495(61)86902-6

[8] Jay W Forrester. 1970. Urban dynamics. IMR; Industrial Management Review
(pre-1986) 11, 3 (1970), 67.

[9] Jesús Gómez-Gardeñes, David Soriano-Panos, and Alex Arenas. 2018. Critical

regimes driven by recurrent mobility patterns of reaction–diffusion processes in

networks. Nature Physics 14, 4 (2018), 391–395.
[10] Yifan Gong, Zheng Zhan, Yanyu Li, Yerlan Idelbayev, Andrey Zharkov, Kfir

Aberman, Sergey Tulyakov, Yanzhi Wang, and Jian Ren. 2024. Efficient Training

with Denoised Neural Weights. In European Conference on Computer Vision. 18–
34.

[11] Adam Goodge, Wee Siong Ng, Bryan Hooi, and See Kiong Ng. 2025. Spatio-

temporal foundation models: Vision, challenges, and opportunities. arXiv preprint
arXiv:2501.09045 (2025).

[12] Saumya Gupta, Scott Biggs, Moritz Laber, Zohair Shafi, Robin Walters, and Ayan

Paul. 2026. DeepWeightFlow: Re-Basined Flow Matching for Generating Neural

Network Weights. arXiv:2601.05052 [cs.LG] https://arxiv.org/abs/2601.05052

[13] M Elizabeth Halloran, Neil M Ferguson, Stephen Eubank, Ira M Longini Jr,

Derek AT Cummings, Bryan Lewis, Shufu Xu, Christophe Fraser, Anil Vullikanti,

Timothy C Germann, et al. 2008. Modeling targeted layered containment of an

influenza pandemic in the United States. Proceedings of the National Academy of
Sciences 105, 12 (2008), 4639–4644.

[14] Chittaranjan Hens, Uzi Harush, Simi Haber, Reuven Cohen, and Baruch Barzel.

2019. Spatiotemporal Signal Propagation in Complex Networks. Nature Physics
15, 4 (April 2019), 403–412. doi:10.1038/s41567-018-0409-0

[15] Zijie Huang, Yizhou Sun, and Wei Wang. 2021. Coupled graph ode for learning

interacting system dynamics. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining. 705–715.

[16] Zijie Huang, Yizhou Sun, and Wei Wang. 2023. Generalizing graph ode for

learning complex system dynamics across environments. In Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 798–809.

[17] Iacopo Iacopini, Márton Karsai, and Alain Barrat. 2024. The temporal dynamics

of group interactions in higher-order social networks. Nature Communications
15, 1 (2024), 7391.

[18] Marko Jusup, Petter Holme, Kiyoshi Kanazawa, Misako Takayasu, Ivan Romić,

Zhen Wang, Sunčana Geček, Tomislav Lipić, Boris Podobnik, Lin Wang, et al.

2022. Social physics. Physics Reports 948 (2022), 1–148.
[19] Diederik P Kingma. 2014. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980 (2014).
[20] Miltiadis Kofinas, Boris Knyazev, Yan Zhang, Yunlu Chen, Gertjan J. Burgh-

outs, Efstratios Gavves, Cees G. M. Snoek, and David W. Zhang. 2024. Graph

Neural Networks for Learning Equivariant Representations of Neural Networks.

arXiv:2403.12143 [cs] doi:10.48550/arXiv.2403.12143

[21] David Lazer, Alex Pentland, Lada Adamic, Sinan Aral, Albert-László Barabási,

Devon Brewer, Nicholas Christakis, Noshir Contractor, James Fowler, Myron

Gutmann, et al. 2009. Computational social science. Science 323, 5915 (2009),
721–723.

[22] Ruikun Li, Jiazhen Liu, Huandong Wang, Qingmin Liao, and Yong Li. 2025.

WeightFlow: Learning Stochastic Dynamics via Evolving Weight of Neural Net-

work. arXiv preprint arXiv:2508.00451 (2025).
[23] Ruikun Li, Huandong Wang, Jingtao Ding, Yuan Yuan, Qingmin Liao, and Yong

Li. 2025. Predicting Dynamical Systems across Environments via Diffusive Model

Weight Generation. arXiv preprint arXiv:2505.13919 (2025).
[24] Ruikun Li, Huandong Wang, Jinghua Piao, Qingmin Liao, and Yong Li. 2024.

Predicting long-term dynamics of complex networks via identifying skeleton in

hyperbolic space. In Proceedings of the 30th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining. 1655–1666.

[25] Zhonghang Li, Long Xia, Lei Shi, Yong Xu, Dawei Yin, and Chao Huang. 2024.

Opencity: Open spatio-temporal foundation models for traffic prediction. arXiv
preprint arXiv:2408.10269 (2024).

[26] Yuxuan Liang, Haomin Wen, Yutong Xia, Ming Jin, Bin Yang, Flora Salim, Qing-

song Wen, Shirui Pan, and Gao Cong. 2025. Foundation models for spatio-

temporal data science: A tutorial and survey. In Proceedings of the 31st ACM
SIGKDD Conference on Knowledge Discovery and Data Mining V. 2. 6063–6073.

[27] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le.

2022. Flow matching for generative modeling. arXiv preprint arXiv:2210.02747
(2022).

[28] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt

Le. 2023. Flow Matching for Generative Modeling. arXiv:2210.02747 [cs] doi:10.

48550/arXiv.2210.02747

[29] Jiazhen Liu, Shengda Huang, Nathaniel M Aden, Neil F Johnson, and Chaoming

Song. 2023. Emergence of polarization in coevolving networks. Physical Review
Letters 130, 3 (2023), 037401.

[30] Bin Lu, Xiaoying Gan, Weinan Zhang, Huaxiu Yao, Luoyi Fu, and Xinbing Wang.

2022. Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge

Transfer. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining (Kdd ’22). Association for Computing Machinery, New

York, NY, USA, 1162–1172. doi:10.1145/3534678.3539281

[31] Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-

Eijnden, and Saining Xie. 2024. Sit: Exploring flow and diffusion-based generative

models with scalable interpolant transformers. In European Conference on Com-
puter Vision. Springer, 23–40.

[32] Fanhui Meng, Jiarong Xie, Jiachen Sun, Cong Xu, Yutian Zeng, Xiangrong Wang,

Tao Jia, Shuhong Huang, Youjin Deng, and Yanqing Hu. 2025. Spreading dynamics

of information on online social networks. Proceedings of the National Academy
of Sciences 122, 4 (2025), e2410227122.

[33] Zheyi Pan, Yuxuan Liang, Weifeng Wang, Yong Yu, Yu Zheng, and Junbo Zhang.

2019. Urban traffic prediction from spatio-temporal data using deepmeta learning.

In Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining. 1720–1730.

[34] Zheyi Pan, Wentao Zhang, Yuxuan Liang, Weinan Zhang, Yong Yu, Junbo Zhang,

and Yu Zheng. 2020. Spatio-temporal meta learning for urban traffic prediction.

IEEE Transactions on Knowledge and Data Engineering 34, 3 (2020), 1462–1476.

[35] Huiling Qin, Songyu Ke, Xiaodu Yang, Haoran Xu, Xianyuan Zhan, and Yu Zheng.

2021. Robust spatio-temporal purchase prediction via deep meta learning. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 4312–4319.
[36] Konstantin Schürholt, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth.

2022. Hyper-representations as generative models: Sampling unseen neural

network weights. Advances in Neural Information Processing Systems 35 (2022),
27906–27920.

[37] Zezhi Shao, Zhao Zhang, FeiWang, and Yongjun Xu. 2022. Pre-Training Enhanced

Spatial-Temporal Graph Neural Network forMultivariate Time Series Forecasting.

In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (Kdd ’22). Association for Computing Machinery, New York, NY,

USA, 1567–1577. doi:10.1145/3534678.3539396

[38] Chenglei Shen, Jiahao Zhao, Xiao Zhang, Weijie Yu, Ming He, and Jianping

Fan. 2024. Generating Model Parameters for Controlling: Parameter Diffusion

for Controllable Multi-Task Recommendation. arXiv preprint arXiv:2410.10639
(2024).

[39] Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei

Zhang, Jarrid Rector-Brooks, Guy Wolf, and Yoshua Bengio. 2024. Improving and

Generalizing Flow-Based Generative Models with Minibatch Optimal Transport.

Transactions on Machine Learning Research (2024).

[40] Alessandro Vespignani. 2012. Modelling dynamical processes in complex socio-

technical systems. Nature physics 8, 1 (2012), 32–39.
[41] Huandong Wang, Huan Yan, Can Rong, Yuan Yuan, Fenyu Jiang, Zhenyu Han,

Hongjie Sui, Depeng Jin, and Yong Li. 2024. Multi-scale Simulation of Complex

Systems: A Perspective of Integrating Knowledge and Data. ACM Comput. Surv.
56, 12, Article 307 (Oct. 2024), 38 pages. doi:10.1145/3654662

[42] Kai Wang, Dongwen Tang, Boya Zeng, Yida Yin, Zhaopan Xu, Yukun Zhou, Zelin

Zang, Trevor Darrell, Zhuang Liu, and Yang You. 2024. Neural network diffusion.

arXiv preprint arXiv:2402.13144 (2024).
[43] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019.

Graph WaveNet for Deep Spatial-Temporal Graph Modeling. In Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19.

https://doi.org/10.1145/3701716.3715857
https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.1016/S0006-3495(61)86902-6
https://arxiv.org/abs/2601.05052
https://arxiv.org/abs/2601.05052
https://doi.org/10.1038/s41567-018-0409-0
https://arxiv.org/abs/2403.12143
https://doi.org/10.48550/arXiv.2403.12143
https://arxiv.org/abs/2210.02747
https://doi.org/10.48550/arXiv.2210.02747
https://doi.org/10.48550/arXiv.2210.02747
https://doi.org/10.1145/3534678.3539281
https://doi.org/10.1145/3534678.3539396
https://doi.org/10.1145/3654662

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Shihe Zhou, Ruikun Li, Huandong Wang, and Yong Li

International Joint Conferences on Artificial Intelligence Organization, 1907–

1913. doi:10.24963/ijcai.2019/264

[44] Zhouzheng Xu, Yuxing Wu, Hang Zhou, Chaofan Fan, Bingyi Li, Kaiyue Liu,

Yaqin Ye, Shunping Zhou, and Shengwen Li. 2025. Spatio-Temporal Meta-learning

for Trajectory Representation Learning. Knowledge-Based Systems (2025), 114141.
[45] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-Temporal Graph Con-

volutional Networks: A Deep Learning Framework for Traffic Forecasting. In

Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18. International Joint Conferences on Artificial Intelligence

Organization, 3634–3640. doi:10.24963/ijcai.2018/505

[46] Yuan Yuan, Chonghua Han, Jingtao Ding, Depeng Jin, and Yong Li. 2024. Urbandit:

A foundation model for open-world urban spatio-temporal learning. arXiv
preprint arXiv:2411.12164 (2024).

[47] Yuan Yuan, Chenyang Shao, Jingtao Ding, Depeng Jin, and Yong Li. 2024. Spatio-

Temporal Few-Shot Learning via Diffusive Neural Network Generation. In The
Twelfth International Conference on Learning Representations.

[48] Chengxi Zang and Fei Wang. 2020. Neural dynamics on complex networks.

In Proceedings of the 26th ACM SIGKDD international conference on knowledge
discovery & data mining. 892–902.

[49] Baoquan Zhang, Chuyao Luo, Demin Yu, Xutao Li, Huiwei Lin, Yunming Ye,

and Bowen Zhang. 2024. Metadiff: Meta-learning with conditional diffusion for

few-shot learning. In Proceedings of the AAAI conference on artificial intelligence.
16687–16695.

[50] Muhua Zheng, Linyuan Lü, and Ming Zhao. 2013. Spreading in online social net-

works: The role of social reinforcement. Physical Review E—Statistical, Nonlinear,
and Soft Matter Physics 88, 1 (2013), 012818.

A Algorithmic Details

Algorithm 1 CFM for Conditional Latent Vector Generation

Require: Pre-computed latent vectors and conditions Z =

{(z(𝑒) , 𝑒)}𝑒∈𝐸𝑠𝑒𝑒𝑛
Ensure: Trained CFM network 𝑣𝜉

// Stage 1: Training the Conditional Vector Field
procedure TrainCFM(Z)

Initialize CFM network parameters 𝜉 .

for each training step do
Sample batch {(z(𝑖)

1
, 𝑒 (𝑖))}𝐵

𝑖=1
fromZ.

Sample priors z(𝑖)
0
∼ N(0, 𝐼) and times 𝑡 (𝑖) ∼ U(0, 1).

z(𝑖)𝑡 ← (1 − 𝑡 (𝑖))z
(𝑖)
0
+ 𝑡 (𝑖)z(𝑖)

1
⊲ Construct path points

u(𝑖) ← z(𝑖)
1
− z(𝑖)

0
⊲ Define target velocities

L𝐶𝐹𝑀 ← 1

𝐵

∑𝐵
𝑖=1 ∥𝑣𝜉 (z

(𝑖)
𝑡 , 𝑡 (𝑖) , 𝑒 (𝑖)) − u(𝑖) ∥2 ⊲ Loss

Update 𝜉 by descending the gradient of L𝐶𝐹𝑀 .

end for
end procedure

// Stage 2: Generating Latent Vectors via Inference
procedure GenerateLatentVector(𝑣𝜉 , 𝑒new, 𝑁)

Sample prior z0 ∼ N(0, 𝐼).
for 𝑘 = 0, . . . , 𝑁 − 1 do

z𝑘+1 ← z𝑘 + 1

𝑁
· 𝑣𝜉 (z𝑘 , 𝑘/𝑁, 𝑒new) ⊲ Forward Euler step

end for
return z𝑁 ⊲ Latent vector for new environment

end procedure

B Additional Experiments on
FitzHugh-Nagumo Dynamics

. Following the reviewers’ suggestion, we additionally evaluate

our method on the FitzHugh–Nagumo (FHN) dynamics, a classical

nonlinear system characterized by high-frequency oscillations and

fast–slow interactions. Compared to the SIS and Hill dynamics con-

sidered in the main paper, FHN represents a different dynamical

regime and is therefore reported here as a supplementary experi-

ment. We empirically observe that STGCN may exhibit degraded

predictive performance on FHN, possibly due to its limitedmodel ca-

pacity and temporal inductive bias when modeling high-frequency

oscillatory dynamics. To ensure a fair comparison across meth-

ods, we adopt Graph WaveNet[43] as the backbone model for all

approaches in this experiment.

The results are summarized in Table 3. This experiment is in-

tended to serve as a supplementary analysis and does not alter the

main conclusions drawn from the SIS and Hill dynamics. The results

indicate that our method achieves competitive performance relative

to existing baselines under this additional dynamical setting.

Table 3: RMSE on the FHN dynamics using Graph WaveNet
as the backbone model.

Method In-domain Out-domain

STGCN 0.0578 0.0909

STEP 0.0513 0.0475

STGFSL 0.1520 0.1160

GPD 0.5726 0.8553

Ours 0.0180 0.0193

Per-Env 0.0112 0.0153

C Dataset Details
C.1 Network Dynamics
Hill dynamics [14] describes regulatory interactions in sub-cellular
networks, with the following governing equations:

𝑑𝑥𝑖

𝑑𝑡
= −𝐵𝑖𝑥𝑎𝑖 +

𝑁∑︁
𝑗=1

𝐴𝑖 𝑗

𝑥ℎ
𝑗

1 + 𝑥ℎ
𝑗

, (15)

where 𝑥𝑖 (𝑡) is the abundance of protein 𝑖 , 𝐴𝑖 𝑗 is the network topol-

ogy, and the exponents 𝑎 and ℎ control the self-dynamics and regu-

latory interaction, respectively.

SIS dynamics [1, 40] models an epidemic process on a network

where nodes can be infected by their neighbors and recover to a sus-

ceptible state. The governing equation for the infection probability

𝑥𝑖 of each node 𝑖 is:

𝑑𝑥𝑖

𝑑𝑡
= −𝛾𝑥𝑖 + 𝛽 (1 − 𝑥𝑖)

𝑁∑︁
𝑗=1

𝐴𝑖 𝑗𝑥 𝑗 , (16)

where 𝑥𝑖 is the state of node 𝑖 , 𝐴𝑖 𝑗 is the adjacency matrix repre-

senting the network topology, 𝛾 is the recovery rate, and 𝛽 is the

infection rate per contact.

FitzHugh-Nagumo (FHN) dynamics [7, 24] is a simplified

model of neuronal excitable systems. In this networked version,

each node 𝑖 is described by a fast voltage variable 𝑥𝑖,1 and a slow

recovery variable 𝑥𝑖,2. Based on the implementation, the governing

equations are:{
𝑑𝑥𝑖,1
𝑑𝑡

= 𝑥𝑖,1 − 𝑥3𝑖,1 − 𝑥𝑖,2 +
𝑐
𝑘𝑖

∑
𝑗 𝐴𝑖 𝑗 (𝑥 𝑗,1 − 𝑥𝑖,1)

𝑑𝑥𝑖,2
𝑑𝑡

= 𝑒 + 𝑓 𝑥𝑖,1 − 𝛾𝑥𝑖,2

https://doi.org/10.24963/ijcai.2019/264
https://doi.org/10.24963/ijcai.2018/505

Zero-Shot Forecasting of Network Dynamics through Weight Flow Matching WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

Table 4: Simulation settings of each networked system.

Hill (BA) Epidemic Twitter Collab FHN (BA)

Dynamics Hill SIS SIS SIS FHN

Node Num 300 1,174 761 1,511 300

Edge Num 1,475 1,417 1,029 4,273 596

Avg Degree 9.83 2.41 2.70 5.66 3.97

Time Unit (s) 0.04 0.1 0.1 0.02 0.05

Time Length (s) 600.0 50.0 50.0 10.0 300.0

Environments 𝑎 ∈ [0.5, 0.6, 10], ℎ ∈ [0.3, 2.0, 10], 𝐵 ∈ [0.2, 0.9, 4] 𝛽 ∈ [0.02, 0.08, 11], 𝛾 ∈ [0.01, 0.12, 11] 𝛽 ∈ [0.02, 0.04, 11], 𝛾 ∈ [0.01, 0.12, 11] 𝛽 = 0.02, 𝛾 ∈ [0.2, 2.0, 40] 𝑒 ∈ [0.0, 0.6, 20], 𝑓 ∈ [0.0, 1.0, 20]

where 𝐴𝑖 𝑗 is the adjacency matrix and 𝑘𝑖 =
∑
𝑗 𝐴𝑖 𝑗 is the degree of

node 𝑖 . The parameter 𝑐 represents the coupling weight, while 𝑒
and 𝑓 are parameters controlling the system’s limit cycle behavior.
The constant 𝛾 denotes the decay rate of the inhibitor variable.

C.2 Simulation and Data Splitting
We employ Euler’s method to numerically solve the dynamics of the

aforementioned systems for each topology, generating evolutionary

trajectories as the datasets. To create challenging generalization

tasks, we vary the key dynamic coefficients to form distinct training

and testing environments.

For the Hill dataset, the out-of-domain (OOD) environments

are created by sampling coefficients from the boundaries of the

training ranges; specifically, setting parameter 𝑎 = 0.6 (from a

training range of [0.5, 0.6]) and sampling parameter ℎ from the sub-

range [1.2580, 2.0000] (from a full training range of [0.33, 2.00]).
For the Epidemic and Twitter datasets, the parameter 𝛽 is var-

ied across its full range while the coefficient 𝛾 is split. For Epidemic,

the training range for 𝛾 is [0.0200, 0.0330], while the OOD test set

extrapolates to [0.0360, 0.0390]. For Twitter, the training range for

𝛾 is [0.0200, 0.0740], with its OOD test set in the extrapolated range

of [0.0740, 0.0800].
For the Collab dataset, the parameter 𝛽 is fixed at 0.02, while

the training environments use a 𝛾 range of [0.2000, 0.4264]. The
OOD test set for this dataset involves a distributional shift to a

completely separate, non-overlapping range of [0.4728, 0.9302].
For the FHN dataset, the training and OOD environments are

partitioned based on the relationship between parameters 𝑒 and

𝑓 . The training and in-distribution test sets are sampled from the

regions satisfying |𝑓 − 𝑒 | > 0.2 (specifically 𝑓 > 𝑒 + 0.2 or 𝑓 <

𝑒 − 0.2) using a 7 : 3 split. To evaluate generalization, the OOD

test set is constructed from the complementary "gap" region where

|𝑓 − 𝑒 | ≤ 0.2, representing a dynamical transition zone excluded

from the training phase.

D Baseline Descriptions
We compare our proposed method against the following baselines:

• STGCN [45]: A deep learning model that combines graph

convolutions for spatial dependencies with gated temporal

convolutions for temporal dynamics, jointly modeling graph-

structured time series.

• STEP [37]: A novel framework that enhances spatiotempo-

ral graph neural networks by using a pretraining model to

learn temporal patterns and generate segment-level repre-

sentations.

• STGFSL [30]: A model-agnostic, spatiotemporal graph few-

shot learning framework designed for scenarios with limited

data.

• GPD [47]: A generative pretraining framework that pretrains

a diffusion model to generate customized parameters for

spatiotemporal prediction networks.

• Paragon [38]: A controllable learning approach that uti-

lizes parameter diffusion to adapt models to varying task

requirements. It employs a diffusion-based generator to pro-

duce optimized model parameters in a test-time adaptation

manner, eliminating the need for retraining when objectives

change.

• One-per-Env STGCN [45]: A set of expert STGCN mod-

els trained specifically for each environment, serving as a

reference for the upper bound of performance.

E Software and Hardware Environment
We implement FNFM in PyTorch and employ the open-source avail-

able implementations with default parameters for baselines. All

experiments were conducted on the NVIDIA GeForce RTX 2080Ti

GPU. For all datasets and baselines, we set the batch size to 64 and

trained for 500 epochs with a learning rate of 0.0001.

F Model Configuration
Weight Variational Autoencoder. Our Weight Variational Autoen-

coder (VAE) is built upon a Transformer architecture designed to

process the sequence of model weights. The VAE’s internal model

dimension (𝑑𝑚𝑜𝑑𝑒𝑙) is set to 128. The Transformer architecture con-

sists of 2 layers, each equipped with 8 attention heads. The encoder

network compresses the input weight token sequence into a 32-

dimensional latent space. For training, we used the Adam optimizer

with an initial learning rate of 1e-4 and a weight decay of 3e-9,

managed by a OneCycleLR scheduler. The batch size was set to 32,

and the Kullback-Leibler (KL) divergence term in the ELBO loss

was weighted by a 𝛽 factor of 1e-6.

Conditional Flow Matching Model. The conditional vector field
(𝑣𝜉) for the Flow Matching process is also implemented using a

Transformer-based architecture. This network operates on the 32-

dimensional latent space, taking a latent vector as input and out-

putting a velocity vector of the same dimension. The architecture

is composed of 4 Transformer layers, each with 2 attention heads.

A dropout rate of 0.1 is applied during training for regularization.

The model is conditioned on external environmental information,

which is provided through dedicated knowledge graph and time

embeddings.

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Problem Definition
	2.2 Conditional Flow Matching

	3 Methodology
	3.1 Collecting Expert Model Weights
	3.2 Weight Sequence Tokenizer
	3.3 Weight Variational Autoencoder
	3.4 Conditional Flow Matching

	4 Experiment
	4.1 Evaluation Protocol
	4.2 Implementation Details
	4.3 Datasets
	4.4 Baselines
	4.5 Main Results
	4.6 Explainability
	4.7 Case Study
	4.8 Robustness
	4.9 Ablation Study

	5 Related work
	5.1 Modeling of Network Dynamics
	5.2 Generative Models for Network Weights

	6 Conclusion
	Acknowledgments
	References
	A Algorithmic Details
	B Additional Experiments on FitzHugh-Nagumo Dynamics
	C Dataset Details
	C.1 Network Dynamics
	C.2 Simulation and Data Splitting

	D Baseline Descriptions
	E Software and Hardware Environment
	F Model Configuration

