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Abstract

Forecasting state evolution of network systems, such as the spread
of information on social networks, is significant for effective pol-
icy interventions and resource management. However, the under-
lying propagation dynamics constantly shift with new topics or
events, which are modeled as changing coefficients of the under-
lying dynamics. Deep learning models struggle to adapt to these
out-of-distribution shifts without extensive new data and retrain-
ing. To address this, we present Zero-Shot Forecasting of Network
Dynamics through Weight Flow Matching (FNFM), a generative,
coefficient-conditioned framework that generates dynamic model
weights for an unseen target coefficient, enabling zero-shot fore-
casting. Our framework utilizes a Variational Encoder to summarize
the forecaster weights trained in observed environments into com-
pact latent tokens. A Conditional Flow Matching (CFM) module
then learns a continuous transport from a simple Gaussian distri-
bution to the empirical distribution of these weights, conditioned
on the dynamical coefficients. This process is instantaneous at
test time and requires no gradient-based optimization. Across var-
ied dynamical coefficients, empirical results indicate that FNFM
yields more reliable zero-shot accuracy than baseline methods,
particularly under pronounced coefficient shift. Code is available:
https://github.com/tsinghua-fib-lab/FNFM.
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1 Introduction

The propagation of behaviors, evolution of cultural norms, and
even the formation of consensus on social networks can all be mod-
eled as spatiotemporal dynamic processes among individuals on
complex networks [18, 24, 50]. Recent advances in artificial intelli-
gence have further expanded our capacity to represent and control
these empirical networked systems across diverse domains, from
social media to urban environments [4]. Accurately forecasting
the evolution of these dynamics is crucial for understanding so-
ciophysical phenomena and for key applications such as curbing
the spread of misinformation [2, 17, 32]. However, such tasks often
involve cross-scale interactions where unknown mechanisms and
high computational costs necessitate the integration of domain
knowledge with data-driven simulation [41]. The complexity of
network dynamics stems from the intricate interplay between net-
work topology and the parameters of the underlying dynamics.
Even with identical topologies and governing equations, subtle
shifts in dynamic parameters can push a system toward entirely
different critical regimes, fundamentally altering its propagation
behavior [9, 14, 29, 40].

As we demonstrate on a social media information propagation
model (Figure 1a), a mere difference in popularity coefficients (de-
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ent outcomes: rapid decay versus viral spread. This phenomenon
precisely captures the disparity in how opinions on different topics
propagate through cyberspace, while also posing a stringent chal-
lenge to the generalization capability of predictive models: they
must be able to accurately forecast dynamic evolution in new envi-
ronments.

To train generalizable models from a limited set of observed
environments, existing work predominantly follows two paths. The
first path involves building "one-for-all" spatio-temporal foundation
models, attempting to train a universal predictor by aggregating

fine as £) leads two propagation trajectories toward starkly differ-
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Figure 1: The generalization trap in network dynamics. (a) A generalist model trained on mixed data struggles to outperform
specialized expert models. Network dynamics adopts the classic information dissemination model [40], in which the dynamic
behavior is governed by the popularity coefficient. (b) Training and testing performance on cross-environment propagation
dynamics, where e4 and ep are propagation processes with different coefficients.

data from all environments [11, 25, 26, 46]. However, these mono-
lithic models, guided by the principle of empirical risk minimization,
often achieve generalization at the expense of specialized perfor-
mance, leading to performance on specific tasks that can be inferior
to that of much smaller expert models (as shown in Figure 1b). The
second path is based on meta-learning approaches, which rapidly
adapt a model to new environments, thereby reducing data depen-
dency [33-35, 44]. Nonetheless, meta-learning frameworks still rely
on the availability of at least a small amount of historical trajectory
data from the target environment for finetuning. In practice, this
precondition does not hold in many high-value predictive scenarios
[5, 8, 13, 21]. In such scenarios, a decision-maker might need to
predict the potential consequences of a hypothetical environmen-
tal coefficient (e.g., the adoption rate of a new policy). Therefore,
how to perform reliable zero-shot prediction for network dynam-
ics under new environmental coefficients remains a critical open
question.

In this paper, we introduce Forecasting of Network Dynamics
through Weight Flow Matching (FNFM), a novel generative frame-
work that addresses the challenge of zero-shot prediction for net-
work dynamics across varying environments. Instead of predicting
trajectories directly, FNFM learns to generate the complete weights
of a specialized forecaster model tailored to any given environmen-
tal coefficients. FNFM first collects a diverse set of expert weights
from various seen environments. It then employs a Variational
Autoencoder (VAE) to learn a compact and smooth latent mani-
fold of these weights. Finally, a Conditional Flow Matching (CFM)
model is trained to map environmental coefficients to this manifold,
enabling the conditional synthesis of new latent vectors. When in-
ferencing, this process is instantaneous and requires no finetuning,

making FNFM a powerful tool for forecasting for novel scenarios
on demand.
Our main contributions are summarized as follows:

e We propose a new paradigm for zero-shot forecasting of
network dynamics, shifting the objective from trajectory
prediction to the direct generation of model weights.

e We introduce FNFM, a novel framework that operationalizes
this paradigm by synergistically combining a VAE and a Con-
ditional Flow Matching model to learn the complex mapping
from dynamic coefficients to optimal model weights.

e We conduct extensive experiments demonstrating that FNFM
significantly outperforms state-of-the-art baselines by an av-
erage of 8.30% in zero-shot forecasting scenarios, showcasing
its superior generalization.

2 Preliminary
2.1 Problem Definition

We consider a dynamic process evolving over a network of n nodes,
where each node possesses a d-dimensional feature vector. A core
challenge in forecasting such dynamics is that while different envi-
ronments may share the same underlying network topology and
governing equations, they are distinguished by a set of dynamic
coefficients. These coefficients, denoted by an environmental vector
e € E, critically alter the system’s behavior, leading to fundamen-
tally different temporal evolution patterns.

Formally, given an adjacency matrix A € R"*" and the environ-
mental coefficient vector e, the network dynamics can be described
by a system of ordinary differential equations (ODEs):

dX(t)

T F(X(t),A e)
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where X(t) = (x1(t),...,xn(t))T represents the state of all nodes
at time ¢, and the nonlinear function F is parameterized by the
environment e.

Our task is zero-shot forecasting. We assume access to a set of
historical trajectories collected from a number of seen environments,
Eseen C E. The objective is to train a model that can accurately
predict the future trajectory for a previously unseen environment
eunseen € Eunseen, Where the seen and unseen environment sets are
disjoint (Egeen NEynseen = 0). Specifically, for a given trajectory, the
forecasting task is defined as predicting a future window of states
Xt+1:4+N given an observed historical window X;_p11.t, where H
is the look-back window size and N is the prediction horizon.

2.2 Conditional Flow Matching

Flow Matching is a powerful and recently developed generative
modeling framework designed to learn a transformation from a
simple prior distribution, pg, to a complex data distribution, p;
[27, 28, 31]. This is achieved by training a parameterized, time-
dependent vector field, Ug(x, t), that learns to match a target veloc-
ity field guiding the transformation. Conditional Flow Matching
(CFM) extends this concept by allowing the transformation to be
dependent on a conditioning variable, c. The goal is thus to learn a
map from py to a conditional target distribution p; (x]|c).

While various path definitions are possible, a common and effec-
tive approach is to use a straight-line path between samples from
the source and target distributions [39]. Specifically, for a pair of
samples xo ~ po and x1 ~ p1(+|c), the probability path p; (x|xo, x1)
is defined as a Gaussian bridge:

pr(xlxo, x1) = N(x | (1= £)x0 + tx1,0%), 1

where t € [0,1] and 6 is a small variance. A key advantage of this
formulation is that the corresponding target velocity field simplifies
to a constant vector:

ug (x|x0, x1) = x1 — xp. (2)

This provides a direct and stable regression target for the con-
ditional neural network vg(x, ¢, c). The network’s weights ¢ are
optimized by minimizing the following loss function:

Lerm(8) = Ee e xox [||U§ ((1=t)x + txy, t,¢) — (x1 — xO)”Z] ,
®)
where the expectation is taken over time t ~ U(0, 1), the con-
ditioning variable c, prior samples xp ~ po, and target samples
x1 ~ p1(x|c). To further improve efficiency, modern implementa-
tions often pair samples xo and x; using mini-batch optimal trans-
port (OT) plans, resulting in shorter and more direct flows [39].

3 Methodology

To address the challenge of zero-shot forecasting, we introduce
Forecasting of Network Dynamics through Weight Flow Matching
(FNFM), a novel generative framework. The core paradigm of FNFM
shifts from directly predicting dynamic trajectories to generating
the weights of a specialized forecaster model tailored to any given
environmental condition. As illustrated in Figure 2, our method-
ology accomplishes this through a three-fold pipeline. FNFM first
collects weights from expert models, then uses a variational au-
toencoder to map them into a latent space, and finally trains a
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conditional flow matching model to generate latent vectors for the
zero-shot synthesis of new models.

3.1 Collecting Expert Model Weights

We conceptualize the optimized weights of an expert forecaster
trained on a single environment as a high-dimensional vector that
captures the essence of that environment’s unique network dynam-
ics. Our FNFM framework is designed to learn the joint distribution
of these weights and their corresponding environmental coeffi-
cients in a data-driven manner. Therefore, the foundational step of
our methodology is to construct a dataset of these expert weights
for all seen environments.

To achieve this, for each seen environment e € Egeep, and its
associated trajectory data X (¢), we train a dedicated forecaster to
parameterize the dynamical function Fg(+, A). While our framework
is agnostic to the specific forecaster architecture, we employ a
Spatio-Temporal Graph Convolutional Network (STGCN) [45] in
our implementation. The weights 6(©) for each expert are optimized
by minimizing a multi-step forecasting loss over sliding windows
of length H with a prediction horizon of N:

(e)
A) - Xt+l:t+N

2
@

T-H-N ()
) e
e(e) = arg mell’l EH HFQ(Xt—H+1:t’

where 0(¢) denotes the resulting weights of the expert model tai-
lored to environment e.

Each expert model is trained to converge on its specific environ-
mental data using the Adam optimizer [19]. The final collection of
optimized weights, {9(9) | e € Egeen}, serves as the target data for
the subsequent generative learning stages of our framework.

3.2 Weight Sequence Tokenizer

We treat the weights of a neural network as a novel data modality.
Fundamentally, these weights constitute a complex, structured rep-
resentation, not merely a flat vector of numbers. To make this data
compatible with powerful sequence-based models (like Transform-
ers) while preserving the network’s inherent architectural inductive
biases, we introduce a tokenization scheme guided by the data flow
through the network’s computational units.

Our process operates on the fundamental building blocks of most

neural networks: convolutional and linear layers [20, 22, 23]. For
each expert model’s weights, we decompose them layer by layer
into a sequence of meaningful tokens.
Convolutional Layers. For a convolutional layer ¢ with kernel
tensor Qp € RCoutXCinXhxXW e form one token for each output
channel. Each token aggregates all the weights responsible for
producing that single output channel’s feature map. Concretely, the
token for the o-th output channel is:

wi) = flatten(Qp,...) € REWPW foro=1,..., Cour.

Linear Layers. Similarly, for a linear layer ¢ with weight matrix
W, € RDPouxDin and bias vector b, € RDO‘“, we define one token
per output unit (neuron). This token includes all incoming weights
and the bias for that unit:

W) = [Weosbeol € RPn*1 foro=1,..., Dou.
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Figure 2: Overview of the Model Architecture. The framework comprises collecting expert model weights, tokenizing and
encoding the model weight to latent vectors and conditional flow matching, working synergistically for zero-shot weight

generation and dynamics forecasting.

This procedure losslessly transforms the entire weights 6 of a L-
layer neural network into an ordered sequence of tokens:

W w® WD Dy,

’ ? Cuut’

{W e Dout

Each token represents a self-contained computational unit, and
the sequence preserves the layer-wise structure of the original
model. This tokenized sequence serves as the direct input for our
subsequent generative modeling stage.

3.3 Weight Variational Autoencoder

To facilitate stable and effective generative learning, we first com-
press the high-dimensional weight token sequence into a smooth
and compact low-dimensional latent space [3]. We achieve this
using a purpose-built Variational Autoencoder (VAE) featuring a
Transformer-based architecture.

3.3.1 Model Architecture. The VAE consists of an encoder E that
maps a sequence of weight tokens to a latent vector z, and a decoder
D that reconstructs the token sequence from that vector.
Layer-wise Token Embedding. The raw tokens {w((,[)} from
different layers possess varying dimensionalities, which is incom-
patible with a standard Transformer. To handle this, we first employ
a set of layer-wise projection networks (MLPs), f7, to map each raw
token into a fixed-dimensional embedding space:

h(()f) — ﬁ(wgf)) c Rdmodel. (5)

Transformer Encoder. The resulting uniform-sized embeddings
are fed into a multi-block Transformer encoder. Each block applies
multi-head self-attention followed by a position-wise feed-forward

network with residual connections and layer normalization:

A = Concat(heady, .. .,headk)WO, (6)

where head; = Attention(HW?, HWK, HWY), @)
H’ = LayerNorm(H + A), (8)

Hoyyr = LayerNorm(H’ + FEN(H')). 9)

The final representation of each token is then passed through two
separate linear layers to parameterize the mean y and log-variance
log 2 of the approximate posterior distribution q4(z|lw). A latent
vector z is then sampled using the reparameterization trick.
Transformer Decoder. The decoder mirrors the encoder’s archi-
tecture. It takes the latent vector z as a global conditioning input
and reconstructs the sequence of embeddings. Finally, a set of layer-
wise output networks, gp, project the decoder’s output embeddings
from Rmodel hack to their original, layer-specific token dimensions
to produce the reconstructed weights w.

3.3.2 Training Objective. Let ¢ and i represent the learnable pa-
rameters of encoder E and decoder D. The entire VAE is trained
end-to-end by maximizing the Evidence Lower Bound (ELBO) on
the log-likelihood of the weights:

Letno (Wi 1) = Eq, sfw) [10g py (wlD)]| KL [g4(zlw) [ p(2)]

(10)
The objective consists of two key terms. The first is the reconstruc-
tion loss, which measures the fidelity between the original and
reconstructed weights, implemented as the negative mean squared
error. The second is the Kullback-Leibler (KL) regularizer, which
encourages the learned latent distribution g4 (z|w) to align with
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a simple prior p(z), typically a standard Gaussian N (0, I). This
regularization ensures that the latent space is smooth and well-
structured, which is crucial for the subsequent generative process.

Upon convergence, the trained encoder Eg provides a robust
mapping from any set of high-dimensional expert weights w to
a compact latent representation z. This collection of latent vec-
tors, {z(e) | e € Eseen}, forms the target data manifold for our
conditional flow matching module.

3.4 Conditional Flow Matching

With the VAE encoder providing a mapping to a structured latent
space, the final stage of our framework is to learn a conditional
generative model within this space. The goal is to synthesize a novel
latent vector zpe4y that corresponds to a previously unseen environ-
mental coefficient epe+y. We achieve this by training and deploying a
conditional vector field using the flow matching principles outlined
in the preliminaries.

3.4.1 Training the Conditional Vector Field. We train a time-dependent

conditional vector field, parameterized by a neural network véz(z, t,e),

to approximate the target velocity field (z(¢) — zg) defined in Equa-
tion 2. The network’s parameters ¢ are optimized by minimizing
the following objective:

Lerm(E) = Et,e,z[],z(e) [va ((1 —t)zo + tz(e), t, e) - (Z(E) - ZO)HZ] ’
(11)

where the expectation is over time ¢ ~ U(0, 1), seen environments
e ~ Egeen, prior samples zg ~ N(0,I), and their corresponding
target latent codes z(¢) = Ey (wie)).

The vector field vy is implemented using a Transformer architec-
ture. To inject the environmental information e effectively, we em-
ploy an Adaptive Layer Normalization (AdaLN) mechanism. Within
each Transformer block, the input sequence Hy, is modulated before
the self-attention layer:

AdalLN(H,, e) = y(e) © LayerNorm(H,) + f(e), (12)

where the scale y(e) and shift f(e) are vectors produced from the
environmental coefficient e by small multi-layer perceptrons. This
allows the network’s behavior to be dynamically controlled by the
target environment.

3.4.2 Zero-Shot Weight Generation via Inference. At inference time,
FNFM generates a specialized set of weights for any unseen envi-
ronment epeyy in a zero-shot fashion. This generation process is
framed as solving an ordinary differential equation (ODE) initial
value problem. Starting with a random sample zy ~ N(0,I), we
integrate the learned vector field v fromt = 0to t = 1:

d_Ztt = Ug(zt, t, enew)
This ODE is solved numerically using a standard solver such as
forward Euler. For N integration steps, the update rule is:

with initial value zg. (13)

1 k
Ziry = 2 + 50 (2 1 enew), fork =0, N-1. (14)

The resulting vector at the final step, zx = z1, is the synthesized
latent representation for the new environment. This vector is then
passed through the pre-trained VAE decoder D to generate the final,
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ready-to-use forecaster weights Wy, = D(zpn). The full training
and inference procedure is provided in Algorithm 1 in Appendix A.

4 Experiment

4.1 Evaluation Protocol

We evaluate our method on the task of forecasting networked dy-
namical systems under distribution shifts. We regard an environ-
ment as the combination of a specific network’s trajectory data and
its associated dynamic coefficients. For each dataset, we partition
the available environments into training, validation, and testing
sets, ensuring no overlap. The core of our evaluation lies in the test
set, which is further divided into two distinct regions to rigorously
assess generalization:

e In-Domain: Test environments whose dynamic coefficients
are interpolated from within the range of coefficients ob-
served during training.

e Out-of-Domain: Test environments whose dynamic coef-
ficients are extrapolated beyond the range of the training
set coefficients. This presents a more challenging test of a
model’s generalization capabilities.

4.2 Implementation Details

We report multi-step forecasting performance using Root Mean
Squared Error (RMSE) computed on the non-standardized trajecto-
ries. Across all experiments, we set the historical look-back window
to H = 50 and the prediction horizon to N = 50. All model hyper-
parameters, for both our method and the baselines, are tuned on a
dedicated validation set of environments. To ensure robust results,
all reported metrics are the average of 5 independent runs using
different random seeds but identical environment splits.

4.3 Datasets

We evaluate FNFM on five datasets covering both synthetic and
real-world network topologies with heterogeneous dynamics. The
synthetic datasets include Hill, which is generated on Barabasi-
Albert networks, while the datasets on real-world topology consist
of Epidemic (European road network), Twitter (social propaga-
tion), and Collab (scientific collaboration). Each dataset contains
multiple environments defined by distinct dynamic coefficients,
with strictly non-overlapping training, validation, and test splits.
Full details on governing equations, simulations, and OOD settings
are provided in Appendix C.

4.4 Baselines

To assess the effectiveness of our approach, we compare FNFM
against a comprehensive set of baselines ranging from standard
forecasting models to advanced adaptive frameworks. The baselines
include:

e Standard spatiotemporal models: STGCN [45] and STEP [37].

e Few-shot and generative approaches: STGFSL [30] and GPD [47].

o Adaptive and expert models: Paragon [38] and an oracle-like
One-per-Env STGCN.

Please refer to Appendix D for descriptions of each baseline model.
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Table 1: Average RMSE (+ std from 5 runs) in various environments (split shown in the first row). Best in bold, underlined for
suboptimal. STGFSL adopts a parameter-free meta learning strategy, so it has no additional parameters

Methods Params Hill Epidemic Twitter Collab
In-domain Out-domain In-domain Out-domain In-domain Out-domain In-domain Out-domain

STGCN[45] 13M 14.4060+2.3449  8.2359+0.8919 0.3797+ 0.0166  0.2437+0.0189  0.4402 +0.0400  0.3156+ 0.0112  0.9153 +£0.0613  0.8945+0.0618
STEP [37] 11IM 15.4436 +£0.6322 13.6226+0.5231  0.0639+0.0021  0.0609+0.0042  0.0612+ 0.0014  0.0593 +£0.0013  0.0556+0.0033  0.0303+0.0041
STGFSL[30] - 53.2770 £5.5370 38.7490 +5.3160 0.1875+0.0005 0.3710 £0.0008  0.3040 +£0.0010  0.4820 £0.0010 0.0660 +0.0007  0.0330 +£0.0012
Paragon [38] 11M 54.2730+ 1.8253 47.9000+1.7484 0.2367+0.0284  0.1333+0.0319  0.1333+0.0113  0.1584+0.0204  0.0755+0.1448  0.0326+0.0492
GPD [47] 12M 98.1748+0.0963  9.92475+1.315 0.1888 + 0.0002 0.0708 + 0.0021 0.1336 £0.0004 0.0676 +£0.0020 0.0722 + 0.0001  0.0280+0.0004
Ours 11M  13.8942 +2.4240 8.5595 + 0.4594 0.0562 +0.0071 0.0561+0.0059 0.0579 + 0.0081 0.0512+0.0048 0.0475 + 0.0036 0.0244+0.0021
Percentage 3.55% -3.93% 12.05% 7.89% 5.39% 13.66% 14.57% 12.86%
One-per-Env STGCN 11.2409 8.5127 0.0496 0.0538 0.0364 0.0326 0.0461 0.0229
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Figure 3: The process of FNFM generating weights for a pre-
dictive model under different environmental conditions.

4.5 Main Results

Table 1 presents the comparative results on four datasets. Our pro-
posed method, FNFM, consistently achieves state-of-the-art perfor-
mance, outperforming all baselines across nearly every in-domain
and out-of-domain scenario. Notably, FNFM’s accuracy is highly
competitive with the One-per-Env STGCN, an oracle-like expert
model trained with full access to data from the target environment.

FNFM’s effectiveness is attributable to its ability to explicitly
learn the low-dimensional manifold of the expert model weights.
While monolithic baselines seek a single compromise model and
meta-learning requires target data to navigate this space, FNFM
learns the global structure of the manifold itself. By using a VAE to
identify this structure and a CFM to learn the direct map from any
environmental coefficient to a point upon it, our framework can
instantly generate a specialized, near-optimal model.

4.6 Explainability

To gain deeper insight into the internal workings of FNFM, we
visualize its weight generation process on two datasets in Figure 3.
We use principal component analysis to project the latent space
learned by the VAE onto a two-dimensional plane. The visualization
clearly reveals three key elements of our framework’s success.

First, the latent vectors of the expert models (the End points) are
not scattered randomly; instead, they converge to form a smooth,
well-structured, low-dimensional manifold. This indicates that the
space of effective model weights possesses a strong intrinsic struc-
ture, which our VAE successfully captures.

Second, this manifold is meaningfully organized by the environ-
mental coefficients, as illustrated by the color gradient. We observe
a continuous color transition along the manifold’s structure, signi-
fying that similar environments correspond to proximate locations
in the latent space. This confirms that our framework has learned a
semantic mapping from dynamic environments to model weights.

Finally, the trajectories connecting the start points (from the
Gaussian prior) to the end points (the target weights) visualize the
conditional flow matching process. These trajectories follow direct,
nearly-straight paths from the simple prior to their target locations
on the manifold. This reveals that our CFM model has learned a
stable and efficient transport map, ensuring high-quality zero-shot
generation.

In summary, this visualization provides compelling evidence
for FNFM’s success: it learns not only a semantically organized
manifold of expert models but also an effective conditional path to
navigate it.

4.7 Case Study

To further investigate FNFM’s ability to generalize, we conduct a
case study on the Collab dataset, which models an SIS-like informa-
tion propagation process on a network of scientific collaborations
(Figure 4a). This system exhibits a critical phenomenon known as
a phase transition, where the long-term outcome of the dynamics
is acutely sensitive to the environmental coefficient, which in this
context represents the information’s stickiness [40].

As illustrated in Figure 4b, the system’s final propagation scale
displays three distinct regimes based on the environmental co-
efficient. When the coefficient is below a critical threshold (the
Declining region), activity eventually dies out. Conversely, above
a higher threshold (the Active region), the information becomes
endemic, reaching a high, stable level of activity. Between these
extremes lies a highly non-linear Transition region, where small
changes in the coefficient lead to dramatic shifts in the outcome.

For this experiment, we deliberately trained FNFM only on data
from the two extreme regimes (Declining and Active), leaving the
entire critical Transition region as a challenging, unseen test bed.
The results demonstrate a remarkable generalization capability.
Figure 4c shows that FNFM’s zero-shot predictions for the prop-
agation scale in this unseen region align closely with the ground
truth, indicating that our model successfully learned the underlying
non-linear function governing the phase transition. Furthermore,
Figure 4d displays two example trajectory forecasts, confirming
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Figure 4: Case study on the Collab dataset. (a) Illustration of the network topology and governing equation. (b) The information
propagation scale (network activity at the final time step) as a function of the environmental coefficient (popularity). (c) FNFM’s
generalized prediction of the propagation scale within the phase transition region closely matches the ground truth. (d) FNFM’s
predicted trajectories for two extreme scenarios: a declining case and an active case.
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Figure 5: Robustness results on the Collab dataset.

that our generated models can accurately predict the full temporal
evolution of the system’s network-wide activity.

This case study provides strong evidence that FNFM learns more
than simple input-output mappings; it captures the fundamental
principles of a complex system’s critical behavior. The ability to
accurately interpolate within a phase transition showcases its po-
tential as a powerful tool for reliable forecasts for systems with
novel parameters near critical tipping points.

4.8 Robustness

We conduct two additional experiments on the Collab dataset to as-
sess the robustness of FNFM under challenging conditions: limited
data availability and noisy environmental coefficients.

Robustness to Limited Data. In this experiment, we evaluate
model performance when trained on a reduced number of available
environments (from 100% down to 10%). As shown in Figure 5a,
FNFM maintains its superior performance and low RMSE even
when trained with only 10% of the environments. In contrast, the
competing generative model, GPD, suffers a catastrophic perfor-
mance degradation under data scarcity, indicating its heavy reliance
on a large number of training examples. This highlights FNFM’s
excellent data efficiency, suggesting that our framework can effec-
tively learn the underlying manifold of expert weights from a very
limited sample of environments.

Robustness to Noisy Coefficients. This experiment tests the
model’s stability when the provided environmental coefficients at

inference time are inaccurate. We add zero-mean Gaussian noise
(standard deviation is setting to the coefficient’s total range) to
the true coefficients, with the noise intensity varying from 0% to
20%. Figure 5b shows that the RMSE of FNFM increases gracefully
and smoothly as the noise intensity grows, with less than a 16%
increase in error even at 20% noise. This smooth degradation, rather
than a sudden breakdown, provides strong evidence that FNFM has
learned a continuous and well-behaved mapping from the coeffi-
cient space to the latent space of model weights. This property is
crucial for practical applications, as it ensures that small estimation
errors in the environmental coefficients will only lead to small and
predictable errors in the final forecast.

4.9 Ablation Study

To validate the effectiveness of our key design choices, we conduct
an ablation study on the Hill and Collab datasets, with results shown
in Table 2, including a backbone comparison with DDPM.

Weight Sequence Tokenizer This experiment assesses the
importance of our structure-preserving tokenizer. In the “w/o Tok-
enizer” variant, we simply flatten all model weights into a single
vector and then reshape it into a token sequence, disrupting the
network’s architectural inductive biases. The results show that this
naive approach leads to a notable performance degradation on the
Collab dataset, particularly in the out-of-domain split. This vali-
dates our hypothesis that preserving the computational structure of
the weights is crucial for the generative model to learn a meaningful
and generalizable representation.

Environmental Coefficients This experiment evaluates the
necessity of the conditional generation mechanism. In the “w/o
Condition” variant, the CFM model is trained unconditionally to
generate an "average" expert model. The results show a severe
drop in performance across all datasets and splits. This confirms
that the environmental coefficient is the essential guiding signal
for synthesizing the correct, specialized model weights. Without
this conditioning, the model fails to adapt to the specific dynamics
of any given environment, underscoring the critical role of our
conditional framework.

Necessity of VAE To justify the use of a Variational Autoencoder
(VAE) for weight compression, we tested a variant “w/o VAE” where
flattened weights are fed directly into the CFM model. As shown in
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Table 2: Ablation studies on Hill and Collab datasets. ‘w/0’
stands for ‘without’. Lower RMSE indicates better perfor-
mance.

Hill (RMSE) Collab (RMSE)
Variant In Out In Out
w/o VAE 118.9763 142.2945 0.0495 0.0340
w/o Tokenizer 17.3381 11.1205 0.05134 0.0359
w/o Condition 27.6437 17.5250  0.0670  0.0306
Ours (CFM) 13.8942 8.5595 0.0475 0.0244
DDPM (50 steps) 18.5735 11.4027 0.1021 0.0529
CFM (50 steps) 14.9386 8.7411 0.0483 0.0247

Table 2, removing the VAE causes severe degradation, particularly
on the Hill dataset (RMSE increases from 13.89 to 118.97). This
confirms that raw weight spaces are too high-dimensional and
sparse for efficient direct generation. Compressing weights into
a compact, regularized latent space is essential for effective flow
matching and stable training.

CFM vs. Diffusion (DDPM) We further compare our chosen
Continuous Flow Matching (CFM) backbone against a standard
Denoising Diffusion Probabilistic Model (DDPM). We replaced CFM
with DDPM while keeping other components unchanged. Both
models were evaluated using a fixed budget of 50 sampling steps to
reflect a computationally efficient inference scenario. As shown in
Table 2, CFM consistently achieves lower RMSE across both datasets
and splits under this constraint. Theoretically, CFM learns straighter
optimal transport trajectories in the latent space compared to the
stochastic paths of diffusion models. This property enables faster
convergence and more accurate weight generation even with fewer
sampling steps (50 steps).

5 Related work
5.1 Modeling of Network Dynamics

Data-driven modeling of complex network dynamics, particularly
with Graph Neural Networks (GNNs), has become a prominent re-
search direction. Foundational models like STGCN [45] and Graph
WaveNet [43] established effective frameworks for spatio-temporal
forecasting by integrating graph convolutions with temporal mod-
eling. Subsequent research has advanced this field by incorporating
more sophisticated mechanisms, such as using Neural Ordinary
Differential Equations (ODEs) to capture continuous-time dynamics
[48], or designing specific encoders to handle dynamic topologies
and generalize across different environments [15, 16].

However, a fundamental challenge for these models is gener-
alizing to unseen dynamic regimes. To address this, one line of
work focuses on building large-scale, "one-for-all" foundation mod-
els that train on diverse data [24, 37]. While powerful, they often
sacrifice the specialized accuracy required for specific dynamic
conditions. Another prominent approach leverages meta-learning
to quickly adapt a base model to new environments [6, 30]. Despite
their adaptability, these methods typically require at least a small
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amount of trajectory data from the target environment for fine-
tuning, precluding their use in true zero-shot scenarios. Our work
targets this critical gap.

5.2 Generative Models for Network Weights

Generating neural network weights is an emerging paradigm with
significant potential for generalization [42]. This area has evolved
along several fronts. One initial line of work focused on generat-
ing weights to accelerate or improve the training process itself,
effectively replacing hand-crafted initializations [10, 36].

More recent studies, closer to our own, leverage conditional gen-
erative models like diffusion to produce weights tailored for general-
ization. For instance, Yuan et al. [47] use an urban knowledge graph
as a prompt to generate spatio-temporal models for unseen cities.
Others have integrated weight generation into the meta-learning
loop, replacing gradient-based inner-loop [49] , or proposed con-
trollable frameworks like Paragon [38] , which employs parameter
diffusion for test-time adaptation . While these methods represent
significant progress, their zero-shot performance is often limited,
as many still necessitate post-generation finetuning.

A potential reason for this limitation lies in the representation of
the weights themselves. Most existing methods treat the weights as
a simple flat vector, disrupting the network’s inherent architectural
inductive biases and making the distribution harder for a generative
model to learn. To address this Deep Weight Flow [12] applies re-
basing techniques within a Flow Matching framework to account for
permutation symmetries, generating high- accuracy weights that do
not require fine-turning. In contrast, our work introduces two key
innovations: 1) We employ a novel weight sequence tokenizer that
preserves the computational structure of the network, providing
a more meaningful representation for the generative model. 2) By
synergistically combining a VAE and conditional flow matching,
we directly learn a smooth manifold of expert weights, enabling
truly zero-shot, single-pass generation of high-performance models
without any subsequent tuning.

6 Conclusion

This work introduced FNFM, a novel generative framework that
successfully addresses the critical challenge of zero-shot prediction
for network dynamics. Recognizing that dynamics are highly sensi-
tive to their governing coefficients, we proposed a paradigm shift:
from directly predicting trajectories to generating the complete
weights of a specialized forecaster model itself. Our methodology
operationalizes this concept through a synergistic combination of
a variational autoencoder and a conditional flow matching model.
The VAE first learns a compact and smooth latent manifold of expert
model weights, after which the CFM framework learns to map any
environmental coefficient to a specific location on this manifold.
This mechanism enables the instantaneous, single-pass generation
of tailored models for unseen environments, demonstrating robust
generalization without any need for finetuning.

A current limitation of FNFM is that our current framework
assumes a static network topology; extending FNFM to handle
dynamic graphs where nodes and edges evolve over time is a critical
next step.
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A Algorithmic Details

Algorithm 1 CFM for Conditional Latent Vector Generation

Require: Pre-computed latent vectors and conditions Z =
(29, €)Y eeEoeen
Ensure: Trained CFM network vg
// Stage 1: Training the Conditional Vector Field
procedure TRAINCFM(Z)
Initialize CFM network parameters &.
for each training step do
Sample batch {(zil), e(’.))}?:1 from Z.
Sample priors z(()i) ~ N(0,) and times ¢t ~ U(0, 1).
zgi) —(1- t(i))zéi) + t(’.)zﬁi) > Construct path points
MOPEMCINC
Lerm < 2 log(zf”, ¢, e@) —u@ |2 > Loss
Update ¢ by descending the gradient of Lcpy.
end for
end procedure

> Define target velocities

// Stage 2: Generating Latent Vectors via Inference
procedure GENERATELATENTVECTOR(vgv, eV N)
Sample prior zg ~ N(0,I).
fork=0,...,N—-1do
Zpy1 & Zp + % - 0g(zg, k/N, e"V) » Forward Euler step
end for
return zy > Latent vector for new environment

end procedure

B Additional Experiments on
FitzHugh-Nagumo Dynamics
. Following the reviewers’ suggestion, we additionally evaluate

our method on the FitzHugh-Nagumo (FHN) dynamics, a classical
nonlinear system characterized by high-frequency oscillations and
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fast-slow interactions. Compared to the SIS and Hill dynamics con-
sidered in the main paper, FHN represents a different dynamical
regime and is therefore reported here as a supplementary experi-
ment. We empirically observe that STGCN may exhibit degraded
predictive performance on FHN, possibly due to its limited model ca-
pacity and temporal inductive bias when modeling high-frequency
oscillatory dynamics. To ensure a fair comparison across meth-
ods, we adopt Graph WaveNet[43] as the backbone model for all
approaches in this experiment.

The results are summarized in Table 3. This experiment is in-
tended to serve as a supplementary analysis and does not alter the
main conclusions drawn from the SIS and Hill dynamics. The results
indicate that our method achieves competitive performance relative
to existing baselines under this additional dynamical setting.

Table 3: RMSE on the FHN dynamics using Graph WaveNet
as the backbone model.

Method In-domain Out-domain

STGCN 0.0578 0.0909
STEP 0.0513 0.0475
STGFSL 0.1520 0.1160
GPD 0.5726 0.8553
Ours 0.0180 0.0193
Per-Env 0.0112 0.0153

C Dataset Details
C.1 Network Dynamics

Hill dynamics [14] describes regulatory interactions in sub-cellular
networks, with the following governing equations:

dx; N
i z :
_t = —Bix? + 4 1Aij

h
Xj

: (15)
1+ x}h
where x;(t) is the abundance of protein i, A;; is the network topol-
ogy, and the exponents a and h control the self-dynamics and regu-
latory interaction, respectively.

SIS dynamics [1, 40] models an epidemic process on a network
where nodes can be infected by their neighbors and recover to a sus-
ceptible state. The governing equation for the infection probability
x; of each node i is:

dxi N
E = —yxi+ﬂ(l—xi)ZAiij', (16)
Jj=1
where x; is the state of node i, A;; is the adjacency matrix repre-
senting the network topology, y is the recovery rate, and f is the
infection rate per contact.

FitzZHugh-Nagumo (FHN) dynamics [7, 24] is a simplified
model of neuronal excitable systems. In this networked version,
each node i is described by a fast voltage variable x; ; and a slow
recovery variable x; 2. Based on the implementation, the governing
equations are:

dxiy = Xj1 —x.3 — Xj2 + £Z-A"(X'] —X'l)
dt L i1 L2 T 4 AN i

i
dx;y
d; =e+ fxi1 —yxi2
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Table 4: Simulation settings of each networked system.

Hill (BA) Epidemic Twitter Collab FHN (BA)
Dynamics Hill SIS SIS SIS FHN
Node Num 300 1,174 761 1,511 300
Edge Num 1,475 1,417 1,029 4,273 596
Avg Degree 9.83 2.41 2.70 5.66 3.97
Time Unit (s) 0.04 0.1 0.1 0.02 0.05
Time Length (s) 600.0 50.0 50.0 10.0 300.0

Environments  a € [0.5,0.6,10], h € [0.3,2.0,10], B € [0.2,0.9,4] f € [0.02,0.08,11], y € [0.01,0.12,11]

B € [0.02,0.04,11], y € [0.01,0.12,11]  f=0.02,y € [0.2,2.0,40] e € [0.0,0.6,20], f € [0.0,1.0,20]

where Ajj is the adjacency matrix and k; = ). j A;j is the degree of
node i. The parameter ¢ represents the coupling weight, while e
and f are parameters controlling the system’s limit cycle behavior.
The constant y denotes the decay rate of the inhibitor variable.

C.2 Simulation and Data Splitting

We employ Euler’s method to numerically solve the dynamics of the
aforementioned systems for each topology, generating evolutionary
trajectories as the datasets. To create challenging generalization
tasks, we vary the key dynamic coefficients to form distinct training
and testing environments.

For the Hill dataset, the out-of-domain (OOD) environments
are created by sampling coefficients from the boundaries of the
training ranges; specifically, setting parameter a = 0.6 (from a
training range of [0.5,0.6]) and sampling parameter h from the sub-
range [1.2580,2.0000] (from a full training range of [0.33,2.00]).

For the Epidemic and Twitter datasets, the parameter f is var-
ied across its full range while the coefficient y is split. For Epidemic,
the training range for y is [0.0200, 0.0330], while the OOD test set
extrapolates to [0.0360, 0.0390]. For Twitter, the training range for
y is [0.0200, 0.0740], with its OOD test set in the extrapolated range
of [0.0740, 0.0800].

For the Collab dataset, the parameter f is fixed at 0.02, while
the training environments use a y range of [0.2000, 0.4264]. The
OOD test set for this dataset involves a distributional shift to a
completely separate, non-overlapping range of [0.4728,0.9302].

For the FHN dataset, the training and OOD environments are
partitioned based on the relationship between parameters e and
f. The training and in-distribution test sets are sampled from the
regions satisfying |f — e| > 0.2 (specifically f > e+ 0.2 or f <
e — 0.2) using a 7 : 3 split. To evaluate generalization, the OOD
test set is constructed from the complementary "gap" region where
|f —e] < 0.2, representing a dynamical transition zone excluded
from the training phase.

D Baseline Descriptions
We compare our proposed method against the following baselines:

e STGCN [45]: A deep learning model that combines graph
convolutions for spatial dependencies with gated temporal
convolutions for temporal dynamics, jointly modeling graph-
structured time series.

e STEP [37]: A novel framework that enhances spatiotempo-
ral graph neural networks by using a pretraining model to
learn temporal patterns and generate segment-level repre-
sentations.

e STGFSL [30]: A model-agnostic, spatiotemporal graph few-
shot learning framework designed for scenarios with limited
data.

o GPD [47]: A generative pretraining framework that pretrains
a diffusion model to generate customized parameters for
spatiotemporal prediction networks.

e Paragon [38]: A controllable learning approach that uti-
lizes parameter diffusion to adapt models to varying task
requirements. It employs a diffusion-based generator to pro-
duce optimized model parameters in a test-time adaptation
manner, eliminating the need for retraining when objectives
change.

e One-per-Env STGCN [45]: A set of expert STGCN mod-
els trained specifically for each environment, serving as a
reference for the upper bound of performance.

E Software and Hardware Environment

We implement FNFM in PyTorch and employ the open-source avail-
able implementations with default parameters for baselines. All
experiments were conducted on the NVIDIA GeForce RTX 2080Ti
GPU. For all datasets and baselines, we set the batch size to 64 and
trained for 500 epochs with a learning rate of 0.0001.

F Model Configuration

Weight Variational Autoencoder. Our Weight Variational Autoen-
coder (VAE) is built upon a Transformer architecture designed to
process the sequence of model weights. The VAE’s internal model
dimension (d,,,04e1) is set to 128. The Transformer architecture con-
sists of 2 layers, each equipped with 8 attention heads. The encoder
network compresses the input weight token sequence into a 32-
dimensional latent space. For training, we used the Adam optimizer
with an initial learning rate of le-4 and a weight decay of 3e-9,
managed by a OneCycleLR scheduler. The batch size was set to 32,
and the Kullback-Leibler (KL) divergence term in the ELBO loss
was weighted by a f§ factor of 1le-6.

Conditional Flow Matching Model. The conditional vector field
(vg) for the Flow Matching process is also implemented using a
Transformer-based architecture. This network operates on the 32-
dimensional latent space, taking a latent vector as input and out-
putting a velocity vector of the same dimension. The architecture
is composed of 4 Transformer layers, each with 2 attention heads.
A dropout rate of 0.1 is applied during training for regularization.
The model is conditioned on external environmental information,
which is provided through dedicated knowledge graph and time
embeddings.



	Abstract
	1 Introduction
	2 Preliminary
	2.1 Problem Definition
	2.2 Conditional Flow Matching

	3 Methodology
	3.1 Collecting Expert Model Weights
	3.2 Weight Sequence Tokenizer
	3.3 Weight Variational Autoencoder
	3.4 Conditional Flow Matching

	4 Experiment
	4.1 Evaluation Protocol
	4.2 Implementation Details
	4.3 Datasets
	4.4 Baselines
	4.5 Main Results
	4.6 Explainability
	4.7 Case Study
	4.8 Robustness
	4.9 Ablation Study

	5 Related work
	5.1 Modeling of Network Dynamics
	5.2 Generative Models for Network Weights

	6 Conclusion
	Acknowledgments
	References
	A Algorithmic Details
	B Additional Experiments on FitzHugh-Nagumo Dynamics
	C Dataset Details
	C.1 Network Dynamics
	C.2 Simulation and Data Splitting

	D Baseline Descriptions
	E Software and Hardware Environment
	F Model Configuration

