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Human–AI adaptive dynamics drives the 
emergence of information cocoons

Jinghua Piao    1,3, Jiazhen Liu1,3, Fang Zhang2, Jun Su2 & Yong Li    1 

Despite AI-driven recommendation algorithms being widely adopted to 
counter information overload, substantial evidence suggests that they 
are building cocoons of homogeneous contents and viewpoints, further 
aggravating social polarization and prejudice. Curbing these perils requires 
a deep insight into the origin of information cocoons. Here we investigate 
information cocoons in the real world using two large datasets and find 
that a large number of users are trapped in information cocoons. Further 
empirical analysis suggests that two ingredients, each corresponding to a 
fundamental mechanism in human–AI interaction systems, are correlated 
with the loss of information diversity. Grounded on the empirical findings, 
we derive a mechanistic model for the adaptive information dynamics in 
complex human–AI interaction systems governed by these fundamental 
mechanisms. It allows us to predict critical transitions between three states: 
diversification, partial information cocoons, and deep information cocoons. 
Our work not only empirically traces real-world information cocoons in two 
representative scenarios, but also theoretically unearths basic mechanisms 
governing the emergence of information cocoons. We provide a theoretical 
method for understanding major social issues resulting from adaptive 
information dynamics in complex human–AI interaction systems.

Artificial intelligence (AI) has permeated all kinds of human activity 
and catapulted algorithms into aspects of modern life1. As one of the 
best-known AI-driven technologies, recommendation algorithms are 
widely adopted to counter the problem of information overload2,3. 
Their widespread adoption ranges from the consumption of news4,5 
and videos6,7 to friendship establishment8. However, recent years have 
witnessed that AI-driven recommendation algorithms are driving  
the formation of information cocoons (ICs)9, in which individuals are 
being isolated from diverse information and eventually trapped in a 
single topic or viewpoint. Exposure to homogeneous information 
not only deprives humans of the diversity of information available 
for informed decision-making10–12 but also exacerbates social polari-
zation13,14 and reinforces biases4,15. The perils of ICs are far-reaching, 
as they stifle creativity and innovation16, impede progress toward a 
more inclusive world17, and ultimately threaten the diversity of our 

society8,13,15. To curb these perils, understanding the origin of ICs is 
the crucial first step.

Current studies on the homogeneity process of online informa-
tion focus primarily on either human behaviours or intelligent algorit
hms4,10,11,15,18–24. Though they empirically explore the potential drivers in 
the aggregation of homogeneous populations on social media15,18,20,24 
or the algorithmic filtering effects4,20, they only provide correlational 
evidence. Recently, a few empirical studies10,25,26 have conducted a causal 
analysis based on statistical methods. However, they do not offer mecha-
nistic analysis or dynamic insights; hence, the fundamental mechanisms 
driving the system into ICs remain unexplored. The lack of insight into 
the mechanisms has a deep origin: current AI-driven recommendation 
algorithms are deeply rooted in deep learning methods3,6. Their black- 
box nature, originating from billions of parameters27,28, further hinders 
an in-depth understanding of ICs from a purely empirical perspective.
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to a single topic after 1 year of interactions (see other cases in Sup-
plementary Fig. 6). We notice that there is a subtle increment in the 
final state of group 5. This suggests that, in contrast to other groups, 
group 5 is not in a deep IC, and some fluctuations or interventions in 
the system could potentially bring more diverse information to them. 
However, the subtle increment does not change the apparent declin-
ing trend over the whole period (Supplementary Section 2.1). Overall, 
the above large-scale data analysis indicates that a large proportion of 
users suffer from a significant loss of information diversity, suggesting 
the existence of serious ICs, raising a critical but largely unanswered 
question: what are the key ingredients driving users toward ICs in the 
human–AI system?

On online platforms, AI-driven recommendation algorithms are 
deeply rooted in two common mechanisms: (1) similarity-based match-
ing and (2) utilization of users’ feedback. Similarity-based matching 
is the most fundamental mechanism in recommendation algorithms, 
designed to recommend items similar to those users liked in the past2,3. 
In response to the recommended items, users naturally give positive or 
negative feedback according to their preferences2,3,31,32, where positive 
feedback reflects what users like while negative feedback reflects what 
users dislike. Then algorithms utilize the feedback as the prerequisite 
of the next-step similarity-based matching2,3,6, forming a simple but 
fundamental feedback loop for the human–AI interaction system2,3,33.

To empirically explore how these mechanisms have effects on 
the information homogeneity of users, we measure the normalized 
information entropy ̂s  and the similarity-based matching strength 
(Fig. 1d; see details in Supplementary Section 2), finding a negative 
correlation between them. Meanwhile, we observe that the ratio of 
positive feedback samples is negatively correlated with ̂s  (Fig. 1e), 
whereas the correlation between the ratio of negative feedback sam-
ples and ̂s  is positive (Fig. 1f). Though the statistical evidence shows 
correlations between the ICs and these key factors, they offer limited 
information about the basic mechanisms underlying the dynamics 
of the human–AI interaction system, that is, how the AI adaptively 
utilizes the users’ feedback in the dynamic feedback loop and eventu-
ally drives users into ICs. This suggests that a theoretical model is 
required to uncover the mechanisms underlying the dynamics driving 
the emergence of ICs.

Adaptive information dynamics model
Below we focus on proposing an adaptive dynamics modelling frame-
work for complex human–AI interaction systems to account for the 
emergence of ICs. In contrast to the deep-learning-based model incor-
porating billions of parameters, the proposed model only depends on 
four parameters originating from both the empirical observation and 
the working principle of current recommendation algorithms2,3,6,33,34, 
integrating similarity-based matching, users’ feedback and human 
exploration behaviours in the modelling framework (Fig. 1g).
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using metrics, such as the inner product, the cosine similarity 
and the Jensen–Shannon divergence2. Here we focus on the in-
ner product in the main text and also include results of other 
metrics in the supplementary information (Supplementary 
Sections 2.2 and 4.3). On the basis of the similarity denoted by 
θ(ul, ik), the recommendation algorithm matches user l and item 

k with a probability proportional to plk =
e βθ(ul ,ik)

∑ik′ ∈Ie
βθ(ul ,ik′ )

, where I is 

the set of all candidate items and where β controls the strength 
of similarity-based matching (Description of adaptive informa-
tion dynamics model). β = 0 represents a purely random recom-
mendation strategy, whereas large β leads to the strategy that 

On the other hand, a number of theoretical studies have pointed 
out that the adaptive dynamics, that is, features of individuals in 
complex systems co-evolving with the reformation of ties between 
individuals, is responsible for the homogeneity process in many 
social systems13,14,22. These studies hint that the adaptive dynamics 
in human–AI interaction systems is possibly the underlying driving 
force of the emergence of ICs. However, the existing studies lack 
insights into the mechanisms of co-evolution between humans and AI 
algorithms. This is because the interactions between humans and AI 
involve multiple entities and feedback, leading to intricate dynamical 
properties underpinning these interactions11,21. Hence, the origin of 
ICs remains unknown.

The purpose of this paper is to uncover the origin of ICs in the 
complex human–AI interaction system. As discussed above, existing 
studies only provide empirical evidence or qualitative models, lacking 
insights into the fundamental mechanisms driving the system towards 
the emergence of ICs. This requires a theoretical framework capable 
of accounting for the adaptive information dynamics underlying ICs. 
To explain the origin of the ICs, we point out that there are two mecha-
nisms, (1) similarity-based matching and (2) positive/negative feed-
back, serving as the starting point of an adaptive information dynamics 
model for complex human–AI interactions. We analytically predict the 
transitions between information homogeneity and diversification 
states, validated by extensive simulations and empirical observations 
involving over 570 million records in two representative scenarios. We 
reveal that the imbalance between positive and negative feedback lures 
the system to move toward ICs, and then similarity-based matching 
further reinforces this tendency, eventually leading the system to deep 
ICs. We not only uncover the origin of ICs but also provide a theoretical 
method for understanding major social issues emerging from complex 
human–AI interactions.

Results
Empirical observations
To investigate real-world ICs, we adopt two large-scale real-world data-
sets. The first dataset is collected from one of the top three short-form 
video platforms in China. This dataset contains more than 111,000 (111K) 
new users, 9,000,000 (9M) videos and these users’ 500M interaction 
records in the entire year of 2021. In the video dataset, there are 20 video 
topics. The second dataset is collected from Microsoft News5, including 
14 news topics with more than 90K users, 130K pieces of news and 36M 
interaction records for 6 weeks. We report detailed descriptive and tem-
poral statistics of the two datasets in Supplementary Sections 1 and 2.

To empirically quantify the diversity of information accessible to 

users, we measure information entropy s = −∑N

j=1 f
(j)
l

log f(j)
l

 for each 

user l29,30 on two empirical datasets (Supplementary Section 1), where 

N is the number of unique topics and f(j)
l
= n

(j)
l

∑N
j=1 n

(j)
l

 is the relative 

frequency with which user l accesses items belonging to topic j (n(j)
l

 
is the number of times user l accesses topic j). By measuring overall 
changes in entropy Δs over one year, we find that over 57% of the active 
users have witnessed a decline in information entropy (Fig. 1a), sug-
gesting the prevalence of ICs across users in the real world. The users 
with a decline in entropy (Δs < 0) have all experienced a rapid slump 
in information diversity at an early stage of entering the platform  
(Fig. 1b). In particular, users in group 1, 11% of the total, have suffered 
a sharp decline for around a year, eventually witnessing a 24.8% drop 
in entropy. Indeed, we find that sharply falling diversity of topics has 
characterized the interactions between AI-driven recommendation 
algorithms and users. By randomly selecting a user from group 1, in 
which users have experienced the largest decline in information diver-
sity (Fig. 1c), we observe a striking pattern that this user, entering the 
system with a wide variety of accessible topics, is eventually confined 
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items with high similarity scores are more likely to be recom-
mended. Overall, the algorithm matches each user l with a set of 
similar items denoted by Rβ. Since both datasets present most 
items only belonging to a single topic j, that is, i(j)

k
= 1 and 

i(j
′≠j)

k
= 0, we obtain s for each user l,

s = −
N

∑
j=1

f(j)
l

log f(j)
l
≈ −

N

∑
j=1

1 + βu(j)
l

N + β
log

1 + βu(j)
l

N + β
. (1)

Note that, in contrast to plk measuring the interaction probability 
between user l and item k, f(j)

l
 denotes the frequency of recommending 

each topic j to each user l, which is largely determined by the observed 
preference ul (Description of adaptive information dynamics model).

 (ii) The decision of a user to give positive feedback to the recom-
mendation is largely determined by the similarity θ(xl, ik) bet-
ween the user’s intrinsic preference xl = [x(1)

l
, x(2)

l
,… , x(N)

l
] 

and item feature ik. Note that in contrast to ul, representing the 
preference speculated by the algorithm, the intrinsic preference 
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Fig. 1 | Empirical observations on ICs and our proposed adaptive  
information dynamics model. a, Δs, where the majority of active users (57%) 
have experienced increasingly homogeneous recommendation results.  
We divide these users evenly into five groups according to Δs. b, Temporal 
changes in s, where lines correspond to groups of users with different Δs 
(n1 = n2 = n3 = n4 = n5 = 7,359), error bars represent 95% confidence intervals (CIs) 
and centres of error bars represent the average values. With the increase in 
interactions, 11% of the overall users (group 1) have witnessed a total drop in 
entropy from 2.32 to 1.75 (24.8%). c, Example of a randomly selected user in group 
1, who has been strongly confined to homogeneous information by AI-driven 
recommendation algorithms. d–f, Correlation between ̂s  and the strength of 

similarity-based matching (d), the ratio of positive feedback samples (e) and the 
ratio of negative feedback samples (f). For illustration, we normalize information 
entropy over all users using the min–max method. Here shading represents the 
corresponding 95% prediction intervals and centres represent the estimated 
linear correlation functions. g, Overview of an adaptive information dynamics 
model, where humans and the AI-driven recommendation algorithm interact 
with each other, forming a feedback loop. The AI matches users and items on the 
basis of the estimated similarity (β). Users provide feedback. The AI learns from 
users’ positive feedback (γ+) and negative feedback (γ−), as well as random 
self-exploration (σ), and then makes further recommendations.
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xl encodes the inherent preference (Description of adaptive in-
formation dynamics model). Assuming random human decision- 
making, the probability of accepting the recommendation is de-
noted by π(xl, ik) = θ(xl, ik), whereas the probability of declining 
the recommended items is 1 − π(xl, ik). Items receiving positive 
feedback make up a set of positive feedback samples R+

β
⊆ Rβ  and 

the others make up a set of negative feedback samples R−
β
⊆ Rβ.

(iii) Users also proactively explore through other resources, for ex-
ample, search engines34. These exploration behaviours are also 
an important input of recommendation algorithms; hence we 
model users’ proactive exploration behaviours as a stochas-
tic process by introducing σ to capture the degree of random 
self-exploration.
Combining (i)–(iii), we obtain the following stochastic differential 

equation, capturing how the AI adaptively utilizes user feedback to 
update user l’s observed preference ul:

dul = γ+ ∑
ik∈R+β

F(ul, ik)dt + γ− ∑
ik∈R−β

F(ul, ik)dt + σdWt, (2)

where γ+ ≥ 0 and γ− ≤ 0 are the algorithmic utilization rates of positive 
feedback ik ∈ R+

β
 and negative feedback ik ∈ R−

β
. Physically, γ+ and γ− 

govern how likely the AI-driven algorithm is to recommend desirable 
and undesirable items to users. F(ul, ik) represents the interaction func-
tion between a user l’s observed preference ul and a recommended 
item k’s feature. Wt is the standard Wiener process13,35,36 (Description 
of adaptive information dynamics model and Supplementary  
Section 3.1). Here we adopt F(ul, ik) = ik − ul, measuring the distance 
between ul and ik (Minimal model). Note that the different domains of 
γ+ ≥ 0 and γ− ≤ 0 allow ul to be updated in opposite directions. The evo-
lution of the observed preferences is characterized by three parts: the 
first term governed by γ+ guides ul to be more similar to positive feed-
back, the second term controlled by γ− drives ul to be more different 
from negative feedback and the third term determined by σ captures 
the algorithmic utilization degree of random self-exploration. Note 
that if the recommendation algorithm can perfectly infer user prefer-
ences, then the observed preference ul should be equal to the intrinsic 
preference xl; however, such a perfect inference is still beyond the 
current AI’s capabilities.

Emergence of ICs
Incorporating equation (1) with equation (2), we can derive the  
distribution of relative information entropy P( ̃s ≡ {s/s∗}) , where 

s∗ = −∑N

j=1 x
(j)
l

ln x(j)
l

 denotes the entropy of users’ intrinsic prefer-

ences x(j)
l

 (Analytical solution). P( ̃s) characterizes the distribution of 
information diversity relative to intrinsic preference diversity with 
parameters β, γ± and σ. As suggested by both theoretical analysis and simu-
lation (Analytical solution, Minimal model and Supplementary Sections 
3.2 and 3.3), ICs are exacerbated by amplified β (Fig. 2a) and magnified  
∣γ+∣ (Fig. 2b).

Starting from purely random matching, that is, β = 0, we gradually 
increase β, observing three unexpected patterns characterized by 
different degrees of relative information diversity in both theoretical 
and simulation results (Fig. 2a). A state of diversification, captured by 
a single-peaked P( ̃s) with ⟨ ̃s⟩ ≈ 1 , resulted from random matching, 
whereas a large β = 7 drives the users to the state of deep ICs character-
ized by a single-peaked P( ̃s) with a strikingly small ⟨ ̃s⟩ ≈ 0. In particular, 
with β = 4,P( ̃s)  exhibits a notable bimodal distribution with 
0.5 ≤ ⟨ ̃s⟩ ≤ 1, suggesting that the system is in the state of partial ICs. 
Here users are differentiated into two different groups: (1) the group 
with a lower ⟨ ̃s⟩ and (2) that with a higher ⟨ ̃s⟩ (dark-green and light-green 
bars in Fig. 2a). We formally formulate the states of diversification, 
deep ICs and partial ICs in equation (8) in Minimal model. To further 
explore the reason for the differentiation, we measure the intrinsic 

preference distributions for these two groups of users, finding that 
users with a lower ⟨ ̃s⟩ have narrower preferences than others (Supple-
mentary Section 4.2).

Similarly, our model further demonstrates that the magnified ∣γ+∣ 
tends to drive the system to the state of ICs when |γ−∣ is relatively small. 
With increasing ∣γ+∣, the state transits from diversification to partial 
ICs, then from partial ICs to deep ICs (Fig. 2b). Accordingly, our theo-
retical analyses offer analytical results of P( ̃s) (dashed lines in Fig. 2b) 
and capture the state transitions, exhibiting considerable agreement 
with the simulation results (Analytical solution, Minimal model and 
Supplementary Section 3.2). Overall, these findings suggest that the 
overuse of positive feedback induces the emergence of ICs across some 
or even all users.

To account for the emergence of ICs, we further evaluate the 
degree of over-recommendation and under-recommendation on cer-
tain topics (Minimal model). We find that, in the state of deep ICs, the 
algorithm tends to recommend items on a few topics, over-exploiting 
a small fraction of users’ preferences. On the other hand, the algorithm 
underestimates users’ preferences on a large proportion of topics  
(Fig. 2c and Supplementary Fig. 35). The analysis suggests the cause 
of ICs: the excessive use of positive feedback leads to partial obser-
vations of user preferences. When a feedback loop is dominated by 
strong similarity-based matching strength, partial observations are 
unavoidably further reinforced, leading to over-recommendation of 
certain topics and under-recommendation of others.

The above results raise a natural question: what is the effect of 
negative feedback? The answer is that increasing ∣γ−∣ enables users to 
escape from ICs. The state of diversification is observed when ∣γ−∣ is 
large, whereas the state of deep ICs arises with marginal ∣γ−∣ (Fig. 3a), 
exhibiting a remarkable reversal transition pattern compared with  
Fig. 2b. This raises a puzzling question: how does the increasing utiliza-
tion of negative feedback suppress the emergence of ICs? To answer 
this, we further analyse the change in the available topics for individual 
users. By randomly selecting a user as an example (Supplementary 
Section 4.9), we find that, with increasing utilization of negative feed-
back, the user is no longer limited to a single topic but can access a 
variety of matching topics (Fig. 3c). Our theoretical analyses consist-
ently suggest that there is antagonism between positive and negative 
feedback in the information dynamics between humans and AI-driven 
recommendation algorithms (Analytical solution and Supplementary 
Section 3.2). Indeed, since the algorithm estimates similarity on the 
basis of what users like, that is, positive feedback, the overall system 
is naturally biased toward positive feedback. In this case, overlook-
ing negative feedback will further exacerbate the bias, leading to the 
underestimation of the diversity of users’ preferences. This implies 
that the efficient utilization of negative feedback can counteract the 
side effect of the overuse of positive feedback, restoring the system 
to a state away from ICs.

As the emergence of ICs can be suppressed by efficient utilization 
of negative feedback, we may wonder if there is a way for users to pro-
actively stay away from ICs. The answer lies in the users’ random 
self-exploration. Figure 3b shows that, even when the AI-driven recom-
mendation algorithm excessively depends on similarity-based match-
ing and positive feedback (β = 10, γ+ = 1), a slight increase in the 
self-exploration degree σ can still effectively keep the system away 
from ICs. In particular, by slightly raising σ from 0.04 to 0.07, some 
users directly get rid of deep ICs and reach a diversification state, that 
is, ̃s ≈ 1 (light green plots in the inset of Fig. 3b). Indeed, Fig. 3d suggests 
that a high self-exploration rate σ helps the algorithm to more compre-
hensively and precisely capture users’ intrinsic preferences, hence 
offering more diverse and matching recommendations. To test the 
model’s robustness, we consider the circumstances in the news dataset 
(Supplementary Section 4.1) and other widely adopted similarity met-
rics in practical industrial recommendation algorithms2, such as the 
cosine similarity and the Jensen–Shannon divergence (Supplementary 

http://www.nature.com/natmachintell


Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00731-4

Section 4.3). Moreover, in two real-world datasets, we observe that the 
empirical information entropy distribution P(s) shows three distinct 
states, in line with our predictions (Supplementary Sections 2.5 and 
4.5), further illustrating the validity of our findings obtained from the 
proposed adaptive information dynamics model.

In our final analysis, we explore how the interplay among the ingre-
dients of similarity-based matching, positive and negative feedback, 

and self-exploration affects transitions between the three states of ICs. 
We conduct the simulations with two different initial observed prefer-
ences obtained from the video and news datasets (Minimal model and 
Supplementary Section 3.3). Given the antagonistic effect between 
positive and negative feedback on the emergence of ICs (suggested by 
our theoretical analysis in Analytical solution and simulation results 
in Figs. 2b and 3a), we define the relative utilization rate of feedback 
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P( ̃s) over different ∣γ+∣. a, b, Insets: temporal changes in ̃s , where shading 
represents 95% CIs. The excessive use of similarity-based matching and positive 
feedback leads to the emergence of ICs. c, Degrees of over-recommendation and 
under-recommendation among different states, where bars represent the 

average values (ndiversification = 1,000, npartial left = 785, npartial right = 215, ndeep = 1,000) 
and error bars represent 95% CIs. Insets: temporal changes in degrees of 
over-recommendation and under-recommendation, where shading represents 
95% CIs. Users in deep ICs experience the largest degrees of both over-
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Fig. 3 | Effects of ∣γ−∣and σ on ICs. a, Distributions of relative information  
entropy P( ̃s) over different ∣γ−∣. b, Distributions of relative information entropy 
P( ̃s) over different σ. a, b, Insets: temporal changes in ̃s , where shading 
represents 95% CIs. Efficient utilization of negative feedback and users’ active 
exploration behaviours suppress the emergence of ICs. c, Comparison of the 

initial and the accessible topic distributions for a randomly sampled user when 
γ− = −0.10 (upper) and γ− = −0.90 (lower). d, Comparison of the initial and the 
accessible topic distributions for a randomly sampled user when σ = 0.04 (upper) 
and σ = 0.16 (lower). c, d, Dots represent the intrinsic preference of the user and 
bars represent the distribution of available topics.
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∣γ−/γ+∣, characterizing the update rate of negative feedback relative 
to that of positive feedback. Figure 4a,b shows three-dimensional 
state diagrams for video and news recommendations (see formal 
definition of states in Methods, equation (8)). Incorporating equa-
tions (7) with (8) predicts two state transitions, from diversification 
to partial ICs, and then from partial ICs to deep ICs, qualitatively 
agreeing with the numerical experiment (Fig. 4c–h). The transition 
between states occurring under the critical parameters suggests that 

ICs are relievable by a proper balance between the discussed ingredi-
ents. Indeed, the cross-sections of three-dimensional state diagrams  
(Fig. 4c–h and Supplementary Figs. 27 and 28) illustrate the details: 
even though β is significant, the slightly increasing σ and ∣γ−/γ+∣ drive 
the system away from ICs. This demonstrates that the balance between 
positive and negative feedback, as well as similarity-based match-
ing and initiatives to encourage self-exploration, protects humans  
from ICs.
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Discussion
In this Article, we propose an adaptive dynamics model to unearth the 
origin of ICs in complex human–AI interaction systems. Grounded on 
large-scale empirical observations, the model allows us to capture 
the mechanisms behind the emergence of ICs and analytically predict 
transitions between different information homogeneity states in the 
complex human–AI interaction system. We show that similarity-based 
matching acts as an effective force field in complex system theory, 
driving the system from diversification to ICs. Positive feedback 
further amplifies this effect, resulting in a decrease in information 
entropy: that is, information diversity. Negative feedback and random 
self-exploration promote information diversity by resisting the effect 
of the effective force field and introducing perturbation to the system. 
This resistance drives the system from ICs to diversification. Our find-
ings are supported by extensive experiments, validating the robustness 
of our model (Supplementary Sections 3.2, 4.1, 4.3–4.7 and 5).

As AI technologies become more ubiquitous in our daily lives, the 
interactions between humans and AI create a complex system involving 
multiple entities and feedback. Moreover, current AI-driven algorithms 
are deeply rooted in deep learning, and infamous for their black-box 
nature27,28. This hinders us from understanding dynamical properties 
and emergent behaviours in complex human–AI interaction systems. 
Our proposed adaptive information dynamics model remedies this 
situation by offering a mechanistic understanding of the emergence of 
ICs, providing a powerful theoretical tool for diving into the underlying 
mechanisms governing the adaptive dynamics in complex human–AI 
interaction systems.

It is worth pointing out that our model not only explains the 
emergence of ICs but also accounts for the increase in information 
entropy observed in the empirical analysis (Supplementary Section 
4.8), validated by extensive simulations and large-scale empirical 
observations. The decrease and increase in entropy are the two sides 
of the same ‘coin’, representing different evolution directions of the 
system. Supplementary Figure 33 shows that the model reproduces 
the empirically observed P(Δs). The numerical simulations further 
show that increased (decreased) use of negative (positive) feedback 
and randomness (similarity-based matching) allows more users to 
experience a growth of entropy. This analysis of the user group with 
increased entropy is in line with our main conclusion: striking a balance 
between negative and positive feedback, as well as a balance between 
similarity-based matching and randomness, helps users escape from 
ICs. This further implies that our model has the capability to provide 
solutions to tackle ICs, that is, promote the growth of entropy, by 
controlling/adjusting the key parameters.

The proposed model, incorporating only two mechanisms, effec-
tively elucidates the dynamics of information entropy and offers two 
practical ways to mitigate real-world ICs: (1) effective utilization of 
negative feedback, which offers a new perspective on users’ preferences 
by identifying their dislikes, and (2) promotion of self-exploration, 
which diversifies the available information by empowering users to 
exercise greater autonomy over the algorithm (see detailed design 
implications in Supplementary Section 5). Moreover, the theoretical 
model allows us to infer the systematic parameters from the empiri-
cal data. This helps us identify the most vulnerable modules in the 
current recommendation algorithm and develop strategies for miti-
gating ICs (Supplementary Sections 4.8 and 5). Altogether, we not 
only empower AI-driven recommendation algorithms with practical 
directions towards social good, but also offer a theoretical method for 
understanding major social issues resulting from adaptive dynamics 
in complex human–AI interaction systems.

Note that, although our study empirically and theoretically 
uncovers the origin of ICs, it is not without limitations. First, we mainly 
focus on how ICs emerge from complex human–AI interaction sys-
tems. Therefore, for simplicity and generality, we consider a minimal 
human decision-making model and quantify the diversity of available 

information by using the information entropy of recommendations, 
leaving the more complicated human behaviours for future explo-
ration. Second, we ground this study on the two most concerning 
scenarios, that is, news and videos; hence, considering other recom-
mendation scenarios, for example, e-commerce, would be one of the 
future directions.

Methods
Description of adaptive information dynamics model
To account for the origin of ICs, we develop a model for the adap-
tive information dynamics in the interaction feedback loop between 
humans and AI-driven recommendation algorithm. Such a feedback 
loop is characterized by essential ingredients: (1) similarity-based 
matching and (2) users’ feedback. Analogous to stochastic thermody-
namics theory, the overall system of humans and the recommendation 
algorithm is initialized to be away from equilibrium. With the effective 
force field generated by similarity-based matching, the system evolves 
gradually from the diversification state to the IC one, characterized by 
a decline in information entropy. Below we will introduce our proposed 
model in detail.

To match users with suitable items, the recommendation algo-
rithm first evaluates the similarity between user l’s observed preference 
and item k’s feature: θ(ul, ik) = ul

Tik, where ik represents item k’s feature 
and ul presents user l’s preferences observed by the algorithm. Note 
that ik is a vector, ik = [i(1)

k
, i(2)

k
,… , i(N)

k
] , where i(j)

k
= 1  and i(j

′≠j)
k

= 0   
denote that item k belongs to a single topic j. We assume that items’ 
features do not change with time and the recommendation algorithm 
can capture them. Considering that the algorithm cannot directly 
capture users’ intrinsic preferences but only observes them on the  
basis of previous feedback, we define user l’s observed preference 
ul = [u(1)

l
,u(2)

l
,… ,u(N)

l
], where ∑N

j=1 u
(j)
l
= 1,0 ≤ u(j)

l
≤ 1. Here we adopt the 

inner product as the similarity metric; this can also be replaced with 
other widely adopted metrics2, such as the cosine similarity and the 
Jensen–Shannon divergence (Supplementary Section 4.3).

Inspired by the well known collaborative filtering techniques in 
recommendation algorithms2, we design the topic correlation matrix 
Φ to reflect topic correlations established on the basis of users’ collec-
tive behaviours. For example, beer and nappies, even though they are 
semantically unrelated, have very similar customers, so they are always 
recommended together. We obtain Φ from empirical data by comput-
ing the correlation coefficient matrix of the estimated users’ preference 
vectors (Supplementary Section 3.3.2). We insert the topic correlation 
matrix into the similarity metric, formulated as θ(ul, Φik) = ul

TΦik. On 
the basis of the estimated similarity, the probability of each item k being 
recommended to user l satisfies

plk =
e βθ(ul ,Φik)

∑ik′ ∈I
e βθ(ul ,Φik′ )

=
1 + βθ(ul,Φik) +O( β2θ(ul,Φik)

2)

∑ik′ ∈I
(1 + βθ(ul,Φik′ ) +O( β2θ(ul,Φik′ )

2))
, (3)

where plk is an analogy to the Boltzmann distribution in statistical 
physics: the numerator represents the energy of the state θ(ul, Φik), 
the denominator is recognized as the partition function and the param-
eter β represents the reciprocal of the thermodynamic temperature of 
the system. Since both datasets present fairly weak correlations 
between most topics (Supplementary Fig. S8) and most items only 
belong to a single topic j, that is, i(j)

k
= 1 and i(j

′≠j)
k

= 0, we can approxi-
mate the similarity θ(ul,Φik) = uT

l
Φik ≈ uT

l
ik = u(j)

l
. Moreover, in our  

theoretical derivation, without loss of generality, we assume  
that items are uniformly distributed across topics. Incorporating 
∑N

j=1 u
(j)
l
= 1,0 ≤ u(j)

l
≤ 1 with equation (3) leads to f(j)

l
≈ 1+βu(j)

l

N+β
, capturing 

the probability of recommending topic j to user l.
Facing a recommended item, users have two types of feedback, 

that is, positive and negative feedback. Positive feedback corresponds 
to behaviours reflecting that the user prefers the item to others:  
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for example, like, click or purchase. Negative feedback corresponds 
to behaviours reflecting that the user is not interested in the recom-
mended items: for example, skip. Without loss of generality, we assume 
that user l accepts the recommended item k with probability 
π(xl, ik) = θ(xl, ik) = xl

Tik, where xl denotes user l’s intrinsic preference 
xl = [x(0)

l
, x(1)

l
,… , x(N)

l
] and ∑N

j=1 x
(j)
l
= 1. As such, items receiving positive 

feedback make up the set of positive feedback samples R+
β

 and others 
make up the set of negative feedback samples R−

β
.

Despite the prevalence of recommendation algorithms, they 
are not the only information source34; users can proactively explore 
information through other sources, such as search engines34. Thus, 
inspired by previous work13,35,36, we consider users’ self-exploration 
behaviours as a Wiener process in each topic’s dimension, and the 
degree of self-exploration is controlled by the parameter σ.

Considering users’ positive and negative feedback as well 
as self-exploration behaviours, the recommendation algorithm 
updates user l’s observed preference ul according to the Langevin 
equation (2). In the equation, the utilization of positive feedback 
(γ+) amplifies the effective force field of similarity-based match-
ing, resulting in a more ordered system characterized by smaller 
information entropy. As a counterbalance, the utilization of nega-
tive feedback (γ−) resists the impact of the effective force field. 
Users’ exploration behaviours (σ) introduce random perturbations 
into the system, substantially increasing information entropy and  
preventing ICs.

Analytical solution
To solve the adaptive information dynamics model, we notice that the 
information entropy alters with the observed user preferences, as 
captured by the stochastic dynamics equation (2), leading to the cor-
responding Fokker–Planck equation for the observed user preference 
distribution P(u(j)l |t) . The stationary solution of the Fokker–Planck 
equation can be found by using the mean-field approximation. There-
fore, it allows us to derive P( ̃s) from the observed user preference 

distribution. As mentioned before, we adopt P( ̃s) ≡ P( s

s∗
) to quantify 

the degree of ICs among users, with s∗ = −∑N

j=1 x
(j)
l

log x(j)
l

 quantifying 

the diversity of inherent preferences of user l.
We define the probability density function P(u(j)

l
|t), measuring the 

probability that the recommendation algorithm observes the user l’s 
preference u(j)

l
 on topic j at time t. Solving equation (2) leads to the fol-

lowing Fokker–Planck equation:

∂P (u(j)
l
|t)

∂t

= −
∂P (u(j)

l
|t) [γ+∑ik∈R+β

F (u(j)
l
, i(j)

k
) + γ−∑ik∈R−β

F (u(j)
l
, i(j)

k
)]

∂u(j)
l

+ 1
2
∂2σ(u(j)

l
)2P (u(j)

l
|t)

∂(u(j)
l
)2

, (4)

where P(u(j)
l
|t) is the calculated probability of the recommendation 

algorithm finding observed preference u(j)
l

 on a certain topic j at  
time t for user l. Notice that the first term of the right-hand side of 
equation (4) captures the effect of the recommendation algorithm 
under the mechanisms of similarity-based recommendation (β), as 
well as positive and negative feedback (γ±), whereas the second term 
depicts the self-exploration (σ) of users. This equation suggests that 
the adaptive information dynamics in the human–AI interaction system 
is driven by the combined effect of recommendation and 
self-exploration. Assuming that the system reaches its stationary state, 
we use the mean-field approximation (Supplementary Section 3.2.2), 
obtaining

∫
1

0
di(j)f(j)

l
[γ+Π(x, i) + γ−

1
Π(x, i) ] F(u

(j), i(j))P(u(j))P(i(j))

= d
du(j)

[σ(u(j))2P(u(j))]
, (5)

where f(j)
l
≈ 1+βu(j)

l

N+β
 and Π(u,x, i) = π(x,i)

1−π(x,i)
.

Incorporating the stationary P(u(j)) obtained from the above  
equation and the rescaled parameters Ñ = N + β  with equation (1), 
 the distribution of the recommendation probability 

P(f(u(j))) = d
df(j)

∫
Ñf(j)−1

β

0
P(u(j))du(j) . By defining a random variable 

s(j) = f(u(j)) − f(u(j))2  satisfying P(s(j)) = d
ds(j)

(1 − ∫g(s)
1/Ñ P(f(j)) df(j)) , where 

g(s) = 1
2
+√

1
4
− s(j) , we obtain the information entropy distribution 

from the convolution of P(s(j)):

P(s) = Ps = P(s(1)) ∗ P(s(2)) ∗ ⋯ ∗ P(s(j)) ∗ ⋯ ∗ P(s(N)), (6)

where s = ∑N

j=1 s
(j). Similarly, we find the relative information entropy 

distribution as follows:

P( ̃s) = d
d ̃s

∫
lnN

0
(∫

̃ss∗

0
P(s)ds)P(s∗)ds∗, (7)

where P(s*) is an arbitrary probability density function representing 
the inherent entropy distribution for the intrinsic preferences of users.

Minimal model
Below we will focus on the minimal realization of the proposed model. 
To be specific, we use a linear model F(ul, ik) = ik − ul to account for the 
distance between the observed preference ul and item feature ik in the 
embedding space13,37,38. Besides the linear function, we have a lot of other 
options for the mathematical form of F, that is, F ≈ [−ul + tanh(ik)]14. 
However, all the candidate functions can be expanded as Taylor series 
F ≈ (ik − ul) + O((ik − ul)

2) when the high-order term is relatively weak. 
Moreover, we assume that user l accepts the recommended item k 
with probability π(xl, ik) = θ(xl, ik) = xl

Tik. We measure the similarity 
between ul and ik, formulated as θ(ul, Φik) = ul

TΦik. Here we adopt the 
inner product as the similarity function, which can also be replaced 
with other functions (Supplementary Section 4.3).

Together with equations (5), (6) and (7), we can solve P( ̃s) for the 
minimal model (Supplementary Section 3.2.3), finding three different 
states for ICs shown in Figs. 2 and 3. These three states are quantitatively 
defined by the following equations:

⎧⎪
⎨⎪
⎩

P′′( ̃s) < 0, ⟨ ̃s⟩ ≥ 1 (diversification)

−∞ < P′′( ̃s) < ∞,0.5 ≤ ⟨ ̃s⟩ ≤ 1 (partial IC)

P′′( ̃s) < 0, ⟨ ̃s⟩ < 0.5 (deep IC).

(8)

Incorporating equation (7) with equation (8) allows us to find the transi-
tion lines from diversification to partial ICs, and then from partial ICs 
to deep ICs. When the state of the system transits from diversification 
to partial ICs, we have P″(s) = 0 and 〈s〉 ≈ 1. Similarly, the transition 
from partial ICs to deep ICs is characterized by P″(s) = 0 and 〈s〉 ≈ 0.5. 
The predictions of the transition lines are shown in Fig. 4. The red 
lines represent the transition lines from diversification to partial ICs, 
whereas the blue lines separate the domains corresponding to partial 
ICs and deep ICs.

We further conduct simulations for the minimal realization, where 
each user l has an intrinsic preference distribution xl and an observed 
preference distribution ul over N different topics. We initialize these 
vectors from two empirical datasets, including one collected from a 
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leading short-video platform and the other from a worldwide news 
platform (Supplementary Sections 1 and 3.3.2). In the video dataset, 
there are N = 20 distinct topics, including games, sports, food and so 
on; in the news dataset, there are N = 14 distinct topics, including sports, 
finance, lifestyle and so on. Following previous work11, we assume that 
users’ intrinsic preference distributions are drawn from a Dirichlet 
distribution xl ≈ Dirichlet(μuser), where μuser is a vector of the global 
popularity of topics obtained from empirical data (Supplementary 
Section 3.3.2 and Supplementary Fig. 7). Further, to avoid biasing the 
observed preferences very far from the global popularity, we initialize 
users’ observed preferences using the identical Dirichlet distribu-
tion ul ≈ Dirichlet(μuser). Each item k has a fixed feature vector 
ik = [i(1)

k
, i(2)

k
,… , i(N)

k
], which is a one-hot vector that encodes the topic to 

which the item belongs. We randomly sample candidate items from 
the overall pool of items in each dataset. Distributions of the number 
of items over topics are shown in Supplementary Fig. 2.

At each time step t, we repeat interactions between humans and 
the recommendation algorithm in the following way.

 (1) The recommendation algorithm recommends for each user l a 
set of items Rβ with Nrec distinct items. The probability of each 
item being recommended follows equation (3).

 (2) User l gives positive feedback to the recommended item k with 
a probability of π(xl, ik) and gives negative feedback with a 
probability of 1 − π(xl, ik). Items receiving positive feedback 
make up a set of positive feedback samples R+

β
 and the other 

items make up a set of negative feedback samples R−
β

.
 (3) User l carries out random self-exploration following a  

Wiener process.
 (4) The recommendation algorithm updates each user l’s observed 

preference following equation (2).

To delineate the severity of ICs, we evaluate the relative informa-
tion entropy ̃s  and degrees of over-recommendation and under- 
recommendation ro, ru for each user l at each time step. Specifically, for 
̃s , we compute the entropy of the topic distribution in Rβ and divide it 

by the intrinsic diversity of user preference s*. For ro, ru, we compute 
the degree of over-recommendation as ro = ∑j∈Fo

|f(j)
l
− x(j)

l
|/x(j)

l
, where 

Fo = { j ∶ x(j)
l
> 0, f(j)

l
> x(j)

l
}, and the degree of under-recommendation 

as ru = ∑j∈Fu
|f(j)
l
− x(j)

l
|/x(j)

l
, where Fu = { j ∶ x(j)

l
> 0, f(j)

l
< x(j)

l
}.

Data availability
The news dataset5 is available at https://msnews.github.io/. For com-
mercial reasons, we anonymize the specific name of the video platform. 
We present the video dataset at https://github.com/tsinghua-fib-lab/ 
Adaptive-Information-Dynamic-Model (refs. 39,40). In the GitHub 
repository, we provide the behavioural data aggregated to individual 
granularity and the processed data for Figs. 1–4. Source data are pro-
vided with this paper.

Code availability
The code used in this research is available at https://github.com/ 
tsinghua-fib-lab/Adaptive-Information-Dynamic-Model (refs. 39,40).
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